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Abstract

We revisit the smooth convex-concave bilinearly-
coupled saddle-point problem of the form
ming max, f(z)+ (y, Bz) — g(y). In the highly
specific case where function f(x) is strongly con-
vex and function g(y) is affine, or both functions
are affine, there exist lower bounds on the number
of gradient evaluations and matrix-vector multi-
plications required to solve the problem, as well
as matching optimal algorithms. A notable as-
pect of these algorithms is that they are able to
attain linear convergence, i.e., the number of itera-
tions required to solve the problem is proportional
to log(1/¢). However, the class of bilinearly-
coupled saddle-point problems for which linear
convergence is possible is much wider and can
involve general smooth non-strongly convex func-
tions f(z) and g(y). Therefore, we develop the
first lower complexity bounds and matching opti-
mal linearly converging algorithms for this prob-
lem class. Our lower complexity bounds are much
more general, but they cover and unify the exist-
ing results in the literature. On the other hand,
our algorithm implements the separation of com-
plexities, which, for the first time, enables the
simultaneous achievement of both optimal gradi-
ent evaluation and matrix-vector multiplication
complexities, resulting in the best theoretical per-
formance to date.
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1. Introduction

In this paper, we consider the following saddle-point opti-
mization problem with a bilinear coupling function:
i F = f(x Bx) — 1

min max [F(x,y) = f(x) + (v, Bz) —g(@)], D)
where X = R% and )) = R% are finite-dimensional Eu-
clidean spaces, B € R%*% is a coupling matrix, and
f(@): X - R and g(y): ¥ — R are continuous func-
tions. We aim to solve problem (1) in the fundamental

setting where both functions f(z) and g(y) are convex and
smooth.!

Saddle-point problems of the form (1) appear in various
fields such as economics (Von Neumann & Morgenstern,
1947), game theory (Roughgarden, 2010), and statistics
(Berger, 2013). Moreover, these problems have a wide range
of applications in machine learning, including supervised
learning (Zhang & Xiao, 2017; Wang & Xiao, 2017; Xiao
et al., 2019), reinforcement learning (Du et al., 2017), com-
puter vision (Chambolle & Pock, 2011), robust optimization
(Ben-Tal & Nemirovski, 2002; Liu et al., 2017), distributed
optimization (Lan et al., 2020; Scaman et al., 2018; Ko-
valev et al., 2021; Yarmoshik et al., 2024; Kovalev et al.,
2024), and the training of generative adversarial networks
(Mescheder et al., 2017; Nagarajan & Kolter, 2017).

1.1. First-Order Methods and Linear Convergence

The majority of machine learning applications of prob-
lem (1) involve high-dimensional spaces X and ). In this
scenario, the most widely used and often the only scal-
able optimization algorithms are first-order methods. These
methods implement an iterative process to find an approx-
imate solution to the problem using the evaluation of the
gradients of the functions f(x) and g(y), as well as matrix-
vector multiplication with the matrices B and B. More
specifically, they perform iterative updates of the current es-
timate of the solution until it converges to the exact solution
up to a given accuracy. One of the main goals of our paper
is to develop efficient first-order optimization methods for

'A function is called smooth if it is differentiable and has a
Lipschitz-continuous gradient. See Section 2 for an equivalent
formal definition.
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solving problem (1).

In this paper, we are interested in first-order methods for
solving problem (1) that are able to achieve linear conver-
gence. That is, we are interested in algorithms that can
find an e-approximate solution to the problem using at most
O(K-log(1/¢)) gradient evaluations and matrix-vector mul-
tiplications, where O(-) hides universal constants, € > 0 is
an arbitrary precision, and KC > 1 is a constant that possibly
depends on the internal properties of the problem such as
condition numbers, etc.

In this work, we also intend to consider problem classes
where linear convergence is possible in principle. A typical
and one of the most fundamental examples of such a class is
problem (1) with strongly convex functions f(z) and g(y).
There are plenty of linearly converging first-order optimiza-
tion methods in this strongly-convex-strongly-concave set-
ting, which include the gradient descent ascent (Zhang et al.,
2022a), the extragradient method (Korpelevich, 1976), and
the optimistic gradient method (Gidel et al., 2018). More-
over, there is an array of algorithms that enjoy improved,
or accelerated, convergence rates (Kovalev et al., 2022b;
Thekumparampil et al., 2022; Jin et al., 2022; Du et al.,
2022; Li et al., 2023) with the help of the Nesterov momen-
tum trick (Nesterov, 2013). Another fundamental problem
class where linear convergence is possible is the class of
bilinear min-max games, which is a special case of prob-
lem (1) with affine functions f(z) and ¢g(y). Such problems
can be solved using the corresponding algorithms with lin-
ear convergence rates (Azizian et al., 2020; Li et al., 2022).
Finally, Kovalev et al. (2022b) developed an algorithm for
solving the general smooth convex-concave problem (1)
and provided a set of sufficient conditions under which the
proposed algorithm attains linear convergence.

1.2. Optimal Algorithms and Complexity Separation

In this paper, we are concerned with the task of developing
optimal algorithms, which is one of the ultimate goals in
optimization research. This task can be divided into two
key parts. The first part involves finding lower bounds on
the oracle complexity of solving the optimization problem,
i.e., the number of oracle calls, such as gradient evalua-
tions or matrix-vector multiplications, required to find an
approximate solution to the problem. The second part is to
find optimization algorithms that match these lower bounds.
Such algorithms are called optimal because their oracle
complexity cannot be improved due to the lower complexity
bounds. For example, in the case of bilinear min-max games,
lower bounds were proposed by Ibrahim et al. (2020) and
matching optimal algorithms were developed by Azizian
et al. (2020); Li et al. (2022). Similarly, Salim et al. (2022)
developed lower bounds and optimal algorithms for smooth
and strongly convex minimization with affine constraints,

which is a special case of problem (1) with a strongly convex
function f(z) and an affine function g(y).

Unfortunately, apart from the cases of bilinear min-max
games and affinely constrained minimization, the question
of finding optimal algorithms for solving problem (1) is
far from being resolved, even in the fundamental strongly-
convex-strongly-concave setting. Although separate lower
bounds on the gradient evaluation and matrix-vector mul-
tiplication complexities have already been developed by
Nesterov (2013) and Zhang et al. (2022b), respectively, the
existing state-of-the-art algorithms (Kovalev et al., 2022b;
Thekumparampil et al., 2022; Jin et al., 2022; Du et al., 2022;
Li et al., 2023) cannot simultaneously reach these bounds.
The main reason is that these algorithms perform the same
number of evaluations of the gradients V f(z) and Vg(y)
and matrix-vector multiplications with the matrices B and
BT at each iteration while solving the problem, whereas
the lower bounds on these numbers (Nesterov, 2013; Zhang
et al., 2022b) can be significantly different. Thus, to reach
the desired lower bounds, an optimal algorithm would have
to implement the separation of complexities by skipping gra-
dient evaluations and/or matrix-vector multiplications from
time to time. Borodich et al. (2023); Alkousa et al. (2020);
Sadiev et al. (2022); Lan & Ouyang (2021) attempted to
develop efficient first-order methods with the complexity
separation for solving the problem; however, these algo-
rithms are not able to achieve optimal complexities by a
substantial margin, see Section 5 and Table 1 for details.

The situation is even worse in other cases, such as the
strongly-convex-concave or convex-strongly-concave set-
tings, where only one of the functions f(x) or g(y) is
strongly convex, or the convex-concave setting, where nei-
ther of the functions is strongly convex. To the best of
our knowledge, there are no lower complexity bounds that
would cover these cases, with the exception of the highly
specific cases of bilinear min-max games (Ibrahim et al.,
2020) and affinely constrained minimization (Salim et al.,
2022). Therefore, the question remains unresolved as to
whether the current state-of-the-art linearly converging algo-
rithms for this setting (Kovalev et al., 2022b; Sadiev et al.,
2022) are optimal or not.

1.3. Main Contributions

The above discussion reveals significant gaps in the cur-
rent theoretical understanding of smooth convex-concave
saddle-point problems with bilinear coupling. In particu-
lar, the existing lower complexity bounds are insufficient,
and the state-of-the-art optimization algorithms are limited.
Summarizing these gaps leads to the following open re-
search question: Is it possible to develop an optimal lin-
early converging first-order optimization method for solving
the smooth convex-concave bilinearly-coupled saddle-point
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problem (1)? We provide a positive answer to this question
and present the following key contributions:

(i) We describe the class of smooth convex-concave
saddle-point problems of the form (1) for which it is
possible to achieve linear convergence in Section 2. We
establish the first lower complexity bounds for this class.
In particular, we show that to find an e-approximate
solution to problem (1), any first-order optimization
method requires at least O (k) evaluations of the gra-
dient V f (z), O(#,,) evaluations of the gradient Vg(y),
and Ok, ) matrix-vector multiplications with the ma-
trices B and BT, where «,, Ky, and K4, denote cer-
tain condition numbers associated with functions f(z),
g(y), and matrix B.?

(ii) We show that our lower complexity bounds are tight.
That is, we develop the first optimal algorithm that
matches these lower bounds. This algorithm imple-
ments the complexity separation, allowing us to si-
multaneously achieve both optimal gradient evaluation
and matrix-vector multiplication complexities. To the
best of our knowledge, such a result has never been
established in the literature, even in the fundamental
strongly-convex-strongly-concave setting.

(iii) As a side contribution, we develop a new algorithm for
solving a class of composite monotone variational in-
equalities. Just like the current state-of-the-art method
of Lan & Ouyang (2021), our algorithm implements the
separation of complexities, but enjoys substantially im-
proved convergence rates and works in a much broader
range of settings. Refer to Section 4 and Section 5.2
for details.

Our lower complexity bounds are much more general than
the existing lower bounds for the special cases of strongly-
convex-strongly-concave (Nesterov, 2013; Zhang et al.,
2022b), bilinear (Ibrahim et al., 2020), and affinely con-
strained (Salim et al., 2022) optimization. On the other
hand, our lower bounds recover and provide unification of
these existing results. Besides, our optimal algorithm shows
the best theoretical performance “on the market”, which,
to the best of our knowledge, outclasses all existing meth-
ods in the literature, with the exception of the algorithms
of Azizian et al. (2020); Li et al. (2022) and Salim et al.
(2022); Kovaleyv et al. (2020), which are already optimal in
the aforementioned specific cases of bilinear and affinely
constrained optimization, respectively.

?Here, O(-) hides the logarithmic factor log(1/¢), and univer-
sal (and possibly additive) constants. The precise definitions of x,
Ky, and Kz, are provided in Section 2.

2. Preliminaries
2.1. Main Definitions and Assumptions

In this paper, we use mathematical notation, which is mostly
standard and is therefore described in Appendix A. Fur-
ther, in this section, we provide a formal description of the
assumptions that we impose on problem (1). First, we de-
fine the (strong) convexity and smoothness properties of a
differentiable function.

Definition 2.1. A differentiable function h(z): RY — R is
called p-strongly convex for ;4 > 0 if the following inequal-
ity holds for all z, 2’ € R

D(a,a’) > & - ulle — 2| @

A differentiable function h(z): R? — R is called convex if
the same inequality holds with p = 0.

Definition 2.2. A differentiable function h(z): R? — R is
called L-smooth for L > 0 if the following inequality holds
for all z, 2’ € R%:

Dy (z,2")| < L - L||lz — 2|2 3)

1
2

Next, we formalize the (strong) convexity and smoothness
assumptions that we impose on functions f(z) and g(y) as
Assumptions 2.3 and 2.4. Note that we allow the strong
convexity constants jt, and /i, to be zero, thus covering the
case of non-strongly convex functions f(x) and g(y).

Assumption 2.3. Function f(z): X — R is u,-strongly
convex and L, -smooth for L, > p, > 0.

Assumption 2.4. Function g(y): J — R is p,-strongly
convex and L -smooth for L, > p, > 0.

Finally, the next Assumption 2.5 describes the spectral prop-
erties of the coupling matrix B.

Assumption 2.5. There exist constants Lyy > figy, flyz >
0, such that

2 _ [Miu(BTB) Vf(z) € rangeBTforall v € X
Hay = Amin(BTB)  otherwise

> o JAmin(BBT) Vg(y) € rangeBforally € ¥
Hye = Amin(BBT)  otherwise

Liy > )\max(BTB) = )\max(BBT)v

Additionally, we assume that if p,,,, > 0 and 1, > 0, then
Hay = Hyz-

Further, to shorten the notation, we gather all the parame-
ters defined in Assumptions 2.3 to 2.5 into a single vector
7 = (Ly, Ly, Loy, fa, Py, oy, Hyz) € 11 where IT C RY.
denotes the parameter set.
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2.2. Key Assumption for Linear Convergence

As discussed in Section 1, we are interested in algorithms
for solving problem (1) that exhibit linear convergence. We
introduce the key Assumption 2.6, which will enable us to
establish linear lower complexity bounds and devise optimal
linearly converging algorithms.

Assumption 2.6. Parameters 7 € 1I satisfy the inequality
min{d,,d,} > 0, where J,, and J,, are defined as follows:

O :Ux+U3cy/Ly7 Oy :ﬂy+ﬂ§x/L$' 4)
To better understand this assumption, consider the standard
primal and dual reformulations of problem (1), which are
given as follows:

min [P(x) = f(z) +g"(Ba)].

max [D(y) = ~g(y) = /*(-By)].

&)

One can show that the primal objective function P(z) and
the dual objective function —D(y) satisfy the quadratic
growth condition (Anitescu, 2000; Karimi et al., 2016) with
constants ¢, and d,,, respectively. This fact provides a good
starting point for understanding why linear convergence is
plausible under Assumption 2.6. On the other hand, Ko-
valev et al. (2022b) showed that this assumption is sufficient
for developing a linearly converging algorithm. Moreover,
in Section 3, we obtain Theorem 3.2, which implies that
Assumption 2.6 is also necessary for achieving linear con-
vergence, thus making it both a necessary and sufficient
condition.

We also need to characterize the linear convergence rates of
the first-order methods that we consider in this paper. Such
rates are typically expressed via the condition numbers as-
sociated with a given optimization problem. Consequently,
we define the following condition numbers for problem (1):

L, L, Lz,
— — = . 6
Ky = 5. Ky 5, Koy 5,0, (6)

The condition numbers x, and x,, correspond to the func-
tions f(x) and g(y), respectively. These can be seen as
extensions of the standard condition numbers L. /u,, and
L, /.y, which are commonly used in smooth and strongly
convex optimization (Nesterov, 2013). Similarly, the con-
dition number £, associated with the bilinear coupling
term is a generalization of the standard condition num-
ber Liy /(i ty), which is widespread in strongly-convex-
strongly-concave saddle-point optimization (Zhang et al.,
2022b; Ibrahim et al., 2020).

Further, we would like to ensure that the condition numbers
defined in equation (6) are lower-bounded by some small
universal constants. This is achieved by the following addi-
tional Assumption 2.7 on the parameter set II. It allows us

to avoid addressing some corner cases where the condition
numbers are small, which are neither theoretically nor prac-
tically interesting. It should be noted that Assumption 2.7
does not impose any fundamental restrictions;’ it is merely
introduced to streamline our complex theoretical findings.

Assumption 2.7. For all 7 € II the following additional
constraints are satisfied:

Ly > 4pg, Ly > 44y, /Ly Ly > dmax{ gy, fys
Ly > 18 max{fizy, fyx, /Hatly }

2.3. Structure of the Solution Set

In this paper, we denote the solution set of the saddle-point
problem (1) as S C X x ). Under Assumptions 2.3 to 2.5,
(z*,y*) € S if and only if the following first-order optimal-
ity conditions hold:

Vi@ )+BTy* =0, Vgy*)—Bz*=0. (1)

Moreover, under Assumption 2.6, the solution set is al-
ways non-empty and has an affine structure, as indicated by
Lemma 2.8.

Lemma 2.8. Under Assumptions 2.3 to 2.6, the solu-
tion set S of problem (1) is nonempty and is given as
S =8, xSy, where S; = Argmin,y P(x) and S, =
Argmax, ¢y D(y). Moreover, the primal and dual solu-
tion sets S, C X and S, C Y have the following affine

structure:
ker B otherwise
0 0 (®)
* My >
S, =vy" + ,
v=Y {ker BT otherwise

where (x*,y*) € S is an arbitrary solution to problem (1).

We also define a weighted squared distance function
R3. 5, (%, y) as follows:

ngéy (z,y) = 6, dist?(z; S,) + 0, dist*(y;S,).  (9)

We are going to use this function to measure the quality of
a given approximate solution to problem (1) in both lower
complexity bounds and the convergence analysis of optimal
algorithms.

3. Lower Complexity Bounds
3.1. First-Order Saddle-Point Optimization Methods

In this section, we present lower bounds on the number of
gradient evaluations and matrix-vector multiplications re-
quired to solve problem (1). These lower bounds apply to

3In particular, it is always possible to increase the smoothness
constants L, Ly, and L, to satisfy Assumption 2.7.
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a specific class of algorithms that we refer to as first-order
saddle-point optimization methods. A formal description
of this class is provided in Definition 3.1. This definition
is mostly inspired by the common linear span assumption
(Nesterov, 2013; Zhang et al., 2022b; Ibrahim et al., 2020).
However, the standard existing definitions focus only on
iteration complexity. This is insufficient in our case, as we
need to derive more specific lower bounds on the numbers
of gradient evaluations and matrix-vector multiplications.
Therefore, in Definition 3.1, we introduce a continuous
execution time parameter 7 > 0 and assume that the evalu-
ation of the gradients V f () and Vg¢(y) takes time 74 and
T4, Tespectively, while matrix-vector multiplication with
matrices B and BT takes time 7g. A similar approach
was previously used in distributed optimization by Scaman
et al. (2017; 2018); Kovalev et al. (2024), where they had
to ensure a distinction between communication and local
computation complexities.

Definition 3.1. An algorithm is called a first-order saddle-
point optimization method with gradient computation times
T¢,Tg > 0, and matrix-vector computation time 7g > 0, if
it satisfies the following constraints:

(i) Memory. At any time 7 > 0, the algorithm main-
tains a memory, which is represented by a set M(7) =
M (1) x My(T), where M, (1) C X and M (1) C
Y. The memory can be updated by computing the gra-
dients V f(x) and Vg(y), and by performing matrix-
vector multiplications with matrices B and B . This
is represented by the following inclusions:

My(T) C My(1)UMpT(T), (10)
My(1) C My(1) U Mg(T),
where sets M (1), My(7), Mg (7), and Mg(T)

are defined below.

(ii) Gradient computation. At any time 7 > 0, the algo-
rithm can update the memory by computing the gra-
dients V f(z) and Vg(y), which take time 7; and 7,
respectively. That is, for all 7 > 0, sets M (1) C X
and M, (1) C Y are defined as follows:

Mj(r) = {Span({l’, Vi@):weMa(r—7p)}) T277

%] T<Tf’
span({y, Vg(y) 1y € My(1 —79)}) 72>,
Mq(f)—{g Y J T<Tg-
g

(iii) Matrix-vector multiplication. At any time 7 > 0,
the algorithm can update the memory by performing
matrix-vector multiplication with matrices B and BT,
which takes time 7g. That is, for all 7 > 0, sets

Mgt (1) C X and Mp(7) C Y are defined as fol-

lows:
Mg () = {;pan({.l’,BTy S(2,y) € M(T—8)}) i i :2 7
Mi(r) = {;pan({Bgc,y D (zyy) e M(T —TB)}) : i :z .

(iv) Initialization and output. At time 7 = 0, the algo-
rithm must initialize the memory with the zero vector,
that is, M, (0) = {0}, M,(0) = {0}. At any time
7 > 0, the algorithm must specify a single output
vector from the memory, (2,(7), yo(7)) € M(7T).

3.2. Lower Bounds

In this section, we present our lower complexity bounds.
We start with Theorem 3.2, which shows that it is not pos-
sible to obtain a linearly converging algorithm for solving
problem (1) if Assumption 2.6 does not hold. The proof
can be found in Appendix F. This theorem indicates that
there exists a specific “hard” instance of problem (1), such
that any first-order saddle-point optimization method fails
to converge in terms of the distance to the solution set and
converges sublinearly in terms of the primal-dual gap. It is
important to clarify that the main purpose of Theorem 3.2
is to demonstrate the impossibility of attaining linear con-
vergence in general if Assumption 2.6 does not hold, rather
than to provide tight lower complexity bounds for this set-
ting. Thus, we leave further investigation of the general
case of problem (1) under Assumptions 2.3 to 2.5 for future
work.

Theorem 3.2. Let m € I, R, > 0, and ¢ > 0 be ar-
bitrary parameters, distance, and precision, respectively.
Suppose that Assumption 2.6 does not hold, i.e., without
loss of generality, 0, = 0. There exists a problem (1) satis-
fying Assumptions 2.3 to 2.5 with parameters w, such that
dist(0; S;.) = Ry, and for any first-order saddle-point op-
timization method and execution time T > 0, the following
inequality holds:

dist?(z,(7); Sz) > LR2. (11)
Moreover, to reach precision on the primal-dual gap
P(z,(7)) — D(yo(T)) < € by any first-order saddle-point
optimization method, the execution time T must satisfy the
following inequality:

T>0 (Tf . dist(O;Sx)\/j/e) .

(12)

Now, we are ready to present lower complexity bounds for
problem (1) under Assumptions 2.3 to 2.7 in Theorem 3.3.
The proof can be found in Appendix G. The lower bound
on the total execution time 7 in equation (13) contains the
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terms Q(y/Fz ) Q(\//@_y) and Q(m) These terms can

be respectively interpreted as gradient evaluation complex-
ities with respect to the gradients V f(z) and Vy(y), and
matrix-vector multiplication complexity with respect to the
matrices B and B', as they are respectively multiplied
by the corresponding times 7y, 7,, and 7g. In addition,
these complexities are proportional to the logarithmic factor
log(1/€), making them linear as we previously discussed.

Theorem 3.3. Under Assumption 2.7, let 7 € 1, R > 0,
and € > 0 be arbitrary parameters, distance, and pre-
cision, respectively. Suppose that Assumption 2.6 holds.
There exists a problem (1) satisfying Assumptions 2.3 to 2.5
with parameters w, such that Rgm 5 (0,0) = R? and to
reach precision R 5, (@o(T),4o(7)) < € by any first-order
saddle-point optimization method, the execution time T must
satisfy the following inequality:

TZQ(Tf-\/K,x-i-Tg-,/liy-‘rTB'./FLmy), (13)

cR?
€

where Q(-) hides the multiplicative factor log <5-, ¢ > 0 is

a universal constant.

The result in Theorem 3.3 has two important merits. First,
this lower bound is tight, which we prove by developing
a matching optimal algorithm in Section 4. Second, by
making an appropriate restriction of the parameter set I, we
can recover the existing lower complexity bounds for the
important and fundamental special cases of strongly-convex-
strongly-concave saddle-point optimization (Zhang et al.,
2022b; Nesterov, 2013), bilinear saddle-point optimization
(Ibrahim et al., 2020), and strongly convex minimization
with affine constraints (Salim et al., 2022). On the other
hand, our result applies to an arbitrary choice of parameters
7 € II. Therefore, Theorem 3.3 and our definition of the
condition numbers x, Ky, and K., in Section 2 provide
unification and substantial generalization of the existing
results. See Appendix D for additional discussion.

4. Optimal Algorithm
4.1. Monotone Variational Inequalities

In this section, we develop an optimal algorithm for solving
problem (1). To do this, we consider a more general mono-
tone variational inequality problem of finding z* € C, such
that

p(z")

where C. is a closed and convex subset of the finite-
dimensional Euclidean space Z = R and differentiable
convex function p(z): Z — R and continuous monotone
operator Q(z): Z — Z have the following finite-sum struc-
tures:

p(z) = >0, pi(2),

—p(2) +{Q(2),2" = 2) <0 forall z€C, (14)

Q(z) =21, Qi(2), (15)

where p;(2): Z — R, Q;(z): £ — Z. Vector z* defined
in equation (14) is often called a weak solution to the mono-
tone variational inequality. In the setting of this paper, it is
equivalent to the strong solution*; refer to Kinderlehrer &
Stampacchia (2000) for details.

Further, we assume that the gradients Vp;(z) and operators
Q:(z) are monotone and Lipschitz with respect to the norm
|-, where P € S%, . These assumptions are commonly
used in the literature and are formalized through the follow-
ing Definitions 4.1 and 4.2 and Assumptions 4.3 and 4.4.
Note that Assumption 4.3 implies that each function p; (z)
is convex and smooth.

Definition 4.1. An operator G(z): R? — R? is called y-
strongly monotone with respect to the norm ||-||p for x> 0
if the following inequality holds for all 2, 2’ € R:

(G(z) -
An operator G(x): R? — R? is called monotone if the

same inequality holds with p = 0.

Definition 4.2. An operator G(z): R? — R? is called M-
Lipschitz with respect to the norm ||-||p for M > 0 if the
following inequality holds for all 2, 2’ € R%:

1G(z) = G(a')|lp-1 < M|z — 2'|[p. (17)

G@')a —a') > plle -2/}, (16)

Assumption 4.3. For all 1 < i < n, the gradient Vp;(z) is
monotone and L;-Lipschitz w.r.t. ||-||p.

Assumption 4.4. For all 1 < i < n, operator Q;(z) is
monotone and M;-Lipschitz w.r.t. ||-||p.

4.2. Optimal Sliding Algorithm for Monotone
Variational Inequalities

Now, we are ready to present our new algorithm for solv-
ing the variational inequality problem (14). One of the key
ideas behind the development of this algorithm is our new
perspective on the celebrated accelerated gradient method
of Nesterov (2013). In particular, a single step of this algo-
rithm, applied to minimizing an L-smooth convex function
h(z): Z — R, can be seen as applying a single step of
the standard gradient method to the function h:(z) with
the fixed stepsize 1/L, where hi(z): £ — R is defined as
follows:

hi(2) = a; *h(asz4+(1—ay)Z'), where z' € Z. (18)

Indeed, the stepsize 1/L is suitable, since one can show
that function h.(z) is L-smooth as well. Hence, using the
standard recursion for the gradient descent, for all z € Z,
we obtain the following inequality:’

%LHth — 2|2+ he (21T < LL|I2Y — 2|2 4 he(2). (19)

*Vector z* € C, is a strong solution to the variational inequality
if p(z*) — p(z) + (Q(z"), 2" — z) < Oforall z € C..
>Refer to Lan (2020, proof of Theorem 3.3) for the proof.
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Next, we can define /71 = ;21 +(1—a;)Z?, and use the
definition of function h;(z) in equation (18), the convexity
of function h(z), and the definition of o in equation (20).°
This gives the following recursion:

FLIZH =27 + a2 [h(ZT) = h(2)]
< 3Ll = 201 + o2 [h(E") = h(2)],

which implies the accelerated convergence rate [h(z') —
min, h(z)] = O(LR?/t?), where R > 0 is the initial dis-
tance to the solution. Overall, the derivations above offer a
vast simplification compared to the standard proof of Nes-
terov (2013).

Inspired by the sliding algorithm of Lan & Ouyang (2021;
2016); Kovalev et al. (2022a), we apply a series of transfor-
mations of the form (18) to functions p;(z) in a recursive
fashion. This leads, subject to some additional details, to
Algorithm 1 for solving problem (14).” Moreover, using the
considerations above, we obtain the key theoretical result in
Theorem 4.5. The proof can be found in Appendix K.

Theorem 4.5. Let Assumptions 4.3 and 4.4 hold, where
M;, L; > 0and M; + L; > 0. Let o be defined recursively
as follows:

ap=1, a1 =2 (1+V1+4/a?) " fort >1. (20)

Then the output z,, of Algorithm 1 for solving problem (14)
satisfies the inclusion z,,, € C, and the inequality

= P(2) +{Q(2); 20w — 2)

- 4L, 20 M, 21
<Z( st )‘;nzin—zn%.( :
i=1 Hj:lTj Hj:lTj

Furthermore, we can reorder functions p;(z) and operators
Qi(z) in ascending order of the values of the Lipschitz
constants L; and M;, which leads to the complexity result
in Corollary 4.6. The proof can be found in Appendix L.

p (Zout)

Corollary 4.6. Under the conditions of Theorem 4.5, to
ensure the following inequality

P(Zow) = p(2) +(Q(2), 2o — 2) < enllzin — 2|3 (22)

forall z € C, and € > 0, it is sufficient to perform no more

than
6"-max{\/Li/e,Mi/e,1} (23)

computations of the gradient Vp;(z) and operator Q;(z)
forl1 <i<n.

®From the definition of ay in equation (20), it follows that
ar € (0,1 and a; 2 = a; % +a; t

"The pseudocode for the proposed Algorithm 1 is postponed to
Appendix B due to space limitations.

Using Corollary 4.6, we can show that Algorithm 1 achieves
the optimal complexity separation for solving the variational
inequality problem (14) as long as n = O(1). Thus, Al-
gorithm 1 matches the existing lower complexity bounds
for this problem (Nesterov, 2013; Ouyang & Xu, 2021) and
theoretically outperforms the existing state-of-the-art algo-
rithm of Lan & Ouyang (2021), which is designed for the
case n = 2 with additional restrictions.® See Section 5.2 for
details.

4.3. Application to the Main Saddle-Point Problem

In this section, we show how to adapt Algorithm 1 to solve
the main problem (1) and reach the lower complexity bounds
in Theorem 3.3. To do this, we define a diagonal matrix
P e S‘f@ as follows:

P = diag(d,14,, 0,14, ), (24)

and consider a special instance of problem (14), where n =
3, Z =C, = X x ), operators Q;(z) = Qi(z,y) are
defined as follows:

Ql('r7 y) = 07

(o) T
a0 @0~ %5 o[} @

Y

and functions p;(z) = p;(x,y) are defined as follows:

pi(z,y) = f(x),  pa(x,y) = 9g(y),

Ba 2., B T 2 (26)
p3(z,y) = 5Bz — Vg(yw)[I* + F 1By + Vf(zn)l*

where zin = (Tin, Yin) € Z and S, 8, > 0 are defined as

From the optimality conditions (7), one can conclude that
this variational inequality problem instance is equivalent
to the original problem (1) as long as function ps(z) is re-
placed with zero. However, the additional quadratic regular-
izer ps(z) helps to achieve the optimal linear convergence
rates in all cases where J, > 0 and 6, > 0, even when
tz = 0 and/or u, = 0. Moreover, this regularization does
not break the convergence to the exact solution z* of the
original problem (1). Indeed, it is easy to show that Vps(z*)

converges to zero as long as zj, converges to z*.”

Next, we apply Algorithm 1 to solve the variational inequal-
ity problem instance defined in equations (14), (25) and (26).
Using Theorem 4.5 and Corollary 4.6, we obtain the fol-
lowing result in Theorem 4.7. The proof can be found in
Appendix M.

8The algorithm of Lan & Ouyang (2021) works in the case
n = 2, where Q1(z) = 04, and p2(z) = 0.

Refer to the proof of Theorem 4.7 in Appendix K for more
details.
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Theorem 4.7. Under Assumptions 2.3 to 2.7, functions
pi(z), operators Q;(z), and matrix P defined in equa-
tions (24), (25) and (26) satisfy the conditions of Theo-
rem 4.5 with the following parameters:

Ll = Rg, L2 = Ry, L3 = Kzy, (28)
M1:M2:0, Mgzq/l{/zy.

Moreover, the input ziy, = (Ziy, Yin) and the output z,, =
(Tout, Your) Of Algorithm 1 satisfy the inequality U (z,,) <
%\Il(z,-n) as long as the numbers of inner iterations {T;}3_,
are chosen according to the proof of Corollary 4.6 in Ap-
pendix L. Here, the Lyapunov function V(z) = U(x,y) is

defined as follows:
U(z) = RE,5, (x,y) + 12D (2, 2*) + 12Dy (y, "), (29)
where z* = (33*, Z/*) = pI‘OjS(Z,'n) = Pl"Ojs(Zz)th)~

Theorem 4.7 implies that we can reduce the value of the
Lyapunov function ¥(x,y) defined in equation (29) by a
constant factor with a single run of Algorithm 1. Hence, we
can apply the standard restarting technique to this algorithm
and obtain the complexity result in Corollary 4.8. The proof
can be found in Appendix N.

Corollary 4.8. Under the conditions of Theorem 4.7, to
reach precision R§I5y (z,y) < it is sufficient to perform

O(\/Fz), (5(\/1-6_7,,) and (’3(\/,%_%) computations of the gra-
dients V f (x) and V (1), and matrix-vector multiplications
with the matrices B and B, respectively. Here, O(-) hides
the multiplicative factor log %, R? = Rgméy (0,0) is the
initial distance, € € (0, R?), and c = 1 + 12k, + 12k,

The complexity result in Corollary 4.8 matches the lower
complexity bounds in Theorem 3.3 up to universal and/or
additive constants. Hence, this result is optimal. Moreover,
to the best of our knowledge, this result theoretically out-
performs all existing state-of-the-art algorithms, including
the algorithms of Kovalev et al. (2022b); Li et al. (2023);
Jin et al. (2022); Du et al. (2022); Thekumparampil et al.
(2022); Borodich et al. (2023); Alkousa et al. (2020); Sadiev
et al. (2022); Chambolle & Pock (2011). See Section 5.1
for additional discussion.

5. Comparison with Existing Results
5.1. Algorithms for Solving the Main Problem (1)

The theoretical complexity of Algorithm 1 with restarting,
applied to solve the smooth bilinearly-coupled saddle-point
optimization problem (1), is established in Corollary 4.8
and is proven to be optimal due to the lower complexity
bounds in Theorem 3.3. We compare this result with the
theoretical complexities of the existing state-of-the-art lin-
early converging first-order methods. These include the

algorithms for the strongly-convex-strongly-concave case
(Kovaleyv et al., 2022b; Li et al., 2023; Jin et al., 2022; Du
et al., 2022; Thekumparampil et al., 2022; Borodich et al.,
2023; Chambolle & Pock, 2011; Alkousa et al., 2020), the
strongly-convex-concave case (Kovalev et al., 2022b; Sadiev
et al., 2022), and the convex-concave case (Kovalev et al.,
2022b). This comparison is summarized in Table 1, which
is postponed to Appendix C due to the page limit. One
can observe that our optimal result is substantially better
compared to all the listed algorithms.

Once again, it is worth highlighting that the complexity of
our algorithm matches the complexities of the algorithms
of Salim et al. (2022) and Azizian et al. (2020); Li et al.
(2022), which are optimal in the more specialized cases
of affinely constrained minimization and bilinear saddle-
point optimization, respectively. We provide a detailed
discussion of the lower complexity bounds in these cases in
Appendix D.

5.2. Algorithm for Solving the Variational Inequality
Problem (14)

Here, we consider the variational inequality problem defined
in equations (14) and (15) in the case n = 2, where func-
tion po(2) and operator @1 (z) are zero. This is one of the
simplest yet most important special cases of problem (14)
as discussed by Lan & Ouyang (2021). We compare Algo-
rithm 1 for solving this problem with the algorithm of Lan
& Ouyang (2021). Let R > 0 be the following distance
parameter associated with the constraint set C,:

R = sup||z — zi||p- (30)
zeC,

We compare the numbers of evaluations of the gradient
Vp1(z) and operator ()2 (z) required by both algorithms to
find a vector z,, € C, that satisfies the following accuracy
criterion:

sup p(zou) — P(2) +(Q(2), 20w — 2) <€, (3D

ZECZ

where € > 0 is an arbitrary precision. Note that the pa-
rameter R is finite only if the constraint set is bounded.
However, we can easily tackle this issue by following the
standard approach and replacing the constraint set C, with
its intersection with the ball {z € Z : ||z — zi|lp < D},
where D > 0 is a positive parameter. Refer, for instance, to
Nesterov (2007).

The comparison of Algorithm 1 with the algorithm of Lan
& Ouyang (2021) is summarized in Table 2, along with the
corresponding lower complexity bounds (Nesterov, 2013;
Ouyang & Xu, 2021). The table is postponed to Appendix C
due to the page limit. One can observe that the theoretical
complexities of these algorithms coincide up to universal
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constants when /L1 R?/e < MyR?/e. However, Algo-
rithm 1 can significantly outperform the algorithm of Lan &
Ouyang (2021) in the case where /L1 R2/e > MyR?/e.
It is important to highlight that this case is worth consid-
ering, as it plays an essential role in achieving the optimal
complexities in Corollary 4.8 for the main problem (1). In
addition, the algorithm of Lan & Ouyang (2021) only works
in the case n = 2 with the additional restrictions described
above. On the other hand, using the result in Corollary 4.6,
it is easy to verify that our Algorithm 1 can achieve the
optimal complexity separation for n > 2, provided that
n = O(1).

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements

This work was supported by the Ministry of Economic De-
velopment of the RF (code 25-139-66879-1-0003).

References

Alkousa, M., Gasnikov, A., Dvinskikh, D., Kovalev, D.,
and Stonyakin, F. Accelerated methods for saddle-point
problem. Computational Mathematics and Mathematical
Physics, 60:1787-1809, 2020.

Anitescu, M. Degenerate nonlinear programming with a
quadratic growth condition. SIAM Journal on Optimiza-
tion, 10(4):1116-1135, 2000.

Azizian, W., Scieur, D., Mitliagkas, 1., Lacoste-Julien, S.,
and Gidel, G. Accelerating smooth games by manipulat-
ing spectral shapes. In International Conference on Arti-
ficial Intelligence and Statistics, pp. 1705-1715. PMLR,
2020.

Ben-Tal, A. and Nemirovski, A. Robust optimization—
methodology and applications. Mathematical program-
ming, 92:453-480, 2002.

Berger, J. O. Statistical decision theory and Bayesian anal-
ysis. Springer Science & Business Media, 2013.

Borodich, E., Kormakov, G., Kovalev, D., Beznosikov, A.,
and Gasnikov, A. Optimal algorithm with complexity sep-
aration for strongly convex-strongly concave composite
saddle point problems. arXiv preprint arXiv:2307.12946,
2023.

Chambolle, A. and Pock, T. A first-order primal-dual algo-
rithm for convex problems with applications to imaging.

Journal of mathematical imaging and vision, 40:120-145,
2011.

Du, S. S., Chen, J., Li, L., Xiao, L., and Zhou, D. Stochastic
variance reduction methods for policy evaluation. In
International Conference on Machine Learning, pp. 1049—
1058. PMLR, 2017.

Du, S. S., Gidel, G., Jordan, M. 1., and Li, C. J. Opti-
mal extragradient-based bilinearly-coupled saddle-point
optimization. arXiv preprint arXiv:2206.08573, 2022.

Gidel, G., Berard, H., Vignoud, G., Vincent, P., and
Lacoste-Julien, S. A variational inequality perspec-
tive on generative adversarial networks. arXiv preprint
arXiv:1802.10551, 2018.

Ibrahim, A., Azizian, W., Gidel, G., and Mitliagkas, I.
Linear lower bounds and conditioning of differentiable
games. In International Conference on Machine Learn-
ing, pp. 4583-4593. PMLR, 2020.

Jin, Y., Sidford, A., and Tian, K. Sharper rates for separable
minimax and finite sum optimization via primal-dual ex-
tragradient methods. In Conference on Learning Theory,
pp. 4362-4415. PMLR, 2022.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the Polyak-t.ojasiewicz condition. In Machine Learn-
ing and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pp. 795—
811. Springer, 2016.

Kinderlehrer, D. and Stampacchia, G. An introduction to
variational inequalities and their applications. STIAM,
2000.

Korpelevich, G. M. The extragradient method for finding
saddle points and other problems. Matecon, 12:747-756,
1976.

Kovalev, D., Salim, A., and Richtérik, P. Optimal and
practical algorithms for smooth and strongly convex de-
centralized optimization. Advances in Neural Information
Processing Systems, 33:18342-18352, 2020.

Kovalev, D., Gasanov, E., Gasnikov, A., and Richtarik, P.
Lower bounds and optimal algorithms for smooth and
strongly convex decentralized optimization over time-

varying networks. Advances in Neural Information Pro-
cessing Systems, 34:22325-22335, 2021.

Kovalev, D., Beznosikov, A., Borodich, E., Gasnikov, A.,
and Scutari, G. Optimal gradient sliding and its applica-
tion to optimal distributed optimization under similarity.

Advances in Neural Information Processing Systems, 35:
33494-33507, 2022a.



On Linear Convergence in Smooth Convex-Concave Bilinearly-Coupled Saddle-Point Optimization

Kovalev, D., Gasnikov, A., and Richtarik, P. Accelerated
primal-dual gradient method for smooth and convex-
concave saddle-point problems with bilinear coupling.

Advances in Neural Information Processing Systems, 35:
21725-21737, 2022b.

Kovalev, D., Borodich, E., Gasnikov, A., and Feoktistov, D.
Lower bounds and optimal algorithms for non-smooth
convex decentralized optimization over time-varying net-
works. arXiv preprint arXiv:2405.18031, 2024.

Lan, G. First-order and stochastic optimization methods for
machine learning, volume 1. Springer, 2020.

Lan, G. and Ouyang, Y. Accelerated gradient sliding
for structured convex optimization. arXiv preprint
arXiv:1609.04905, 2016.

Lan, G. and Ouyang, Y. Mirror-prox sliding methods for
solving a class of monotone variational inequalities. arXiv
preprint arXiv:2111.00996, 2021.

Lan, G, Lee, S., and Zhou, Y. Communication-efficient
algorithms for decentralized and stochastic optimization.
Mathematical Programming, 180(1):237-284, 2020.

Li, C. J., Yu, Y., Loizou, N., Gidel, G., Ma, Y., Le Roux,
N., and Jordan, M. On the convergence of stochastic
extragradient for bilinear games using restarted iteration
averaging. In International Conference on Artificial In-
telligence and Statistics, pp. 9793-9826. PMLR, 2022.

Li, C. ], Yuan, H., Gidel, G., Gu, Q., and Jordan, M. Nes-
terov meets optimism: rate-optimal separable minimax
optimization. In International Conference on Machine
Learning, pp. 20351-20383. PMLR, 2023.

Liu, Y., Yuan, X., Zeng, S., and Zhang, J. Primal-dual
hybrid gradient method for distributionally robust opti-
mization problems. Operations Research Letters, 45(6):
625-630, 2017.

Mescheder, L., Nowozin, S., and Geiger, A. The numerics
of gans. Advances in Neural Information Processing
Systems, 30, 2017.

Nagarajan, V. and Kolter, J. Z. Gradient descent gan opti-
mization is locally stable. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Nesterov, Y. Dual extrapolation and its applications to solv-
ing variational inequalities and related problems. Mathe-
matical Programming, 109(2):319-344, 2007.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2013.

10

Ouyang, Y. and Xu, Y. Lower complexity bounds of first-
order methods for convex-concave bilinear saddle-point
problems. Mathematical Programming, 185(1):1-35,
2021.

Roughgarden, T. Algorithmic game theory. Communica-
tions of the ACM, 53(7):78-86, 2010.

Sadiev, A., Kovalev, D., and Richtarik, P. Communication
acceleration of local gradient methods via an accelerated
primal-dual algorithm with an inexact prox. Advances
in Neural Information Processing Systems, 35:21777—
21791, 2022.

Salim, A., Condat, L., Kovalev, D., and Richtarik, P. An op-
timal algorithm for strongly convex minimization under
affine constraints. In International conference on artifi-
cial intelligence and statistics, pp. 4482-4498. PMLR,
2022.

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Mas-
soulié, L. Optimal algorithms for smooth and strongly
convex distributed optimization in networks. In Interna-
tional Conference on Machine Learning, pp. 3027-3036.
PMLR, 2017.

Scaman, K., Bach, F., Bubeck, S., Massoulié, L., and Lee,
Y. T. Optimal algorithms for non-smooth distributed opti-
mization in networks. Advances in Neural Information
Processing Systems, 31, 2018.

Thekumparampil, K. K., He, N., and Oh, S. Lifted primal-
dual method for bilinearly coupled smooth minimax opti-
mization. In International Conference on Artificial Intel-
ligence and Statistics, pp. 4281-4308. PMLR, 2022.

Von Neumann, J. and Morgenstern, O. Theory of games and
economic behavior, 2nd rev. Princeton university press,

1947.

Wang, J. and Xiao, L. Exploiting strong convexity from
data with primal-dual first-order algorithms. In Interna-
tional Conference on Machine Learning, pp. 3694-3702.
PMLR, 2017.

Xiao, L., Yu, A. W,, Lin, Q., and Chen, W. Dscovr: Random-
ized primal-dual block coordinate algorithms for asyn-
chronous distributed optimization. Journal of Machine
Learning Research, 20(43):1-58, 2019.

Yarmoshik, D., Kovalev, D., Rogozin, A., Kiselev, N., Dorin,
D., and Gasnikov, A. Decentralized optimization with
coupled constraints. arXiv preprint arXiv:2407.02020,
2024.



On Linear Convergence in Smooth Convex-Concave Bilinearly-Coupled Saddle-Point Optimization

Zhang, G., Wang, Y., Lessard, L., and Grosse, R. B. Near-
optimal local convergence of alternating gradient descent-
ascent for minimax optimization. In International Con-
ference on Artificial Intelligence and Statistics, pp. 7659—
7679. PMLR, 2022a.

Zhang, J., Hong, M., and Zhang, S. On lower iteration
complexity bounds for the convex concave saddle point
problems. Mathematical Programming, 194(1):901-935,
2022b.

Zhang, Y. and Xiao, L. Stochastic primal-dual coordinate
method for regularized empirical risk minimization. Jour-
nal of Machine Learning Research, 18(84):1-42, 2017.

11



On Linear Convergence in Smooth Convex-Concave Bilinearly-Coupled Saddle-Point Optimization

Appendix

A. Notation

In this paper, we use the following notations: S” and S% | denote the sets of p x p symmetric and symmetric positive
definite matrices, respectively; I, denotes the p x p identity matrix, J,, and Oy, denote the p X ¢ all-ones and all-zeros

matrices, respectively, J, = Jpxp and O, = Opyp; eg € RP denotes the j-th unit basis vector, 1, = (1,...,1) € RP?,
0, = (0,...,0) € RP. In addition, ||-|| denotes the standard Euclidean norm of a vector, and (-, -) denotes the standard
scalar product of two vectors, ||-|p = ||[P2(-)| and (-,-)p = (P(-),-) denote the weighted Euclidean norm and scalar

product, respectively, where P € S ; Amin(+), Apin (), and Apmax(-) denote the smallest, smallest positive, and largest

eigenvalues of a symmetric matrix, respectively; opmax (-) and a;m(-) denote the largest and smallest positive singular values
of a matrix.

For a nonempty closed convex set A C R? and a vector z € R?, we define the standard distance function dist(z;.A) as
follows:
dist(a; A) = mir/11||a? — | (32)
z’'€

For a differentiable function h(x), we denote the Bregman divergence associated with h(x) as Dy, (z, z"), which is defined

as follows:
Dy(z,2") = h(z) — h(a') — (Vh(z"),z — 2'). (33)

For a proper, closed, and convex function h(x), we denote its Fenchel conjugate as h*(x), its Moreau envelope as My (),
and its proximal operator as prox,; (z). These are respectively defined as follows:

h*(z) = S;l/p ((z,2") — h(z")),
M,\h(cc) = Hglcl/n <h($/) + %Hx/ _ gg||2> 7 (34)

1
prox,, (r) = arg min (h(x’) + ﬁHx’ - J:||2> .

12
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B. Algorithm 1 Pseudocode

Algorithm 1

1: input: z;, € C,
2: parameters: P € ST, {a,}3°, C Ry,
{Lifim AMiyio, C Ry {Thbio, € {1,2,..}

for:=1,...,ndo
Zé,...,o = Zin
pY(2) = pi(2)
end for

Zout = RecursiveProcedure(1)

output: z,, € Z

> Auxiliary Recursive Procedure:

10: function RecursiveProcedure(k, t1,...,t5_1)
11: ifk =n+ 1 then

R A A

12: return argmin_ . >, pii ()
13:  else
. ~k _ _k
14: 20 = i1, te_1,0
15: fort, =0,...,7y — 1 do
16: fori=1,...,ndo
—1 k—1;ty1,...,tg— —k .
17 sty = Jotp T s (L)) iz
7 pl —1st1,.. o te—1 (Z) i < k‘
kit1,...,t k
18: Lt =L [Ty o,
kit1,...,tk k
19: Mi ! k= M; - lel(atl/an_l)
20: Hf;tl’“"tk _ Lf;tluntk + Miki,tla--wtk
kit1,...,tk Akity,...t
21: ATt = T )+ Qilz )
Rt th ) Kity oot )
22: k;tl’m’tk( ) = 5 |z — ZfltkHQP + (2, AT i=
' P 2= Akstaretn :
p; (2) i#k
23: end for
24; Zfla»--»tk—lytk‘i’l/Q = RecursiveProcedure(k + 1,1, ..., 1)
. -k _ k —k
25: Zigtl = Ot 2y 12 T (1 —ay, )z,
. kit1,...te _ k k
26: A kl f= Qk(2t17~~~,tk) - Qk(ztl,...,tk_l,tk+l/2)
. k _ Lk kiti,..tkpy—1 A Kst1,e-stk
27: Bty eto1y b+l = Zt17...7tk71,tk+1/2 + (Hk P) AQk
28: foril=LK+1,...,ndo
. l ol
29: 2ty eyt 1,t+1,0,...,0 = Ztl>~~7tk—17tk,Tk+1707~~:0
30: end for
31: end for
32: return ”%k
33:  endif

34: end function

13
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C. Tables

Table 1. Comparison of the optimal complexity of Algorithm 1 for solving the main problem (1) developed in this paper (Theorem 3.3,
Corollary 4.8) with the existing state-of-the-art linearly-converging algorithms in the strongly-convex-strongly-concave, strongly-convex-

concave, and convex-concave settings.

Complexity'"
Algorithm =
Vf(x) | Va(y) | Band B
Strongly-convex-strongly-concave case (/i., (i, > 0 and pzy = fiy; = 0)
Kovalev et al. (2022b); Li et al. (2023)
Jin et al. (2022); Du et al. (2022) \f v
Thekumparampil et al. (2022) Vit
: Ly Ly Ly Ly Lay
Borodich et al. (2023) e+ \/Z Lo 4\l g Lo
@) Ly
Chambolle & Pock (2011) N/A NI
Ly Lay vV Ly vV L:}:y
Alkousa et al. (2020) . N N
Optimal® (thi ) = 2 e
ptima is paper L B alty
Strongly-convex-concave case (L, [ty > 0 and fizy = (1, = 0)®
Kovalev et al. (2022b) Loy [Ly  VEaly | L3,
;U'UT ILT Hyz Hyw
p Loy 4f L3 Lm /L, @) Lw Ly 2y
Sadiev et al. (2022) e A + R d - N/A e\ + R
Optimal® (this paper) % Vialy % Lo
T Hyz y Mz
Convex-concave case (i, = iy, > 0and p, = py = ())
Kovalev et al. (2022b) “JMV Ly u
Optimal® (this paper) @ j.mLy e HszLy

(DFor brevity, we omit universal constants and logarithmic factors such as log %
()Requires computation of the proximal operators of functions f(z) and/or g(y).
ILower complexity bounds are established in Theorem 3.3. These bounds are matched by Algorithm 1,
which is established by Theorem 4.7 and Corollary 4.8.
(“Here, the lower bounds were also established by Zhang et al. (2022b); Nesterov (2013).
)This case is symmetric to the convex-strongly-concave case, which we omit for brevity.

Table 2. Comparison of Algorithm 1 with the algorithm of Lan & Ouyang (2021) for solving the variational inequality problem defined in
equations (14) and (15) in the case n = 2, p2(z) =0, Q1(2) = 0.

. Complexity
Algorithm
Vp1(2) Q2(z)
Lan & Ouyang (2021) O (, /L1632> O ( L1€R2 i MQER2>

Algorithm 1 (this paper)
Lower Bounds (Nesterov, 2013;
Ouyang & Xu, 2021)

o)
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D. Additional Discussion of the Lower Complexity Bounds

As mentioned in Section 3.2, the lower complexity bound in Theorem 3.3 recovers several important problem classes,
which are special instances of problem (1). We can recover these problem classes by imposing additional constraints on the
parameter set 1.

(i) The class of smooth strongly-convex-strongly-concave saddle-point optimization problems corresponds to the constraint

Hzy = Hyz = 0. (35)

In this case, the lower bound in equation (13) becomes the following:

- L, L L,
Q7= 4714/ 2L +7B" = (36)
Ha ’ Hy v Bty

where Q() hides universal constants and logarithmic factors. This result recovers the existing lower complexity bounds
of Zhang et al. (2022b); Nesterov (2013).

(i) The class of bilinear saddle-point optimization problems is obtained by choosing
Lx = Ly = 0, Hax = Ky = 0; T =Tg = 07 Hry = Hyx > 07 (37)

and the lower bound in equation (13) turns into the following:

Q (TB : LW) ) (38)
Hay

This result recovers the existing lower complexity bound of Ibrahim et al. (2020). Note that strictly speaking, we
cannot choose L, = L, = 0 due to Assumption 2.7. However, this is not an issue, because Assumption 2.7 allows us
to choose arbitrary L,, L,, > 0 such that /L, L, = 5/, and still obtain the lower bound (38) from equation (13). In
addition, as mentioned in Section 2, this assumption is not a fundamental restriction but is rather used to avoid covering
uninteresting corner cases in our theoretical proofs.

(iii) The class of smooth strongly convex optimization problems with affine constraints is obtained by choosing
Ly=py=0, pzy =0, 74=0. (39)

In this case, the lower bound in equation (13) becomes the following:

~ L L., |L
Q7 —+m —L—], (40)
Mz Hyz Mz

which recovers the existing result of Salim et al. (2022). Similarly to the previous case (ii), we can choose L, =
17;112”c /L, instead of L, = 0 to satisfy Assumption 2.7 and still obtain the lower bound (40).

It is worth mentioning the work of Ouyang & Xu (2021), who offer sublinear lower complexity bounds for this problem
class. However, their result does not contradict ours since they consider the case fi,, = d, = 0, i.e., Assumption 2.6
does not hold. It is also important to highlight that affinely constrained optimization problems, where ., = 0, hold
limited interest. Indeed, in this setting, it is typically assumed that ,ufﬂ = /\ﬂ;ﬁn(BBT), which, by definition, is always
nonzero.
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E. Proof of Lemma 2.8
We define linear spaces £, C X and £, C ) as follows:
La= {l{qgg B loltg;l;v&(i)ise ’ v {l{qgg BT gfh;v&?ise ' 1)
One can show that the following identity holds:
F(x +dy,y+dy) =F(z,y) forall (z,y)€ X xY and (dg,dy,) €Ly XL, (42)

Indeed, for the saddle part, we obviously have (y +d,, B(z +d,)) = (y, Bz). Furthermore, we can show that f(z +d,) =
f(x) and g(y + dy) = g(y). Indeed, Assumptions 2.5 and 2.6 and equation (41) imply V f(x) € L5 and Vg(y) € L; .
Hence, we obtain

1
flz+dy) — f(z) :/0 (Vf(x+dy-t),dy)dt =0,

gy +dy) —9(y) :/O (Vg(y +dy - t),dy)dt =0,

which conludes the proof of equation (42). In addition, it is easy to show that

dom f*(-) c £ and domg*(-) C E;‘. (43)

Consider the following saddle-point problem:
min max F(z,y). 44
Inin mex (z,y) (44)
We can show that this problem has a unique solution (z*,y*) € L} x L;-, which, together with equation (42), implies
Lemma 2.8. Let us further prove this statement.

One can show that function P(z) is strongly convex on £ . Indeed, if y, > O this statement is obvious. Otherwise,
Assumption 2.6 implies g, > 0, which in turn implies the strong convexity of function g*(Bz) on £ thanks to the strong
convexity of function g*(y). The strong convexity of function ¢g*(y) is implied by the smoothness of function g(y).

Next, we show that dom P(-) # &, which immediately implies dom P(-) N £ # @, thanks to equation (42). Indeed, if
fy > 0 function g*(y) is smooth, which implies dom P(-) = X. Otherwise, Assumption 2.6 implies i, > 0, which in
turn implies Vg(y) € range B for all y € ). Hence, there exists € £+ such that Bx = Vg(y) for some y € ). On the
other hand, Vg(y) € dom g*(-), which implies Bz € dom g*(-) and € dom P(-).

The strong convexity of P(x) on £ and the fact that dom P(-)N £+ # & imply that there exists a unique solution x* € £+
to the following problem:
min P(x). (45)

xeL}

Similarly, there exists a unique solution y* € E;- to the following problem:

max D(y). (46)

Moreover, vectors z* and y* are solutions to the primal and dual problems in equation (5), respectively, thanks to
equation (42).

Let h(z) = ¢*(Bz). Vector z* is a solution to the problem min,cx[f(z) + h(x)]. Hence, standard theory implies
—Vf(z*) € Oh(x*), or
h(z) > h(z*) = (Vf(x*),z —z*) forall ze X. 47

From this inequality, for arbitrary x € x* + ker B, we obtain

0<(Vf(z"),z—a"),
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which implies V f(z*) € range B". Hence, there exists y € E;‘ such that Vf(z*) = —B Ty, which for all z € X, implies
h(z) > h(z*) + (y, Bz — Bz™).

Hence, for all z € range B, we obtain
9" (2) > ¢g"(Bz™) + (y,z — Bz™).

In addition, this inequality holds for all z € ) due to equation (43). Hence, y € dg*(Bx*), which implies Bz* = Vg(y).
We also have z* € df*(—BTy). Hence, y is a solution of problem (46), which implies y = y*. It remains to observe, that
(z*, y*) satisfies the first-order optimality conditions (7). Hence, the strong duality holds in both problems (1) and (44),
which concludes the proof. O
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F. Proof of Theorem 3.2

Note that the condition J,, = 0 implies p,, = 0 and p,,, = 0. Consider the following special instance of problem (1):

. . Lx 2 Hy 2
min  min m il L2 — 22y, 48
uzel]lgdl vzeeriQ yED%gg f(uz) + 2 ”,UIH * Hyz <y ’Ux> 2 ”yH “48)

where f(z): R% — R is the L,-smooth function proposed by Nesterov (2013, Theorem 2.1.7). This problem has a single
solution (u%,0,0) € R4 x R% x R92, where u} = arg min, cgra, f(u;). Moreover, the primal-dual gap is lower-bounded
as follows:

Pug,ve) = D(y) > f(ua) = f(uz).

Thus, the statement of Theorem 3.2 trivially follows from Theorem 2.1.7 of Nesterov (2013). O

G. Proof of Theorem 3.3

The proof of Theorem 3.3 relies on the following Lemmas G.1, G.2 and G.3. The proof of Lemma G.1 is available in
appendix H. The proof of Lemma G.2 is available in appendix I. The proof of Lemma G.3 is available in appendix J.

Lemma G.1. Under conditions of Theorem 3.3, the execution time can be lower-bounded as follows:

T>0 (Tf - v/Kg log de + 74 - /[y log df) . (49)

Lemma G.2. Under conditions of Theorem 3.3, let [y, ltyz > 0 and ,ufﬂ > lgfty. Then the execution time can be
lower-bounded as follows:

720 (15 iy log ). (50)

Lemma G.3. Under conditions of Theorem 3.3, let i, pty > 0 and pizpiy > max{uiy, ufw} Then the execution time can
be lower-bounded as follows:

>0 (TB . /Fag log C’f) . (51)

. . 2 . .. . .
It remains to obtain the lower bound 2 (TB v/ Fay log Cf ) without the additional assumptions that were made in Lemmas G.2

and G.3. It can be done by considering the following special cases:

(i) Case u, = u, = 0. In this case, we have iz, = jiy, > 0 due to Assumptions 2.5 and 2.6. We can replace 1, = 0
with a very small value y,, > 0 and apply Lemma G.2 to obtain the desired result.

(ii) Case i, = 0 and p,, > 0.

(ii.a) Case iy, > 0. We can apply Lemma G.2.

(ii.b) Case ji,, = 0. This case is symmetric to case (iii.b).
(iii) Case y, > 0 and i, = 0.

(iii.a) Case [, > 0. This case is symmetric to case (ii.a).

(iii.b) Case ji;, = 0. In this case, we have p,; > 0 due to Assumption 2.6. We can replace p,, = 0 with a very small
value f1,, > 0 and apply Lemma G.2 to obtain the desired result.

(iv) Case i, > 0 and p,, > 0.

(iv.a) Case fi,f1, > max{yu2,, yi7, }. We can apply Lemma G.3.
(iv.b) Case ji, 11y < i, We can apply Lemma G.2.
(iv.c) Case i,y < ugy. This case is symmetric to case (iv.b).

This concludes the proof. O
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H. Proof of Lemma G.1

Case (1, > 0. We consider a special instance of problem (1), where X = ) = R<, functions f(x) and g(y) and matrix B
are defined as follows:

Ha Lx — Mg
F@) = Elle]? + 22 Fa |2 - Afef, 2),

E (52)
g(y) = 711“:‘/”27 B= MxyIda
where matrix F € R(¢=1)x4 i5 defined as follows:
1 -1
ol (53)
=5 .
1 -1
This problem instance has a unique solution (z*,y*) € X x ), which is given as follows:
5x Lw - Mx * xT *
2" = argmin = [lal|” + I EEFaf? - Afef,a),  yt = Ea. (54)
rex 2 2 L,

The rest of the proof is similar to the proofs of Lemmas G.2 and G.3.

Case i, = 0. In this case, we assume i, > 0, otherwise we can use the proof of the previous case. We consider a special
instance of problem (1), where X = R%*t! and ) = R, functions f(x) and g(y) and matrix B are defined as follows:

Mz Lx — Mz
F@) = f oz v) = B2 o+ 22 P2 — Aled, ),
. (55)
9(w) = S yl?, B= [0 0 1],
where = = (ug,vg), gy € R%, v, € R, and matrix F € R(¢=D*4 i5 defined as follows:
1 -1
=l (56)
=3 .
1 -1
This problem instance has a unique solution (z*,y*) = (uk,v%,y*) € X x Y, which is given as follows:
T Lz - Mz * *
uy = aurgmin“—”umﬂ2 + 7M||Fux||2 — Aled uy), v =y =0. (57)
reEX 2 2
The rest of the proof is similar to the proofs of Lemmas G.2 and G.3. O
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I. Proof of Lemma G.2

We consider the following “hard” instance of problem (1):

(i) Linear spaces X and ) are defined as X = (R?)"= and Y = (R%)"v, where

3 0
ny=3n and n, = " Hay = , nef{2,3,...} (58)
: 3n—1 pgy=0
(ii) Function f(x) is defined as follows:
Ny
fl@) =" filz:), (59)
i=1
where we use the notation = (z1, ..., %3,) € (R?)3", and functions f;(z;): R? — R are defined as follows:
Liall2l? + 3(Le — 8,)||F 2] ie{l,...,n}
filz) = %6$Hz||2 ie{n+1,....2n} , (60)

202112012 + 3(Le — 6,)||Faz|? — Alef,2) i€ {2n+1,...,3n}
where A € R will be determined later, Sx > 0 is defined as follows:
Ou = o + 4013,/ Ly, 1)

and matrices F; € R21l49/21xd and F, € R2L(d=1)/2]xd are defined as follows:

X T 1 Qevvevenennnnns
0 0 1 —1 0-v-v--
Fp=—— :
1 NG :
- 62
0 1 —1 0 eveveneenannn. 62)
Ltoo 0 1 =1 0-vee
F = — .
2 VAR
(iii) Function g(y) is defined as follows:
9v) = ai(y), (63)
i=1
where we use the notation y = (y1,...,¥n,) € (R%)™v, and functions g;(y;): R? — R are defined as follows:
L wil? i=1 . Ly fizy >0
gi(yi) =4 1 ully H2 ] , where L,=¢" Hay ) (64)
shyllyill® i e{2,... ny} fy oy =0
(iv) Matrix B € R™ %724 i5 defined as follows:
E®I >0
B—{ © Fuw (65)
E ®1, Moy = 0
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where matrix E € R3"%3" i defined as follows:

[, T times 7
B -8
'[I-}be&
BB
a  —a,
E = "'\'1[’% , (66)
@ '—a
-8B
: * i
I —8 b ]
and matrix E/ € RG?~1*37 i5 defined as follows:
_ 5. ) i -
N '[{})2@&
Bl -8
a . _a.)z\
E — ...,{lifze& , (67)
a -«
B8
; ?a,
. CCs
I —B b
where a, 5,y > 0 are defined as follows:
o=t g Lo (68)

One can verify that the problem described above satisfies Assumptions 2.3 to 2.5. Indeed, each function g;(z) is obviously
L,-smooth and p,,-strongly convex, and each function f;(z) is L,-smooth and /i,-strongly convex due to the fact that
02 (F1) =02 (Fs) =1,and u, < d, < L,, where the latter inequality is implied by Assumption 2.7 as follows:

max

Op = o + 442, /Ly < Yo + +L, = 3L, (69)

Moreover, we establish the following Lemma I.1, which describes the spectral properties of matrix B. The proof is available
in Appendix I.1.2.

Lemma L1. Letn € {2,3,...} and a, B > 0. Then for vy > 0, the singular values of matrix E defined in equation (66) can
be bounded as follows:

”72 g o 2 2 2 2 2
min {4, 36 9n2} <oiin(E) <o:.. (E) <max {2n’y ,2(n 4+ 1)5%, 4o } , (70)

and for v = 0, the singular values of matrix E' defined in equation (67) can be bounded as follows:

2 Oé2

min {§6 W} < (o (E)? <ol (E') <max {2(n+1)8° 4%} . (71)

Using Lemma 1.1 and the definition of «, 3,y in equation (68), we can show that matrix B satisfies Assumption 2.5 as long
as n is defined as follows: I
0= {y J . (72)

61ty
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Indeed, the definition of 7 in equation (72), the definitions of «, 3, in equation (68), and Lemma I.1 imply
N’iy = sz S U?xlin(E) S J?nax(E) S Liy (73)

in the case pi,, > 0, and
2
Hyw < (0,

min

(E)? < o (B) < L2, (74)

in the case 15, = 0. Moreover, it is not hard to verify that range BT = X in the case Hzy > 0 and range B = ) in both
cases. Also note that n > 3 due to Assumption 2.7.

Next, we establish the following Lemma 1.2, which describes the solution to the problem defined above, the proof is available
in Appendix L.1.1.

Lemma L.2. Foralld € {1,2,...}, the instance of problem (1) defined above has a unique solution (z*,y*) € X x ).
Moreover, there exists a vector (x°,y°) € (La,p)™ x (La,p)™ such that the following inequality holds:

R3.5,(2°,9°) < Cz A%p*, (75)

where Cr > 0 is some constant that possibly depends on the parameters w € 11, but does not depend on d, L., C R isa
linear space which is defined for p € (0,1) as follows:

1 0 0 0evvevnennannnins T
Cd,p = range 1 0 p2 0 p4 ........... , (76)
0 1 0 p2 O p4 .......
and p € (0, 1) satisfies the following inequality:
> maxd1-89. 1 1 (77)
maxq1—89- )
r= Jay 346
Let (z°,9°) = (29,...,2) 49, .. .,ygy) € X x ) be defined as follows:
(xO’ yO) = projspan({ef})"w‘*'"y ((ﬂf*, y*)) - (Inm—i-ny & P)(l'*, y*), (78)

where P € R?*4 is the orthogonal projection matrix onto the linear space span({e?}) C R¢, which is given as follows:
P =ef(ed)’". (79)
Then vector (z°,y°) from Lemma L.2 satisfies the following relation:
(I"m'i‘ny ® (Id - P))(xovyo) = (uﬁwuy) ® (Oa 1707/)2’ c ) + (Ul‘v Uy) ® (0707 17 O’ 027 o ')7

where  uy = (Up 1, Ugn,) ER™, vy = Vg1, Vn,) € R™, (80)

Uy = (Uy 1, Uyn,) ER™, vy = (vy1,...,0y,) €R".
Hence, we can obtain the following relation:
R3,5,(2°9") = dalla™ — 2%l + 6 ly™ — 4°|I?
25T, @ (L = P)™ |2 + 6, | (L, @ (L — P))y"|?
= 0ol|(Tn, ® (Ia = P)) (2" — a° + 2°) > + 6, [|(Tn, ® (Lo = P))(y" — 3° +3°)|

(b) o * o

< 205 )|(Tn, ® (g = P)) (2" — a°)|* + 28, ]| (I, ® (Ta = P))(y" — °)|I*
+20,[|(Ln, ® (Ig = P))a°||* + 28, | (L, ® (Ia — P))y°|*

< 20T, ® (Lo — P))2°||* + 26, (T, ® (Ls — P))y°||* + 2R 5, (2°,5°)
©

= 2(0a[lua | + dylluy [*)11(0, 1,0, p*, .. )|

+2(00llve | + d,llvy 1%)11(0,0,1,0, p, .. )|I* + 2R3 5, (2°, 9°)
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ld/2]-1
= 2(0luz|” + Sy lluy ) D pY
=0

L@d-1/2-1
28u[lvall +Syllwy1?) D pY +2RE 5, (2%,0°)
7=0

20, [lus|® + 0y lluy[|*) (1 — p*L4/2))
= 1 _p4

200 [|va|® + 0y lvy || (1 = p*Lla=1/2]) o o
g g + 2R3, 5, (2°,9°)

20 | (ua, v ) |12 + Gy [l (g, ) [1) o 0
< x x xl_p4y Y vy +2R§,6y(xvy )’

where (a) uses the definition of (2°,°) in equation (78); (b) uses Young’s inequality; (c) uses equation (80) and the
properties of the Kronecker product.

Further, we fix k € {1,...,d}. using the sparse structure of the matrices F1, F5 and E defined in equations (62) and (66),
respectively, and using the standard arguments (Nesterov, 2013; Ibrahim et al., 2020; Zhang et al., 2022a; Scaman et al.,
2017, 2018; Kovalev et al., 2024), we can show that the output vectors z,(7) = (201(7),...,%Z03.(7)) € X and
Yo(T) = (Yo,1(T)s - - -, Yo.3n(T)) € Y satisfy the following implication:

T<D-mgnk—1) = 2,,(7),Y,;(7) € span({e{,..., el}) (81)

foralli € {1,...,nz}andj € {1,...,n,}, where D > 0 is a universal constant. The right-hand side of this implication
implies the following:

Q)
R3.5,(@o(7),40(7)) = 30llwo(r) = 2°1 + 36yllye(r) — I = R 5, (2°,4°)

Ld/QJ 1
Q s ||u1\|2+5 [y ||2) 5
Pt
j=1k/2]
(d—1)/2]—1
Sellvgll2 + 8, v, |2 L o
o (Oeflva] ! yllvyll®) S M oRE (2%y)
Jj=L(k=1)/2]
 Gallual? + 8y lluy [2) (o222 — ptlar2)
2(1— p*)

(5m||vz||2+5 ||v ||2)(p4l(k—1)/2j —p4|-(d_1)/2J) o
+ yl1Vy ) _Rgméy(fay)
(8l (s v2) |12 + 6, || (g, v ) [|2) (02% — p23—4) .

- 2y(1 *yp‘l?; — R}, (2% 9°)

©) (p2k _ p2d—4) o -

=1 (ng% (2°,y°) — 2R3 5, (2°,y )> —R3,s, (2% y°)
(o2 — prd—1) (o2 — prd—1) o

T el (T R )

W (p2k _ 2d—4 v sas

= %ng y( y°) — (1+([)2’0)> CrA2p2,

where (a) uses Young’s inequality; (b) uses equation (81) and the expression for (z°,y°) in equation (80); (c) uses the
previously obtained upper bound on Rj 5, (2°,9°); (d) uses Lemma 1.2.
Next, we establish the following Lemma 1.3, the proof is available in Appendix I.1.9.

Lemma L.3. Foralld € {2,3,...}, the unique solution to the instance of problem (1) defined above satisfies the following
relation:

R3.5, (2, y°) = BraA?, (82)
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where B 4 > 0 is a constant that possibly depends on d € {2,3, ...} and the parameters w € II, Moreover there exists
d € {2,3,...} such that the following inequality holds:

min Brqa>0 (83)
de{d,d+1,...}

Using Lemma 1.3, for d > d, we can further lower-bound R3 5, (%o(T),Yo(T)) as follows:

2k __ 2d—4 2k _ 2d—4
)BmdAQ - (1 4 <'°2'°)> C,A2p, (84)

RE s, ro() (7)) = L)

Next, we can choose A = R/\/B; q to ensure R§ ; (2°,4”) = R? and obtain the following:

2%k _ 2d—4 2k _ p2d-4)\ O R2,%d
Rgméy (@o(T),Yo(T)) = sz B <1 n (p p )) o

4 2 Bra
@ (2% _ 2d—4 2k _ 2d—4 2 2d
Z(p P )R2_<1+(P P )) _ GeR%p
4 2 Minge i) Bra
® 1
> QkRQ
= 5P )
where (a) uses Lemma 1.3; (b) is implied by choosing a large enough value of d. The rest of the proof uses the lower bound
on p in Lemma 1.2 and is almost identical to the final steps of the proof of Lemma G.3 in Appendix J. O

L.1. Proofs of Auxiliary Lemmas
I.1.1. PROOF OF LEMMA 1.2

In this proof, we consider the case ji,, > 0, since the case p,, = 0 is almost identical. Using the first-order optimality
conditions (7) in problem (1), we obtain the following expression for the optimal dual variable y* € V:

1/L,
y*=Vg* (Bz") = y" = E|®I;]| 2", (85)
.1/#11

where the optimal primal variable is the solution to the primal minimization problem in equation (5):

2* = argmin f(z) + ¢"(Bx). (86)
TeEX

Moreover, using the definition of functions f(z) and g(y) in equations (59) and (63) and the definition of matrix B in
equation (65), we can rewrite this problem as follows:

3n

ﬁ 2
gélﬂ Z <f1 x;) ||$z 33n+1||2 + , Z fan(®i) + Tuy”l‘i - 332n||2
1=2n+1
(87)
2 2n S 2n—1 042
1 n 2 x 2 2
+ f” > i @ill” + Z 5”33'&” + Z %”xi-‘rl —xy]|”
i=n+1 i=n—+1
It is also not hard to verify that the following inequality holds:
- B? n3
Z (fl(zv) + T”xz —znp?) > nfl( Zl 1%i) + T” ; Zz 1%i — Tniall?, (88)
i=1 Fy Hy
where equality is attained if and only if z; = - - - = x,,. Consequently, the problem can be further reformulated as follows:
2n g 2n—1 a2
x 2 2
irg)r(l TLMIAyh (Tpt1) + nMuyh (z2n) + i;rl 5||xl|| + i;rl %Hxiﬂ — x|, (89)
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where functions h(2), ha(2): R? — R are defined as follows:

O Ly — 0y
h(z) = l=1° + 7\\F12||2>

5. L3 (90)
ha(z) = = |121° + % Pas? - Alel,2),

and My, (z)and Muy,, (z) are the corresponding Moreau envelopes. Moreover, the solution z* satisfies the following
g2 52 2

relations:
7 = e = @ = proxuy, (@)
* x « oD
Lopy1 = " = T3p = PTOX’%M (z3,,)
Further, we perform the minimization in the variables x,2, ..., Z2,—1. Using the first-order optimality conditions, we
obtain the following relations:
5Tuy .
24 x; =wj_ +xj, for ie{n+2,...,2n—-1} (92)
a?

This is nothing else but a linear recurrence, which is not hard to solve. Let ¢ > 0 be the smallest root of the following

characteristic polynomial:
Oa
<2+ “”>q_1+q, 93)

which is given as follows:

_ \/40[2 + Sat,ufy B \/Smﬂy

= — — . (94)
\/4012 + 6x,uy + \/5ny
Then z;, o, ..., 5, 1 can be expressed as follows:
. wh (@ =g ) s, (¢ =gt o5
x”'” - (qnfl _ qlfn) : ( )
Moreover, one can observe the following:
2n 2n—1
Z zi|I” + Z IIle ay||®
i=n+1 i= n+1
2n 2n—1
= Z zf|” + Z IIwé‘H2+ 2711 = 2(xf 0, 27))
i=n+1 i= n+1
Sw 052 ) ) ) 2n—1 Sl a2 ) 2n—1 ag
==+ UeralP+ 5P + Y (o +— ) Il = > —(af,2))
< 2 24y i=n+2 2 Hy i=n+1 Fry

(% @ (a2 4 ) — o (e an) + (s 1)
2 2py 2y

! 042 511,U/y 2 * *
+ E 5 +2 ) |2 I° = (2, 250 +27y)
24y

1=n-+2

(@) S 042 * * CY2 * * * *
= <2x + 2My> (||37n+1|‘2 + sznIIQ) - 72/@ (<xn+15xn+2> + <$2na$2n—1>)
(50

2
uy> (s l* + ll25,11%)
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o (lopal? +le3al1*) (@2 = ¢*7") + 2(a) 1y, 25,) (a — a7 1)

a 277; ("t —q'm)

_ (5; b (1 W ql))) (Il + 123, 2)
+—2;:'Ofggfl?qj)n)”$2+1"x§n”2

_ (5; . 2(; a ]f)fl(ﬁ—3;2)> (N + N3, 1)

o M%Hx:‘m — a3,

2y q(gt—m —

- ) 2
WO " * Vn&
_ <;+ w ) (15 + 1e3al?) + 22 a5y =

Y

where (a) uses equations (93) and (95); (b) uses equation (95), and w,,, v, > 0 are defined as follows:

(1-q)(1—¢"?) _ (1-q)(1+49)

. Vo .
(1+q¢"1) a(¢=" —q" 1)

Wy =

In addition, we can observe that the following relation holds:

1 .
5”35;“ —a3,|* = min (Iz = 2nga* + [l = 25, [1%) -

Therefore, the problem can be further reformulated as follows:

. . Sw Wna2 2 V’ﬂa2 2
min min Muy, (#nt1) + <2n oo [Tnal” + e [#n+1 — 2]|

by wpa? 5 Upa? 9
+ Muy, (@20) + | o5+ wanl® + on — 2%,
lxﬁ’m( 2n) <2n 2n 41, lz2n] Ny 20 |

Let functions h (z), h3 (2): R — R be defined as follows:

g w Ol2
+ _ Yz n 2 .

and let functions A} 7 (2),h 1 (2): RY — R be defined as follows:

hj_+(2§) = M nuy h_+(z), j = 1,2.

2upa? d

Then the latter problem reformulation can be rewritten as follows:

2 =argminh{ T (2) + hd T (2),
z€R4

and the solution 2* € X satisfies the following relation:

* _ % _— .
Tpt1 = prOXLyzhir (Z ), Ty, = Prox Nty g (z )

2upa 2upa

(96)

o7

(98)

99)

(100)

(101)

(102)

Next, we establish the following Lemma .4, which is used to obtain the explicit expressions for the Moreau envelopes. The

proof is available in Appendix I.1.3.
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Lemma L4. Let function h(z): R? — R be defined as follows:
h(z) = *|| I+ == EF2)? - (b, 2), (103)
where L > 1> 0, and F € RP*? and b € R? satisfy the following assumptions:
FF' =1, F'Fb=0. (104)
Then for A > 0, the Moreau envelope My, (z) is given as follows:
Man(z) = 5 2] + 25 B2 = Bafb.2) = Ca, (105)

where constants Ly > py > 0 and By, C) € R are defined as follows:

Allo|f?

Ly=M\+1/L)", =0 +1/w)~", By=04+)" Cxim~

(106)

Using Lemma L.4 and the definition of functions h;(2), ha(2) in equation (90), we can express functions h} (), h (2) as
follows:

24 —pt 2
hi(z) = 7” °+ 5 IF1z||* + const,
+ (107)
(=) = 2l + B el — A% (e 2) + comst,
and functions h " (z), hi T (2) can be expressed as follows:
++ +
Wi (z) = “Tnzn? + = KR 2|12 + const,
utt [+ _ (108)
hit(z) = THZH2 + 5 |F2z||2 — ATF(ed, 2) + const,
where constants LT > 7 > 0 are defined as follows:
1 ~ 1 ~
é wpo? 1 é wpo?
L+:(+ ) 92 wno? +:<~+y) 402 e (109)
B? no Ny . o, B2 no Ny

constants LT+ > p™F > 0 are defined as follows:

-1 —1
1 nu 1 nu
[+ Yy ++ y
(l + 2Vna2> ’ <¢1+ 21/na2> ’ (1o

and constants AT, ATt € R are defined as follows:

A-i-:LA~ A++:M_ (111)
B2 4 p1y0s 2v,,0% + npypt
Next, we establish the following Lemma 1.5, the proof is available in Appendix 1.1.4.
Lemma L5. Let 2 = (24, ..., 24) € R? be defined as follows:
2 ; 2, L—p 2 d
5 = argmin g2l + “=L | F2|2 - Blef, 2), (112)
z€R? 2
where L > 11 > 0, B € R and matrix F € R4=DX4 js defined as follows:
1 -1
po L (113)
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Then there exists 2° € span({(1, p, ..., p%~1)}) such that the following inequality holds:

B d
2 - 2l < =2, (114)
2p
where p € (0,1) is defined as follows:
T —
p= M (115)
VL+ i

From Lemma 1.5, the definition of z* in equation (101), and the definition of functions h;(z), h) (z), and h]"(z) in

equations (90), (107) and (108), it follows that there exists z° € span({(1, p, ..., p?"1)}) such that the following inequality
holds:

++ pd
= - ="l < G (116)
where p € (0,1) is defined as follows:
VI i
p= (117)
Ny

Finally, we obtain the desired statement of Lemma 1.2 with the help of the following Lemma I.6. The proof is available in
Appendix I.1.8.

Lemma L6. Let vector (z°,y°) = (27,..., 25,47, ...,y ) € X x ) be defined as follows:

x = projg, (x7), i =Dproje, (¥, (118)
where vector (z',y') = (27, ..., T}, Y1, -, Yp,) € X X Y is defined as follows:
prox;%hl(x'nﬂ) ie{l,...,n}
prox;:zQ h (2°) t=n+1
/- _ z;74»1(q2'nf7i_qi72n)_"_z/2n(qif(nﬁ»l)_(1(711»1)—1L) . B
x; e 1e€{n+2,...,2n -1}, (119)
p1"0)<2::i,l2 ht (z°) 1=2n
prox;%b(x’%) i€{2n+1,...,3n}
y' = Vg*(Ba').
Then the following inequality holds:
Rgzéy (z°,9°) < CrA%p*. (120)

where C; > 0 is some constant that possibly depends on the parameters m € 11

It remains to lower-bound p. It is done with the help of the following Lemmas 1.7, 1.8 and 1.9, the proofs are available in
Appendices 1.1.5, 1.1.6 and 1.1.7, respectively.

Lemma L.7. Under assumption pi ji, < uiy, the following ineqality holds:

g " <2 (121)
Lemma L.8. The following inequalities hold: ~
n—2)0;
o < %
1 (122)
Up > ————.
4(n—1)
Lemma L9. Constants L™ and pu™ defined in equation (110) satisfy the following inequality:
Lt 11
—2>1 — . ¥R 123
ptt = +max{86’ 55 00, (123)
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Using Lemma 1.9, we can lower-bound p as follows:

. 2
pEL -
w1

(b) _
Zmax{l—vQ 0- 0.0, V8T \/%}

12, /87 4 /86

5.0, 1
> 1—220- L A—
> max{ /@I ) 346}

© { V20 L, | }

= max

VEzy  Mya " 346

(d) n 1
>maxq1—89 ——, —
VEay 346
where (a) uses the definition of p in equation (117); (b) uses Lemma 1.9; (c) uses the definition of «,,, in equation (6); (d) uses
the definition of n in equation (72), which concludes the proof. O

1.1.2. PROOF OF LEMMA 1.1

Let matrices W;, W’ € R*? be defined fori € {1,...,n — 1} as follows:

2 -1 1 -1
-1 2 - -1 2

W, = Cwi— . (124)

B B R B
12 1 2

Then using the definition of matrix E in equation (66), we can write the matrix EE T as the following block matrix:

(2 | By U By ]

et b
2] Bt dn) :
By ~af
EET = BRCARRANE —op W . (125)
! 8.7 08
ap
2| g, + 3,)
| J

Furthermore, let matrices Q;, Q} € R +Dx(n+1) pe defined fori € {1,...,n} as follows:

*W; i a®W! ]
B ap B-1E a8
Q; = aff , Q= af (126)
.3 .3
5| AL, +3,) | AL, +3,)
o af
It is not hard to verify that the following matrix inequality holds:
On—l
Q,_ = 52[ i ] (127)
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Moreover, we can show that fori € {1,...,n}, matrices Q;, Q; satisfy the following inequalities:

QML IED) iy gniyT,

n+1
Q/ - Ol2 (en+i)(en+i)T
7 = n4i 1 1 .

Indeed, let us prove equation (128) by induction. The base case ¢ = 1 is trivial

Oé2 ‘ Oéﬁ ....... aﬁ nof]_
of 0 N
h = . — n+1 n+1\T
G = S B+ T, nt 1(e1 )(ef™)
of 0
Furthermore, for an arbitrary index ¢ € {2,...,n — 1}, we can show that
a2laz 0....... 0 [ a2 o2 Qcvvvvns 0] g
2 2 | o?(nti) nti
Q/ 06 (;1) OE) n+i—1 0 ®) 0
' Qi1 - = '
. : . 0
0 0 0]

(128)

(129)

which is nothing else bu the induction hypothesis (128) for the index i, and where (a) uses the induction hypothesis (128)

for the index i — 1; (b) uses Young’s inequality. Next, we can obtain the following inequality for the matrix EE " :

ny2 | By By T [ Y2 | By eeeiens By
By —af By —af
: B2(I, + J,) : : Bty :
T _ . . . n .
EE =1 gy —af =1 By —af
—af s —af —af e —af
anl anl
- 0 - -
—af
323, : 0
- —af - O,
—af e —af -1
Qn—l
o _az 3n 3n T _
= m(eQnH—i)(eQnH—i) .

This implies the following inequality for the matrix EE T

n—1 . n—1 .
a 2(n+1) 2(n +1) a?
EET (:) EET — . 3n . 3n ) T
; 3n(n _ 1) — Zz:; 3n(n _ 1) n +i(827n+1—1)(e27n+1—1)

0,
_ 202 + I
~ 3n(n—1) nol

O,
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n—1 2(n-+i)
i=1 3n(n—1)

where (a) uses the facdt that >
for the matrix EE:

= 1. Furthermore, using equation (127), we can obtain the following inequality

/
n—1

Next, we can obtain the following inequality for the matrix EE ":

[ ny? | Byoeeeens By T
By —ap
. ; B2(L, + J,) :
EE' = . )
By —af
—af —af
anl
i 77/')/2 ﬂ"}/ ........ ﬁ")/ T
By —af
(a) . ﬁ2(1n + Jn) .
> : :
By —af
n 2
—f —af gngl
L 02n—2 |
[0
o| [P+ -L-30)a,
- 0
L O2n—2
r 0
B 51, - 23,
0
| 02,2
r 0
2
a 0
| 02,2

where (a) uses equation (128); (b) uses Young’s inequality; (c) uses the fact that J,, < nl,,. Furthermore, we can obtain the
following inequality for the matrix EE '

[ a2 | By ooveee By T
By —af
EET & Al )
| By —af
QB —af ngj
L O2n—2 |
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[ ny? By coeeen- By 7
By —af
® | Bty :
E . n .
By —af
—O[ﬁ ....... —aﬁ %
L 0277,—2 i
i n72 By--ee- By T
By
c . 382
o |
By
0
I O3, 2 |
1
Q|| On
027172

where (a) uses the ineqality obtained above; (b) uses the fact that J,, < nl,;; (c) and (d) use Young’s ineqality. Now, we sum
all the inequalities for the matrix EE T obtained above with positive coefficients 61, 0, 63,0, > 0 and obtain the following:

2
s
0,21
EE » 2 g : (130)
93 : %In—l
04 . ﬁzIn
Choosing 61 = 3, 6, = k., 63 = ¢, and 6, = 5 implies the following:
2 52 2
EE' zmin{q,;,;ﬂ}lgn. (131)
Finally, we obtain the following inequality for the matrix EE T :
[ 2ny? i
B82(2n+1)
B, + LCnil g
30?2 —a?
T® —a? 22?2 —a?
EE' < . - .
—a? 202 a?
—a?  3a?
I B(In +27,) ]
[ 2ny?
®) 2(n +1)8%1,
- 40[21»”,1
(2n +1)6%1,

< max {Zn’yQ, 2(n+ 1)62,4a2} I3,.

where (a) uses the expression for the matrix EE T and Young’s inequality; (b) uses Young’s inequality, which concludes the
proof in the case v > 0. The remaining case v = 0 is a trivial extension of the case v > 0. O
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1.1.3. PROOF OF LEMMA 1.4

Using the definition of the Moreau envelope, we get

L —
1212+ S EIR - (3,2,

1
My, = al;%;}jﬂﬁnzl —z|* + B |

Using the first-order optimality conditions, we get

%erb: (<i+u) Id+(L,LL)FFT> 2

Hence, we obtain the following:

My @ ) — 2P B+ SR 0,2
7”2“2 7” /H( L) g+ (L—p)FTF </,%Z+b>
L CLGt-{ £ SR P
- ; sl = 13 T s ) (e () o)
45 aal? ”2“”AZ+I’H§ b40) L= (34) ET (gl () ) TR
it 2 SN T

BEEERYAICE W)

—
@

) 2 1 2
= j\”zH - iHXZ + bH()\—AQ/LA)Id—V(LA—/L,\)FTF

X Ly — px
= B A R (e (1 M) — AL — )P

2
5 HbH(A—)\2u>\)1d7>\2(LA7u>\)FTF

IIS

2 M,\ AL — Ay )
5 Iz I + [Fz]|> = (1 — Aux)(z,b) — fllbll2

® L
= ”—Anzn‘z + T’“IIFZHQ — Ba(b2) - O,

(132)

(133)

where (a) uses the definition of the Moreau envelope; (b) uses the expression for z’; (c) uses the Woodbury matrix
identity; (d) uses the assumption FF ' = I,,; (e) uses the definitions of Ly and puy; (f) uses the assumption F'Fb =

0; (g) uses the definitions of By and C'y, which concludes the proof.

I.1.4. PROOF OF LEMMA .5
One can verify that vector Z satisfies the following linear system:

(2uIg + (L — W)F'F) 2 = Bef,
which can be rewritten as follows:

(L+3u) —(L—p) .
—~(L—p) 2L+p) —(L-n) 2 %3

~(L—p) 2(L+p) —(L—p)
—(L—p) (L+3p)
Let 2° € R? be defined as follows:

o___ 2B a
T P
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Then one can observe that

(2u1y + (L — p)F'F) 2° = Be{ — Bp“el,
which implies

(2uLy + (L — p)F'F) (2° — 2) = —Bp“el.
Hence, we obtain the following inequality:

Bp*
o= -2l < 22,

v
which concludes the proof.

1.1.5. PROOF OF LEMMA 1.7

We can upper-bound ¢~ " as follows:

Lay 2/ 8,4ty
6/1'7!1 \/4042 + Smﬂy - \/Sw:uy

Ly 2V 0oy (V402 + 5up1y + \/&M;;))

6ty 402

Ly ) 4y Swuy (0‘ + Sw/@))

61y 42

Py a?

4p, 4,
Ly, Myw\/l"‘LLj(O""/‘yw\/l"‘ Tr)

2

6ftya a

Lacy . Myiv\/i(a + /Jyac\/?) )

61y a?

o))
+

(
|
© ( Luy \/ Pty + 43, T (0 + Wmuy +4p2,

(137)

(138)

(139)

where (a) uses the concavity of the logarithm; (b) uses the definition of n in equation (72); (c) uses the definition of
q in equation (94); (d) uses the ineqality +/ a +b < Va+ Vb for a,b > 0; (e) uses the definition of 515 in equa-
tion (61); (f) uses the assumption i, pt, < uyz and the assumption 1, > 0, which, together with Assumption 2.5,
implies pizy < fiyz; (g) and (i) use Assumption 2.7; (h) uses the definition of « in equation (68), which concludes the

proof.
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1.1.6. PROOF OF LEMMA 1.8

We can upper-bound w,, as follows:

w([1-g1-¢""?
SN ETT

2U-g-g?

Il
—
—_

\

=
~—
[ V]

Q
S,

7=0
(©) 9
<(m-2)(1-9q)
@ 4(n — 2)5m/¢y
(V402 + Sy gty + V/bupty)”
< (n— 2)5%“?4’

= Oé2

where (a) uses the definition of w,, in equation (96); (b) uses the fact that ¢ > 0; (c) uses the fact that ¢ < 1; (d) uses the
definition of ¢ in equation (94). Next, we can upper-bound Vi as follows:

2n—3
L wglg™™—¢"") ¢ ;® n©
— = = ¢ <2(n—1)¢ " <4(n-1).
v (1=g)(+q)  (1+4q) JZ::O

where (a) uses the definition of v, in equation (96); (b) uses the fact that 0 < ¢ < 1; (c¢) uses Lemma 1.7, which concludes
the proof. [

1.1.7. PROOF OF LEMMA 1.9
First, we can lower-bound % as follows:
2L, 5z no? <
E (@) ﬁQiL:uﬂy ot wnuo; — 14 54(Lr — 0z)
+ 25, S wp a2 o N N S Wy o
1% ﬂ?i&uy ot (ﬁ%x + (B2 + 0 pty) (% + 471;)5)) (8% + Lopiy)
4
L,
1+ — — p - .
2 (820, + (52 + Barny) (% +227) ) (82 + L)
© 5L,

~
(AVAC

B*L,
ngl) (52 + Mo by + /‘%y 45:)) (52 + L:c,uy)

(

(
© BAL,
o2

(

[\
S
B}
s
[
+

=

m0 (82 4 42, (14 42)) ) (82 + L)
BAL,
B) BL,
< n—1 2”2/1«51 n2Lgpy
95,3 (1+ (n-1) (1+ o )) (1+—L§y“ )
Q) L,
=1+ (n—1) 1 Lop
2, (1 + @D (g 1—8)) (1 ¥ 36“;51)
_ 9Lapy, _ i bty + 00 (B30 + 55 Lotty)
3700 (12, + 35 Latty) bz (12, + 35Latty)

>14

)
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where (a) uses the definition of L™ and T in equation (109); (b) uses equation (69); (c) uses Lemma 1.8; (d) uses the
definition of 4, in equation (61); (e) uses the assumption g, p1,, < “12@ and the assumption i, > 0, which, together with
Assumption 2.5, implies p,y < fiyz; (f) uses Assumption 2.7; (g) uses the definition of 3 in equation (68); (h) uses the
definition of n in equation (72). Furthermore, we can lower-bound % as follows:

Lr Wty =1+ Wy
pt T 378, (u2, + 25 Ly 5o, :
(H3e + 36 fy) 37 LLLy + 0 hty
S My
- dpypz,
37 (%uix + 3 (Mwﬂy + J))
® 92,
= 37 (Lp2, + p2, (1+ F
aHya + 36Hye (1 + T,
© 92, 81
>1 1, 92 z 1 92 —"_ﬁ
37 (ﬁuyw + ﬁ“yw)
10
- 7 )

where (a) uses equation (69) and the definition of 596 in equation (61); (b) uses the assumption pi,p, < uiw and the
assumption /Lyr > 0, which, together with Assumption 2.5, implies pi,,; < fiy.; (¢) uses Assumption 2.7. Next, we can

lower-bound £

ST as follows:

2Vna2L+
L+t (a) wnatfnp, LT 1y (L+ _ M+)
++ 2u, a2t - uy, Lt
s 2vp 0 ""nlll;y/ﬁ— (1 + gll/nyQ )

b 3LT
> 1+

)
© 3L
21+ 2 1)y L+

10'u+ <1+ n(”zﬁ)#y )
@ 3LT
z 1+ 8 1) py L+

10u+ (1+ "(nzz)#y )

zy

© L+ 3u2
>1+ M —

10p+ (1+ 22" ) 10 (K512, + 2yt
0} 3u2
Q. . uyx :

2 n
10 (%Mgw + oty (6 g o ))
3
S 1 + + Iuy(x +1)6 2
n = wpa”
10 (e + i (2525 +527))
2

g 1+ + Sﬂ(ymﬂ) (n—2)4, 1+ + e <

10 (%uiﬁ Sy ( e 4 )) 10 (%uiﬁéuy%)

2
1+ s ]
zll«qﬂ M?]T+36 x by 4 <
10 (;’7 Lop2,+6, uy1+36 whty) + 50
2
~ - N Mo
10 <37 et dotom) | 3ﬂy5x> 3708, (ny + =)
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; 271 O 2712
e
37006,0, 148060,
2
/’Lym
>1
= 556,0,

where (a) uses the definition of L*F and p*+ in equation (110); (b) uses the previously obtained inequality u™ <
lL*‘ (c) and (g) use Lemma L.8; (d) uses the definition of « in equation (68); (e) uses the definition 0f n in equa-

tion (72); (f) uses the definition of u* in equation (109); (h) uses the previously obtained lower bound on “— (1) uses
the definition of 6, in equation (4); (j) uses the definition of 5, in equation (61) and the definition of ¢, in equat10n “@).
Furthermore, we can lower-bound % as follows:

Lt+ 2, @ 2
++21+’?521+ My .
K 53020y 55 (M:L’My R T ””Z’)
(b) 1 (C) 16 1
> 1+ 2 2 > 1+ =
55<1+uy+uz+ / ) T 2555 86’

where (a) uses the definitions of d,, and §,, in equation (4); (b) uses the assumption fiz (1, < ,uf/x and the assumption /iy, > 0,
which, together with Assumption 2.5, implies /15y < fiye; (C) uses Assumption 2.7, which concludes the proof. O

I.1.8. PROOF OF LEMMA 1.6
First, we can upper-bound ||z’ — x*||? as follows:

n
(@)
" — 2| = leprox%ghl (@h1) = proxeg, (@)
i=1

 [pros nus_ys (2°) = prox_mus_ e ()]
2vpaZ 1 2vpa2 1

2 1 o . . 12
+ ”Z n+1 - x;—!—l)(q?ﬂ b= ql Qn) + (Z/Qn B x;w)(ql (nt1) _ q(n+1) ’L)
11—
i=n-+2 (qn q n)
+ lprox e (2°) — prox_sme (=7
3n
+ > Iprox.ey ;, (22,) — proxuy, (3,12
i=2n+1 B
(b)
< nflehy = whal® 4 1120 =22
2n—1 » . - 2
+ nz n+1 - x:—l—l)(qzn ' — qz 2n) + (‘TIQn - xgn)(qz (1) _ q(n+1) ’L)
(¢t —q'™ ")
1=n-+2
+[12° = 2*|* + nflzh, — a3,
©)
< 22° = 2P + |2y — gl + et — 23,]%)
2n—1 2n i _ z 2n) )
+2 ) mH%H Ty
1=n-+2 q
ML (gim (D) g(nt1)=i)2
q )
+2 Z gL —qln)2 3, — 23,1
i=n-+2 q
o *(2 q —q i)2 * 2 i * (12
=2[]z° = 2"|" + n+2z =P (lznsr — 2nga I + 125, — 23,1%)
(d)
2)12° - 2*||?
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n—2 _ i2
(el e >>Hprox sy () = DO 1 ()

vna?

—1)\2
q —q *
+ <n+2§ ) = > ||pr0x ity h+( °) - prox%h;(z )12
( Z G i I
24244 S s | 127
= (@ =g )
2 ‘ , 2
(¢' —q7")? Attpl
2+2n+4) e -
n—1 _ —-n +
< — (q q'") 2p

g C;TAQPQd,

~
INe

ING

where (a) uses the expressions for z* in equations (91), (95) and (102) and the definition of =’ in equation (119); (b) and (¢) use
the nonexpansiveness of the proximal operator; (c) uses Young’s inequality; (d) uses the definitions of x}, , | and z3,, in
equation (102) and the definitions of z}, | ; and x5, in equation (119); (f) uses equation (116); (g) uses the definition of ATT
in equation (111), and C% > 0 is a constant that depends on the parameters 7 € II.

Next, we can upper-bound R} 5, (%', y') as follows:

(a) * *
R3.5, (@ y) = bulla’ — 2”4+ 6, lly — v*|?

(b) * * * *
Sellz’ — a*||* + 6, Vg*(Ba') — Vg*(Bz*)||”

5
< blla’ — a2 + M%IIB(:E’ —a")|?

Yy
@ 5, L2
< G’ — 2 |? + 2 |2 — 2|
Yy
© 8, L2
< <6m 4+ L2 29””) ClL A2 p
Hy
_ C//A2p2d
e b)

where (a) uses the definition of R%z 5, in equation (9); (b) uses the definition of 4 in equation (119) and the expression for

y* in equation (85); (c) uses the (1/u,)-smoothness of function g*(y); (d) uses Assumption 2.5; (e) uses the previously
obtained upper bound on ||z’ — x*||?, and C/ > 0 is a constant that depends on the parameters 7 € II.

Furthermore, we can express x5, as follows:

Ty 2 Prox iy 4 (2°)

2up a2

O o My gpit(e)

2,02

O (1 — Y (T 4 (LT — PP F) ) 2° 4+ At el

2v,,02 2 1

++ ++ ++
_ Ny [ oy (LT —pth) o ° ++_d
- (1 - 2ua> Fo T g R dATe
Q 2A++ 1 _ n/‘y/‘++ I _ nﬂy(L-H_ - M++)FTF ( d)
(1= p)(LFF =) 2wa? ) gz 202l

+A++ed
(i) A( T 2nId + 207/:,2nF;F2)(p’ ) + AC/N2ne1

Q AC;\'/,IQnel + AC:T,ZTL(p’ ce ’pd)
+ ACY 5, (0,0°(1 = p), p*(p — 1), p* (1 = p), p*(p = 1),...)
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- A( ;r/,IQn + pc;r,Qn)(lv Oa Oa N )

+ A(pQC;rQn + p2<1 - p) ;;7271)(05 1a 07 p2a 07 p4a s )

+ A(p*Cr o + 0% (p = 1)C 5,)(0,0,1,0, p%,0, p, . ),
where (a) uses the definition of 2’ on equation (119); (b) uses the properties of the proximal operator and the definition of
h3(2) in equation (100); (c) uses the definition of 7 *(z) in equation (108); (d) uses the adapted version of the definition

of z° in equation (136); (e) uses the definition of A** in equation (111); (f) uses the definition of matrix F5 in equation (62),

and C7 ,,,,CY 5, € R are constants that depend on the parameters 7 € II. From this expression, we can conclude that the

following inequality holds:
2%, — 25, 1> < A%Cr 20p®, (140)

where C 2, > 0 is some constant that depends on the parameters 7 € II. Similarly, we can obtain the following inequality:
Oulla’ — 2°|* + 8yl — y°|I* < O/ A%p*, (141)
where C/”” > 0 is some constant that depends on the parameters 7 € II. Therefore, we obtain the following inequality:
R3,s,(2%y°) < 2RE 5 (2, y') +20: [l — 2®||* + 26, [ly" — »°|I?
<2(C) + A% p*
=C A2p2d
which concludes the proof. O

1.1.9. PROOF OF LEMMA 1.3

Functions f(x) and g(y) defined in equations (59) and (63) are quadratic. Hence, the optimality conditions (7) can be
written in the following form:
G.z* +BTy* = Ab

(142)
G,y* —Bz* =0,

where b = (02, 1,)®ed € R"? and G, € R"=?*"=d and G, € R™v¢*"s4 are symmetric matrices that can be expressed
fromd € {1,2, ...} and the parameters 7 € II using the definitions of functions f(x) and g(y) in equations (59) and (63).
Hence, the solution (z*, y*) can be expressed as follows:

= A-Q, ',
o1 (143)
Y =A-G, BQ, b,
where Q, € R%=@*724 i5 defined as follows:
Q.=G,+B'G,'B. (144)
Note that matrix G, + BTG?le is invertible due to Assumptions 2.3, 2.4, 2.5 and 2.6:
G, +B'G,'B = 6,14+ Opa (145)

Furthermore, using the definition of (2%, %°) in equation (78), we obtain the following:

(2" = 2%y —9°) = (Tn, 40, ® Ta = P))(z*,y")
= (Tn,4n, ® Is — P))(Q; b, G, 'BQ; 'b) - A.

Hence, it is easy to observe that R3 5 (2°,4°) = By aA? for some constant B ¢ > 0 that depends on d € {2,3, ...} and

the parameters € I1. Finally, we need to show the existence of d € {2,3, ...} such that for all A > 0 the following
inequality holds:

R3,s,(2%,1°)

min Brag= min —_—

> 0. (146)
de{d,d+1,..} = de{dd+l,.} A?
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To do this, we can lower-bound R} ; (z°,4") as follows:
R3,5,(@% ) > 0z (Il 1 — 25 l” + |25, — 25,11%)
@) * *
= 0z (II(Xa = P)aj o |* + [|(Ta — P)a3,[1?)
> 50:(1(Ta = P)(zp 41 +23,) |

©)
D45, (Ta = P)(prox e (%) + prox e ("))

(d) ES n y ES *
= 302/l (Ta = P)(22" — 524 (VAL (27) + Vh3 (7))

2v, a2
(©)

26,(|(Ta — P)="||?
®
> 8o|(Ta — P)2°||* — 20, [|(Tg — P) (=" — =°)|*

© . Attpd 2
> 6./|(La — P)2°||* — 26, ( 2T )

(;)5 24+ p2 2_25 At pd 2
T\ = p) (L = ) N\ 2utt

>(A++)2 251,04 _ 5mp2d
. 7~ 5P

2
g 22 2u, 02 32 ] ' ( 26, p* B Spp*d )
- (2vp, 02 + npey ) (82 + p4y04) (LH)2 2(ut*)2 )’

where (a) uses the definition of 2% in equation (78); (b) uses the convexity of ||-||%; (c) uses the expressions for 2 | and z3,,
in equation (102); (d) uses the properties of the proximal operator and the definition of h;“+(z) in equation (100); (e) uses
the definition of z* in equation (101); (f) uses Young’s inequality; (g) uses equation (116); (h) uses the adapted version
of the definition of 2° in equation (136) in the proof of Lemma L.5 in Appendix 1.1.4; (i) uses the definition of AT in
2v,a>% 82
(2V7za2+nﬂyﬂ+)(62+ﬂy8m)
depend on d. Hence, we can easily obtain the following relation:

2 4
equation (111). It is not hard to verify that ( ) and (%5;7'5)2 are positive constants that do not

R% ) ($07y0)
liminf —%——

14
e e 70 (147

which concludes the proof. O
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J. Proof of Lemma G.3

Let fizy, = max{ /iy, iy }. We consider a special instance of problem (1), where X = Y = R<, functions f(z) and g(y)
are defined as follows:

J(@) = B llal” — Atel.a), gy) = B Iyl (148)
and matrix B € R%*? is defined as follows:
a B,
- L |, where o= Lyy + fiay, 8= Luy — jluy- (149)
’ e’

Functions f(x) and g(y) obviously satisfy Assumptions 2.3 and 2.4. Moreover, matrix B satisfies Assumption 2.5 due to
the following Lemma J.1, the proof is available in Appendix J.1.1.

Lemma J.1. The singular values of matrix B defined in equation (149) satisfy the following inequalities:

p/zy S Umin(B) S Umax(B) S Lzy (150)

Next, we establish the following Lemma J.2, which describes the solution to the problem defined above, the proof is available
in Appendix J.1.2.

Lemma J.2. Foralld € {2,3,...}, the instance of problem (1) defined above has a unique solution (z*,y*) € X X ).
Moreover; there exist vectors z°,y° € span({(1, p, ..., p?1)}) such that the following inequality holds:

R3.5,(°,y°) < Cr A%p*, (151)

where C > 0 is some constant that possibly depends on the parameters € 11, but does not depend on d, and p € (0,1)
satisfies the following inequality:

4
p>maxq1l— \/g,f . (152)
VEzy O
In addition, the initial distance to the solution R%m 5, (0,0) is a quadratic function of A, that is,
R3,5,(0,0) = Br aA?, (153)

where B 4 > 0 is a constant that possibly depends on d € {1,2, ...} and the parameters m € IL, and satisfies the inequality
minge(1,2,...} Bra > 0.

We can express (z°,y°) from Lemma J.2 as follows:

2° =uz(L,p,...,p" Y, v =wu,(1,p,...,p% "), where wu,, u, €R, (154)
which implies
2°||2 = uz(l—p*) ly° |12 = M (155)
1—p2 7 1—p2

Further, we fix k € {0,...,d}. Using the sparse structure of matrix B defined in equation (149), and using the standard
arguments (Nesterov, 2013; Ibrahim et al., 2020; Zhang et al., 2022a; Scaman et al., 2017; 2018; Kovalev et al., 2024), we
can show that the output vector (z,(7),y,(7)) € X x Y satisfies the following implication:

span({e{,...,e{}) k>0

o} 0 (156)

<D -k = {,CO(T),yO(T)E{

where D > 0 is a universal constant. The right-hand side of this implication implies the following:
R3.6, (@0(7),5o()) = Oallwo(T) — 27|17 + 8y lyo(7) — |
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(a)
> $0u[|zo(1) — 2°)* + 50y llyo () — y°II* = RE, 5, (2°, ¥°)

) d—1 )

> 2(0au2 +6,u2) Y p = RG 5, (2°,9°)
Jj=k
2k 2d
P~ — P o ,0

715 o2 S 02p2k7p2d7R2 o ,0
= 50 ll2|I" + 0y 1yl )7p2d 5.5, (%97

1-—
2%k _ 2d

@) p2k _ ,2d
Zugﬂd/ﬁ_ 1+u C,A2p%,
A1 = p2d) " 2(1 = p*9)

p (e} (e}
2 (iRiay(O»O) 1R5 3y ) - i y(fﬂ 2 Y°)
p

where (a) and (c) use Young’s inequality; (b) uses equation (156) and the expression for (z°, y°) in equation (154); (d) uses
Lemma J.2. Furthermore, we can choose A = R/./Br 4 to ensure the initial distance R 5,0, 0) = R? and obtain the
following: '

2k 2d 24
R2 5, (2o(r), yolr)) = Ll B a2 — (1 " ””) O A2

(= 2(1 = )
® p2k p 2 (1s P2k p2d N\ O R2pd
401 - ) 21—=p*"))  Bra

@p _ . <1+p2k_p2d> C, R2p2
41— p*) 2(1 = p2) ) mingeqy 2.} Brar

_ RR2. (1 —p (1 L P pZd) Crp?ld=h) )
4(1 — p29) 2(1 —p2d) ) mingeq2,..y Bra

ve

1 2k p2
ngv

where (a) uses the choice of A above; (b) uses the inequalities B ¢ > ming e(1,2,...} Br.ar > 0implied by Lemma J.2; (c) is
implied by choosing a large enough value of d € {1,2,...}.

Next, we consider the case € < %RQ. Choosing & as follows:

log (£ R?
B (57%/) (157)
2log (1/p)
implies R 5,(®o(T),Yo(T)) = €. Therefore, by contraposition, from implication (156), we obtain the following:
R3.5,(0,0)<e = 7>D- 18k (158)

The right-hand side of this implication implies the following lower bound on the execution time 7:

7>D- -mmEK
9 . | B G E)
2log (1/p)
log (£R?/€) — 2log (1/p)
>D- 18- 2
2log (1/p)
() LR?/e) —
0D s log(SR /e) 2log (5/4)
2log (1/7)
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_ D log (%Rz/e)
2 log (1/p)
1
(g D - log (1 R?/e€)
2 (1/p—1)
D 7gp 16R?
D (1)
@ D

2
> o5 e los (1)
2
=0 (8- iy log (152)),

where (a) uses the definition of £ in equation (157); (b) and (d) use Lemma J.2; (c) uses the concavity of the logarithm,

125¢
lower bound holds due to the fact that 7 > 0, which concludes the proof. O

. . . 2
which concludes the proof in the case e < %RQ. In the remaining case € > %R2, we have log (M) < 0. Hence, the latter

J.1. Proofs of Auxiliary Lemmas
J.1.1. PROOF OF LEMMA J.1

We can write matrix BT B as follows:

[a? —af8
—af o>+ —aff
BB -~ e T
4 :
—af a2+ —af

i —af a? + B2
P afa - )

_1 —aﬁ20‘5—a5 . (a—ﬂ)Q.

1 i |

—af 2af —apf -

i —aff 2af (o= B)?

Therefore, we can obtain the following matrix inequalities:

B'B > 2 min{(a — B)%, ala— B)Ha = ﬂfﬂld,

B'B < 7 max { (o — B)? + 4aB, ala — B) + 208} Iq = Lind’
which conclude the proof. O

(159)

J.1.2. PROOF OF LEMMA J.2

The first-order optimality conditions (7) imply that the unique solution to the problem (z*,y*) € X x ) is defined by the
following linear system:
(Hapyla + BTB)x* = HyAei
. . (160)
Hyy" —Bx® =0.

Hence, we can express the initial distance Rgm 5, (0,0) as follows:

R3,5,(0,0) = &, [la*||* + 6, [ly*[|”

(a) — _
= 00| 1y Az Lo + BT B) tef||* + 6, AB (s 1y La + B ' B) e |
= AQBW,d»

where (a) uses the linear system (160) and the fact that the matrix (L, pyIqs + BT B) is invertible, which is implied by the
matrix inequality (1, Iq + BT B) = (ppy + ﬁiy)ld and Assumption 2.6, and where B 4 is defined as follows:

Br.a = 0ot || (aptyla + BTB) el ||” + 6, IB(popyls + B'B)tef|?. (161)
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We can also lower-bound B 4 as follows:

Br.a = 0upty || (ttapryla + BTB) " 'ef||* + 6, [|B(papsyla + BTB) e[|
© dapty + Oyfizy ©

?

where (a) uses Lemma J.1 and the fact that ||e$||2
obtain the desired inequality minge(y2,...}3 Bra > 0.

Furthermore, the first equation in equation (160) can be written as follows:

(=2 -1

where 72 is defined as follows:
o 0%+ B +dpepy,  2(g+1)

ap (¢—1)"
where ¢ > 1 is defined as follows:
_ L%y T+ e fly
a /jg;y + faply

where the denominator is always positive due to Assumption 2.6. Let (2°,y°) € X’ x ) be defined as follows:

2A

o 4p,A
= . :?(p’p27"'7pd)7

d
Ty B U D

o

where p € (0,1) is defined as follows:
p= Vi
Va+1

One can verify that (z°, y°) satisfies the following linear system:

d+1

T o d , @p d
(mapty o + BT B)2® = iy Adef + -y Act,
o o 2™
Hyy — Bz® = _a — 6/7 ’ :uyAega
which, together with equation (160), implies
d+1

o * ap d

(Hapiyla + B B)(2° — z%) = -y Ae,

Y o — ﬁp Y d
o * o * 2pd+1 d
wy(y° —y*) —B(z° —2%) = — -y Aey,
W o) =Bl o) = — Ly A

Hence, we can upper-bound ||2° — z*|| as follows:

@ CYMyAPd-H
a—fBp

© apy Ap

- (/ffmﬂy + ﬁgy)(a - Bp),

Ity Ta +BTB) e

[ — =7

d+1

44

= 1; (b) uses Assumption 2.6 and the assumption y,, > 0. Therefore, we

(162)

(163)

(164)

(165)

(166)

(167)

(168)
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where (a) uses the linear system (160) and the fact that the matrix (pq e, Iq + B'B) is invertible, which is implied by
the matrix inequality (p,p1yIq + BT B) = (g, + ﬂiy)ld and Assumption 2.6; (b) uses the fact that ;1,1 + BTB =
(frapty + A2,)Lq and led|| = 1. Furthermore, we can upper-bound ||y° — y*| as follows:

o % @ 1 o * 2pd+1 d
¥y —y*|| = —|B(x® —aF) — —— - p,Ae
Iy =712 Bl =) = Ty e

® 1 R y 2Apd+1

< —[B(2® —z")[ + el
Iy a—PBp

© L, 2Apdtt

< g0 — )|+ =E
Fy a—fp

@ anyApd+1 2Apd+1

= (patty + p2,) (= Bp) T Bp

_ (2 N O[ny72 ) Aderl ’

where (a) uses the linear system above; (b) uses the triangle inequality; (c) uses the fact that |B|| < L,, and |ed| =
1; (d) uses the previously obtained upper bound on ||z° — z*||. Combining the upper bounds on ||z° — z*|| and ||y° — y*||
gives the desired inequality:

R3,5,(2%°) = dol|2® — 2™ > + 8, y° — y"||* < C-A%p*". (169)

It remains to lower-bound p as follows:

2 2 © 2
@y _ ©y_ >1-
Vat+1 L2, +piopy L1 182 max{fi2,, , tha phy } 1t tiy 1
ﬂiyJFl‘z/J«y ﬁiij+”1”y
. 2 >1- 2 > %
(182—1) max{f2 ey} (182—1) +14+1
\/ ﬁiﬁ#xuz +1+1 3

where (a) uses the definition of p in equation (166); (b) uses the definition of ¢ in equation (164); (c) uses Assumption 2.7.
In addition, we can lower-bound p as follows:

2 b 2 (© 2 (@) 8
\/a + 1 Liy-&-uzuy + 1 LT@/ K:(L‘y
B2, iy 2pa by

where (a) uses the definition of p in equation (166); (b) uses the definition of ¢ in equation (164); (c) uses the assumption
Mo fly > max{uiy, uim}; (d) uses the definition of ., in equation (6) and the definitions of ¢, and J, in equation (4),
which concludes the proof. O
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K. Proof of Theorem 4.5

Without loss of generality, we can assume P = I;_. Otherwise, we can simply make a variable change z — P'/22. That s,
we can replace functions p;(z) and operators Q;(z) with p;(P~/22) and P~1/2Q;(—P'/2z).

We start with the following Lemmas K.1, K.2 and K.3 that describe the basic properties of functions pk AR t"( ) and
Af otk (), and operators Q;(z). The proofs of these lemmas is a trivial utilization of the definitions of functions

p’??tl’ " (2) and pl*" " (2) on lines 17 and 22 of Algorithm 1, and the definitions of constants L1t pgFtt-t

7

and H f ot o Tines 18, 19 and 20 of Algorithm 1. We omit these proofs due to their simplicity.

Lemma K.1. For all k < i, function pl" ’t’“( ) is LEPt gmooth.
Lemma K.2. Forall k > i, function pk it ( ) is Hf;tl"“’t’“ -strongly convex.

Lemma K.3. Forall 1 < i < n, operator Q;(z) is Mf;tl"“’t"—Lipschitz.

Next, we establish the key Lemma K.4 that describes the convergence properties of Algorithm 1. The proof is available in
Appendix K.1.1.

Lemma K.4. Foralll <k <nandz € C,, the following inequality holds:

n
) HE
kit1,...,t kit1,..tg ~
Z( ! Ztl, At 1,tk+1/2) (i ())+lelzt1, tho1tet1/2 T Z||2
i=1
n

(170)
kity,...t kity,...,
+ Z (DZ tk1+1 Dl tkl k) ’
i=k+1
where function rk Btk (2): Z — R is defined as follows:
Kty tr kity,....te (2,Qi(2)) i>k
rh = " z)+ 171
it () = et o) { : o am
constant H § > 0 is defined as follows:
k
Hy = Hivh, (172)
and Df;fl """ " > 0 is defined as follows:
L’?;tlnwtk Hl o2 + M@;t1~~>tk Hi_ .
Kit,....t i =k4+1 7T -1 i =k+1°T5-1, 5 :
Dyt = : : Iz, 100 = 2I1% (173)

2

Now, we are ready to prove Theorem 4.5. Using the initialization steps on lines 4 and 5 of Algorithm 1, the definition of the
output zoy € Z on line 7 of Algorithm 1, and the arguments that are identical to the proof of Lemma K.4, we obtain the
following simplified version of equation (170) for the case k = 0:

n . n Li Hi-: a%,,l‘i‘Mi Hi-: OéTj,1 R
D (o) = (@) < Y e — £ (174)

=1 i=1

Furthermore, we prove the following Lemma K.5 in Appendix K.1.2.
Lemma K.5. The output z,,; of Algorithm 1 satisfies the inclusion z,,; € C..

It remains to upper-bound «. First, we lower-bound o, * as follows:

o V2l et > a2 > et 2+ 2),

where (a) and (b) use the definition of «; in equation (20). This lower bound on «; * implies the following upper bound on

ar_1q.
2

IR ——
ar—1 > T + 1a
which concludes the proof. O

(175)
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K.1. Proofs of Auxiliary Lemmas
K.1.1. PROOF OF LEMMA K. .4
We prove this lemma by induction for k =n, ..., 1.

Base case (k = n). Using lines 12 and 24 of Algorithm 1, we get the following relation:

2tttz = argrgnnzp” Hestn (). (176)
€t im
Moreover, function -, pf Hoetn(2) is H-strongly convex due to Lemma K.2 and the definition of HZ in equation (172).

Hence, using the fact that Z € C, and the fact that

p?;tl,...,tn (2) _ T_;L;tl,...,tn (2)’ (177)
which is implied by equation (171), we obtain the following inequality:
- LTS PR 2 - Nit1,entn o n Hg n 2
Zri (2) > Zri (Ztl,...,tn,l,tn+1/2) + 7||Zt1,‘..,tn,1,tn+1/2 - 2[5, (178)
i=1 i=1

which is nothing else but the desired equation (170) in the case k = n.

Induction step (k — k — 1). We assume that equation (170) holds for 2 < k < n, which implies the following:

n
kita,.. kit1,..
O Z Z (DZ HAS Jrl DZ itk
i=k+1

n
kit1,..te ok
+ Z (Ti (24,....
1=
(@) 2 : kst kity,...
- (thkJrl D’Ltk
~kity,...,

+ _72 (pi

kit1,...,tk
k k
+ T”Zn,..qtkil,tﬁl/?

k
+ <Zt1,.n7tk—1;tk+1/2 o

n
@ z kiti,...t kit1,...
- (Dv ste+1 thk

tk,l,tk-s-l/z) -1y

t ok
k(ztl,...,tk,l,tkﬂ/z) p;
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+ Z ' (Zt17...,tk71,tk+1/2) D k(z))+ Z (Qi(2), 21, txvtivry2 = 2)
i=1,i#k i=k+1
kit1,....tg
k vAktl, k Hyteet k 2
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k N k
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Hk ' i k Hk§t17--<7tk —1Ak§t1,-~7tk 112
+ 5 260t 1 tet1y2 T (Hy ) O |
kit1,...,t
SRl S up—— )Y SRS
2 Pt1etio1 i +1/2 7 2H£;tl’""tk Qk
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(2) kit1,..., kit1,. Hz 2
= Z (Dz tkl—i-l - D; tkl ) B te—1,tr+1/2 — 2|
i—k-i-l

n

kt seeort ~kit1,.tk 2 ~ k ~

+ Z ( ' tl: tk—l,tk-‘rl/?) — b ' k(z)) + Z<Ql(z)’ Bt etim 1t +1/2 Z>
i=k

Hk,tl,..., o Lk,tl,...,tk L L Hk;tl,...,tk . L
+—* B) £ ”’Ztl ..... th1,te+1/2 7 Pt1,.., tk||2 ; 5 12 21, ||2
Hk‘;tl ..... tr
k o
L LR rk Q) = Qo)
IR kit1,... o — HE! .
> Z (Dltkl-;-l’ th]:’ ’k) 92 tkfl,tk+1/27z||2
1=k+1

n

kity,..t N HAPHIN TN 2\ Lk 2

+ Z ( ! Ztl,m,tk Ltet1y2) — B 2)) + Z<Qi(z)ﬂZtl,‘..,tk_l,thrl/Q —Z)
i=k

k,t Este,...,tr prkste,...t Esty,...t
_|_(Hk1 ) _Lkl ka1 k_(Mkl k)QHk ok H2
o Rt it Bt entim 1t F1/2 T Pt
k

H]]:‘;tl ..... tr . ||2 H}]j;tl ..... tr

9 Hzfl,.u,tk_l,tk+1 _2”2
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0 & kit1, ..ty kit1,...tg Hgil k 2112
2 E , (Di;tk-h — Dy, )+ 9 26, te v tnt1/2 — 2l

i=k+1
n
skt k Aty ot /o ~ k o
+ Z ( ! k Ztl,...,tk,l,tkﬂ/z) 2 (Z)) + Z(Qi(z)aZtl,...,tk,l,tkﬂ/z - %)
i=k
Hkytlwnv ko ) Hk;thm,tk N R
N [ S ¥ RS

where (a) uses the definition of functions rk b t’”( ) in equation (171) and the definition of functions pk Bt (z) on
line 22 of Algorithm 1; (b) uses the definition of Aﬁ et on Tine 21 of Algorithm 1; (c) uses the convexity and Lz;tl’”"t’“-
smoothness of function plC Tt (zf1 ...t )» Where the smoothness property is implied by Lemma K.1; (d) uses the definition

Agil’ “" on line 26 of Algorithm 1; () uses the monotonicity of operator Qy, (2); (f) uses the parallelogram rule of
the form (a,b) = £[la + b/c||* — &]lal|* — 52][b]|?; (2) uses line 27 of Algorithm 1, the definition of H in equation (172),
and the definition of Agzl’“"tk on line 26 of Algorithm 1; (h) uses the M ,]: 1otk ipszhitzness of operator Q. (z), which

is implied by Lemma K.3; (i) uses the definition of H ,l: 19 o0 Tine 20 of Algorithm 1. Furthermore, we obtain the
following:
@ ¢ kity,...,t kity,...,t 5 51|12
0= Z (Dz tret1 —D;; ity ) cte1,te1/2 T 2|l
i=k+1

k—1ity,nte—1/ _k k—15t1,..te_1/4
"‘Z( b 1(Zt1,...,tk,1,tk+1/2) — D b l(z))

n

1 k—15t1,...,tg— _
+ a Zpl ! i 1(atszl,..47tk,1,tk+1/2 + (1 - atk)sz)
koi=k
1 n n
k—1t1,...,t— ~ _k ~ k ~
- ?Zpi b l(atk2+(1_atk)ztk)+Z<Ql(z) 2ty et 1, t+1/2 - 2)
te =k i=k
Hk§t17---7tk . . Hk;th...,tk . .
- %Ilz = Rte,te ||2 %H'Ztl,...,tk,l,tk—i-l - ZH2
O & kit kit HE' 112
> Z (DZ tkljrl, Dl tkh ) + 2 Hzth-u,tk—l,thrl/z - Z”
1=k+1

k—15t1,...te_1/ k E—1it1,.te—1 4
JFZ( b 1(Zt1,...,tk,1,tk+1/2) —D; b l(z))

1 n 1 —a n
=y ) - Y T )
g ik
n n
k—1it1,...;tk—1 /4 ~ . ~
_Zpi 1 ) +Z<Qi(2)7Zfl7~~~,tk—1;tk+1/2 —2)
i=k i=k
Hk;tl,...,tk . Hk,;th...,tk . .
Sl S S ¥ SR
© - kit k;t Hg_l 1=k 1=k 2
= Z (Dz t,}-’s—f — D k) + 5 llog, Z¢ 1 — (1 — oy oy, 2, — 2|
i=k+1

k—15t1,...,tg— k k
+ Zp b 1(atklztk+1 (1- atk)atklztk)
+ Z atk ka—l—l (1 - atk)at_klsz - 2>
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definition of Ef 41 on line 25 of Algorithm 1 and the convexity of functions p;
zf +1 on line 25 of Algorithm 1; (d) uses the convexity of function p;

n

1 1—ap — -
k—1t1,...,t— - Qg k—15t1,...tp—1 /—, k—1it1,...tk—1 /4
+—> p, R L) - Tkzpi R A E N A €
=1

Qg

i=k ko i=k
Hk§t1w~wtk . . Hthla»uA,tk . .
- kaZ T Rt b ||2 %H'Ztl,...,tk_hthrl - ZH2
@ & Kit1,ot Kit1sent
2 (Di;iklirl’ =Dy k)
i=k+1
1 H’“ ! . - o .
+ o ||Ztk+1 — 2|2+ Z<Q1(Z)7 ka+1 - 2)
k i=k
1-— Qg Hk ! A —k ~
- n%—W+Z (2.7, - )
k
1 < 1 -, "
k—1;t1,...,tk—1 — — Qg k—1;t1,...,tk—1 /— k—15t1,...,tk—1/2
b Dol (e ) - e Yl e ) - 3t ()
koi=1 k=1 i=1
Hk;tl,...,tk . Hk;tl,...,tk R
e e RN R e E RPN
k—1
© 1 [ Hs kelite,..t & KeTit1,oth1/»
g [ g — 2P 4 30 (0t ) - gt )
k =1
l—-« -
—AA;;;E& R D M e AR D)
k i=1
Hk;tl,...,tk . . Hk;tlv'--vtk‘ . .
- %IIZ = Rtk ||2 kT“Ztl,...,tk,l,tk+1 - ZH2
n
Kit1,..., Eitq,.
+ Z (Dz tk1+1 =Dy ) ’
i=k—+1
where (a) uses the previous inequality and the definition of function ﬁk Tt *(2) on line 17 of Algorithm I; (b) uses the

F=lifietio1 ) (¢) uses the definition of

“"=1(2) and ||-||2; (e) uses the definition of

k it (2) in equation (171). Next, we divide both sides of the inequality by «;, and obtain the following:

k—13ty,..

1 Hkl keT1ity,. t & heTity,.. t
2 5 T A
02— [ “E—|zk - P Y (et ah ) bt ()

123 i=1
l-« HE . - -1; -1 —1 (2
_ > ty ) ”Eick _ ZHQ + Z (Tf 17t17---7tk—1(2115ck) B Tf 17t17~~-7tk—1(2))
X 2 i=1
kitq,...,t kit1,...,t
_ Lkng Lk 12 Lknzk — 2
2atk t1,..tk 204tk t1yeentk—1,tk+1
kit1,..., kitq,.
+ Z . (Di§tk,l+1 =Dy )
i=k+1 bk
k—1
@ 1 H klt,t k—1it1,.cth—1 /A
e e P Y (et g ) - bt ()
123 i=1
l-«o HE . - -1; -1 —1 (5
_ > ty ) ”Eick _ ZHQ + Z (Tf 17t17---7tk—1(2115ck) B Tf 17t17~~-7tk—1(2))
s 2 i=1
LZ;t17~--,tk _;'_M]Z:C;tlv“-vtk R N ) L’]z;th---ﬂfk _i_M:;tlw--vtk . s
- 200, 12— Ryt I 20y ||Zt1,..4,tk,1,tk+1 — 2|
k k
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§ ktl,...,tk kit1,...,tk
+ ( it +1 - Di;tk

z_k+1 2
k—1 n
®» 1 [ Hy k—Lit1, o th1 /—k BeTit1se it/
:ﬁ—2|mﬂﬁ%20 I ) - ()
ti i=1
1—ay, 2 NS [ ke Lityott ik K—Tit1,th 1/
Sl (B ey (o CARTY ©)
tr .
k—1t1,...,t—
L b1y lk—1
e (I s s = AP = 12 e, — 2IP)
k—1t1,...,;tk_1
M El ’ k R k R
e — @qhwmﬂmﬁl—dﬁ—nahﬂm—zw)
ksta,..., kst,...,t
+ Z . (Di;tk1+1 =Dy )7
i=kt1 e

where (a) uses the definition of H,’ftl’”"t"‘ on line 20 of Algorithm 1; (b) uses the definitions of Lk*tl""’t’“ and M’“tl""’t’c on

lines 18 and 19 of Algorithm 1. Using the definition of Df;f‘ "% in equation (173), one can verify that —Dk tl’ " does
not depend on ¢;. Moreover, using the definition of a4, in equation (20), one can verify that oy = 1 and 1 at’“ = for
tk tk —1

tr > 1. Hence, we can do the telescoping and obtain for arbitrary 5, € {0, ..., T} — 1} the following:

1 Hk 1 n 1t . i 1 ,

2112 Lt tk—1 = —Lsty,etp—1 /A

0> Sz, — 2 Y (e ) - )
WTi—1 i=1

Lk—l;tl,...,tk,1

e Bl (TN RE PR
k—1;t1,...,tg—
M b1yl —1
k k s112 k 112
+4—ZZ;:—f(wmmnﬂgk—4|—nahwuﬂp—zn)
n
kity,....t kity,...
D G
i=kt1 -tk

After multiplying both sides of the inequality by a7, _,, we obtain for arbitrary ¢; € {0, ..., T} — 1} the following:

”ZTk -2

n
k—1it1,.. .\ t—1 /—, k—1it1,...tk—1 /4
0> Y (r e ) - () +
=1

kal;tl,m,tkq L2

k a1 N N
+ T— (Wﬂmﬂﬂgk—dﬁ—nﬁgw%ﬂp—zw)
k—1;t1,...,tk—1
M, o . .
e B ( R LR IS &
+ Z Tk— ( 5%16, Dk t1,.. ’k)
i=k+1 tk
(@) k—15t1,....tk—1 =k k—=1it1,...tp—1/2 Hg_l —k 5112
= Z r; (zp,) — i (2)) + IZ7, — 2l
i=1
k—1:t1,... te_
Lk U1y lk . Oé% 1 X . X .
+ 2 . (”Ztl,.u,tk_l,Tk - Z||2 - ||Zt1,.“,tk_1,0 - Z||2)
k—1ity,....tg_1
M e C Q1 k R k n
B (o = AR 0= AP
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L e’
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M 1y te—1 a4 . R . R
e et el ( ANPRIEEE LE AP
k—1;t1...,te— i k—1;t1...,te— ]
no L e d A+ M e 12
+ Z 9 ||Zt1,...,tk_l,Tk,O,..() - ZH
i=k+1
n L?‘fl;tl...,tk_l 1—[; kaT . +Mk‘ Lity...,te—1 H;:k O{Tj_l ) -
- Z 9 ||Zt1,...,tk,1,0...o — 2|
i=k+1
© - k—=15t1,.te—1 =k \ _  k—1t1,.te—1/ Hé_l =k 22
9y (! &) 7! () + ik, 2
=1
k 1; k—1;
n HARTNN 7' IH] kaT—1+M HARTNN 7' IH]k o . .
+ Z 2 ||Ztl7~~atk—2atk—l+1:0~~~0 - Z”
=k
n Lk Lit1..tp—1 H;:k 0‘2ij1 + Mik_htl--wtk—l H;:k ar, 1 . .
- Z 9 ||Zt1,...,tk,1,0...o — 2|
=k
k—1
(d) Z ( —1tq,.. tk71<gljfw ) _ T{C—l;t17---7tk71(2)) _ ZA,”Q
k 1
( k Lity,tp—1 kfl;t1>~-~,tk—1)
te—1+1 it —1

n
& Litaseosti—1 ¢ k— k—1:t1,oto1 /A
:Z( R AP Lk 1(2))
=1
k
E

n
2112 k—=15t1,...,tk—1 E—=1it1,...;tk—1
9 H z teatn_1t12 — 2T F E : (Di;tk_1+1 = Div, ,
i—k

where (a) and (d) use the definition of ijfl"”’t" in equation (173); (b) uses the definitions of Lf;tl =t and Mik;“"“’t"' on
lines 18 and 19 of Algorithm 1; (c) uses line 29 of Algorithm 1; (e) uses lines 24 and 32 of Algorithm 1. The latter inequality
is nothing else but the desired equation (170) for £ — 1, which concludes the proof. O
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K.1.2. PROOF OF LEMMA K.5

We prove by induction that for all 1 < k& < n, the following inclusion holds:
zfl,.i.,tk,l,tk+1/2 €C.. (179)

Indeed, in the base case & = n, equation (179) holds due to lines 12 and 24 of Algorithm 1. Next, we assume the
inclusion (179) for a fixed k satisfying 1 < k < n. We have z% = zfl te 1,1/ € C. due to the definition on line 25 of

Algorithm 1 and the fact that cg = 1, which is implied by equation (20). Furthermore, for ¢; > 1, we have Efk 11 € C,
due to the definition on line 25 of Algorithm 1 and the inclusions Efk , zfl tettet1/2 € C.,and oy, € (0,1). Hence, we

obtain éf}k € C,. This, together with lines 24 and 32 of Algorithm 1, implies equation (179) for k — 1, if £ > 2, or zoy € C,,
if £ = 1, which concludes the proof. O

L. Proof of Corollary 4.6
Without loss of generality, we can assume that
max{\/Li+1/e,Mi+1/e, 1} > max{«/Li/e,Mi/e, 1} forall ie{l,...,n—1}. (180)

Otherwise, we can simply reshuffle the pairs (p;(z), Q;(z)). To ensure the desired inequality (22), it is sufficient to choose
{T;}7, as follows:

T = [2~max{\/lT/e,M1/e,1}],
max{\/m, Mi+1/e71} (181)
Tit1=1|2- for ie{l,...,n—1}.

max{\/ﬁ/e,Mi/e,l}

Indeed, we can lower-bound H;Zl T} as follows:

: : 12 Ljs1/e, Mjy1/e1
17 =7 17 = 2o {7 e} T L P/
Jj=1 j=2

j=1 max {\/m, M; /e, 1}
=2 max{\/IT/e, M; /e, 1} ,

which, together with equation (21), implies equation (22). Similarly, we can upper-bound H;Zl T} as follows:

[Mo=n]]7
j=1 =2

o) f (T

< 3max{\/[T/€7Ml/€71}ﬁ 3maX{\/m,Mj+1/e,1}

j=1 max{\/m, M; /e, 1}
= 3imax{\/m,Mi/e,1}

< 3”max{\/m,Mi/e,1},

Finally, it is easy to verify that Algorithm 1 performs H;Il T; computations of the gradient Vp;(z) on line 21 and

+1

20 . H§'=1 T; computations of operator );(z) on lines 21 and 26, which concludes the proof. O
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M. Proof of Theorem 4.7

Letz = (z,y) € Z=X xYand 2/ = (2/,y) € Z = X x Y. Then we can upper-bound ||Vp1(z) — Vp1(2')||p-1 as
follows:

[Vp1(2) = Vpi () o+ & 6712 - [V f(2) = V()]

(b) L
<672 Lyllz —a')| 2

|| e 2 kil — 2'|lp,
where (a) uses the definition of function p; (2) in equation (26) and the definition of matrix P in equation (24); (b) uses the
smoothness property in Assumption 2.3; (c) uses the definition of matrix P in equation (24); (d) uses the definition of &, in

equation (6). Hence, we can choose L; = k,, and similarly, we can choose L, = x,. In addition, we can upper-bound
(IVps(z) — Vps(2')||p-1 as follows:

a B2
1Vps(2) — Vps(2') || (v SIBTB(z — )| + = [BBT(y — y)|?
y

274 274
sz g wu%nyfy'n?
Y

I

BaL%, ﬁ ByLZ,

Ky - max {820y, By0z} |2 — 2'||p
(© 0y s
< Kgy - Max 1L, 1L, lz —2|p

D 4y - max LIRS lz— 2|
i 4k, 4k,

(&)
< i”my”'z - Z/HF’v

—
o
~

e

A

where (a) uses the definition of function p3(z) in equation (26) and the definition of matrix P in equation (24); (b) uses
Assumption 2.5; (c) uses the definition of matrix P in equation (24); (d) uses the definition of «, in equation (6); (e) uses
the definitions of 3, and 3, in equation (27); (f) uses the definitions of x, and x, in equation (6); (g) uses the fact that
Kz, Ky = 1, which is implied by Assumption 2.7. Hence, we can choose L3 = k. Furthermore, we can upper-bound

1Q3(2) — Q3(2")||p-1 as follows:
Oy, B'][z—2a
-B Oy, ||ly—¥ b

b) _ _
© S5 BT (y - )2+ 65 Bl — o)

© [L? L2
_\/ oy — |2 + < e — 2|2
5y

()
D Jriaybylly =32 + oyl — 2|2

©
= VRayllz = 2 le,

where (a) uses the definition of operator Q3(z) in equation (25); (b) and (e) use the definition of matrix P in equa-
tion (24); (c) uses Assumption 2.5; (d) uses the definition of x, in equation (6). Hence, we can choose M3 = | /Koy .

1Qs(2) — Qs(2)||lp-+ 2

Next, we can obtain the following:

(@)
enllzin — 2*[[B 2 pzow) — p(z") +(Q(2"), 2o — 27)

(E) f(xout) f($*) + g(yout) - g(y*) + <BTy*7xout - $*> - <Bx*7youl - y*>
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+ B — V() + 22 BTy + 9 i) P

BI * 6 *
- 2 Ba” — Vol)ll® - BTy + V)

g F(@ow) = F(2%) + 9(You) — 9(y*) + (BT y*, wou — 2%) — (B™, You — ¥*)

+ 22 B (o — 212 + 22 BT (g — )1

~ alIBa” = Vgl — 5, BTy + V()]

D (o, 2°) + Doy ) + 2B — )2 + BT (g~ )|

= BellVa ") = Valym)l* = By VF (") = V()|

2 D (rows 2°) + Dy y") + 2B — 2 + 22 BT (g )
= 2B:LyDyg(Yin, y*) — 28y LoDy (win, 2*)

2D o)+ Dy, u7) + 22 B — 212+ 22 BT (s — )|

- %Df(fﬂin,l‘*) - %Dg(yinay*)v

where (a) uses Corollary 4.6; (b) the definitions of functions p;(z) and operators @);(z) in equations (25) and (26); (c) uses
Young’s inequality; (d) uses the optimality conditions (7); (e) uses the smoothness properties in Assumptions 2.3
and 2.4; (f) uses the definitions of 3, and 3, in equation (27).

Using the definitions of functions p;(z) and operators Q;(z) in equations (25) and (26), Assumptions 2.5 and 2.6, and
Lemma 2.8, we can conclude that projs(zin) = projs(zou). Hence, we get the following:

BeB(@out — ) I + BylIBT (Wou — ¥ = Baptdy ow — 211> + Bypige 1you — v* 117, (182)
which implies the following:
En”Zin - Z*”% > Df(xouta ) +D (youtv ) lDf(xina *) - %Dg(yimy*)

iﬁwuiyuxout -z ”2 4ﬁy,u ||yout y*”Q
a)

3Df(mouta ) 3D (youtvy*) - %Df(xinax*) - %Dg(yimy*)
=+ (gﬂw Zﬁwuxy) ||'r0llt - x*HQ + (%My + %ﬁy/‘zx) (| Your — y*”Q
( )

3Df(xout7 *) + %Dg(yout;y*) - %Df(xinax*) - %Dg(yimy*)
+ E(SIonut - 37*H2 + %&v”yout — y*”Q
© %Df(mouta ") + %Dg(youny*) - %Df(xina z*) — %Dg(yimy*)

=+ T16||Zout - Z*H%v

(

where (a) uses the strong convexity properties in Assumptions 2.3 and 2.4; (b) uses the definitions of 3, and 3, in
equation (27) and the definitions of J, and d,, in equation (4); (c) uses the definition of P in equation (24). Furthermore, we
have [|zin — 2*||p = R3.5 (Zin, Uin) and [|zouw — 2*|p = R3 5 (Zout Your) due to the definition of z*. Hence, we obtain the
following inequality: ’ ’

Rgméy (l'outa yout) + 12Df(zout7 93*) + 12D (youta y*)

2 (183)
< lﬁenR(;m,;y (%in, Yin) + 8Df($im )+ 8D (ym7 )

Choosing € = 51— = = concludes the proof. O

n
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N. Proof of Corollary 4.8

We use a restarted version of Algorithm 1. That is, we apply Algorithm 1 T times and use the output at each run as the
input for the next run. Formally, by zi, = (2! ,v!) and zom = (zt,, yout) we denote the input and the output of Algorithm 1
at ¢-th run, where t € {0, .. - 1} Then we have 20 = 0 and 257! = 24, forall t € {0, .. — 1}. Hence, we can
upper-bound R3 5 (. yin ) as follows

INE
S
N

S

Rgméy (xle y?r:)

~
INE

RE. 5, (25, 5%) + 12Le 28, — 7|2 + 121, S, — y*u2)

—~
[a—y
+
—_
[N}
=N
8
+
—_
[N}
=N
<
~—
&
ow.
/—\
%
=
=
~

where (a) use the definition of ¥(z) in equation (29); (b) uses Theorem 4.7; (c) use the definition of ¥(z) in equation (29),
where (z*,y*) = projg(z2); (d) uses the smoothness properties in Assumptions 2.3 and 2.4; (e) uses the definitions of r,,
and k, in equation (6) and the definition of R(; 5, in equation (9); (f) uses the definitions zO =0,R?= R 5. 5.(0,0) and
¢ =14 12k, + 12k,. Next, we choose 1" as follows: K

_ [log(cR?/e)
- { log(3/2) W (189

which implies R} 5, (zl,yl) < e. Note that T > 0 due to the fact that e < R? and ¢ > 1. In addition, we can upper-bound
T as follows: ‘

@ log(cR?/e)
7= 0s3/2)

— 1 1 o
- (log(3/2) N log(cR2/6)>1 g(cR"/e)

®) 1 1 )
og(3/2) 1og<c>) tog(cf"/e)
1

+1

) log(cR2 )

—_
(=%
=

IN

) + log(1 4+ 12k, + 12ky)
| 1 )
7 o)

().
log —

where (a) uses the properties of [-]; (b) uses the assumption € < R?: (c) uses the definition ¢ = 1 + 12k, + 12k4; (d) uses
the fact that k,, k, > 1, which is implied by Assumption 2.7.

<

- ( log(3/2 1
(
=0

It remains to combine equation (28) in Theorem 4.7 and multiply 7" by the appropriate number of computations of the
gradients Vp;(z) and operators ();(z), which are provided by Corollary 4.6. Note that the computation of the gradients
Vp1(z) and Vpa(2) is equivalent to the computation of the gradients V f(x) and Vg(y), respectively. The computation
of the gradient Vp3(z) and operator Q3(z) requires O (1) matrix-vector multiplications with the matrices B and BT, as
well as a single computation of the gradients V f(zi,) and Vg (y;,) at the beginning of the algorithm, which concludes the
proof. O
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