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ABSTRACT

Pre-trained vision-language models (VLMs), such as CLIP, have exhibited re-
markable performance across various downstream tasks by aligning text and im-
ages in a unified embedding space. However, due to the imbalanced distribution
of pre-trained datasets, CLIP suffers from the bias problem in real-world appli-
cations. Existing debiasing methods struggle to obtain sufficient image samples
for minority groups and incur high costs for group labeling. To address the lim-
itations, we propose a Text-Only Debiasing framework called TOD, leveraging
a text-as-image training paradigm to mitigate visual biases. Specifically, this ap-
proach repurposes the text encoder to function as an image encoder, thereby elim-
inating the need for image data. Simultaneously, it utilizes a large language model
(LLM) to generate a balanced text dataset, which is then used for prompt tun-
ing. However, we observed that the model overfits to the text modality because
label names, serving as supervision signals, appear explicitly in the texts. To ad-
dress this issue, we further introduce a Multi-Target Prediction (MTP) task that
motivates the model to focus on complex contexts and distinguish between tar-
get and biased information. Extensive experiments on the Waterbirds and CelebA
datasets show that our method significantly improves group robustness, achiev-
ing state-of-the-art results among image-free methods and even competitive per-
formance compared to image-supervised methods. Furthermore, the proposed
method can be adapted to challenging scenarios with multiple or unknown bias
attributes, demonstrating its strong generalization and robustness.

1 INTRODUCTION

In recent years, pre-trained VLMs have made significant progress. Benefitting from large amounts of
image-text data, the VLMs, such as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021), learn
rich visual and textual representations. Specifically, these models construct a joint visual-language
embedding space where semantically relevant images and text are encoded as close features. This
aligned embedding space enables CLIP to excel in various downstream tasks, such as zero-shot
classification (Guo et al., 2023b), image-text retrieval (Baldrati et al., 2022) and image captioning
(Mokady et al., 2021).

While CLIP demonstrate impressive capabilities, it inherits biases or spurious correlations from
the inappropriate pre-training data. This behavior leads to poor group robustness in downstream
tasks—the model performs significantly worse on some groups where the correlations do not hold.
The lack of group robustness not only weakens the generalization ability of the model but also has
the potential to exacerbate existing social biases such as racism or gender discrimination. Therefore,
addressing the bias and robustness challenges in CLIP models has become a critical issue.

Many works aim to improve group robustness and have been applied to vision-language models.
Previous methods typically retrain or fine-tune the model on downstream visual tasks with group
annotations (Sagawa et al., 2019; Byrd & Lipton, 2019; Idrissi et al., 2022; Kirichenko et al., 2023).
Other works have explored debiasing of CLIP without group labels, such as deriving them from
zero-shot predictions(Liu et al., 2021; Nam et al., 2020), to lower annotation costs. However, ac-
quiring sufficient images for minority group (such as waterbirds on land) can be expensive or even
infeasible, while the training process on image may be computationally intensive. Therefore, recent
works (Chuang et al., 2023) have proposed training-free debiasing methods, but achieved inferior
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performance compared to those using image supervision. To address these limitations, we propose
a Text-Only Debiasing framework called TOD, which leverages CLIP’s ability to align across both
image and text modalities, exploiting textual data to mitigate visual biases.

To the best of our knowledge, this is the first work to leverage a text-as-image (TaI) training paradigm
(Guo et al., 2023a) to mitigate visual biases. TOD comprises two stages: balanced text data genera-
tion and text-only training. Given a set of categories and biased attributes, we first employ GPT-4o
to generate textual descriptions that contain the target and attribute names, yielding a distribution-
balanced training dataset. In this way, group labels can be directly derived from target and attribute
names. Then, the text descriptions serve as alternatives to images in prompt tuning, and the learned
prompt can classify images during inference. Compared to images, our approach is more cost-
effective and scalable by utilizing the capabilities of LLMs to automatically generate balanced text
data and group labels.

While this method reduces the reliance on costly image data, we observe that text-only training can
lead to overfitting to the text modality, exhibiting poor generalization when transferred to classify
images as shown in Figure 2. This is primarily because the classification in text-only training can be
easily made by matching the class names in prompts with similar words in text descriptions, which
is less influenced by bias information compared to image-text matching. To address this issue, in-
spired by human visual perception which processes multiple objects in parallel (Brandman & Peelen,
2017; de Wit et al., 2011), we intoduce a Multi-Target Prediction (MTP) task. This task involves
simultaneously predicting target attributes and bias attributes within a single prompt. By compelling
the model to actively focus on different attribute words or image regions, MTP increases task dif-
ficulty, thereby mitigating overfitting. Unlike previous works that remove bias information from
representations (Chuang et al., 2023; Berg et al., 2022), our method guides the model to distinguish
between the concepts of target attributes and biased attributes, achieving a more robust debiasing
effect. Experiments on the Waterbids and CelebA datasets show that our method significantly out-
performs existent image-free methods and even surpasses image-supervised methods. Moreover, the
approach can be naturally adapted to more challenging scenarios, delivering robust performance in
the presence of multiple bias attributes or when the bias attributes are unknown.

Our main contributions are summarized as follows:

1. We propose a novel Text-Only Debiasing framework (TOD), which mitigates bias in CLIP
by utilizing LLMs to generate balanced text datasets, circumventing the need for visual
data.

2. We introduce an effective solution for modal overfitting in text-only training: Multi-Target
Prediction (MTP) with prompt tuning. This significantly enhances the model’s debiasing
performance when applied to image data.

3. Our method significantly improve robustness group robustness on the Waterbirds and
CelebA datasets, achieving performance comparable to state-of-the-art image-supervised
methods. Besides, TOD can be seamlessly extended to scenarios with multiple bias at-
tributes and unknown bias attributes, demonstrating its strong generalization and robust-
ness.

2 RELATED WORK

Group Robustness of Vison Models. Many works use supervision of group labels in training to
improve the group robustness of vision models. This includes strategies such as minimizing the
loss of the worst group for robustness optimization (Sagawa et al., 2019), importance reweighting
(Byrd & Lipton, 2019; Shimodaira, 2000) or subsampling to balance the samples of major and minor
groups (Idrissi et al., 2022; Kirichenko et al., 2023). All of these methods require group labels for
the entire training set, which can be extremely expensive. Recent research has circumvented the
need of group annotations during training, instead relies only on a small validation set with group
labels for hyperparameter selection. A common approach is to first train a model to infer the group
labels of the samples and then train a second robust model. For example, BPA (Seo et al., 2022)
automatically infers group labels and performs robust training by clustering sample points. JTT (Liu
et al., 2021) and LfF (Nam et al., 2020) reweight difficult or misclassified samples. CNC (Zhang
et al., 2022) learns similar representations for samples from different groups of the same class by
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contrastive loss. However, all of these methods rely on the downstream training set and often train
the visual model twice, which is costly when applied to large foundation models.

Debiasing Vison-Language Models. Recently, the bias issue in vision-language models (e.g.,
CLIP) has garnered increasing attention (Hall et al., 2023; Agarwal et al., 2021; Slyman et al.,
2023). Considering the huge number of parameters in VLMs, many studies have focused on elim-
inating spurious correlations to the bias attribute without updating the entire network weights. For
example, Berg et al. (2022) mitigates bias in CLIP via adversarial prompt tuning, Zhang & Ré (2022)
uses contrastive learning to train an adapter (a 2-layer MLP) in the representation space. Meanwhile,
Seth et al. (2023) introduces an additional residual module to separate protected attribute informa-
tion from the visual representation. Dehdashtian et al. (2024) employs a kernel approach to debias
CLIP, removing bias without the need for attribute annotations. However, these methods require a
downstream image training set. Our approach requires only the target category and bias information
without any training images. The closest related works aim to eliminate biases in vision-language
models in a zero-shot manner. Chuang et al. (2023) defines the directions of spurious correlation
with biased prompts and projects them out from the text embedding. However, these methods have
a large gap in performance with the trained methods, while our method has a competitive or even
surpassing effect compared to the methods trained on real data.

Text as Image Training. The CLIP encoder maps images and text into a shared embedding space
where semantically similar images and text are aligned with each other. This allows the use of
features from another modality in place of the original modality during the training phase. Since
text data is more accessible and contains richer vision concepts which facilitate model to learn
generalized representations, many works use text as a substitute for images in training. For example,
Nukrai et al. (2022); Li et al. (2023); Fei et al. (2023) train a decoder to reconstruct the masked text
and generate image captions by replacing the text input with images in the inference phase. Guo
et al. (2023a); Zhu et al. (2023) exploited the inherent property of textual descriptions which contain
semantic dependencies and spatial relationships between objects, to perform text-only training for
multi-labeled image recognition. Additionally, several works have employed text-as-image training
for tasks such as composed image retrieval (Gu et al., 2024), visual question answering (VQA) (Gu
et al., 2023), and visual entailment (Gu et al., 2023). Our work further explores the application
scenarios of text-as-image training by applying it to debiasing tasks for the first time.

3 PRELIMINARIES

Notation. In this work, we consider group robustness as the measure of bias, following the main-
stream practice (Sagawa et al., 2019; Creager et al., 2021; Liu et al., 2021; Kirichenko et al., 2023).
We denote the input image as x ∈ X , the target category as y ∈ Y , and the bias attribute category
as b ∈ B. Take the Waterbirds dataset (Sagawa et al., 2019) as an example, where the target task
is to recognize birds with category y ∈ {landbird, waterbird}, and the bias attribute is the back-
ground b ∈ {land,water}. The combination of the target category and the bias attribute category
divides the dataset into groups, denoted as g ∈ G, with the group labeling denoted as G = Y × B.
When the attribute s affects the prediction of y but lacks a causal relationship, it is considered as
bias correlation. For example, in the Waterbirds dataset, 95% of the samples with y = waterbird
have the bias attribute b = water. As a result, models trained on this dataset may rely heavily on
the background (water) to predict the category (waterbirds), leading to incorrect predictions on the
minority group g = (water, landbird). To measure the debiasing effect, we use the worst group
accuracy (WG) and the gap between the average accuracy and the worst group accuracy (Gap) as
our evaluation metrics.

Revisiting CLIP. The core idea of CLIP (Radford et al., 2021) is to train a model capable of
embedding text and images into a single embedding space, thus realizing cross-modal information
understanding and processing. CLIP consists of an image encoder ΦI and a text encoder ΦT , which
convert high-dimensional image X and text sequences T , respectively, into embedding vectors in
a shared low-dimensional space. Specifically, this objective aims to maximize the cosine similarity
< zI , zT >= zI ·zT

∥zI∥·∥zT ∥ between the matched image-text pairs, while minimizing the similarity
between the non-matched pairs. Here zI and zT represent the output embedding vectors of image
encoder ΦI and text encoder ΦT , respectively. By training on a large dataset containing 400 million
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Figure 1: Overview of Text-Only Debiasing (TOD) framework. (a) Construction of a balanced
text dataset using GPT-4o. First, we generate a set of text descriptions for the target attributes and
false attributes separately. Then, we randomly sample from these sets and concatenate them to create
text descriptions with group labels. Both training and inference process is based on multi-target
prediction, which simultaneously predicts target attributes and bias attributes. (b) During training,
we use using two identical, frozen text encoders from pre-trained CLIP that separately encode the
text descriptions and class prompts. The model is optimized through prompt tuning. (c) During
inferencing, we replace the input from text descriptions to images, and take the target attribute from
the group with highest logits as the final prediction.

image-text pairs, CLIP successfully aligns text embeddings and image embeddings semantically in
the shared embedding space. For image-text pairs with similar semantics, the vison embeddings
generated by the image encoder will be close to the text embeddings generated by the text encoder.
Therefore, texts inputs can serve as substitutes of images for training in downstream tasks.

4 METHOD

We propose a novel debiasing method for CLIP: multi-target prediction based on text as image
training, with the framework shown in Figure 1. Initially, we generate a balanced text dataset for the
downstream classification task using LLM in Section 4.1. During the training phase, we fine-tuning
the model on the text dataset in Section 4.2 (Training Phase). Particularly, we employ a multi-target
prediction task that simultaneously predicts target and bias categories to mitigate overfitting and
imitate human visual perception. During the inference phase, we perform multi-target prediction on
the image input and select the combination of the target and bias categories with the highest logits,
where the target category serves as the final classification result in Section 4.2 (Inference Phase).

4.1 TEXT DATASET GENERATION

Attribute Description Generation. The first step of our method is to determine the attributes con-
tained within the dataset. Taking the Waterbird dataset as an example, we defined two key attributes:
the target attribute (bird) and the bias attribute (background). The target attribute is divided into two
categories: waterbird and landbird, while the bias attribute is divided into landscape and waterscape.
We applied the GPT-4o to generate descriptions of these attributes. The specific procedure was
as follows: we instructed the model to generate 1,000 short image descriptions of waterbirds, and
the instruction used was, “please help me to generate 100 very short images captions of waterbird.
Be careful to describe only the appearance of the bird, not the background or environment.” This
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process was repeated 10 times. We generated descriptions for each attribute class, including 1,000
descriptions each for waterbird, landbird, landscape, and waterscape.

Attribute Combination with Automatic Annotation. After generating independent attribute de-
scriptions, we compose the attributes to construct a complete image description. Unlike the cou-
pling between features in images, feature composition can be achieved in text by just concatenation.
Specifically, we randomly select a bird description from the waterbird or landbird description sets
and a background description from the landscape or waterscape description sets. These two parts are
then concatenated to form a complete image description that included both the foreground and the
background. To ensure a balanced training dataset, we generated an equal number of descriptions
for each attribute composition.

This design automates the data annotation process since the source of each attribute description is
predefined with the corresponding label. When the bird description and background description
come from the waterbird description set and landscape description set respectively, we can directly
assign the target label T=1 (for waterbird) and the bias label B=0 (for landscape). Meanwhile, the
group label G is defined as the composition of attributes, e.g., G=1×0. The high annotation cost of
traditional image datasets is effectively avoided.

Following the steps, we generated balanced text datasets containing 10,000 descriptions each for
the Waterbirds and CelebA datasets. Dataset construction details for CelebA are provided in the
Appendix A.2.

4.2 MULTI-TARGET PREDICTION

Training Phase. We use prompt tuning on multi-target prediction to predict both target and bias
attributes. A prompt is defined as

tTi,j = [v1, v2, v3, ..., targeti ⊕ biasj ], (1)

where i ∈ {1, 2, 3, ..., CT } is the target class index, j ∈ {1, 2, ..., Cb} is the bias class index,
targeti and biasj are word embeddings of the ith target class name and the jth bias class name,
and ⊕ denotes a concatenator, usually a comma or other designed word. For k ∈ {1, 2, ...,M} ,
vk is a learnable word embedding whose dimension is the same as the dimension of normal word
embeddings in the vocabulary. M is a hyperparameter specifying the number of learnable word
embeddings. By forwarding a prompt to the text encoder , we can obtain a classification weight
vector representing the target class i and the bias class j. Different from image-based prompt tuning,
we input text descriptions x into a same text encoder ΦT to get text embeddings for classification.

Following the previous prompt tuning methods (Zhou et al., 2022), learnable prompts are optimized
by maximizing the probability of classifying each text description into the ground-truth composition
of the target and bias classes. The prediction probability is computed as

p(y = i, b = j|x) =
exp(< ΦT (t

T
i,j),ΦT (x)) > τ)∑CT

i=1

∑CB

j=1 exp(< ΦT (tTi,j),ΦT (x) > /τ)
. (2)

Since the value of cosine similarities between text descriptions and class prompts are not evenly
distributed on either side of 0, directly constraining the softmax probability makes the optimization
more difficult in this case. Therefore, we use ranking loss (Gong et al., 2013) instead of cross-
entropy loss for training to minimize the multi-target classification loss. Given Pi,j = P (y = i, b =
j|x) , the loss function is formulated as follows:

L =
∑

(i,j)̸=(y∗,b∗)

max(0, γ − Py∗,b∗ + Pi,j), (3)

where y∗ and b∗ are the target and bias class labels, and γ denotes the margin that controls how much
the similarity score with the positive class is higher than with the negative class. During training,
we freeze the two text encoders to minimize the loss by optimizing the learnable word embeddings
vk, k ∈ {1, 2, ...,M}.
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Inference phase. Due to text and images sharing a unified embedding space, the optimized prompt
is directly applicable to the image modality. Input a test image x into the image encoder ΦI to
obtain an image embedding, and calculate the cosine similarity with the prompt embeddings. The
prediction probability is calculated as follows

p(y = i, b = j|x) =
exp(< ΦT (t

T
i,j),ΦI(x)) > τ)∑CT

i=1

∑CB

j=1 exp(< ΦT (tTi,j),ΦI(x) > /τ)
. (4)

sSo the target class prediction can be directly computed as

ŷ = argmax
i

max
j

p(y = i, b = j|x), (5)

i.e., the target class in the target- bias attribute composition with the highest probability.

5 EXPERIMENT

5.1 SETUP

Evaluated Methods. As baselines for comparison, we consider the methods based on image train-
ing sets, including ERM Linear (Kumar et al., 2022; Radford et al., 2021), ERM Adapter (Gao
et al., 2024), WiSE-FT (Wortsman et al., 2022), DFR (Kirichenko et al., 2023), Contrastive Adapter
(Zhang & Ré, 2022), FairerCLIP (Dehdashtian et al., 2024), and DPS+RNS (You et al., 2024). We
also compare with image-free methods including Orth-Proj and Orth-Cali (Chuang et al., 2023).

Dataset. We conduct experiments on commonly used datasets for bias and fairness assessment.

• Waterbirds (Sagawa et al., 2019) combines the Caltech-UCSD Birds-200-2011 (CUB)
dataset (Wah et al., 2011) and the Places dataset (Zhou et al., 2017), placing images of
birds on different backgrounds to simulate different biases. The task is to classify fore-
ground birds (waterbird or landbird) and the background (land or water landscape) is a bias
attribute. Statistically, the minimum group in the training set contains only 53 images.

• CelebA (Liu et al., 2015) contains over 200,000 portraits of celebrities, each annotated
with 40 binary attribute labels such as hair color, gender and age. The task on this dataset
is to classify hair color (blond or non-blond) and gender (male or female) is a bias at-
tribute. Statistically, the women examples is more than 94% in the blond hair of training
set. Additionally, we consider more complex scenarios including multiple bias attributes
and unknown bias attributes on the CelebA.

Implementation Details. We evaluate the performance of our method and baselines using two
CLIP backbones: ResNet-50 and ViT-L/14. Typically, methods without group label supervision
(Zhang & Ré, 2022; You et al., 2024) still utilize group labels in the validation set. Following this
setup, we use the worst group accuracy of the image validation set to select the stop epoch and
hyperparameters. In scenarios where the bias attribute is unknown, we select the stop epoch and
model hyperparameters in terms of the average accuracy.More detailed settings are shown in the
Appendix A.1 .

Evaluation Protocol. For performance evaluation, we use three metrics: 1) Average accuracy
(Avg.), 2) Worst-group accuracy (WG), i.e., the lowest accuracy of all subgroups, and 3) Gap, which
is the difference between average and worst-group accuracy.

5.2 RESULTS IN SIMPLE DEBIASING SCENARIOS

We present our main results on standard benchmark, including CelebA and Waterbird datasets. Fur-
thermore, we investigate the generalizability of our method by evaluating it on more bias attributes.

Standard Benchmarks. Table 1 presents a comparison of our algorithm with existing methods
on the Waterbirds and CelebA datasets. The results indicate that TOD consistently achieves the best
worst-group accuracy and the smallest robustness gaps compared with the state-of-the-art image-free
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Backbone CLIP ViT-L/14 CLIP ResNet-50

Waterbird CelebA Waterbird CelebA
Method / Acc.(%) WG (↑) Avg (↑) Gap (↓) WG (↑) Avg (↑) Gap (↓) WG (↑) Avg (↑) Gap (↓) WG (↑) Avg (↑) Gap (↓)

methods without image data
ERM Linear 65.9 97.6 31.7 28.3 94.7 66.4 7.9 93.5 85.6 11.9 94.7 82.8
ERM Adapter 78.4 97.8 19.4 36.7 94.2 57.5 60.8 96.0 35.2 36.1 94.2 58.1
WiSE-FT 65.9 97.6 31.7 80.0 87.4 7.4 49.8 91.0 41.2 85.6 88.6 3.0
DFR (Sub) 51.9 95.7 43.8 76.3 92.1 15.8 63.9 91.8 27.9 76.9 92.5 15.6
DFR (Up) 65.9 96.1 30.2 83.7 91.2 7.5 51.3 92.4 41.1 89.6 91.8 2.2
Con-Adapter 86.9 96.2 9.3 84.6 90.4 5.8 83.7 89.4 5.7 90.0* 90.7 0.7*
FairerCLIP 86.0 92.2 6.1 85.2 87.8 2.5 75.4 84.3 8.9 81.5 85.0 3.5
DPS+RNS 88.2* 96.8 8.6 84.8 87.8 3.0 76.9 77.6 0.7* 73.7 81.1 7.4
methods without image data
Zero-shot 45.3 84.4 39.1 72.8 87.6 14.9 39.6 77.3 37.7 75.9 82.3 6.4
Orth-Proj 61.4 86.4 25.0 71.1 87.0 15.9 48.1 83.6 35.4 61.4 86.4 25.0
Orth-Cali 68.8 84.5 15.7 76.1 86.2 10.1 74.0 78.7 4.7 82.2 84.4 2.2
TOD(Ours) 87.8 88.8 1.0* 85.3* 86.5 1.2* 84.0* 85.3 1.3 86.4 88.3 1.8

Table 1: Results on improving group robustness of CLIP models. We use birds and background as
the classification target and bias attribute for the Waterbirds dataset, and hair color and gender as the
target category and bias attribute for the CelebA dataset. For each CLIP’s backbone, the first block
of the table contains methods that require image data for training and the numbers are taken from
Zhang & Ré (2022), and the second block of the table contains methods without image data and the
numbers are taken from Chuang et al. (2023). The best worst-group accuracy (WG) and robustness
gaps (Gap) in one block bolded, and ∗ denotes the method with the best performance in 2 blocks;
we show means over 3 seeds.

methods Orth-Proj and Orth-Cali. Remarkably, TOD achieves competitive worst-group accuracy
and robustness gaps compared to the leading supervised methods (e.g. Con-Adapter and DPS+RNS)
and significantly outperforms other supervised methods (e.g. ERM Adapter, DFR(Sub), DFR(Up)
and FairerCLIP), without any image training data. In addition, we observe that most methods fail
to outperform previous approaches consistently on all settings and metrics, while TOD exhibits
balanced and robust performance across differet datasets, model architectures, and metrics, demon-
strating its stability and generalizability.

On Different Bias Attributes. We conducted additional debiasing experiments on the CelebA
dataset to assess the general applicability of our approach across different biases. Focusing on hair
color as the target attribute, we examined several bias attributes, including chubby, wearing hat, and
age, with results shown in Table 2. The initial zero-shot results indicate that the CLIP exhibits sig-
nificant spurious correlations on these attributes. For comparison, we selected representative image-
supervised approaches (Con-Adapter and FairerCLIP) and image-unsupervised approach (Orth-Proj
and Orth-Cali). According to Table 2, TOD consistently improve the worst-group accuracy over
zero-shot classification by 9.8 to 22.4 pp across different bias attributes, and achieved the smallest
gap in both image-supervised and image-free methods, showing the potential to address debiasing
issues for complex and diverse bias categories.

5.3 RESULTS IN MORE CHALLENGING SCENARIOS

Existing methods usually focus on single-bias scenarios. In addition, most methods require access
to bias types for training or for model selection on the validation set. Here, we consider the more
challenging tasks of (1) De-biasing multiple bias attributes simultaneously. (2) Bias attributes are
unknown throughout the training and validation process.

Debiasing Multiple Bias Attributes. We use combinations of multiple bias attributes on CelebA
with the goal of obtaining a model robust to each bias attribute. By attaching additional prediction
targets in the prompt, our method can naturally extend to multi-bias situation. For example, the
prompt could be initialized as “A photo of a celebrity with blond hair, male, young” for the gender
and age bias. As shown in Table 3, our method achieves the best worst group accuracy on all settings
with improvements of 8.0 pp to 11.3 pp in gender bias, 17.5 pp to 20.0 pp in age bias, and 5.0 pp to
7.1 pp in wavy hair bias.

Debiasing Unknown Bias Attributes. Existing methods typically require prior information on
which attributes the model is biased with. Methods such as Constractive Adapter (Zhang & Ré,
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Bias Attribute Method WG (↑) Avg (↑) Gap (↓)

Chubby

zero-shot 61.9 82.4 20.5
Contrastive Adapter 81.0 90.0 9.0

FairerCLIP 55.8 84.8 28.9
Orth-Proj 61.9 83.3 21.4
Orth-Cali 66.7 80.5 13.9

TOD 81.0 83.8 2.9

Wearing Hat

zero-shot 61.9 82.4 20.5
Contrastive Adapter 84.6 88.8 4.2

FairerCLIP 54.4 87.8 33.4
Orth-Proj 73.6 80.5 7.0
Orth-Cali 78.1 83.8 5.7

TOD 84.3 86.4 2.1

Age

zero-shot 77.9 82.4 4.5
Contrastive Adapter 87.7 90.4 2.6

FairerCLIP 82.2 85.7 3.5
Orth-Proj 74.8 83.3 8.5
Orth-Cali 76.1 83.6 7.5

TOD 87.7 88.3 0.6

Table 2: Debiasing other bias attributes. Evaluate the debiasing effect on three bias attributes
(Chubby, Wearing Hat and Age) on the CelebA dataset. We run experiments on CLIP ResNet-
50. 1st / 2nd best results are in bolded / underline.

Worst group accuracy (↑)
Bias Attributes Method Gender bias Age bias Wavy Hair bias Average

Gender zero-shot 75.9 77.9 —— 76.9
Age Orth-Proj 73.6 72.6 —— 73.1

Orth-Cali 69.1 69.6 —— 69.3
TOD 87.2 87.9 —— 87.6

Gender zero-shot 75.9 —— 78.7 77.3
Wavy hair Orth-Proj 82.2 —— 83.4 82.8

Orth-Cali 82.5 —— 83.2 82.9
TOD 83.9 —— 83.7 83.8

Gender zero-shot 75.9 77.9 78.7 77.5
Age Orth-Proj 79.5 79.5 77.0 78.7
Wavy hair Orth-Cali 75.5 84.0 82.7 80.7

TOD 84.4 85.4 85.8 85.2

Table 3: Debiasing multiple bias attributes. We report the worst-group accuracy (%) of each bias
attributes under multiple bias debiasing tasks and the average across all bias attributes. The best
result is showed in bolded. TOD achieved the best performance under different bias settings.

2022) do not require group labels in training but still use validation sets with group labels for
model selection, while methods without image supervision such as Orth-Cali require knowledge

Method WG Avg Gap

zero-shot CLIP 75.9 82.3 6.4
FairerCLIP 80.4 84.7 4.3

Auxiliary Attribute

TOD

Heavy Makeup 80.7 84.7 4.0
Chubby 83.9 86.7 2.7
Age 84.4 88.7 4.2
Big nose 85.0 88.5 3.5
Gender 86.7 88.4 1.7
Average 84.1 87.4 3.2

Table 4: Debiasing when the bias is unknown on
CLIP ResNet-50.

of bias attributes. Here, we consider a stricter
constraint: bias information is not available in
the training and validation set. Specifically,
aside from the target attribute (blonde/non-
blonde), we randomly select another attribute
as the auxiliary prediction target and generate
a dataset balanced for both targets during train-
ing. Without group information, we select the
stop epoch and hyperparameters based on the
average accuracy on the validation set. We
compare the method with FairCLIP designed
for bias-unknown scenarios. According to the
results in Table 4, our method demonstrates
significant improvement compared to zero-shot
CLIP, with an improvement of 8.2 and 5.1 on the WG and Avg, and a decrease in Gap of 3.2. It
outperformed FairCLIP on all the metrics when using any of the auxiliary attribute.
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5.4 ANALYSIS

Ablation of Method Components. We perform ablation study to investigate the effectiveness
of the individual components of our method, with the results shown in Table 5. Both working
with multi-target prediction (MTP) alone and text-only training are effective in improving group
robustness. Combining the two yields further significant improvements.

In addition, Figure 2 illustrates the loss curves for the text training set and image test set in single-
target and multi-target training. Because label names appear explicitly in the texts, the prompt
classifier easily learns the obvious supervision signal, leading to overfitting to the text modality. As
shown in Figure 2, with single-target prediction (STP) in text-only training, both the Waterbirds and
CelebA datasets display a scenario where the test loss increases while the training loss decreases.
This indicates that the classifier is overfitting to the text modality and fails to generalize well to
the image modality. When using multi-target prediction, which is a more difficult training task, the
training loss and testing loss show more consistent trends, effectively mitigating the overfitting of
text-only training.

Backbone CLIP ViT-L/14 CLIP ResNet-50

Dataset Waterbird CelebA Waterbird CelebA
Multi-Target Prediction Text-Only Traing WG (↑) Avg (↑) Gap (↓) WG (↑) Avg (↑) Gap (↓) WG (↑) Avg (↑) Gap (↓) WG (↑) Avg (↑) Gap (↓)

45.3 84.4 39.1 72.8 87.6 14.9 39.6 77.3 37.7 75.9 82.3 6.4√
47.2 87.2 40.0 78.4 81.4 3.0 44.4 84.3 39.9 82.6 86.3 3.7√
71.5 81.9 10.4 80.0 84.8 4.8 71.5 81.9 10.4 85.0 87.3 2.3√ √
87.8 88.8 1.0 85.3 86.5 1.2 84.0 85.3 1.3 86.4 88.3 1.8

Table 5: Abaltion results on ours text-only training and multi-target prediction scheme.
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Figure 2: The loss curves on Waterbirds and CelebA dataset. The orange and blue lines represent
single-target and multi-target training, respectively. Triangle marks denote training loss, and circle
marks denote testing loss. We present the normalized loss curves to eliminate the dimensional
impact of losses under different prediction targets.
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Figure 3: Image data sensitivity analyse.

Attention Visualization. To further analyze how
TOD mitigates model bias, we visualize the atten-
tion distribution on images for zero-shot CLIP and
TOD. We use Grad-CAM to generate the attention
map of the target attribute and bias attribute based
on the cosine similarity between corresponding lo-
cal text embeddings and global image embeddings.
As shown in Figure 4, the zero-shot CLIP leads to
a global attention focus, whereas in multi-task pre-
diction, the target attribute token focuses on the bird
area while the bias attribute token concentrates on
the background area. This demonstrates that the
model trained on MTP can distinguish between tar-
get information and bias information, allowing the
two objects to respectively focus on the correspond-
ing image regions and thus avoiding reliance on bias attributes for target class prediction.
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Figure 4: Grad-CAM (Selvaraju et al., 2017) to visualize the effect of zero-shot (ZS) CLIP and
TOD. We get the embedding feature of label or bias attribute names in the text, and the highlighted
areas indicate the attention of the token embedding to the image.

Comparison of Text-based and Image-based Training. To show to what extent our method can
replace image samples, we perform multi-objective prediction training on an image dataset. We
draw equal amount of image samples for each group from the Waterbirds training set to construct a
balanced training set for multi-target training. Figure 3 summarizes the worst group accuracies for
different amounts of samples in the training set. The one-shot training gives a small improvement in
group robustness, while the worst group accuracy is still slightly lower than text-only training by 1.3
pp when using the full image training set (53 samples per group). This exhibits the sensitivity of the
debiasing effect to the size of the image training set. Consequently, in scenarios where acquiring an
adequate amount of image data is challenging, text-only training emerges as a viable and effective
alternative.

6 CONCLUSION

In this paper, we propose a text-only debiasing method for CLIP. We perform prompt tuning on a
balanced text dataset generated by a large language model. Further, we observe that text-only train-
ing may lead to overfitting. To address this issue, we propose multi-target prediction that predicts
both target and bias attributes. Experiments show that our method achieves comparable performance
to image-supervised methods and can seamlessly extend to multi-bias and bias-unknown scenarios.
Future work may apply text-only training to address bias issues in other vision tasks, such as image-
text retrieval.
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A APPENDIX

A.1 EXPERIMENTAL SETTINGS

For all methods evaluated in our experiments, including both baselines and our approach, We initial-
ize the prompt as “This is a picture of a” for Waterbirds and “A photo of a people with” for CelebA.
We employ an SGD optimizer with weight decay set to 5e-4 and a momentum of 0.9. The models
are trained for 10 epochs for each dataset with the batch size of 256. We use one epoch to warmup.
The learning rate and warmup rate for each dataset and model architect architecture are shown in
Table 6.

Backbone CLIP ViT-L/14 CLIP ResNet-50

Parameter Waterbird CelebA Waterbird CelebA
batch size 256 256 256 256
total epoch 10 10 10 10
optimizer SGD SGD SGD SGD

lr 1.5e-4 1e-5 1.03e-4 5e-6
warmup lr 1.5e-4 1e-5 1.03e-4 5e-6

warmup epoch 1 1 1 1
momentum 0.9 0.9 0.9 0.9

weight decay 5e-4 5e-4 5e-4 5e-4
logit scale 4 4 4 8

initialization ”This is a picture of a” ”A photo of a people with” This is a picture of a” ”A photo of a people with”

Table 6: Experimental Settings
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A.2 TEXT DATASET CONSTRUCTION FOR CELEBA

Attribute Description Generation. Firstly, we utilize GPT-4o to determine contained within the
dataset. The input instruction is ”What attributes can be used to describe a human face?”. Then,
we We applied the GPT-4o to generate descriptions for each attributes. The instruction is “Please
generate a collection of short descriptions of various attribute name for me.”. The resulting attribute
set and the amount of descriptions for each attribute is: {hair color:2, gender:2, age:4, expression:
30, beard:9, eyebrows:10, hairstyle:34, mouth:9, eyes:53, nose:13 , skin:17, face shape:13, body
shape:9, decoration:6}.“

Attribute Combination with Automatic Annotation. We compose the attributes to construct
a complete image description. First, we randomly select an attribute description from the target
attribute (hair color) set and the bias attribute (gender or other) set, respectively, and descriptions
of 3 attributes from the other attribute set. Then, we concatenate these attribute descriptions in a
random order to generate a complete textual description of a human face, and automatically obtain
attribute labels. To ensure a balanced training dataset, we generated 2500 descriptions for each
target-bias attribute group.

14


	Introduction
	Related work
	Preliminaries
	Method
	Text Dataset Generation
	Multi-Target Prediction

	EXPERIMENT
	Setup
	Results in Simple Debiasing Scenarios
	Results in More Challenging Scenarios
	Analysis

	CONCLUSION
	Appendix
	Experimental Settings
	Text Dataset Construction for CelebA


