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ABSTRACT

In Semi-Private (SP) learning, the learner has access to both public and private data,
and the differential privacy requirement is imposed solely on the private data. We
propose a computationally efficient algorithm that, under mild assumptions on the
data, provably achieves significantly lower sample complexity and can be efficiently
run on realistic datasets. To achieve this, we leverage the features extracted by pre-
trained networks. To validate its empirical effectiveness, we propose a particularly
challenging set of experiments under tight privacy constraints (ε = 0.1) and with a
focus on low-data regimes. In all the settings, our algorithm exhibits significantly
improved performance over the available baseline.

1 INTRODUCTION

Recent works [31, 38, 11] have shown that attackers can maliciously query ML models in order to
reveal private information contained in them. (ε, δ)-Differential Privacy (DP) [16] has become the
de-facto solution to this problem. Satisfying this privacy guarantee with small values of ε and δ can
make it challenging for attackers to determine if a sample is in the training set. However, satisfying
such guarantees can harm the model’s utility, unless there is a substantial amount of available private
training data [21, 10, 8, 9, 17]. To partially address this problem, Alon et al. [4] proposed the
Semi-Private (SP) setting where additional unlabelled data can be used to reduce the private sample
complexity. While this is of significant theoretical and practical relevance, it remains unclear how to
scale the algorithm to real-world applications.

The seminal works of Chaudhuri et al. [12], Bassily et al. [6] have shown that the sample complexity
of DP empirical risk minimisation increases with the dimensionality of the problem. Our work follows
a line of research [29, 20] that leverages the large margin of the data to reduce this dependence for
supervised classification problems. Under an additional assumption that the data approximately lies
on a low rank subspace, we propose an SP training algorithm to learn linear halfspaces with a reduced
private sample complexity. Our algorithm estimates the principal components of the data using public
unlabelled data, projects the private dataset on the top-k principal components, and learns a private
linear classifier on the projected data.

To demonstrate the proposed technique’s effectiveness, we apply it to image classification tasks.
Similar to recent works [32, 14, 26, 24], we use features extracted by models pre-trained on a large-
scale public dataset and then apply our algorithm on the extracted features. In Figure 1 we display
the empirical effectiveness of our SP technique not only on standard classification benchmarks used
in the DP literature, but also on a collection of datasets that we argue better represents the actual
challenges of (semi-)private training (in agreement with some of the points raised by the concurrent
work of Tramèr et al. [33]). In our evaluations we particularly focus on private data distributions
that increasingly differ from the pre-training ones and on low-data regimes. We observe that the
benefits of our SP algorithm increase as the privacy guarantees become tighter (i.e., lower ε), while
reducing the input’s dimensionality without imposing privacy guarantees (i.e., ε =∞) is harmful.
Our findings highlight the benefits of our proposed SP algorithm for real-world applications.

2 AN EFFICIENT SEMI-PRIVATE LEARNER

In this section, we present our main theoretical result for semi-privately learning linear halfspaces.
Before that, we introduce some necessary definitions.
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Figure 1: Typical DP fine-tuning benchmarks consider datasets pre-trained on ImageNet-1K (I1K)
and fine-tuned on CIFAR-10 and CIFAR-100. We suggest benchmarking also on datasets with less
class overlap (e.g., GTSRB, Flower-16) or no overlap (e.g., Dermnet, Pneumonia, PatchCamelyon
(PCAM)). Our SP method learning linear classifiers on top of pre-trained features significantly
outperforms the DP baseline.

2.1 PRELIMINARIES

Informally, Differential Privacy requires that the output distribution of a randomized algorithm
remains similar when one input data point is modified. In the context of this paper, a differentially
private learning algorithm generates similar distributions over classifiers when trained on neighbouring
datasets. Two datasets are said to be neighbouring when they differ in one entry. Formally,
Definition 1 (Differential Privacy [16]). A learning algorithm A is (ε, δ)-differential private if for
any two datasets S, S′ differing in one entry and for all outputs Z , we have,

P [A(S) ∈ Z] ≤ eεP [A(S) ∈ Z] + δ.

For ε < 1 and δ = o (1/n), (ε, δ)-differential privacy provides valid protection against potential
privacy attacks [11]. Next, we define a semi-private learner [4], where the learning algorithm has
access to both a private labelled and a public (labelled or unlabelled) dataset are available. In the
theoretical analysis, we assume the more realistic case of having an unlabelled public dataset. This
specific setting has been referred to as Semi-Supervised Semi-Private learning in Alon et al. [4].
However, for the sake of brevity, we will refer to it as Semi-Private learning (SPL).
Definition 2 ((α, β, ε, δ)-Semi-Private learner on a family of distributions D). An algorithm A is
said to (α, β, ε, δ)-semi-privately learn a hypothesis classH on a family of distributions D if for any
distribution D ∈ D, given a labelled dataset SL of size nL and an unlabelled dataset SU of size nU

sampled i.i.d. from D, A is (ε, δ)-differentially private with respect to SL and outputs a hypothesis ĥ
satisfying

P[P(x,y)∼D [h(x) 6= y] ≤ α] ≥ 1− β,
where the outer probability is over the randomness of SL, SU , and A.

Further, the sample complexity nL and nU must be polynomial in 1
α ,

1
β , and the size of the input

space. Additionally, nL is also polynomial in 1
ε and 1

δ . The algorithm is said to be efficient if it also
runs in time polynomial in 1

α ,
1
β , and the size of the input domain.

A key distinction between our work and the previous study by Alon et al. [4] is that they examine the
distribution-independent agnostic learning setting, whereas we investigate the distribution-specific
realisable setting. On the other hand, while their algorithm is not computationally efficient, ours can
be run in polynomial time in the relevant parameters.

2.2 PROBLEM SETTING

In our theoretical analysis, we focus on learning linear halfspacesHdL in d dimensions. We define
the instance space Xd = Bd2 = x ∈ Rd : ‖x‖2 = 1 as the d-dimensional unit sphere, and the binary
label space Y = −1, 1. The hypothesis class of linear halfspaces is defined as HdL = {fw(x) =
sign (〈w, x〉) |w ∈ Bd2}. We consider the setting of distribution-specific learning, where our family
of distributions admits a large margin linear classifier that contains a significant projection on the top
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Algorithm 1 Aε,δ (k, ζ)

input Labelled dataset SL, unlabelled dataset SU , rank parameter k, distributional parameter ζ.
1: Use unlabelled dataset SU to construct the empirical covariance matrix Σ̂ =

∑
x∈SU xx

T /nU .
2: Construct the transformation matrix Âk whose ith column is the ith eigenvector of Σ̂.
3: Project SL with the transformation matrix Âk,

SL
Âk

= {(ÂT
k x, y) : (x, y) ∈ SL}.

4: Obtain ŵÂk
= ANoisy−SGD(SL

Âk
, SL, `, (ε, δ)) where ` : SL

Âk
× (X × Y)→ R is defined as

`(w, (x, y)) = max

{
1− y

ζ
〈w, x〉 , 0

}
. (1)

output Return ŵ = ÂkŵÂk
.

principal components of the population covariance matrix. We formalise this as (γ, ξk)-Large margin
low rank distributions in Definition 3.

Definition 3 ((γ, ξk)-Large margin low rank distribution). A distribution D over Xd × Y is a
(γ, ξk)-Large margin low rank distribution if there exists w∗ ∈ Bd2 such that

• P(x,y)∼D

[
y〈w∗,x〉
‖w∗‖‖x‖ ≥ γ

]
= 1 (Large-margin),

•
∥∥AkATkw∗∥∥ ≥ 1− ξk (Low-dimension).

where Ak is a d× k matrix whose columns are the top k eigenvectors of the covariance matrix of
X ∼ DX .

It is worth noting that for every distribution that admits a positive margin γ, the low-dimension
condition is automatically satisfied for all k ≤ d with some ξk ≥ 0. However, the distribution is low
rank if it holds for a small k and small ξk simultaneously. We denote the gap between the kth and the
k + 1th eigenvalue of the population covariance matrix as ∆k.

2.3 THEORETICAL GUARANTEES

Next, we propose our semi-private learning algorithm in Algorithm 1. The algorithm inputs the privacy
parameters ε, δ, labelled dataset SL, unlabelled dataset SU , and an additional parameter ζ, which we
discuss below, and outputs a linear separator. Algorithm 1 internally calls ANoisy−SGD which is the
Noisy Stochastic Gradient Descent (SGD) algorithm by [7]. We include this in Appendix B.2.3 for
completeness. The parameter ζ depends on the parameters of the large margin low rank distribution
(γ, ξk). In Appendix C, we also consider a more challenging setting where the unlabelled data and
the labelled may come from similar, but not the same, distribution. In that case, ζ also depends on the
distance between the two distributions.

Theorem 1 shows that if the unlabelled and labelled datasets are sampled from the same large-margin
low rank distribution, then Algorithm 1 is both (ε, δ)-differentially private with respect to the labelled
dataset and achieves high accuracy on the distribution with relatively small number of labelled data
points.

Theorem 1. For γ0 ∈ (0, 1), ξ0 ∈ [0, 1), let Dγ0,ξ0 be the family of distributions consisting all
(γ, ξk)-large margin low rank distributions over Xd × Y with γ ≥ γ0 and ξk ≤ ξ0. For any
α ∈ (0, 1) , β ∈ (0, 1/4), ε ∈ (0, 1/

√
k) and δ ∈ (0, 1), Algorithm Aε,δ(k, ζ) is an (α, β, ε, δ)-semi-

private learner of the linear halfspaceHdL on Dγ0,ξ0 with sample complexity

nU = O

(
log 2/β

γ2
0∆2

k

)
, nL = Õ

(√
k

αεζ

)
where ζ = γ0 (1− 1ξ0 − 0.1γ0).
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Figure 2: First and second panel: Test Accuracy of DP linear classifier on CIFAR-10 and CIFAR-100.
Third and fourth panel: Test accuracy of DP linear classifier on Flower-16 and GTSRB. While for
public training (ε =∞) the performance generally increases as dimensions are added, the opposite
occurs for DP training. The tighter the privacy constraints, the steeper the decrease. For results on
additional feature-extractors refer to Figure 6 in Appendix F.

We compare our result, theoretically, with other relevant works in Appendix D. In order to show the
effectiveness of Algorithm 1, in Section 3, we first focus on the task of image classification with
CIFAR-10 and CIFAR-100 datasets [23] under differential privacy. In Section 4, we demonstrate our
effectiveness under more challenging settings.

3 RESULTS ON STANDARD IMAGE CLASSIFICATION BENCHMARKS

Common image classification datasets like CIFAR-10 and CIFAR-100 are unlikely to even approxi-
mately satisfy the large margin low rank assumptions in Definition 3. However, we can approximate
these assumptions Appendix A by using features obtained from a ResNet50 (R50) pre-trained on
ImageNet [35]. Leveraging large-scale pre-trained models is a current trend in differentially private
machine learning [14, 32, 26, 24], and in this paper, we explore three different types of pre-training
algorithms: supervised training on ImageNet-1K (SL), self-supervised training on ImageNet-1K
(BYOL [18] and MoCoV2+[13]), and semi-supervised and semi-weakly supervised training (SemiSL
and SemiWeakSL)[37]. To avoid confusion, we only report results for SL and BYOL in this section,
while the rest are relegated to Appendix F.

3.1 EVALUATION ON CIFAR-10 AND CIFAR-100

Unlike previous works [14, 32, 24], we do not focus on values of ε > 1. Indeed, while moderately
large values of ε allow us to measure the progress in the ability of training deep networks with
differential privacy (DP) at acceptable levels of accuracy, a large ε might yield vacuous privacy
guarantees [28] and be of little practical relevance. Therefore, we focus on ε ∈ 0.1, 0.7,∞, where
ε =∞ corresponds to public training of the linear classifier.

In the two left-most panels of Figure 2, we report the test accuracy for CIFAR-10 and CIFAR-100 as a
function of the dimensionality of projection. Unless mentioned otherwise, We compute the principal
component on a left-out public unlabelled dataset consisting of 10% of the training data, which is
precisely the public data allowed by Semi-Private learning in Definition 4.

Figure 2 shows that private training of the linear classifier benefits from decreasing dimension, while
public training either suffers with decreasing dimension or remains stationary. For instance, consider
the accuracy on CIFAR-10 for the SL feature extractor at ε = 0.1. For k = 40, the test accuracy of
private training is 81.3%, whereas, when no dimensionality reduction is applied, it drops to 76.9%.
For CIFAR-100, with the SL feature extractor at ε = 0.7, the accuracy drops from 56.8% at k = 200
to 51.9% for full dimension.

This dichotomy between private and non-private learning in terms of test accuracy as a function of the
projection dimension is suggested by Proposition 4 in Appendix D and Theorem 1. Theorem 1 shows
that that the private test accuracy increases as the dimension of projection decreases, which is what
we observe in Figure 2. For non-private training with moderately large dimension, (k ≥ 520), we see
that the test accuracy remains largely constant which is the setting captured by Proposition 4. The
decrease in non-private accuracy for very small values of k is because the approximation error (i.e.
how well can the best classifier in k dimensions represent the ground truth), becomes large for very
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Figure 3: Test Accuracy of DP classification on Dermnet, PCAM and Pneumonia. For results on
additional feature-extractors refer to Figure 7 in Appendix F.

small values of k. This difference in behavior between private and non-private learning for decreasing
values of k appears in all our experiments and is one of the main contributions of this paper. Although
we have shown our algorithm to be effective on the typical CIFAR-10 and CIFAR-100 benchmark
[32, 14], as we discuss in Section 4, we find this evaluation setting limiting and misaligned with the
goal of private learning.

4 EXPERIMENTAL RESULTS BEYOND STANDARD BENCHMARKS

4.1 BEYOND THE ASSUMPTIONS OF STANDARD BENCHMARKS

We argue that standard evaluation benchmarks, which involve pre-training on ImageNet-1K [32, 14],
may entail unrealistic assumptions for some applications, as has also been argued in concurrent
work [33]. Therefore, we suggest additional evaluation settings that overcome these assumptions.

Similarity between ImageNet-1k and CIFAR-10, CIFAR-100 Both datasets contain objects from
daily life and the label sets of the private CIFAR datasets are partly subsumed by ImageNet.Indeed, 9
out of 10 CIFAR-10 classes and 60 out of 100 CIFAR-100 classes are represented in ImageNet-1K.
Such an assumption is unrealistic for several relevant privacy applications such as medical, finance,
and satellite, for which a significant distribution shift between the public and private datasets is
expected, both in the covariates and the label set. Therefore, we propose to consider additional
datasets.

In Figure 1, we present some samples from the private datasets we consider. For the Flower-16 [2]
and GTSRB [19] datasets, the overlap with ImageNet-1K is significantly small. Flower-16 only
contains a single class that is also present in ImageNet-1K labels, and all the 43 traffic signs of
GTSRB are aggregated into a single label in ImageNet-1K. No class present in the Pneumonia [22],
Patch Camelyon (PCAM) [34] and DermNet datasets [1] are present in ImageNet-1K.

Private dataset are assumed to be large: Public datasets are usually large scale because they
can be scraped from the web [15, 25, 36] and the classes are chosen so that the labelling process
does not require specialised domain experts. However, private data is inherently more likely to be
collected at smaller scales by private entities. Moreover, it cannot be easily aggregated with other
private datasets from other sources due to legal constraints and the competitive advantages it provides.
Finally, the labelling process might be extremely expensive such as in biochemical or medical data.
To simulate these problem, we consider both naturally occurring small datasets or we decrease their
size synthetically. For example, for DermNet, we use approximately 12,000 training samples (for
23 classes), with significant variability in the amount of samples per class. For Pneumonia, we take
1,600 samples of the training set to perform PCA, and we are left with approximately 3400 training
samples.

In Section 4.3, we perform experiments with various fractions of the training data to inspect the
low-data setting in CIFAR-100 and GTSRB. Our algorithm performs exceedingly well in these
challenging settings as well, as shown in Figure 4.
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Figure 4: In the first column, test accuracy as the percentage of available training data varies in
{0.05, 0.1, 0.25, 0.5, 0.75}. Second and third columns, results of applying PCA in low-data regime
for 50% and 10& of the training data of GTSRB and CIFAR100.

4.2 PERFORMANCE WHEN PRE-TRAINING AND PRIVATE DATA SIGNIFICANTLY DIFFER

In the two right-most panels of Figure 2, we report the results obtained on Flower-16 and GTSRB. As
it can be seen, reducing the dimensionality is still generally beneficial for DP training. For instance,
consider the SL feature extractor performance on Flower-16 at ε = 0.1. For k = 40, the accuracy
is about 69.3% and drops to 41.2% when the full dimensionality is used. Similarly, on GTSRB at
ε = 0.7, for the SL feature extractor the accuracy drops from 65.9% at k = 280 to 64.2%. The impact
of dimensionality reduction becomes more significant the tighter the privacy constraints are. Similar
to CIFAR-10 and CIFAR-100, dimensionality reduction can significantly degrade the performance
for non-DP training. In Figure 3 we present the results for Pneumonia, PCAM and DermNet (no
class overlapping with the pre-training dataset), observing similar trends.

4.3 PERFORMANCE IN LOW-DATA REGIMES

Good Features Are Not Always Enough.

In recent work [32], the authors suggest that the availability of good features can facilitate DP training.
However, our experiments reveal that even with good features, under tight privacy constraints, the
performance of DP training can be exceptionally low in cases of mild or little distribution shift. We
demonstrate this by reducing the amount of available training data, in a uniformly random manner,
for CIFAR100 and GTSRB datasets in Figure 4. Specifically, we observe that when only 5% of the
training data is available, DP training for ε = 0.1 fails to outperform the random prediction baseline
(indicated with a black dashed line), while the performance of public training remains considerably
high. Notably, there is a large relative drop in accuracy for DP training compared to non-DP training
when the amount of available data is low. For example, on GTSRB, the accuracy of the classifier
using SL features drops from 57.3% to 15.3%, which is approximately 0.25 times the original value,
when only 10% of the data is available for ε = 0.7, while for ε = 0.1, the accuracy drops from 30.2%
to 4.3%, which is only 0.13 times the original accuracy.

Does PCA still help tackling classification in low data regimes? We investigate the effectiveness of
PCA in improving the performance of our algorithm in low-data regimes. As shown in Figure 4, our
algorithm exhibits significantly improved performance over using the full-dimensional embeddings.
For example, on CIFAR-100 with only 10% of the data available and ε = 0.7, using PCA with
k = 40 dimensions increases the accuracy of the classifier using the SL features from 7.53% to
18.3%. These results indicate that PCA can still be an effective tool for addressing classification in
low-data regimes.
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5 CONCLUSION

In this paper, we consider the setting of semi-private learning where the learner has access to public
unlabelled data in addition to private labelled data. This is a realistic setting in many circumstances
e.g. where some people choose to make their data public. Under this setting, we proposed a new
algorithm to learn linear halfspaces. Our algorithm uses a mix of PCA on unlabelled data and DP
training on private data. Under reasonable theoretical assumptions, we have shown the proposed
algorithm is (ε, δ)-DP and provably reduces the sample complexity. In practical applications, we
performed an extensive set of experiments that show the proposed technique is effective when tight
privacy constraints are imposed, even in low-data regimes and with a significant distribution shift
between the pre-training and private distribution.
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Figure 5: Estimate of ξ for linear classifiers trained on embeddings of two CIFAR-10 classes,
extracted from pre-trained ResNet50.

A USING PRE-TRAINED FEATURES TO APPLY OUR ALGORITHM

A.1 PRE-TRAINED FEATURES ARE APPROXIMATELY LARGE-MARGIN AND LOW-RANK

Common image classification datasets like CIFAR-10 and CIFAR-100 are unlikely to even approx-
imately satisfy the large margin low rank assumptions in Definition 3. Indeed, we were not able
to fit a linear SVM with 100% training accuracy on the image space of CIFAR-10, even for binary
classification, indicating that the pixel-space representations are not linearly separable.

Unlike images in the pixel space, linear SVM can easily achieve 100% training accuracy in the
representation space for all pairs of classes from CIFAR-10 and for all of the pre-training strategies
we consider. In order to check the low-dimension assumption, we first train a linear SVM w∗ on the
representation space and then, estimate ξk = 1−

∥∥AkATkw∗∥∥ (Definition 3). For a comprehensive
comparison, we also compute ξk when w∗ is trained on the pixel space (as mentioned before this does
not yield 100% accuracy). Figure 5 plots ξk as a function of k and shows that even upon relaxing the
hard margin criterion, images in the pixel space are much worse than the representation space when it
comes to satisfying the low-dimension assumption of Definition 3. Therefore, we apply Algorithm 1
on top of the representations of these pre-trained models.

B PROOF OF MAIN RESULT

B.1 PROOF OF THEOREM 1

Theorem 1. For γ0 ∈ (0, 1), ξ0 ∈ [0, 1), let Dγ0,ξ0 be the family of distributions consisting all
(γ, ξk)-large margin low rank distributions over Xd × Y with γ ≥ γ0 and ξk ≤ ξ0. For any
α ∈ (0, 1) , β ∈ (0, 1/4), ε ∈ (0, 1/

√
k) and δ ∈ (0, 1), Algorithm Aε,δ(k, ζ) is an (α, β, ε, δ)-semi-

private learner of the linear halfspaceHdL on Dγ0,ξ0 with sample complexity

nU = O

(
log 2/β

γ2
0∆2

k

)
, nL = Õ

(√
k

αεζ

)
where ζ = γ0 (1− 1ξ0 − 0.1γ0).

Proof. Privacy guarantee Algorithm Aε,δ(k, ζ) computes the transformation matrix Âk on the
public unlabelled dataset. This step is independent of the labelled data SL and has no impact on the
privacy with respect to SL. Noisy SGD ensures the operations on the labelled dataset SL to output
ŵÂk is (ε, δ)-DP with respect to SL. The final output ŵ = ÂkŵÂk is attained by post-processing of
ŵÂk and preserves the privacy with respect to SL by Lemma 1.

Accuracy guarantee For any distribution Dγ,ξk ∈ Dγ0,ξ0 , it is (γ, ξk)-large margin low rank
distribution for some γ ≥ γ0, ξk ≤ ξ0. Let the empirical covariance matrix of Dγ,ξk calculated with
the unlabelled dataset SU be Σ̂ = 1

nU

∑
x∈SU (x − x̄)(x − x̄)T and Âk ∈ Rd×k be the projection

10
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matrix whose ith column is the ith eigenvector Σ̂. Let Σ be the population covariance matrix and
similarly, let Ak the matrix of top k eigenvectors of Σ.

Then, the margin is lower bounded by
y〈ÂTk z,ÂTk w∗〉
‖ÂTk z‖2‖ÂTk w∗‖

2

for all z ∈ supp(DX,(γ,ξk)), whereDX,(γ,ξk)

is the marginal distribution of Dγ,ξk . We first consider the case y = 1 and let z = azw
∗ + b⊥ where

b⊥ is in the nullspace of w∗. The lower bound for margin can be written as

y
〈
ÂTk z, Â

T
kw
∗
〉

∥∥∥ÂTk z∥∥∥
2

∥∥∥ÂTkw∗∥∥∥
2

=

〈
ÂTk
(
azw

∗ + b⊥
)
, ÂTkw

∗
〉

∥∥∥ÂTk z∥∥∥
2

∥∥∥ÂTkw∗∥∥∥
2

(a)
=

az

∥∥∥ÂTkw∗∥∥∥2

2∥∥∥ÂTk z∥∥∥
2

∥∥∥ÂTkw∗∥∥∥
2

(b)

≥ az

∥∥∥ÂTkw∗∥∥∥
2

(2)

where step (a) is due to
〈
w∗, b⊥

〉
= 0 and step (b) follows from

∥∥∥ÂTk z∥∥∥
2
≤
∥∥∥Âk∥∥∥ ‖z‖2 ≤ 1.

It lefts to lower bound az and
∥∥∥Âkw∗∥∥∥. First, we can lower bound az with the large-margin property

in Definition 3 as

az =
〈w∗, z〉
‖w∗‖2 ‖z‖2

≥ γ ≥ γ0 for y = 1

az =
〈w∗, z〉
‖w∗‖2 ‖z‖2

≤ −γ ≤ −γ0 for y = −1

(3)

Using Lemma 3, we can bound the difference between the population and empirical eigenspace space
with probability 1− β

2 ,

∥∥∥AkATk − ÂkÂTk ∥∥∥ ≤ 4

(
1 +

√
log(2/β)

2

)
(λk (Σ)− λk+1 (Σ))

√
nU
≤ γ0

10
. (4)

where the last inequality follows from choosing the size of unlabelled data nU ≥
1600

(
1+

√
log(2/β)

2

)2

γ2
0(∆minλk)2

.

Then, we can derive a lower bound for bound
∥∥∥ÂkÂTkw∗∥∥∥

2
,

∥∥AkATkw∗∥∥2
−
∥∥∥ÂkÂTkw∗∥∥∥

2
≤
∥∥∥ÂkÂTkw∗ −AATw∗∥∥∥

2
by Triangle Inequality

≤
∥∥∥ÂkÂTk −AAT∥∥∥ ‖w∗‖2 by Cauchy Schwarz Inequality

=
∥∥∥ÂkÂTk −AAT∥∥∥ ‖w∗‖ = 1

≤ γ0

10
by Equation (4)

(5)

Rearrange Equation (5) and by the low-rank property in Definition 3, we write the lower bound for∥∥∥Âkw∗∥∥∥
2
, ∥∥∥ÂkÂTkw∗∥∥∥

2
≥
∥∥AkATkw∗∥∥2

− γ0

10
= 1− ξk −

γ0

10
≥ 1− ξ0 −

γ0

10
. (6)

Plugging Equation (6) and Equation (3) into Equation (2), we derive a lower bound on the margin if
y = 1,

y
〈
ÂTk z, Â

T
kw
∗
〉

∥∥∥ÂTk z∥∥∥
2

∥∥∥ÂTkw∗∥∥∥
2

≥ γ0

(
1− ξ0 −

γ0

10

)
. (7)

11
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Similarly, for y = −1,
y
〈
ÂTk z, Â

T
kw
∗
〉

∥∥∥ÂTk z∥∥∥
2

∥∥∥ÂTkw∗∥∥∥
2

≥ γ0

(
1− ξ0 −

γ0

10

)
. (8)

The margin in the transformed space is at least γ0 (1− ξ0 − γ0/10). Thus, the loss function ` defined
with in Equation (1) is 1

γ0(1−ξ0−γ0/10) -Lipschitz. For a hypothesis w ∈ Bd2 , denote the empirical

loss of a dataset S by L̂(w;S) = 1
|S|
∑

(x,y)∈S `(w, (x, y)) and the loss on the distribution D by
L(w;D) = P(x,y)∼D [`(w, (x, y))]. By the convergence bound on empirical loss function of Noisy
SGD (Lemma 4), we have with probability 1− β

4 , Algorithm 1 outputs a hypothesis ŵ ∈ Bd2 such
that

L̂(ŵ;SL)− L̂(w∗;D) = L̂(ŵ;SL) = Õ

( √
k

nLεγ0 (1− ξ0 − 0.1γ0)

)
(9)

where w∗ = argminw∈Bd2 L̂(w;SL) and L̂(w∗;SL) = 0 for low rank large margin distributions.

Then, we can bound the empirical 0-1 error by the empirical loss function `. For nL =

Õ
( √

k
αβγ0(1−ξ0−0.1γ0)

)
, with probability 1− β

4 ,

1

nL

∑
(x,y)∈SL

I{y 〈x, ŵ〉 < 0} ≤ L̂(ŵ;SL) = Õ

( √
k

nLεγ0 (1− ξ0 − 0.1γ0)

)
≤ α

2
(10)

It remains to bound the generalization error of linear halfspace HdL. That is, we still need to
show that the empirical error of a linear threshold function is a good approximation of the er-
ror on the distribution. To achieve this, we can apply the generalization bound in terms of the
growth function (Lemma 6). As the Vapnik-Chervonenkis (VC) dimension of k-dimensional
linear halfspace is k + 1, its growth function is bounded by Π(2nL) ≤ (2n)k+1 + 1. For
nL = Õ

(
k
α

)
≤ Õ

( √
k

αεγ0(1−ξ0−γ0/10)

)
, with probability 1− β

4 , we have

P(x,y)∼D [y 〈ŵ, x〉 < 0]− 1

nL

∑
(x,y)∈SL

I{y 〈ŵ, x〉 ≤ 0} ≤ α

2
.

Thus,

P(x,y)∼D [y 〈ŵ, x〉 < 0] ≤ 1

nL

∑
(x,y)∈SL

I{y 〈ŵ, x〉 ≤ 0}+
α

2
= α.

This concludes the proof.

B.2 USEFUL LEMMAS

B.2.1 DIFFERENTIAL PRIVACY

Lemma 1 (Post-processing [16]). For every (ε, δ)-DP algorithm A : S → Y and every (possibly
random) function f : Y → Y ′, f ◦ A is (ε, δ)-DP.

Definition 4 (η-TV tolerant (α, β, ε, δ)-semi-private learner on a family of distributions D). An
algorithm A is an η-TV tolerant (α, β, ε, δ)-semi-privately learner for a hypothesis class H on a
family of distributions D if for any distribution DL ∈ D, given a labelled dataset SL of size nL
sampled i.i.d. from DL and an unlabelled dataset SU of size nU sampled i.i.d. from any distribution
DU with η-bounded TV distance from DL

X and third moment bounded by η, then A is (ε, δ)-DP with
respect to SL and outputs a hypothesis h satisfying

P[P(x,y)∼D [h(x) 6= y] ≤ α] ≥ 1− β,

where the outer probability is over the randomness of the samples and the intrinsic randomness of the
algorithm. The sample complexity nL and nU are polynomial in 1

α and 1
β , and nL is also polynomial

in 1
ε and 1

δ .

12
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B.2.2 LEMMAS FOR CONVERGENCE OF EIGENSPACE

Lemma 2 ([41] Theorem 3). Let A ∈ Rd be a symmetric positive definite matrix with nonzero
eigenvalues λ1 > λ2 > . . . > λd. Let k > 0 be an integer such that λk > 0. Let B ∈ Rd be
another symmetric positive definite matrix such that ‖B‖ < 1

4 (λk − λk+1) and A + B is still a
positive definite matrix. Let Pk(A), Pk(A+B) be the matrices whose columns consists of the first k
eigenvectors of A,A+B, then∥∥Pk(A)Pk(A)T − Pk(A+B)Pk(A+B)T

∥∥ ≤ 2 ‖B‖
λk − λk+1

.

Lemma 3 ([41] Theorem 4). Let D be a distribution over {x ∈ Rd| ‖x‖2 ≤ 1} with covariance
matrix Σ and zero mean Ex∼D[x] = 0. For a sample S of size n fromD, let Σ̂ = 1

n

∑
x∈S xx

T be the
empirical covariance matrix. Let Ak, Âk be the matrices whose columns are the first k eigenvectors
of Σ and Σ̂ respectively and let λ1 (Σ) > λ2 (Σ) > . . . > λd (Σ) be the ordered eigenvalues of

Σ. For any k > 0, β ∈ (0, 1) such that λk (Σ) > 0 and n ≥
16
(

1+
√
β/2

)2

(λk(Σ)−λk+1(Σ))2
, we have that with

probability at least 1− e−β ,

∥∥∥AkATk − ÂkÂTk ∥∥∥ ≤ 4

(
1 +

√
β
2

)
(λk (Σ)− λk+1 (Σ))

√
n
. (11)

B.2.3 NOISY SGD

Next, we present the Noisy SGD algorithm from [7], which has theoretical guarantees stated in
Lemma 4.

Algorithm 2 ANoisy−SGD
input a hypothesis spaceW , a labelled dataset SL of size nL, a loss function `, privacy parameters

ε, δ and the learning rate functions η : Z→ R.

1: Set noise variance σ2 ← 32L2(nL)
2

log(nL/δ) log(1/δ)

ε .
2: randomize ŵ0 ∈ W .
3: for t = 1 to n2 − 1 do
4: Uniformly choose (x, y) ∈ SL.
5: Update ŵt+1 = ΠW (ŵt − η(t)[n∇`(ŵt; (x, y)) + ξ]) where ξ ∼ N(0, Idσ2).
6: end for

output ŵ = ŵn
2

Lemma 4 (Empirical accuracy guarantee of Noisy SGD). [7] Let the loss function ` be L-
Lipschitz and C be a d-dimensional convex space with diameter ‖C‖. If the learning rate function

η(t) = O
(
L2n2 log(nL/δ) log(1/δ)

ε2

)
, then ANoisy−SGD is (ε, δ)-DP, and it outputs ŵ that satisfies

the following excess risk bound

E

 ∑
(x,y)∈S

`(ŵ, (x, y))−
∑

(x,y)∈S

`(w∗, (x, y))

 = O

(
L ‖C‖ log3/2(n/δ)

√
d log(1/δ)

ε

)
for a labelled dataset S of size nL. Here, w∗ is the empirical risk minimizer w∗ =
argminw∈C

∑
(x,y)∈S `(w, (x, y)).

B.2.4 CONVERGENCE OF SECOND MOMENT FOR η-BOUNDED TV DISTRIBUTIONS

Lemma 5. Let f and g be the Probability Density Functions (PDFs) of two zero-mean distributions
F and G over X with covariance matrices Σf and Σg respectively. Assume the spectral norm
of the third moments of both F and G are bounded by η. If the total variation between the two
distributions is bounded by η,i.e.TV (f, g) = maxA⊂X |f(A)− g(A)| ≤ η, then the discrepancy in
the covariance matrices is bounded by 7η, i.e.‖Σf − Σg‖ ≤ 7η.

13
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Proof. We first approximate Moment Generating Functions (MGFs) of g and f by their first and
second moments. Then, we express the error bound in this approximation by the error bound for
Taylor expansion, for any t ∈ Rd with ‖t‖2 > 0,∣∣∣∣Mf (t)− 1 + tTEf [X] +

tTΣf t

2

∣∣∣∣ =

∣∣∣∣Mf (t)− 1 +
tTΣf t

2

∣∣∣∣
≤

Ef
[
et
T xxxTx

]
‖t‖32

3!
≤

Ef
[
xxTx

]
e‖t‖2 ‖t‖32

3!
∵ et

T x ≤ e‖t‖2‖x‖2 ≤ e‖t‖2 for x ∈ Bd2

≤ η ‖t‖32 ∵ e‖t‖2 ≤ 3! for ‖t‖2 ≤ 1
(12)

Similarly, ∣∣∣∣Mg(t)− 1 + tTEg [X] +
tTΣgt

2

∣∣∣∣ ≤ η ‖t‖32 (13)

Rewrite Equation (12) and Equation (13), we can bound the terms tTΣf t
2 and tTΣgt

2

1−Mf (t)− η ‖t‖32 ≤
tTΣf t

2
≤ 1−Mf (t) + η ‖t‖32

1−Mg(t)− η ‖t‖32 ≤
tTΣgt

2
≤ 1−Mg(t) + η ‖t‖32

(14)

Next, we show that the discrepancy in covariance matrices of distributionsG and F are upper bounded
by the difference in their MGFs.

By Equation (14), for all t ∈ Rd and ‖t‖2 6= 0,∣∣∣∣ tT (Σf − Σg) t

2

∣∣∣∣ ≤ 1−Mf (t) + η ‖t‖32 − 1 +Mg(t) + η ‖t‖32

=
∣∣∣Mg(t)−Mf (t) + 2η ‖t‖32

∣∣∣
≤ |Mg(t)−Mf (t)|+ 2η ‖t‖32

(15)

Next, we upper bound the difference between the MGFs of distributions G and F by the TV distance
between them.

|Mf (t)−Mg(t)| =

∣∣∣∣∣
∫
x∈Bd2

et
T x [f(x)− g(x)] dx

∣∣∣∣∣
≤
∫
x∈Bd2

et
T x |f(x)− g(x)| dx

≤
∫
x∈Bd2

e‖t‖2‖x‖2 |f(x)− g(x)| dx ≤ e‖t‖2η

2

(16)

where the last inequality follows as ‖x‖2 = 1 for x ∈ Bd2 and TV (f, g) ≤ η.

Combine Equation (15) and Equation (16), we have for all t ∈ Rd and ‖t‖2 6= 0,∣∣tT (Σf − Σg) t
∣∣ ≤ e‖t‖2η1 + 4η ‖t‖32 (17)

Choose t as a vector in the direction of the first eigenvector of Σf − Σg . For this t,∣∣tT (Σf − Σg) t
∣∣ = ‖t‖2 ‖(Σf − Σg) t‖2 = ‖Σf − Σg‖ ‖t‖22 (18)

where the first equation is because tT and (Σf − Σg) t are linearly dependent. The second equation
follows as

‖(Σf − Σg) t‖22 = tT (Σf − Σg)
T

(Σf − Σg) t

= tT ‖Σf − Σg‖2 t = ‖Σf − Σg‖2 ‖t‖22
(19)
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Plugging Equation (18) into Equation (17) and choose the norm of t as the minimizer of e‖t‖2η1 +

4η ‖t‖32, we get

‖Σf − Σg‖ ≤ min
0≤‖t‖2≤1

e‖t‖2η

‖t‖22
+ 4η ‖t‖2 ≤

η(1 + ‖t‖2 + ‖t‖22)

‖t‖22
+ 4η ‖t‖2 = 7η (20)

B.2.5 CONCENTRATION BOUNDS

Lemma 6 (Convergence bound on generalization error). [5] SupposeH is a hypothesis class with
instance space X and output space {−1, 1}. Let D be a distribution over X × Y and S be a dataset
of size n sampled i.i.d. from D. For η ∈ (0, 1), ζ > 0, we have the following generalization bound

PS∼Dn
[

sup
h∈H

L(h;D)− (1 + ζ)L̂(h;S) ≤ η
]
≤ 4ΠH(2n) exp

(
− ηζn

4 (ζ + 1)

)
,

where L and L̂ are the population and the empirical 0-1 error and ΠH is the growth function ofH.

Lemma 7 (Concentration bound on the norm of Gaussian Random Vectors). Let X ∼ N(µ,Σ),
where v ∈ B2

d . Then, with probability at least 1− δ,

‖X − µ‖2 ≤ 4 ‖Σ‖op
√
d+ 2 ‖Σ‖op

√
log

1

δ
. (21)

C RESULT ON TOLERANCE TO DISTRIBUTION SHIFT

Next, we show a stronger version of Theorem 1 which allows a distribution shift between the labelled
and unlabelled data. This is a reasonable relaxation in the real world. If part of a dataset is made
public either due to the expiry of statute of limitations or voluntarily by the user, it is reasonable to
expect that the public and the private dataset will exhibit a distribution shift. Under this setting, we
present similar theoretical guarantees in Theorem 2. We say that two distributions DL

X and DU have
η-bounded Total Variation (TV) distance if

TV (DU , DL
X) = sup

A⊂X
|DU (A)−DL

X(A)| = η.

Next, we extend the definition of semi-private learner to this setting. Informally, an algorithm A is
an η-TV tolerant (α, β, ε, δ)-semi-private learner if it is a (α, β, ε, δ)-semi-private learner when the
labelled and unlabelled dataset have η-bounded TV.

Theorem 2. For γ0 ∈ (0, 1), ξ0 ∈ [0, 1), let Dγ0,ξ0 be the family of distributions consisting of all
(γ, ξk)-large margin low rank distributions over Xd × Y with γ ≥ γ0 and ξk ≤ ξ0 and small third
moment. For any α ∈ (0, 1) , β ∈ (0, 1/4), ε ∈ (0, 1/

√
k) and δ ∈ (0, 1), Algorithm Aε,δ(k, ζ) is an

η-TV tolerant (α, β, ε, δ)-semi-private learner of the linear halfspace HdL on Dγ0,ξ0 with sample
complexity

nU = O

(
log 2

β

(γ0∆k)
2

)
, nL = Õ

(√
k

αεζ

)
where ζ = γ0(1− ξ0 − 0.1γ0 − 7η/∆k).

Also, the labelled sample complexity bound here is pessimistic and becomes less powerful for large
distribuiton shift in terms of TV distance. With better specifications on the family of distribution and
the type of shifts, a much tighter bound is expected, which calls for future research.

A formal definition of η-TV tolerant (α, β, ε, δ)-learner and detailed versions with proofs of the
theorems can be found in Appendix B.

Theorem 3. For γ0 ∈ (0, 1), ξ0 ∈ [0, 1), let Dγ0,ξ0 be the family of distributions consisting of all
(γ, ξk)-large margin low rank distributions over Xd × Y with γ ≥ γ0 and ξk ≤ ξ0 and third moment
bounded by η. For any α ∈ (0, 1) , β ∈ (0, 1/4), ε ∈ (0, 1/

√
k) and δ ∈ (0, 1), AlgorithmAε,δ(k, ζ) is
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an η-TV tolerant (α, β, ε, δ)-semi-private learner of the linear halfspaceHdL on Dγ0,ξ0 with sample
complexity

nU = O

(
log 2

β

(γ0∆k)
2

)
, nL = Õ

(√
k

αεζ

)

where ∆k = λk
(
ΣL
)
− λk+1

(
ΣL
)

and ζ = γ0(1− ξ0 − 0.1γ0 − 7η/∆k).

Proof. Privacy Guarantee Using a similar argument as in the proof to the privacy guarantee in
Theorem 1, we can show that Algorithm Aε,δ(k, ζ) preserves (ε, δ)-DP on the labelled dataset SL.

Accuracy Guarantee For any distribution DL
γ,ξk

∈ Dγ0,ξ0 , it is (γ, ξk)-large margin low rank
distribution for some γ ≥ γ0, ξk ≤ ξ0. For any unlabelled distribution DU with η-bouneded TV
distance from DL

γ,ξk
, let the empirical covariance matrix of DU be Σ̂U = 1

nU

∑
x∈SU xx

T and(
ÂUk

)
∈ Rd×k be the projection matrix whose ith column is the ith eigenvector Σ̂U . Let ΣL and

ΣU be the population labelled and unlabelled covariance matrix of DL and DU and similarly, let ALk
and AUk be the matrices of top k eigenvectors of ΣL and ΣU respectively.

The margin is lower bounded by
y
〈
(ÂUk )

T
z,(ÂUk )

T
w∗
〉

∥∥∥(ÂUk )
T
z
∥∥∥
2

∥∥∥(ÂUk )
T
w∗
∥∥∥
2

for all z ∈ supp(DL
X,(γ,ξ0)), where

supp(DL
X,(γ,ξ0)) is the marginal distribution of Dγ,ξk over X . We first consider the case y = 1

and let z = azw
∗ + b⊥ where b⊥ is in the nullspace of w∗. The lower bound for margin can be

written as

y

〈(
ÂUk

)T
z,
(
ÂUk

)T
w∗
〉

∥∥∥∥(ÂUk )T z∥∥∥∥
2

∥∥∥∥(ÂUk )T w∗∥∥∥∥
2

=

〈(
ÂUk

)T (
azw

∗ + b⊥
)
,
(
ÂUk

)T
w∗
〉

∥∥∥∥(ÂUk )T z∥∥∥∥
2

∥∥∥∥(ÂUk )T w∗∥∥∥∥
2

(a)
=

az

∥∥∥∥(ÂUk )T w∗∥∥∥∥
2∥∥∥∥(ÂUk )T z∥∥∥∥

2

(b)

≥ az

∥∥∥∥(ÂUk )T w∗∥∥∥∥
2

(22)

where step (a) is due to
〈
w∗, b⊥

〉
= 0 and step (b) follows from

∥∥∥∥(ÂUk )T z∥∥∥∥
2

≤
∥∥∥(ÂUk )∥∥∥ ‖z‖2 ≤ 1.

It lefts to lower bound az and
∥∥∥∥(ÂUk )T w∗∥∥∥∥

2

. First, we can lower bound az similarly as in proof to

Theorem 1. With the large-margin property in Definition 3,

az =
〈w∗, z〉
‖w∗‖2 ‖z‖2

≥ γ ≥ γ0 for y = 1

az =
〈w∗, z〉
‖w∗‖2 ‖z‖2

≤ −γ ≤ −γ0 for y = −1

(23)

To lower bound
∥∥∥∥(ÂUk )T w∗∥∥∥∥

2

, we first bound
∥∥∥ÂUk w∗∥∥∥

2
. The bounded total variation assumption

between DL and DU implies bounded deviation in the second moment,
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By Lemma 2, we can bound the difference in the projection space of ALk and AUk . With probability
1− β/4, ∥∥∥ALk (ALk )T −AUk (AUk )T∥∥∥ ≤ 2

∥∥ΣL − ΣU
∥∥

λk (ΣL)− λk+1 (ΣL)

≤
2
∥∥ΣL − ΣU

∥∥
F

λk (ΣL)− λk+1 (ΣL)

(a)

≤ 7η

λk (ΣL)− λk+1 (ΣL)
=

7η

∆k
.

(24)

Step (a) follows by the assumption of bounded total variation between the labelled and unlabelled
distributions and Lemma 5.

Now, we derive lower bounds on
∥∥∥AUk (AUk )T w∗∥∥∥

2
,∥∥∥ALk (ALk )T w∗∥∥∥

2
−
∥∥∥AUk (AUk )T w∗∥∥∥

2
≤
∥∥∥(AUk (AUk )T −ALk (ALk )T)w∗∥∥∥

2

≤
∥∥∥AUk (AUk )T −ALk (ALk )T∥∥∥ ‖w∗‖2 by Cauchy Schwarz Inequality

=
∥∥∥AUk (AUk )T −ALk (ALk )T∥∥∥ ≤ 7η

∆k
By Equation (24) and ‖w∗‖2 = 1

(25)
Rearrange the terms and by the low-rank property of the labelled distribution Dγ,ξk , we get the lower

bound on
∥∥∥AUk (AUk )T w∗∥∥∥

2
,∥∥∥AUk (AUk )T w∗∥∥∥

2
≥
∥∥∥ALk (ALk )T z∥∥∥

2
− 7η

∆k
≥ 1− ξk +

7η

∆k
≥ 1− ξ0 +

7η

∆k
. (26)

Next, we lower bound
∥∥∥∥(ÂUk )T w∗∥∥∥∥

2

. Similar to the proof for Theorem 1, by Lemma 3, if the

number of unlabelled data is

nU = O

(
log 2

β

(γ0∆k)
2

)
,

with probability 1− β/4, the difference in the eigenspace of AUk and ÂUk is bounded,∥∥∥∥AUk (AUk )T − (ÂUk )(ÂUk )T∥∥∥∥ ≤ γ0

10
. (27)

Thus, ∥∥∥∥(ÂUk )(ÂUk )T w∗∥∥∥∥
2

≥
∥∥∥AUk (AUk )T w∗∥∥∥

2
− γ0

10
≥ 1− ξ0 −

7η

∆k
− γ0

10
. (28)

Plugging Equation (28) and Equation (23) into Equation (22), we derive a lower bound on the margin
for y = 1,

y

〈(
ÂUk

)T
z,
(
ÂUk

)T
w∗
〉

∥∥∥∥(ÂUk )T z∥∥∥∥
2

∥∥∥∥(ÂUk )T w∗∥∥∥∥
2

≥ γ0

(
1− ξ0 −

7η

∆k
− γ0

10

)
. (29)

Similarly, for y = −1,

y

〈(
ÂUk

)T
z,
(
ÂUk

)T
w∗
〉

∥∥∥∥(ÂUk )T
2
z

∥∥∥∥ ∥∥∥∥(ÂUk )T
2
w∗
∥∥∥∥ ≥ γ0

(
1− ξ0 −

7η

∆k
− γ0

10

)
. (30)

The margin in the transformed space is at least ζ = γ0 (1− ξ0 − 7η/∆k − 0.1γ0). Thus, the loss
function ` defined with in Equation (1) is 1

ζ -Lipschitz. Similar as in the proof for Theorem 1, we
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define the empirical loss L̂(w;S) of a dataset S for a hypothesis w ∈ Bd2 and the loss L(w;D) =
P(x,y)∼D [`(w, (x, y))] on the distribution D. By the convergence bound on empirical loss function
of Noisy SGD (Lemma 4), we have with probability 1− β

4 , Algorithm 1 outputs a hypothesis ŵ ∈ Bd2
such that

L̂(ŵ;SL)− L̂(w∗;D) = L̂(ŵ;SL) = Õ

( √
k

nLεζ

)
(31)

where w∗ = argminw∈Bd2 L̂(w;SL) and L̂(w∗;SL) = 0 for low rank large margin distribution.

Then, we can bound the empirical 0-1 error by the empirical loss function `. For nL = Õ
( √

k
αβζ

)
,

with probability 1− β
4 ,

1

nL

∑
(x,y)∈SL

I{y 〈ŵ, x〉 < 0} ≤ L̂(ŵ;SL) = Õ

( √
k

nLεζ

)
≤ α

2
(32)

It remains to bound the generalization error of linear halfspace with Lemma 6. As the Vapnik-
Chervonenkis (VC) dimension of k-dimensional linear halfspace is k + 1, its growth function is
bounded by Π(2nL) ≤ (2n)k+1 + 1. Thus, for nL = Õ

(
k
α

)
≤ Õ

( √
k

αεζ

)
, with probability 1 − β

4 ,
we have

P(x,y)∼D [y 〈ŵ, x〉 < 0]− 1

nL

∑
(x,y)∈SL

I{y 〈ŵ, x〉 < 0} ≤ α

2

Thus,

P(x,y)∼D [y 〈ŵ, x〉 < 0] ≤ 1

nL

∑
(x,y)∈SL

I{y 〈ŵ, w〉 < 0}+
α

2
= α.

This concludes the proof.

D COMPARISON WITH EXISTING LITERATURE AND DISCUSSION

We discuss the relevant works in the literature and how they compare with our result in this section.

Generic private algorithms Bassily et al. [7] proposed the Noisy SGD algorithm to privately learn
linear thresholds with margin γ. However, their algorithm cannot use unlabelled data and requires
O
(√

d/αεγ
)

labelled data. The generic semi-private learner in Alon et al. [4] leverages unlabelled
data to reduce the infinite hypothesis class to a finite α-net and applies exponential mechanism [27]
to achieve (ε, 0)-DP. However, it still requires a dimension-dependent labelled sample complexity
O (d/αε).

Other dimension reduction based private algorithms Johnson-Lindenstrauss (JL) transformation
is another popular technique for dimensionality reduction. Perhaps, most relevant to our work, [29]
reduces the dimension of a linear halfspace with margin γ from d to O (1/γ) while preserving the
margin in the lower-dimensional space. Private learning in the transformed low-dimensional space
requires O (1/αεγ2) labelled samples. Our algorithm removes the quadratic dependence on the margin
but pays the price of requiring the linear separator to align with the top few principal components
of the data. For example, a Gaussian mixture distribution (Definition 5) satisfies low-rank property
with parameter ξk = 0 and k = 1. Corollary 5 shows that our algorithm requires labelled sample
complexityO(1/αεγ) instead of O(1/αεγ2) required by Nguyen et al. [29].

Another approach to circumvent the dependency on the dimension is to apply dimension reduction
techniques directly to the gradients. For smooth loss functions with ρ-Lipschitz and G-bounded
gradients, Zhou et al. [40] showed that applying PCA in the gradient space of DP-SGD [3] achieves
dimension-independent labelled sample complexity O

(
kρG2

αε + ρ2G4 log d
α

)
. However, this algorithm

is computationally costly as it applies PCA in every gradient-descent step to a matrix whose size
scales with the number of parameters. Low-rank reparametrization in the parameter space [39] is
computationally efficient and has gained empirical success in text and vision datasets. However,
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their algorithm is unable to use unlabelled public data and their guarantee for linear halfspaces is not
immediately clear.

Non-private learning It is interesting to note that our algorithm may not lead to a similar improve-
ment in the non-private case. We show a dimension-independent Rademacher-based labelled sample
complexity bound for non-private learning of linear halfspaces. We use a non-private version of
Algorithm 1 by replacing Noisy-SGD with Gradient Descent using the same loss function. As before,
for any γ0 ∈ (0, 1), ξ0 ∈ (0, 1), let Dγ0,ξ0 be the family of distributions consisting of all (γ, ξk)-large
margin low rank distributions with γ ≥ γ0 and ξk ≤ ξ0.

Proposition 4 (Non-DP learning). For any α, β ∈ (0, 1/4), and distribution D ∈ Dγ0,ξ0 , given a
labelled dataset of size Õ (1/ζα2) and unlabelled dataset of size O (log 2

β/(γ0∆k)2), the non-private
version of A(k, ζ) produces a linear classifier ŵ such that with probability 1− β

PD [y 〈ŵ, x〉 < 0] < α

where ζ = γ0(1− ξ0 − 0.1γ0).

The labelled sample complexity in the above result shows that non-private algorithms do not sig-
nificantly benefit from decreasing dimensionality1. In summary, this section has showed that our
computationally efficient algorithm, under certain assumptions, on the data can yield dimension
independent private sample complexity. In the result of the paper, we show through a wide variety of
experiments that the results transfer to practice in both common benchmarks as well as many newly
designed challenging settings.

E AN ILLUSTRATION USING A SIMPLE DISTRIBUTION

As an example, we define (θ, σ2)-Large Margin Gaussian mixture distributions in Definition 5.

Definition 5. A distribution D over X × Y is a (θ, σ2)-Large margin Gaussian mixture distribution
if there exists w∗, µ ∈ Bd2 , such that 〈µ,w∗〉 = 0, the conditional distribution X|y is distributed
according to a normal distribution with mean µy and covariance matrix θw∗ (w∗)

T
+ σ2Id and

y ∈ {−1, 1} is distributed uniformly.

For any θ, σ2 = O(1/
√
d), it is easy to see that this family of distributions satisfies the large margin

low rank properties in Definition 3 for k = 2 and ξ = 0.

For large margin Gaussian mixture distributions, Theorem 1 implies that the dimensionality reduction
through PCA on the public dataset leads to a drop in the labelled sample complexity from O(

√
d) to

O(1) as shown in Corollary 5.

Corollary 5 (Theoretical guarantees for large margin Gaussian mixture distribution). For any
θ, σ2 = O

(
1√
d

)
, let Dθ,σ2 be the family of all (θ, σ2)-large margin Gaussian mixture distributions.

For any α ∈ (0, 1) , β ∈ (0, 1/4), ε ∈ (0, 1) and δ ∈ (0, 1), Algorithm Aε,δ(k, ζ) is an (α, β, ε, δ)-
semi-private learner of linear halfspacesHdL with sample complexity

nU = O

(
log 2/β

γ2θ2

)
, nL = Õ

(
L

αεγ(1− 0.1γ)

)
(33)

where γ = 1− C
√
d
(
θ + σ2

)
and L = 1 + C

√
d
(
θ + σ2

)
for some constant C.

Here, in line with the notation of Definition 3, γ intuitively represents the margin in the d-dimensional
space and L is the upper bound for the radius of the labelled dataset. For θ = σ2 = 1/2C

√
d, we get

L = 1.5 and γ = 0.5; Corollary 5 implies the labelled sample complexity Õ (1/αε).

Corollary 6 (Theoretical guarantees for large margin Gaussian mixture distribution). For θ, σ2 =
Õ (1/

√
d), let Dθ,σ2 be the family of all (θ, σ2)-large margin Gaussian mixture distribution (Def-

inition 5). For any α ∈ (0, 1), β ∈ (0, 1/4), ε ∈ (0, 1/
√
L), and δ ∈ (0, 1), Algorithm

1However, this bound uses a standard rademacher complexity result and may be lose. A tighter complexity
bound may yield some dependence on the projected dimension
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Aε,δ(k, γ(1− 0.1γ)) is an (α, β, ε, δ)-semi-private learner on Dtheta,σ2 of linear halfspacesHdL

nU = O

(
log 2

β

γ2θ2

)
,

nL = Õ

(
L
√
k

αεγ(1− 0.1γ)

) (34)

where γ = 1−
(

4
√
d+ 2

√
log 2nL

δ

)(
σ2 + θ

)
, L = 1 +

(
4
√
d+ 2

√
log 2nL

δ

)(
σ2 + θ

)
.

Proof. For i ∈ {1, 2}, let fG(x;µ,Σi) be the probability density function of a Gaussian random
variable with mean µi and covariance matrix Σi. Then, for any function D ∈ Dθ,σ2 , we can calculate
the covariance matrix of its marginal distribution DX as

ΣX =
1

2

∫
Bd2

xxT fG(x;µ1,Σ)dx+
1

2

∫
Bd2

xxT fG(x;µ2,Σ)dx

(a)
=

1

2

(
Σ + µ1µ

T
1

)
+

1

2

(
Σ + µ2µ

T
2

)
= θw∗ (w∗)

T
+ µ1µ

T
1 + σ2Id ∵ µ1 = −µ2

(35)

where equation (a) follows by the relationship between covaraince matrix and the second moment
Σ = EX

[
XXT

]
+ µµT .

By the definition of ΣX , we first show that the first two eigenvectors are µ1 and w∗ with the
corresponding eigenvalues 1 + σ2 and θ + σ2 as θ = O (1/

√
d) ≤ 1. The rest non-spiked eigenvalues

of the eigenvalues are σ2.

ΣXw
∗ = θw∗ (w∗)

T
w∗ + µ1µ

T
1 w
∗ + σ2w∗

= (θ + σ2)w∗ ∵ (w∗)
T
µ1 = 0

ΣXµ1 = θw∗ (w∗)
T
µ1 + µ1µ

T
1 µ1 + σ2µ1

= (‖µ1‖2 + σ2)µ1 = (1 + σ2)µ1 ∵ (w∗)
T
µ1 = 0

Thus, with k = 2, we can show that the low dimension condition in Definition 3. Also, we can show
that the low dimensional parameter ξ equals 0,∥∥ATkw∗∥∥

‖w∗‖
=

1

‖w∗‖

[
µT1

(w∗)
T

]
w∗

=

∥∥∥µT1 w∗ + (w∗)
T
w∗
∥∥∥

‖w∗‖
= 1 = 1− ξ

(36)

Also, we can calculate ∆k for k = 2,

∆k = λk (ΣX)− λk+1 (ΣX) = θ + σ2 − σ2 = θ (37)

To apply Theorem 1, we show that the labelled dataset lies in a ball with bounded radius with high
probability.

Denote the labelled dataset from the subpopulation with y = 1 by SL1 and denote the labelled dataset
from the subpopulation with y = −1 by SL2 . For any x ∈ SLi for i = 1, 2, by Lemma 7, for some
β

2nL
> 0,

PSL∼DnL

‖x− µi‖2 ≤ 4
(
θ + σ2

)√
d+ 2

(
θ + σ2

)√
log

4nL

β

 ≥ 1− β

4nL
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For i ∈ {1, 2}, by applying Union bound on all x ∈ SLi , we can bound maximum distance of a points
x ∈ SLi to the center µi,

PSL∼DnL

max
x∈SLi

‖x− µi‖2 ≤
(
θ + σ2

)4
√
d+ 2

√
log

4nL

β

 ≤ 1− β

4
. (38)

Note that the distance between the two centers µ1 and µ2 is 2. Thus, with probability at least 1− β
2 ,

all points in the labelled dataset SL lie in a ball centered at 0 having radius

L = 1 +

4
√
d+ 2

√
log

4nL

β

(σ2 + θ
)
. (39)

Also, the margin in the labelled dataset is at least

γ = 1−

4
√
d+ 2

√
log

4nL

β

(σ2 + θ
)
. (40)

Following a similar argument as in the proof to Theorem 1, we can show that for nU = O
(

log 4/β
γ2θ2

)
,

with probability at least β
4 over the randomness of the unlabelled dataset, for all points in the

labelled dataset, the margin in the 2-dimensional transformed space {Âkx|(x, y) ∈ SL} is at least
γ(1 − 0.1γ). For a hypothesis w ∈ Bd2 , denote the empirical loss of a dataset S by L̂(w;S) =
1
|S|
∑

(x,y)∈S `(w, (x, y)) and the loss on the distribution D by L(w;D) = P(x,y)∼D [`(w(x, y))].
By the convergence bound on empirical loss fucntion of Noisy SGD (Lemma 4), we have with
probability 1− β

8 , Algorithm 1 outputs a hypothesis ŵ such that

L̂(ŵ, SL)− L̂(w∗;D) = L̂(ŵ, SL) = Õ

( √
k

nLεγ (1− 0.1γ)

)
, (41)

where w∗ = argminw∈Bd2 L̂(w;SL) and L̂(w∗;SL) = 0 for low rank large margin distributions.

As the margin in the labelled dataset bounded below by γ(1 − 0.1γ), we can upper bound the
empirical 0-1 error by the empirical loss function `. For nL = Õ

( √
k

αεγ(1−0.1γ)

)
, with probability

1− 1
8 ,

1

nL

∑
(x,y)∈SL

I{y 〈ŵ, x〉 < 0} ≤ L̂(ŵ;SL) = Õ

( √
k

nLεγ (1− 0.1γ)

)
≤ α

2
(42)

It remains to show that the empirical 0-1 error is a good approximation of the 0-1 error on the
distribution. To achieve this, we can apply the generalization bound in terms of the growth function
(Lemma 6). As the Vapnik-Chervonenkis (VC) dimension of k-dimensional linear halfspace is
k + 1, its growth function is bounded by Π(2nL) ≤ (2n)k+1 + 1. Thus, for nL = Õ

(
Lk
α

)
≤

Õ
( √

k
αεγ(1−0.1γ)

)
, with probability 1− β

4 , we have

P(x,y)∼D [y 〈ŵ, x〉 < 0]− 1

nL

∑
(x,y)∈SL

I{y 〈ŵ, x〉 ≤ 0} ≤ α

2
.

The second inequality in the sample complexity bound is due to ε ∈ (0, 1√
k

).

Thus,

P(x,y)∼D [y 〈ŵ, x〉 < 0] ≤ 1

nL

∑
(x,y)∈SL

I{y 〈ŵ, x〉 ≤ 0}+
α

2
= α.

This concludes the proof.
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Figure 6: First and second panel: Test Accuracy of DP linear classifier on CIFAR-10 and CIFAR-100.
Third and fourth panel: Test accuracy of DP linear classifier on Flowers 16 and GTSRB. While for
public training (ε =∞) the performance generally increases as dimensions are added, the opposite
occurs for DP training. The tighter the privacy constraints, the steeper the decrease.

F ADDITIONAL EXPERIMENTAL DETAILS AND FURTHER EXPERIMENTS

Details on discrepancy in resolution of images A standard evaluation procedure in DP is to evaluate
the accuracy on the CIFAR-10 and CIFAR-100 [23] datasets. When training a linear classifier on
pre-trained features, the resolution difference between Imagenet-1K and CIFAR images needs to be
taken into account. While the pre-trained models are exposed to ImageNet-1K images at a resolution
of 244 × 244, CIFAR images are at a resolution of 32 × 32. This discrepancy negatively impacts
the performance in practice. To alleviate this issue, we pre-process the CIFAR images with the
ImageNet-1K transformation pipeline, which increases the resolution of CIFAR images to that of
ImageNet-1K. While the upscaled features still differ from the ones present in the original higher-
resolution ImageNet-1K images, this preprocessing yields significantly improved performance. We
use this technique throughout this paper whenever a significant difference in resolution exists between
the pre-training and private datasets.

The impact of Different Pre-Training Strategies From Figure 2 and 3 it is evident leveraging
the features of specific pre-trained models can dominate those produce by other pre-trained models.
Therefore, it is important to investigate whether a consistent pattern exists when comparing the
DP test accuracy of classifiers trained on different types of pre-trained features. We compute the
maximum attainable accuracy with a publicly trained classifier, independently of the pre-trained
model used. We measure the minimum drop in performance observed by training a DP classifier
on SSL or SL pre-trained features (for SSL we consider both BYOL and MocoV2+). We then plot
the fractional reduction (with respect to the best public classifier performance) for both SL and
SSL across all the datasets and ε values in Figure 8a. We also draw a dashed line to indicate the
region where neither methods show an advantage. Points above the line indicate that SL features
exhibit an advantage whereas for points below the line, SSL has an advantage. As it can be seen,
datasets representing daily life objects and with semantic overlap with ImageNet-1K benefit more
from leveraging SL features. However, datasets that do not overlap that much with ImageNet-1K
benefit more from leveraging SSL features. This is in line with what has been observed in a different
setting by Shi et al. [30]. In Appendix F we also provide similar plots for Semi(Weakly)-Supervised
pre-training procedures. Since these techniques leverage even larger amounts of data for pre-training,
the obtained features are more convenient to use both with respect to SL and SSL in most cases.

In this section we report the results for MoCov2+ (SSL) and Semi-Supervised and Semi-Weakly
Supervised feature extractors (SemiSL, SemiWeakSL). In Figure 6 we report the results on CIFAR-10,
CIFAR-100, Flower-16 and GTSRB. In Figure 7 we report the results for PCAM, Pneumonia and
DermNet. In Figure 8 we compare the relative reduction in performance when using Semi-(Weakly)
supervised pre-training or Self-Supervised training.
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Figure 7: Test Accuracy of DP linear classifier on Dermnet, PCAM and Pneumonia. The proposed
procedure performs similarly to what has been observed in Figure 6.

(a)

Figure 8: Comparison of the reduction in test accuracy for different datasets and different ε values
with respect to the public training using SL, SSL, and semi-weakly SL feature extractors.
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