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ABSTRACT

Recent empirical evidence shows that LLM representations encode human-
interpretable concepts. Nevertheless, the mechanisms by which these representa-
tions emerge remain largely unexplored. To shed further light on this, we introduce
a novel generative model that generates tokens on the basis of such concepts formu-
lated as latent discrete variables. Under mild conditions, even when the mapping
from the latent space to the observed space is non-invertible, we establish rigorous
identifiability result: the representations learned by LLMs through next-token
prediction can be approximately modeled as the logarithm of the posterior prob-
abilities of these latent discrete concepts given input context, up to an invertible
linear transformation. This theoretical finding: 1) provides evidence that LLMs
capture essential underlying generative factors, 2) offers a unified and principled
perspective for understanding the linear representation hypothesis, and 3) motivates
a theoretically grounded approach for evaluating sparse autoencoders. Empirically,
we validate our theoretical results through evaluations on both simulation data and
the Pythia, Llama, and DeepSeek model families.

1 INTRODUCTION

Large language models (LLMs) are trained on extensive datasets, primarily sourced from the Internet,
enabling them to excel in a wide range of downstream tasks, such as language translation, text
summarization, and question answering (Zhao et al., 2024; Bommasani et al., 2021; Olah et al., 2020).
Despite this success, their internal representations remain largely opaque, a fact that has sparked a
series of efforts toward theoretical understanding and practical interpretability. A promising direction
arises from recent empirical evidence showing that LLM representations (often called activations in
the natural language processing community) encode latent concepts, such as sentiment (Turner et al.,
2023) or writing style (Lyu et al., 2023), that align with human-interpretable abstractions (Acerbi &
Stubbersfield, 2023; Manning et al., 2020; Sajjad et al., 2022; Sharkey et al., 2025). Uncovering the
underlying reasons for this phenomenon, i.e., developing a principled framework that formally links
learned representations to latent concepts, holds promise for advancing our understanding of LLMs.

Some recent works attempt to formulate the problem of linking LLM representations to latent
concepts through latent variable models (Park et al., 2023; 2024; Rajendran et al., 2024) in which
human-interpretable concepts are formulated as latent variables. For example, Park et al. (2023)
propose a latent variable model that focuses solely on binary latent concepts. The work of Park et al.
(2024) extends this formalization to categorical concepts, but its focus on hierarchical relationships
between concepts may not capture other possible structures in textual data. Rajendran et al. (2024)
instead model both latent concepts and, in particular, observed text data, as continuous variables
which may deviate from the discrete sense of language. See Appendix A for additional related work.

We investigate here how LLMs, despite relying solely on next-token prediction, can grasp human-
interpretable concepts, through a new latent variable model without the limitations above.

We begin by introducing a latent variable model, illustrated on the left of Figure 1. In this model,
human-interpretable concepts are formulated as latent variables connected by arbitrary causal relation-
ships, which in turn generate observed text data through an underlying generative process. Building
on this model we develop a theoretical framework to assess whether next-token prediction enables
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Figure 1: An overview of the main contributions of this work. On the left, we illustrate the proposed
latent variable model that represents concepts as latent variables c, which generates both the input x
and output y within a next-token prediction framework. Leveraging Bayes’ rule and the diversity
condition, we establish an identifiability result: LLM representations are related to a linear transfor-
mation of the logarithm of the posterior distribution of latent variables conditioned on input context,
i.e., fx(x) = A[log p(c = ci|x)]i + b+ o(ϵ), where b is a constant, and o(ϵ) represents a term that
grows asymptotically smaller than ϵ as ϵ → 0.

LLMs trained on such text data to recover the underlying latent variables. Through identifiability
analysis, we show that, under mild conditions, LLM representations approximately correspond to a
linear transformation of the logarithm of the posterior distribution of latent variables conditioned on
input context. We refer to this as the linear property of LLM representations.

Taking a step further, we demonstrate that this linear property provides both theoretical and practical
insights for linear phenomena observed in empirical studies. On the theoretical side, it offers a
unified perspective for understanding the various forms from the linear representation hypothesis,
e.g., steering vector (Turner et al., 2023) and linear probing (Park et al., 2023; Marks & Tegmark,
2023). On the practical side, the linear property motivates a principled evaluation strategy for sparse
autoencoders (SAEs), which aim to extract concepts in an unsupervised manner (Huben et al., 2024;
Bricken et al., 2023). Specifically, supervised concept extraction methods, e.g., linear probing, can
serve as an upper bound to evaluate how well SAE features recover the underlying concepts.

Contributions. To investigate the relationship between LLM representations and human-interpretable
concepts, this paper makes the following contributions. We introduce a novel latent variable model
in Sec. 2, in which human-interpretable concepts are formulated as latent variables. Building on
this setup, we establish the existence of a linear transformation between LLM representations and
human-interpretable concepts in Sec. 3. In Sec. 4, we show how the linear property above provides
theoretical support for the empirical linear representation hypothesis in LLMs and establishes a
unified perspective. In Sec. 5, we show how the linear property motivate a principled approach for
evaluating SAEs. Additionally, we offer an early exploration of a promising method: structured
SAEs, a variant that incorporates structured sparsity, to improve performance under this evaluation.
In Sec. 6, we present experiments on simulation data, and real data across the Pythia (Biderman
et al., 2023), Llama (Touvron et al., 2023a; Dubey et al., 2024), and DeepSeek-R1 (Guo et al., 2025)
models families, with results consistent with our findings. We further present empirical results on the
proposed evaluation approach, and the structured SAEs.

2 SETUP: LATENT VARIABLE MODEL FOR TEXT DATA GENERATION

We begin by a novel latent variable model designed to capture text data generation process, as depicted
on the left in Figure 1. The proposed generative model can be expressed probabilistically as:

p(x, y) =
∑

c
p(x|c)p(y|c)p(c), (1)

where we formulate human-interpretable concepts as latent variables c, and observed variables x and
y represent text generated by the mapping g on c. We here distinguish observed variables into x and
y, to align the input, i.e., context, and output token in next-token prediction framework, respectively.
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Our goal is to consider realistic assumptions on the proposed latent variable model, ensuring the
model’s flexibility to closely approximate real text data. To this end, we do not impose any specific
graph structure over latent variables. For example, we allow for any directed acyclic graph structure
over latent variables from the perspective of causal representation learning. Most importantly, we
highlight the following two factors that distinguish our model from existing latent variable models
(Rajendran et al., 2024; Yan et al., 2024; Jin et al., 2020; Jiang et al., 2024), underscoring its novelty.

Discrete Modeling for Text Data Some existing latent variable models (Rajendran et al., 2024;
Yan et al., 2024) for text data predominantly assume that both latent and observed variables are
continuous, primarily to simplify identifiability analysis. However, this assumption may overlook
the largely discrete characteristics of text data. In contrast, we assume throughout this work that all
variables, both latent variables c and observed x and y, are discrete. This assumption can be justified
for observed variables x and y, considering the inherently discrete structure of text data. Likewise,
latent variables, which represent underlying concepts, can be well-suited to discrete modeling, as they
often correspond to categorical distinctions or finite sets of semantic properties commonly observed
in text data. For instance, in a topic modeling scenario, latent variables can represent distinct topics,
such as “sports”, “politics”, or “technology”, each of which forms a discrete category. This discrete
structure aligns with the way humans typically interpret and classify information in text, making the
assumption not only intuitive but also practical for real-world applications, as also assumed in prior
work (Blei et al., 2003; Jin et al., 2020; Jiang et al., 2024).

No Invertibility Requirement Unlike existing approaches (Jiang et al., 2024; Rajendran et al.,
2024), we do not require the mapping g from latent c to observed variables (x, y) to be invertible.
Allowing non-invertibility is a deliberate design choice driven by fact that the mapping from latent
to observed space is often complex and unknown. Imposing constraints on it may unnecessarily
limit its flexibility. Moreover, in the context of text data, there are two key considerations. First, in
natural language processing, the mapping from latent to observed space often involves a many-to-
one relationship. For example, different combinations of emotional concepts can lead to the same
sentiment label. In sentiment analysis, the combination of “positive sentiment” and “excitement”
might result in an observed outcome such as “This is amazing!” (Miller, 1995). Second, some latent
concepts may not be explicitly manifested in the observed sentence. For instance, a speaker’s intent,
tone, or implicit connotations may influence how a sentence is constructed, yet remain unobservable
in surface-level text. This phenomenon is particularly prominent in pragmatics and discourse analysis,
where unspoken contextual factors significantly shape meaning (Levinson, 1983). To formulate
approximate invertibility, we define the mapping g from latent to observed space as follows:
Definition 2.1. We define the degree of approximate invertibility of the mapping g from c to (x, y)
by introducing an error term ϵ, as follows: 1 − p(c = c∗|x, y) = ϵ, where 0 ≤ ϵ < 1, and
c∗ = argmaxc p(c|x, y) represents the dominant mode of the posterior.
Remark 2.2. Such a relaxed condition naturally implies that we may not achieve exact identifiability
results, as established in previous works, due to inevitable information loss in the context of non-
invertible mappings. Nevertheless, this non-invertibility still allows for considering identifiability in
an approximate sense, which will be discussed in Sec. 3.

3 THEORY: IDENTIFIABILITY OF THE PROPOSED LATENT VARIABLE MODEL

We now turn to the identifiability analysis of the proposed latent variable model, i.e., whether the
latent variables c can be uniquely recovered (up to an equivalence class) from observed data x and y
under certain assumptions. We conduct this analysis within the next-token prediction framework, a
widely adopted and empirically significant paradigm for training LLMs (Brown et al., 2020; Touvron
et al., 2023b; Bi et al., 2024; Zhao et al., 2023).

We begin by introducing the general form of next-token prediction, which serves as the foundation
for our analysis. The goal of next-token prediction is to learn a model that predicts the conditional
distribution over the next token p(y|x), which can be achieved by applying the softmax function over
the logits produced by the model’s final layer. This process mirrors multinomial logistic regression,
where the model approximates the true conditional distribution p(y|x) by minimizing the cross-
entropy loss. In theory, assuming sufficient training data, a sufficiently expressive architecture and
proper optimization, the model’s predictions will converge to the true conditional distribution. We
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emphasize that these assumptions are standard in the literature on identifiability analyses.

p(y|x) = exp (fx(x)
T fy(y))∑

yj
exp (fx(x)T fy(yj))

, (2)

where yj denotes a specific value of the observed variable y. The function fx(x) maps input x to a
representation space, and fy(y) corresponds to the model’s final-layer weights, i.e., look-up table.

On the other hand, the true p(y|x) can be derived from Eq. 1 using Bayes’ rule:

p(y|x) =
∑

c
p(y|c)p(c|x). (3)

By the expression for p(y|x) in both Eq. 2 and Eq. 3, we can align the right-hand sides of these two
equations. Taking the logarithm of both sides yields:

fx(x)
T fy(y)− log

(∑
yj

exp(fx(x)
T fy(yj))

)
= log

∑
c
p(y|c)p(c|x). (4)

We now, as shown in Eq. 4, establish an initial connection between the LLM representations fx in the
inference model (left-hand side) and the latent variables c in the generative model (right-hand side).
To further study this connection, we introduce the following diversity condition.

Diversity Condition Let c = [c1, . . . , cm] denote the latent variables, where ck ∈ Vk with
|Vk| = nk, k = 1, . . . ,m, so that c can take ℓ =

∏m
i=1 nk possible values. Let ci, i = 1, . . . , ℓ,

denote all possible values of c. We assume there exist ℓ+ 1 distinct values of y, y0, . . . , yℓ, such that
the following matrix L is invertible, i.e.,

L ∈ Rℓ×ℓ, Lj,i = p(c = ci | y = yj)− p(c = ci | y = y0), i, j = 1, . . . , ℓ,

This assumption was originally developed in nonlinear independent component analysis (Hyvarinen
& Morioka, 2016; Hyvarinen et al., 2019; Khemakhem et al., 2020). Intuitively, it requires that the
conditional distribution p(c | y) exhibits sufficiently diverse variation across different values of y.
Similarly, we assume there exist ℓ+ 1 values of y such that the matrix

L̂ =
[
fy(y1)− fy(y0), fy(y2)− fy(y0), . . . , fy(yℓ)− fy(y0)

]
∈ Rℓ×ℓ,

is invertible. This assumption has been employed in the context of identifiability analysis in inference
space for LLMs (Roeder et al., 2021; Marconato et al., 2024). Justification can be found in Sec. C.

Under this diversity condition, we have the following identifiability result:
Theorem 3.1. Under the diversity condition above, the true latent variables c are related to LLM
representations fx(x), which are learned through the next-token prediction framework, by the
following relationship:

fx(x) = A[log p(c = ci|x)]i + b− (L̂T )−1hy, (5)

where hy = [hy1
− hy0

, ..., hyℓ
− hy0

] with hyj
= [p(c = ci|y = yj)]

T
i [log p(c = ci|y = yj ,x)]i,

and b = (L̂T )−1by, with by = [b(y = y1)− b(y = y0), ..., b(y = yℓ)− b(y = y0)] and
b(y = yj) = Ep(c|y=yj)[log p(y = yj |c)], and A = (L̂T )−1L. When ϵ = 0, fx(x) =

A[log p(c = ci|x)]i + b, and ϵ → 0, fx(x) ≈ A[log p(c = ci|x)]i + b 1 .
Remark 3.2. This theorem establishes a precise relationship between the LLM representations fx(x)
and the underlying latent concepts c. This not only provides theoretical grounding for understanding
LLM representations, but also offers a unified prospective for the linear representation hypothesis
(Sec. 4). Beyond this, it suggests a principled approach for evaluating SAEs (Sec. 5).

4 THEORY → INSIGHTS: UNIFYING THE LINEAR HYPOTHESIS

In this section, we demonstrate how the identifiability result presented in Theorem 3.1 supports
the linear representation hypothesis in LLMs. To this end, we first briefly introduce the linear
representation hypothesis and then explain how it can be understood and unified through the linear
matrix A from our identifiability result.

1Here, [·]i denotes a vector indexed by all latent configurations ci, and later we will also use [·]ck to denote a
vector indexed by all possible values of a single concept ck.
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4.1 THE LINEAR REPRESENTATION HYPOTHESIS

The linear representation hypothesis suggests that human-interpretable concepts in LLMs are repre-
sented linearly. This idea is supported by empirical evidence in various forms, including:

Concepts as Directions: Each concept is represented as a direction determined by the differences
(i.e., vector offset) in representations of pairs that vary only in one latent concept of interest, e.g.,
gender. For instance, Rep(“men”)-Rep(“women”) ≈ Rep(“king”)-Rep(“queen”) (Mikolov et al.,
2013; Pennington et al., 2014; Turner et al., 2023).

Concept Manipulability: Previous studies have demonstrated that the value of a concept can be
altered independently from others by introducing a corresponding steering vector (Li et al., 2024;
Wang et al., 2023; Turner et al., 2023). For example, transitioning an output from a false to a truthful
answer can be accomplished by adding a vector offset derived from counterfactual pairs that differ
solely in the false/truthful concept.

Linear Probing: The value of a concept is often measured using a linear probe. For instance, the
probability that the output language is French is logit-linear in the representation of the input. In this
context, the linear weights can be interpreted as representing the concept of English/French (Park
et al., 2023; Marks & Tegmark, 2023).

4.2 UNDERSTANDING THE LINEAR REPRESENTATION HYPOTHESIS

The linear representation hypothesis has received growing empirical support in recent years. While
recent work has aimed to develop unified frameworks for a deeper understanding of this phenomenon
(Park et al., 2023; Marconato et al., 2024; Jiang et al., 2024), our approach seeks to explain it through
the lens of identifiability. Before proceeding, we first provide the following definition:

Definition 4.1. We define the degree of approximate invertibility of the mapping from the latent
variables c to the observed variables x by introducing an error term ϵx, as follows: 1 − p(c =
c∗x|x) = ϵx, where 0 < ϵx < 1, and c∗x = argmaxc p(c|x) represents the dominant mode of p(c|x).

Next, we present two key corollaries derived from our identifiability results.

Corollary 4.2 (Concepts Are Encoded in the Matrix A). Suppose that Theorem 3.1 holds, i.e.,
fx(x) ≈ A [log p(c = ci | x)]i + b. Let x0 and x1 be a pair that differ only in the i-th concept ck.
Then as ϵx → 0, fx(x1)− fx(x0) ≈ Ãk

([
log p(ck | x1)− log p(ck | x0)

]
ck

)
, where Ãk = ABk,

where Bk ∈ {0, 1}ℓ×|Vk| is a binary lifting matrix that broadcasts each entry of [log p(ck | x)]ck to
the corresponding index in [log p(c = ci | x)]i.

Understanding Concepts as Directions The corollary explains why the representation difference
Rep(“man”) − Rep(“woman”) can be closely approximated by Rep(“king”) − Rep(“queen”). In
both the (“man”, “woman”) and (“king”, “queen”) pairs, the primary distinguishing factor is the latent
concept of gender, while other concepts such as royalty remain largely unchanged. As a result, both
Rep(“man”)− Rep(“woman”) and Rep(“king”)− Rep(“queen”) are driven by the same expression
Ãk

([
log p(ck | x1)− log p(ck | x0)

]
ck

)
. In the case of a binary concept ck, the expression is further

reduced to a vector direction corresponding to the concept of interest. See Appendix G.1 for details.

Understanding Concept Manipulability The corollary also supports the notion that a con-
cept’s value can be adjusted by adding a corresponding steering vector, such as Rep(“man”) −
Rep(“woman”). Adding the steering vector effectively modifies the original representation to
produce a new representation, i.e., f̂x = fx(x) + α

(
Ãk(

[
log p(ck | x1)− log p(ck | x0)

]
ck
)
)
=

A
(
[log p(c = ci|x)]i + αBk(

[
log p(ck | x1)− log p(ck | x0)

]
ck
)
)
+ b, where α represents an in-

troduced weight (Wang et al., 2023; Turner et al., 2023). Thus, manipulating a concept via a steering
vector is, in essence, equivalent to modifying the posterior distribution of the concept of interest given
x, which directly impacts the model’s output.

To understand Linear Probing, we first introduce the following corollary:

Corollary 4.3 (Linear Classifiability of Representations). Suppose that Theorem 3.1 holds, i.e.,
fx(x) ≈ A [log p(c = ci | x)]i + b. Let x0 and x1 be pair data that differ only in the i-th concept

5
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variable ck. Then, as ϵx → 0, the corresponding representations (fx(x0), fx(x1)) are linearly
separable along the variation of ck. In particular, there exists a linear classifier with weight matrix
W such that WÃk ≈ I, and the corresponding logit is [p(ck | x)]ck .

This corollary supports that latent concepts, e.g., English vs. French, can be reliably classified
using a linear probing on the model’s representations. This linear separability enables alignment
between the model’s predictive distribution and the true class distribution, achieved via cross-entropy
minimization. A specific analysis for the binary case of concept ck is provided in Appendix G.2.

4.3 UNIFYING THE LINEAR REPRESENTATION HYPOTHESIS

Taken together, Corollary 4.2 shows that the linear transformation A underlies both concepts as
directions and concept manipulability, while Corollary 4.3 demonstrates that linear probing is
supported by a classifier W satisfying WÃk ≈ I. This establishes a unified view on understanding
the linear representation hypothesis: the various forms are all connected through the same underlying
linear matrix A, providing a unified theoretical perspective on how LLM representations linearly
encode concepts. Importantly, according to Theorem 3.1, the matrix is defined as A = (L̂T )−1L,
which, in essence, arises from the data diversity condition outlined in Diversity Condition.

5 THEORY → PRACTICE: EVALUATING SAES AND STRUCTURED SAES

Evaluating SAEs Broadly speaking, SAEs are designed with two primary objectives. First, they
aim to learn a set of latent features z such that sparse linear combinations βz can accurately recon-
struct LLM representations, i.e., fx(x) ≈ βz. Second, they seek to ensure that each learned feature
zi corresponds to an monosemantic, human-interpretable concept, thereby enabling a mechanistic un-
derstanding of LLMs. While reconstruction loss is commonly used to assess how well representations
are reconstructed (Rajamanoharan et al., 2024a;b; Gao et al., 2025; Braun et al., 2024), it is a limited
proxy for the second objective. A key challenge lies in the absence of ground truth for the underlying
concepts (Kantamneni et al., 2025), making the evaluation of feature disentanglement challenging.

To address this issue, we propose a new evaluation method for SAEs grounded in our theoretical
insights. Specifically, based on Theorem 3.1, the LLM representations fx(x) can be approximated
as fx(x) ≈ A [log p(c = ci | x)]i 2. Meanwhile, SAEs are trained to reconstruct fx(x) by βz.
Combining the two, we arrive at: βz ≈ A [log p(c = ci | x)]i . This suggests that SAE features
z are linearly related to [log p(c = ci | x)]i. Therefore, if we expect each latent dimension zi to
encode only a single concept ck, it should depend only on the posterior of that concept log p(ck | x).
Consequently, we can evaluate whether each zi has successfully learned a monosemantic concept by
measuring its linear correlation with log p(ck | x). The question is: how can we obtain p(ck | x)?
Based on Corollary 4.3, this can be achieved using paired data that differ only in the k-th concept
variable ck. Specifically, we can construct paired data (x0,x1) that differ in only a single binary
concept ck, with labels ck = 0 for x0 and ck = 1 for x1. We then train a linear classifier in a
supervised manner on the corresponding LLM representations fx(x0) and fx(x1), with the goal of
predicting their labels. Once the classifier is trained, the resulting logit provides a estimate of the
posterior probability p(ck = 1 | x). See Appendix I.2 for more rigorous details.

Structured SAEs Building on the evaluation method described above, our experiments (See
Figure 4) suggest that sparsity regularization alone may may not be sufficient to fully disentangle
the underlying concepts in LLM representations. Revisiting Theorem 3.1, the identifiability result
depends on the proposed latent variable model. In this model, the complex dependencies in text data
are encoded by the latent variables, whose interdependencies capture the underlying structure of
the data. That is, latent variables are likely to exhibit strong interdependencies. Motivated by this,
we propose exploring structured SAEs that incorporate additional regularization beyond sparsity to
encourage learned features to model potential relationships among concepts.

In particular, we experiment with low-rank structures to complement sparsity, while noting that other
forms of structured regularization could also be considered. Formally, structured SAEs minimize the

2For simplicity, we omit the constant term b in this section, which does not affect the subsequent analysis.
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following objective:

L = Ex∼Dtrain

[
∥fx(x)− f̄x(x)∥22 + λt

(
∥S∥pt

pt
+ γ∥R∥nuc

)]
, (6)

where f̄x(x) denotes reconstruction, λt is the dynamically adjusted sparsity coefficient at step
t, following the p-annealing SAE strategy (Karvonen et al., 2024), γ is a hyperparameter that
balances the sparsity penalty and the low-rank regularization, the learned features z = S + R,
∥S∥pt

pt
=

∑
i |Si|pt is the adaptive Lpt norm promoting sparsity, ∥R∥nuc is the nuclear norm, used to

enforce a low-rank structure on R. See Appendix I.1 for more implementation details.

6 EMPIRICAL EVALUATION ON SIMULATED AND REAL DATA WITH LLMS

Simulation We begin by conducting experiments on synthetic data, which is generated through the
following process: First, we create random directed acyclic graphs (DAGs) with n latent variables,
representing concepts. For each random DAG, the conditional probabilities of each variable given its
parents are modeled using Bernoulli distributions, where the parameters are sampled uniformly from
[0.2, 0.8]. To simulate a nonlinear mixture process, we then convert the latent variable samples into
one-hot format and randomly apply a permutation matrix to the one-hot encoding, generating one-hot
observed samples. These are then transformed into binary observed samples. To simulate next-token
prediction, we randomly mask a part of the binary observed data, e.g.„ xi, and predict it by use the
remaining portion x\i. Refer to Appendix H.1 for more details.

Evaluation In Theorem 3.1, we demonstrate that the representations learned by next-token pre-
diction approximate a linear transformation of log p(c|x), and this approximation becomes tighter
when the mapping from c to x is approximately invertible. Building on this, Corollary 4.3 establishes
that for a data pair (c,x) differing only in the concept of interest, the representations fx(x) is lin-
early separable. Therefore, to validate Theorem 3.1, we can assess the degree to which the learned
representations can be classified linearly for data pairs (c,x).

Figure 2: Classification accuracy vs. number of observed variables (left) and graph structures (right).

Our initial experiments investigate the relationship between the degree of invertibility of the mapping
from c to x and the approximation of the identifiability result in Theorem 3.1. This exploration
provides empirical insights into how invertibility influences the recovery of latent variables. To this
end, we fix the size of the latent variables and gradually increase the size of the observed variables,
thereby enhancing the degree of invertibility of the mapping from c to x. The left of Figure 2
demonstrates that classification accuracy improves as the size of the observed variables x increases,
aligning with results in Theorem 3.1.

We then examine the impact of latent graph structures on our identifiability results. To this end, we
randomly generate DAG structures imposed on c. Specifically, random Erdős-Rényi (ER) graphs
(ERDdS & R&wi, 1959) are generated with varying numbers of expected edges. For instance, ERk
denotes graphs with d nodes and kd expected edges. The right panel of Figure 2 illustrates the
relationship between classification accuracy and the size of the latent variables c under different
settings, including ER1, ER2, and ER3. The results demonstrate that our identifiability findings
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hold consistently across various graph structures and latent variable sizes, as evidenced by the linear
classification accuracy.

Figure 3: Results of the product As ×Ws across the LLaMA-2 and Pythia model families. Here,
As represents a matrix derived from the feature differences of 27 counterfactual pairs, while Ws is a
weight matrix obtained from a linear classifier trained on these features. The product approximates
the identity matrix, supporting the theoretical findings in Corollary 4.3.

Experiments with LLMs We now present experiments on pre-trained LLMs. While it is challeng-
ing to collect all latent variables from real-world data to directly evaluate our identifiability result in
Thorem 3.1, we can instead assess our corollaries to indirectly validate it. For Corollary 4.2, prior
studies have already demonstrated the linear representation properties of LLM embeddings using
counterfactual pairs that differ only in a single concept of interest (Mikolov et al., 2013; Pennington
et al., 2014; Turner et al., 2023; Li et al., 2024; Wang et al., 2023; Park et al., 2023). Therefore, we
shift our focus to a new property highlighted in Corollary 4.3, specifically the relationship between
W and Ãk, which has not been explored in prior work. To investigate this, we require counterfactual
pairs that differ only in a single concept. Constructing such counterfactual sentences is highly
non-trivial, even for human annotators, due to the complexities of semantics and the need for precise
control over contextual variations, as noted in prior studies (Park et al., 2023; Jiang et al., 2024).
For our experiments, we utilize 27 counterfactual pairs from Park et al. (2023) that differ only in a
binary concept, which are constructed based on the Big Analogy Test dataset (Gladkova et al., 2016).
More details can be found in Sec. H.2 in Appendix.

Guided by Corollary 4.2, we use these 27 counterfactual pairs to obtain Ãk. Specifically, for each
pair differing in a binary concept, we compute the representation difference, and stacking all such
vectors yields the matrix As ∈ R27×dim, where each row corresponds to a concept direction, and
dim denotes the representation dimension of the pre-trained LLM used. See a binary special case
of Corollary 4.2 in Appendix G.1 for further details. To obtain W, motivated by Corollary 4.3,
we train a linear classifier for each binary concept using the representations of the counterfactual
pairs. The resulting weight vectors are stacked to form a matrix Ws ∈ Rdim×27, where each column
corresponds to the decision boundary for one concept. See a binary special case of Corollary 4.3 in
Appendix G.2 for further details. Finally, we first normalize both As and Ws to remove the effect of
scaling, which does not affect the semantics of a direction or decision boundary, and then examine
the product AsWs. According to Corollary 4.3, the (i, j)-th entry of this product corresponds to
the inner product between the representation difference vector for the i-th concept and the classifier
weight vector for the j-th concept. When i = j, this inner product should be close to 1, indicating
that the classifier is aligned with the concept direction. When i ̸= j, the inner product should be
less than 1, since the classifier for one concept should not be aligned with the concept direction of a
different concept. Therefore, the matrix product AsWs should approximate the identity matrix I.
Figure 3 displays the results of this product across the LLaMA-2 and Pythia model families. Refer
to Appendix K for more results on LLaMA-3 and DeepSeek-R1. The results show that the product
approximates the identity matrix, which is consistent with the theoretical finding in Corollary 4.3.
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Figure 4: Comparison of SAE models. Pearson correlation scores (left) and MSE on the used
counterfactual pairs (right) across different scales of Pythia.

Experiments on SAEs We finally conduct experiment on SAEs, training four sparse variants,
including top-k SAE (Gao et al., 2025), batch-top-k SAE (Bussmann et al., 2024), p-annealing SAE
(Karvonen et al., 2024), and the proposed structured SAE. Following Theorem 3.1, each SAE is
trained on representations from the final hidden layer across Pythia-70m, Pythia-1.4b and Pythia-2.8b
(Biderman et al., 2023), with The Pile corpus (Gao et al., 2020). For evaluation, as mentioned
in Sec. 5, we use 27 counterfactual pairs from (Park et al., 2023) again to train a linear classifier
using LogisticRegression implementation from the scikit-learn library, which provides logits, i.e.,
unnormalized p(ck = 1|x), for each of the 27 pairs. These counterfactual pairs are also passed
through the trained SAEs to extract features z. We search for the best-matching feature zi for each
p(ck|x) according to Pearson correlation between exp(zi) and p(ck|x), to measure linear correlation.

Figure 4 reports the average Pearson correlations across the 27 counterfactual concepts (left, detailed
results in Appendix I) and the reconstruction error measured by mean squared error (MSE, right). We
draw two key conclusions. First, the proposed evaluation framework shows that: it differentiates SAE
variants with sensitivity and provides interpretable evidence of how the learned features align with
binary concepts. The trends are consistent with conventional reconstruction metrics such as MSE,
reinforcing the reliability of our approach. Second, the results highlight the advantage of the proposed
structured SAEs, which benefits from incorporating structured regularization. This advantage is
consistently observed under both our evaluation framework and standard reconstruction metrics.

We emphasize again that obtaining counterfactual pairs is challenging. Even on this compact, high-
precision benchmark, all four SAEs achieve Pearson correlations below 0.8 (1.0 indicates perfect
recovery). Consequently, this benchmark is effective in differentiating the performance of the four
SAEs. We hope it motivates the creation of more such high-quality counterfactual pairs.

7 CONCLUSION

In this work, we propose a latent variable model to capture the generative process of text, representing
high-level, human-interpretable concepts as latent variables. Under mild assumptions, our analysis
provides a key insight into LLMs: a linear property, whereby LLM representations approximate a
linear transformation of the posterior over latent variables. This establishes a foundational framework
for understanding next-token prediction. Furthermore, we show that this linear property offers a
unified theoretical perspective on various forms of the linear representation hypothesis, and motivates
a principled evaluation strategy for sparse autoencoders. These findings open avenues for deeper
exploration of how LLMs learn and represent complex patterns. Building on our results, we suggest
the following future direction: develop methods to linearly unmix LLM representations to directly
extract the probabilities of individual high-level concepts from the latent posterior. Further details are
provided in Appendix L.
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A RELATED WORK

Linearity of Representation in LLMs Recent studies have established the empirical finding that
concepts in LLMs are often linearly encoded, a phenomenon known as the linear representation
hypothesis (Mikolov et al., 2013; Pennington et al., 2014; Arora et al., 2016; Elhage et al., 2022;
Burns et al., 2022; Tigges et al., 2023; Nanda et al., 2023; Moschella et al., 2022; Park et al., 2023; Li
et al., 2024; Gurnee et al., 2023; Rajendran et al., 2024). Building on this observation, recent works
(Park et al., 2023; Marconato et al., 2024) attempt to unify these findings into a cohesive framework,
aiming to deepen our understanding and potentially inspire new insights. However, these works do
not address why and how such linear properties emerge. Some previous works (Marconato et al.,
2024; Roeder et al., 2021) have demonstrated identifiability results within the inference space, such
as establishing connections between features derived from different inference models. However,
these results are confined to the inference space and do not connect to the true latent variables in
latent variable models. A recent work (Jiang et al., 2024) seeks to explain the origins of these linear
properties but employs a latent variable model that differs from ours. From a technical perspective,
their explanation is rooted in the implicit bias of gradient descent. In contrast, our work provides an
explanation grounded in identifiability theory. This distinction highlights our focus on connecting
the observed linear properties directly to the identifiability of true latent variables in latent variable
models, offering a more comprehensive and theoretically robust understanding of these phenomena.
In addition, recent work (Rajendran et al., 2024) assumes continuous latent and observed variables,
while we assume both latent variables and observed variables to be discrete, aligning more closely
with modeling natural language.

Causal Representation Learning This work is closely related to causal representation learning
(Schölkopf et al., 2021), which aims to identify high-level latent causal variables from low-level
observational data. Many prior studies (Brehmer et al., 2022; Von Kügelgen et al., 2021; Massidda
et al., 2023; von Kügelgen et al., 2023; Ahuja et al., 2023; Seigal et al., 2022; Shen et al., 2022; Liu
et al., 2022; Buchholz et al., 2023; Varici et al., 2023; Liu et al., 2024b; 2025; 2024a;c; Hyvarinen
& Morioka, 2016; Hyvarinen et al., 2019; Khemakhem et al., 2020) have developed theoretical
frameworks supporting the recovery of true latent variables up to simple transformations. However,
these works primarily focus on continuous spaces and do not address the next-token prediction
framework employed by LLMs. A subset of works (Gu & Dunson, 2023; Kong et al., 2024; Kivva
et al., 2021) has explored causal representation learning in discrete spaces for both latent and observed
variables, often imposing specific graph structures and assuming invertible mappings from latent
to observed spaces. Despite their focus on discrete settings, none of these studies consider the
next-token prediction framework in LLMs. In contrast, our work overcomes these limitations.
We analyze approximate identifiability without relying on strict invertibility assumptions, which
better aligns with the complex and often non-invertible relationships observed in real-world data.
While a recent study has examined non-invertible mappings from latent to observed spaces, they
rely on additional historical information to effectively restore invertibility. In our approach, we
focus on achieving approximate identifiability without requiring such additional information. A
very recent work (Rajendran et al., 2024) explores identifiability analysis for LLMs; however, they
model both observed text data and latent variables as continuous and still assume invertibility in
their analysis. In contrast, our framework explicitly considers discrete latent and observed variables,
relaxed invertibility assumptions, and directly aligns with the next-token prediction paradigm, offering
a more realistic and generalizable approach to causal representation learning in LLMs.

Sparse Autoencoders Polysemanticity, a phenomenon observed in recent studies, roughly speaking,
refers to cases where a single representation encodes multiple distinct, human-interpretable concepts
(Arora et al., 2018). Early investigations suggested that neural networks represent features by linear
superposition and motivated efforts to disentangle human-interpretable concepts from such linear
mixing (Elhage et al., 2022). This can be achieved by using sparse autoencoders (Huben et al., 2024;
Rajamanoharan et al., 2024a;b; Gao et al., 2025; Braun et al., 2024; Bricken et al., 2023), a technique
closely related to the well-known framework of dictionary learning (Dumitrescu & Irofti, 2018;
Eggert & Korner, 2004; Elad, 2010; Elad & Bruckstein, 2002; Aharon et al., 2006; Arora et al., 2015).
In contrast to these works, we propose structured SAEs to model the dependencies among latent
concepts. Furthermore, motivated by our theoretical findings, we introduce a new evaluation method
for SAEs, grounded in our justified theoretical results.
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B LIMITATIONS

One of the main contributions of this work is establishing an identifiability result for the next-token
prediction framework, a widely used approach for training LLMs. This result hinges on a key
assumption: the diversity condition, which requires the data distribution to exhibit sufficiently strong
and diverse variations. The diversity condition was originally introduced in the context of nonlinear
ICA (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Khemakhem et al., 2020) and has since
been adopted in the identifiability analysis within the causal representation learning community. In
essence, it has emerged as a fundamental requirement for identifiability. This condition might be
satisfied given that the training data for LLMs is primarily sourced from the Internet, encompassing a
broad and diverse range of content. Recent empirical analyses of LLMs further support the plausibility
of this assumption (Roeder et al., 2021; Marconato et al., 2024), reinforcing its relevance in the
context of identifiability.

Similar to existing works (Park et al., 2023; Jiang et al., 2024; Marconato et al., 2024; Rajendran
et al., 2024), our analysis is limited to the last layer in LLMs and does not provide a justification for
intermediate layers. Formalizing the relationship between representations in intermediate layers and
identifiability analysis presents additional challenges. This complexity arises from the intricate nature
of intermediate layer representations. Therefore, extending identifiability results to intermediate
layers remains an open and more challenging problem.

C JUSTIFICATION FOR THE DIVERSITY CONDITION

The diversity condition involves two key requirements: (1) the invertibility of L, which pertains to the
latent generative process, and (2) the invertibility of L̂, which pertains to the latent inference process.
The first condition was originally developed in the context of nonlinear independent component
analysis (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Khemakhem et al., 2020) and has
been further extended to identifiability analysis in the causal representation learning community
(Liu et al., 2022; 2024b). Intuitively, the invertibility of L ensures that the latent variables c exhibit
sufficiently strong and diverse variation across different labels y, making it possible, in principle, to
recover c uniquely from y. Furthermore, the invertibility of L̂ indicates that there exists a sufficiently
diverse set of y values such that the corresponding difference vectors fy(yj)− fy(y0) form a linearly
independent set spanning the image of fy. This assumption is generally mild: as noted by Roeder
et al. (2021), the probability that randomly initialized and stochastically updated parameters of fy
produce linearly dependent difference vectors is effectively zero.

We emphasize that, while the diversity condition is primarily a theoretical assumption ensuring
identifiability, its plausibility can be assessed empirically using pre-trained LLMs on real data.
Directly observing all latent variables c is infeasible, but the corollaries derived from our theory,
including Corollary 4.2 and Corollary 4.3, provide predictions that can be indirectly validated. Prior
work has shown that LLM embeddings exhibit linear representation properties when comparing
counterfactual pairs differing in a single concept (Mikolov et al., 2013; Pennington et al., 2014;
Turner et al., 2023; Li et al., 2024; Wang et al., 2023; Park et al., 2023), supporting the theoretical
prediction of sufficient diversity in latent directions (Corollary 4.2). In addition, our experiments
show that the alignment between representation differences and classifier weights across multiple
LLM families (Figures 3 and 6) closely matches the predictions of Corollary 4.3, suggesting that the
diversity condition might plausibly hold in practice.
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D PROOF OF THEOREM 3.1

Proof. Next-token prediction mirrors multinomial logistic regression, where the model approximates
the true conditional distribution, i.e., p(y|x), by minimizing the cross-entropy loss. In this framework,
given sufficient training data, a sufficiently expressive architecture, and effective optimization, the
model’s predictions are expected to converge to the true conditional distribution, as follows:

p(y|x) = exp(fx(x)
T fy(y))∑

y′ exp(fx(x)T fy(yj))
. (7)

On the other hand, for the proposed latent variable model described in Eq. 1), the true conditional
distribution p(y|x) can be derived using Bayes’ rule:

p(y|x) =
∑

c
p(y|c)p(c|x). (8)

By comparing Eq. 8 and Eq. 7, we arrive at the following relationship:

exp(fx(x)
T fy(y))∑

y′ exp(fx(x)T fy(yy))
=

∑
c
p(y|c)p(c|x). (9)

Taking the logarithm on both sides of Eq. 9, we obtain:

fx(x)
T fy(y)− logZ(x) = log

(∑
c
p(y|c)p(c|x)

)
(10)

where Z(x) =
∑

yj
exp(fx(x)

T fy(yj)) represents the normalization constant. This transformation
provides a direct link between the representations f(x) learned by next-token prediction (Eq. 7) and
the true posterior distribution p(c|x).
Now, let us focus on the right of Eq. 10 , we can obtain that:

log
(∑

c
p(y|c)p(c|x)

)
= log p(y|x), (11)

= Ep(c|y)
[
log p(y|x)

]
, (12)

= Ep(c|y)
[
log

(
p(c|y,x) p(y|x)

p(c|y,x)
)]
, (13)

= Ep(c|y)
[
log p(y, c|x)

]
− Ep(c|y)

[
log p(c|y,x)

]
, (14)

= Ep(c|y)
[
log p(c|x)

]
+ Ep(c|y)

[
log p(y|c,x)︸ ︷︷ ︸

p(y|c)

]
− Ep(c|y)

[
log p(c|y,x)

]
,

(15)

where p(y|c,x) = p(y|c), due to the conditional independence of y and x given c, as defined in the
proposed latent variable model.

Together with Eq. 15 and Eq. 10, we have:

fx(x)
T fy(y)− logZ(x) = Ep(c|y)[log p(c|x)] + Ep(c|y)[log p(y|c)︸ ︷︷ ︸

by

]− Ep(c|y)[log p(c|y,x)].

(16)

Define Ep(c|y)[log p(y|c)] = by, and define a vector [p(c = ci|x)]i as the vector constructed by
the probabilities of all possible values of c, conditional on x. As a result, Ep(c|y) log p(c|x) =∑

c p(c|y) log p(c|x) = [p(c = ci|y)]Ti [log p(c = ci|x)]i, and similarly Ep(c|y) log p(c|y,x) =

[p(c = ci|y)]Ti [log p(c = ci|y,x)]i. Then we can re-write Eq. 16 as follows:

fx(x)
T fy(y)− logZ(x) =[p(c = ci|y)]Ti [log p(c = ci|x)]i (17)

− [p(c = ci|y)]Ti [log p(c = ci|y,x)]i + by (18)
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Let y0, . . . , yℓ be the points provided by the diversity condition outlined in Section 3, for y = 0, we
have:

fx(x)
T fy(y0)− logZ(x) =[p(c = ci|y = y0)]

T
i [log p(c = ci|x)]i

− [p(c = ci|y = y0)]
T
i [log p(c = ci|y = y0,x)]i︸ ︷︷ ︸

hy0

+by0 , (19)

where we define hy0
= [p(c = ci|y = y0)]

T
i [log p(c = ci|y = y0,x)]i. For y = 1, we similarly

obtain:
fx(x)

T fy(y1)− logZ(x) =[p(c = ci|y = y1)]
T
i [log p(c = ci|x)]i

− hy1
+ by1

. (20)
Subtracting Eq. 19 from Eq. 20, we get the following expression:

(
fy(y1)

T − fy(y0)
T
)
fx(x) =

(
[p(c = ci|y = y1)− p(c = ci|y = y0)]

T
i

)
[log p(c = ci|x)]i

− (hy1
− hy0

) + by1
− by0

. (21)

According to the diversity condition, where y can take ℓ + 1 values, we can obtain a total of ℓ
equations similar to Eq. 21. Collecting all of these equations, we have:

(
fy(y1)− fy(y0), ..., fy(yℓ)− fy(y0)

)T︸ ︷︷ ︸
L̂T

fx(x) (22)

=
(
[p(c = ci|y = y1)− p(c = ci|y = y0)]i, ..., [p(c = ci|y = yℓ)− p(c = ci|y = y0)]i

)T︸ ︷︷ ︸
L

×

[log p(c = ci|x)]i − [hy1
− hy0

, ..., hyℓ
− hy0

]︸ ︷︷ ︸
hy

+ [by1
− by0

, ..., byℓ
− by0

]︸ ︷︷ ︸
by

. (23)

According to the diversity condition, the matrix L̂ of size ℓ× ℓ is invertible, as a result, we arrive:

fx(x) = (L̂T )−1L︸ ︷︷ ︸
A

[log p(c = ci|x)]i − (L̂T )−1hy + (L̂T )−1by. (24)

Here due to the diversity condition, the matrix L =
(
p(c|y = y1) − p(c|y = y0), ..., p(c|y =

yℓ)− p(c|y = y0)
)

of size ℓ× ℓ is also invertible, A is invertible.

Now, we focus on the term by on the right-hand side of Eq. 24. Note that byi = Ep(c|yi)[·] is a
constant with respect to c, as the expectation integrates over all possible values of c. As a result, the
entire term (L̂T )−1by , denoted as b, is also a constant.

We next examine the term hy in Eq. 24, considering the cases where the mapping from the latent
space to the observed space is exactly invertible and where it is only approximately invertible.

Invertible According to definition 2.1, when the mapping g from latent space to observed space is
invertible, meaning that for

1− p(c = c∗ | x, y) = ϵ, (25)
we have ϵ = 0. Then, for hy , we analyze each component, i.e., hyi

− hy0
, where

hyi
= Ep(c|y=yi) [log p(c | x, y = yi)] , hy0

= Ep(c|y=y0) [log p(c | x, y = y0)] . (26)

When ϵ = 0, the posterior distribution p(c | x, y) becomes a delta distribution centered at c∗, i.e.,
p(c | x, y) = δ(c− c∗), (27)

which implies that the posterior is concentrated at a single point c∗, satisfying log p(c∗ | x, y) = 0.
In this case, we have

hyi − hy0 = 0. (28)
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Approximately Invertible When the mapping from latent space to observed space is approximately
invertible, i.e., ϵ → 0, for hy , we analyze the difference:

hyi
− hy0

= Ep(c|y=yi) [log p(c | x, yi)]− Ep(c|y=y0) [log p(c | x, y0)] . (29)

Since the generative map g : c 7→ (x, y) is approximately invertible, the posterior p(c | x, y)
becomes sharply concentrated at a unique c∗.

Then for each expectation:

Ep(c|y) [log p(c | x, y)] = p(c∗ | y) log(1− ϵ) +
∑
c̸=c∗

p(c | y) log p(c | x, y). (30)

Now note:

• log(1− ϵ) ≈ 0, when ϵ → 0,

• log p(c | x, y) ≤ log ϵ for all c ̸= c∗,

• and for c ̸= c∗, p(c | y) is bounded.

Thus, when ϵ → 0, the entire expectation satisfies:

Ep(c|y) [log p(c | x, y)] ≈ log ϵ, (31)

which do not depend on y. Therefore,

hyi
− hy0

−−−→
ϵ→0

0. (32)
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E PROOF OF COROLLARY 4.2

Proof. We first prove that: when ϵx → 0, i.e., p(c | x) becomes sharply peaked at c∗x, we can
approximate:

p(c) ≈ p(ck | x) · p(c−k | x), (33)

where c−k denotes all concepts except ck. To this end, we analysis their KL (Kullback–Leibler)
residual term:

Residual := DKL
(
p(c | x)

∥∥ p(ck | x)p(c−k | x)
)
. (34)

Since when ϵx → 0, p(c | x) is sharply peaked at a particular configuration c∗x = (ck∗, c−k∗), i.e.,:

p(c | x) =
{
1− ϵx, if c = c∗x,

ϵx · r(c), otherwise,
(35)

where
∑

c̸=c∗
x
r(c) = 1.

Main Term in KL The KL divergence is given by:

DKL(p(c | x)∥p(ck | x)p(c−k | x)) =
∑
c

p(c | x) log p(c | x)
p(ck | x)p(c−k | x)

. (36)

The main contribution comes from c = c∗x:

(1− ϵx) log
1− ϵx

p(ck∗ | x) · p(c−k∗ | x)
. (37)

Note that:

p(ck∗ | x) =
∑
c−k

p(ck∗, c−k | x) ≥ p(ck∗, c−k∗ | x) = 1− ϵx, (38)

and similarly:

p(c−k∗ | x) ≥ 1− ϵx. (39)

Hence:

p(ck∗ | x) · p(c−k∗ | x) ≥ (1− ϵx)
2, (40)

⇒ 1− ϵx
p(ck∗ | x) · p(c−k∗ | x)

≤ 1

1− ϵx
. (41)

Thus, the main term becomes:

(1− ϵx) log
1− ϵx

p(ck∗ | x) · p(c−k∗ | x)
≤ (1− ϵx) log

(
1

1− ϵx

)
= −(1− ϵx) log(1− ϵx). (42)

Tail Term For c ̸= c∗x, the contribution to the KL divergence is:

ϵxr(c) log

(
ϵxr(c)

ϵ2xr(c
k)r(c−k)

)
= ϵxr(c) log

(
1

ϵx
· r(c)

r(ck)r(c−k)

)
. (43)

Summing over all c ̸= c∗x, we obtain:

ϵx
∑
c̸=c∗

x

r(c) log

(
1

ϵx
· r(c)

r(ck)r(c−k)

)
= ϵx log

1

ϵx

∑
c ̸=c∗

x

r(c) + ϵx
∑
c ̸=c∗

x

r(c) log

(
r(c)

r(ck)r(c−k)

)
.

(44)

Since the term r(c) is bounded, we conclude:

Tail Term = o(ϵx log ϵx). (45)

which vanishes faster than the main term as ϵx → 0.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Final Bound Combining both contributions in Main Term and Tail Term, we get:

DKL

(
p(c | x)

∥∥ p(ck | x) · p(c−k | x)
)
≤ −(1− ϵx) log(1− ϵx) + o(ϵx log ϵx). (46)

Here when ϵx → 0, DKL

(
p(c | x)

∥∥ p(ck | x) · p(c−k | x)
)
→ 0.

Now that we have shown that Eq. 33 holds, we can rewrite the term [log p(ci | x)]i as:

[log p(ci | x)]i ≈ Bk
[
log p(ck | x)

]
ck

+B−i
[
log p(c−k | x)

]
c−k . (47)

Here, Bk and B−k are binary broadcasting matrices that expand the marginal log-probability vectors[
log p(ck | x)

]
ck

and
[
log p(c−k | x)

]
c−k to the full configuration space [log p(ci | x)]i, respec-

tively.

As a result, for pair x0 and x1 that differ only in the i-th concept variable ck, their difference in
posterior distribution is:

[log p(ci | x1)− log p(ci | x0)]i

≈ Bk
[
log p(ck | x1)− log p(ck | x0)

]
ck

+B−k
[
log p(c−k | x1)− log p(c−k | x0)

]
c−k . (48)

We now show that:

p(c−k | x1)− p(c−k | x0) → 0, as ϵx → 0 (49)

so the term B−i
[
log p(c−i | x1)− log p(c−i | x0)

]
c−i in Eq. 48 vanishes.

Recall Eq. 35, we have

p(c | x) =
{
1− ϵx, if c = c∗x = (ck∗, c−k∗),

ϵx · r(c), otherwise,
(50)

Then, for c−i, we have:

p(c−k | x) =
∑
ck

p(ck, c−k | x). (51)

Combining this with Eq. 50, we have:

p(c−k∗ | x) = 1− ϵx + ϵx
∑

ck ̸=ck∗

r(ck, c−k∗) = 1− ϵx + o(ϵx), (52)

p(c−k | x) = ϵx
∑
ck

r(ck, c−k) = o(ϵx), for c−k ̸= c−k∗. (53)

Both Eq. 52 and Eq. 52 only depends on ϵ. As a result, if x0 and x1 have the same values on the
components relevant to c−k, the difference between p(c−k | x1) and p(c−k | x0) is of order o(ϵx),
as:

p(c−i | x1) = p(c−i | x0) + o(ϵx), (54)

which implies:

log p(c−k | x1)− log p(c−k | x0) = log

(
1 +

o(ϵx)

p(c−k | x0)

)
= o(ϵx). (55)

Consequently,

B−k
[
log p(c−k | x1)− log p(c−k | x0)

]
c−k = o(ϵx) → 0 as ϵx → 0. (56)

Together with Eq. 48 and the result from Theorem 3.1, we get:

fx(x1)− fx(x0) ≈ ABk
([
log p(ck | x1)

]
ck

−
[
log p(ck | x0)

]
ck

)
. (57)
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F PROOF OF COROLLARY 4.3

Proof. Again, when ϵx → 0, i.e., when p(c | x) becomes sharply peaked at c∗x, we can approximate:

p(c | x) ≈ p(ck | x) · p(c−k | x), (58)

Given the above, neglecting the constant term in the result in Theorem 3.1,

fx(x) ≈ A [log p(c = ci | x)]i , (59)

which can be rewritten as

fx(x) ≈ A [log p(c = ci | x)]i ≈ A(Bk
[
log p(ck | x)

]
ck

+B−k
[
log p(c−k | x)

]
c−k). (60)

In this case, for a data pair (x0,x1) that differ only in the latent variable ck, the representations fx(x)
are passed to a linear classifier with weights W.

The classifier produces the logits:

logits ≈ W
(
A(Bk

[
log p(ck | x)

]
ck

+B−k
[
log p(c−k | x)

]
c−k)

)
. (61)

For correct classification under cross entropy loss, the logits must match the true probabilities:

logits =
[
p(ck | x)

]
ck

, (62)

where we omit constant scaling factors for simplicity, corresponding to the normalization applied
prior to the softmax operation in the cross-entropy loss.

Combining Eq. 61 and Eq. 62, the weight matrix W must satisfy the condition:

W(ABk) ≈ I, (63)

which ensures that the classifier produces the correct logits. Here I denotes the identify matrix.
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G EXTENSION OF COROLLARIES 4.2 AND 4.3 FOR A BINARY CONCEPT

When considering pair that differ only in a concept of interest, i.e., ck, and assuming that the concept
is binary, both Corollaries 4.2 and 4.3 can be further refined, yielding the following results.

G.1 EXTENSION OF COROLLARY 4.2 FOR A BINARY CONCEPT

Corollary G.1 (Binary Concept Direction). Suppose that Theorem 3.1 holds, and let ck be a binary
concept variable, i.e., ck ∈ {0, 1}. Let x0 and x1 be a pair of inputs that differ only in the i-th binary
concept ck, with ck = 0 for x0 and ck = 1 for x1. Then, as ϵx → 0, the representation difference
simplifies as:

fx(x1)− fx(x0) ≈ Ãk
([
log p(ck | x1)− log p(ck | x0)

]
ck

)
≈ log p(ck = 0 | x1) · Ãk

[
1
−1

]
,

(64)

or, ≈ log p(ck = 1 | x0) · Ãk

[
1
−1

]
,

(65)

where Ãk = ABk, Bk is a binary lifting matrix that broadcasts each entry of [log p(ck | x)]ck to
the corresponding index in [log p(c = ci | x)]i. This shows that changes in a binary concept are
encoded in a specific direction in the representation space defined by Ãk.

Proof. Recall Eq. 35, the joint concept distribution conditioned on input x follows a peaked structure:

p(c | x) =
{
1− ϵx, if c = c∗x,

ϵx · r(c), otherwise,
(66)

where c∗x = (ck∗, c−k∗) is the dominant concept configuration for x, and r(c) is a normalized
residual distribution over all non-dominant c.

Let x0 and x1 differ only in the i-th binary concept variable ck, with:

c∗x0
= (0, c−k∗), c∗x1

= (1, c−k∗). (67)

Then the marginal probabilities for ck are:

For x1:

p(ck = 1 | x1) = (1− ϵx1) + ϵx1 ·
∑

c−k ̸=c−k∗

r(1, c−i) = 1− ϵx1 · α1, (68)

where α1 := 1−
∑

c−k ̸=c−k∗ r(1, c−k).

p(ck = 0 | x1) = 1− p(ck = 1 | x1) = ϵx1
· α1. (69)

For x0:

p(ck = 0 | x0) = (1− ϵx0
) + ϵx0

·
∑

c−k ̸=c−k∗

r(0, c−k) = 1− ϵx0
· α0, (70)

where α0 := 1−
∑

c−k ̸=c−k∗ r(0, c−k).

p(ck = 1 | x0) = 1− p(ck = 1 | x0) = ϵx0 · α0. (71)

Taking logarithmic, we have:

log p(ck = 1 | x1) = log(1− ϵx1
· α1) ≈ 0, as ϵx → 0 (72)

log p(ck = 0 | x1) = log(ϵx1 · α1). (73)

log p(ck = 0 | x0) = log(1− ϵx0 · α0) ≈ 0, as ϵx → 0 (74)

log p(ck = 1 | x0) = log(ϵx0
· α0) ≈ log(ϵx1

· α1) = log p(ck = 0 | x1), as ϵx → 0. (75)
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Then the vector difference:[
log p(ck | x1)− log p(ck | x0)

]
ck

=

[
log p(ck = 0 | x1)− log p(ck = 0 | x0)
log p(ck = 1 | x1)− log p(ck = 1 | x0)

]
(76)

≈
[
log p(ck = 0 | x1)
− log p(ck = 1 | x0)

]
(77)

≈ log p(ck = 0 | x1)

[
1
−1

]
(78)

Finally, the representation difference becomes:

fx(x1)− fx(x0) ≈ Ãk
([
log p(ck | x1)− log p(ck | x0)

]
ck

)
≈ log p(ck = 0 | x1) · Ãk

[
1
−1

]
.

(79)

Here, note that: log p(ck = 0 | x1) ≈ log p(ck = 1 | x0) as shown in Eq. 75.

G.2 EXTENSION OF COROLLARY 4.3 FOR A BINARY CONCEPT

Corollary G.2 (Binary Concept Classification). Suppose that Theorem 3.1 holds, i.e., fx(x) ≈
A [log p(c = ci | x)]i + b. Let x0 and x1 be pair data that differ only in the i-th binary concept
variable ck, with labels ck, where ck = 0 for x0 and ck = 1 for x1. Then when ϵx → 0, the
corresponding representations (f(x0), f(x1)) are linearly separable with a weight vector w satisfying

w⊤Ãk

[
−1
1

]
≈ 1. The corresponding logit is the (unnormalized) p(ck = 1 | x).

Proof. When ϵx → 0, the posterior p(c | x) becomes sharply peaked at a unique mode c∗x. This
implies a near-independence of ck and c−i given x, allowing us to write:

p(c | x) ≈ p(ck | x) · p(c−k | x). (80)

Taking logs and substituting into Theorem 3.1 (neglecting the bias term b), we obtain:

fx(x) ≈ A [log p(ci | x)]i ≈ A
(
Bk[log p(ck | x)]ck +B−i[log p(c−k | x)]c−k

)
, (81)

where Bk and B−k denote the lifting operators that map the marginal log-probabilities of ck and c−k

into the joint log-probability vector space.

Define Ãk := ABk. Then:

fx(x) ≈ Ãk[log p(ck | x)]ck + (terms involving only c−k). (82)

Consider a linear classifier with weight vector w applied to fx(x):

logit = w · fx(x) ≈ wÃk

[
p(ck = 0 | x)

1− p(ck = 0 | x)

]
+ const. (83)

Let w⊤Ãk = [s0, s1]. Then:

logit ≈ s0 log p(c
k = 0 | x) + s1 log p(c

k = 1 | x) + const = (s1 − s0) log p(c
k = 1 | x) + const.

(84)

For the classifier to correctly separate x0 and x1 under cross-entropy loss, we require:

logit = log p(ck = 1 | x), (85)

where we omit the normalization constant prior to the softmax, since it does not affect the analysis.
This is equivalent to:

w⊤Ãk

[
−1
1

]
≈ 1, (86)

This completes the proof.
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H EXPERIMENTAL DETAILS SUPPORTING THEORETICAL RESULTS

H.1 SIMULATION DETAILS

For the left side of Figure 2, which investigates the relationship between the degree of invertibility in
the mapping from c to x and the approximation of the identifiability result in Theorem 3.1, we aim to
exclude other uncertain factors that might affect the result. To achieve this, we keep the number of
latent variables constant (i.e., 3) and ensure that the graph structure follows a chain structure. Based
on this structure, we model the conditional probabilities of each variable, given its parents, using
Bernoulli distributions. The parameters of these distributions are uniformly sampled from the interval
[0.2, 0.8], which are then used to generate the latent variables. Subsequently, we apply a one-hot
encoding to these samples to obtain one-hot formal representations. These one-hot samples are then
randomly permuted. For 3 latent variables, there are 23 possible permutations, each corresponding to
3 observed binary variables, resulting in a total of 23 × 3 different observed binary variables. We then
randomly sample from these observed variables, varying the sample size. For example, as shown on
the left in Figure 2, we can select different variables as observed variables. Clearly, as the number
of observed variables increases, the mutual information between observed and latent variables also
increases. As a result, the degree of invertibility from latent to observed variables increases.

For the right side of Figure 2, we explore the robustness of our identifiability result in Theorem 3.1
with respect to both the graph structure and the size of the latent variables. To this end, we randomly
generate DAG structures in the latent space using Erdős-Rényi (ER) graphs (ERDdS & R&wi, 1959),
where ERk denotes graphs with d nodes and kd expected edges. For each ERk configuration, we also
vary the size of the latent variables from 4 to 8, allowing us to examine how the size of latent variables
influences the identifiability results. In terms of the observed variables, we adapt the experimental
setup from the left side of Figure 2 to determine the appropriate observed variable size for different
latent variable sizes. This ensures that the degree of invertibility from the latent space to the observed
space remains sufficiently high, a crucial factor for the accuracy of our identifiability analysis.

Throughout the simulation, we use the following: In each experiment, we randomly mask one
observed variable xi, and use the remaining observed variables to predict it. Specifically, the
remaining variables and the corresponding mask matrix are used as inputs to an embedding layer.
This embedding layer transforms the input into a high-dimensional feature representation. The
generated embeddings are then passed through a Multi-Layer Perceptron (MLP)-based architecture
to extract meaningful features, e.g., fx(x). The MLP model consists of three layers, each with 256
hidden units. After ach layer, we apply Batch Normalization unit to stabilize training and a ReLU
nonlinear activation function to introduce nonlinearity. The final output of the MLP is used to predict
the masked variable through a linear classification layer. This allows us to assess how well the
model can predict missing or masked values based on the remaining observed variables. We employ
the Adam optimizer with a learning rate of 1e− 4. To ensure robustness and account for potential
variability in the results, we conduct each experimental setting with five different runs, each initialized
with a different random seed. This procedure helps mitigate the effects of random initialization and
provides a more reliable evaluation of the model’s performance.

For evaluation, we use the LogisticRegression classifier from the scikit-learn library, which operates
on the features extracted from the output of the MLP-based architecture described above.

H.2 EXPERIMENTAL DETAILS ON LLMS

Unlike in simulation studies, where we have access to the complete set of latent variables, in real-
world scenarios, their true values remain inherently unknown. This limitation arises from the nature of
latent variables, they are unobserved and must be inferred indirectly from the data. As a consequence,
we cannot directly validate the linear identifiability results established in Theorem 3.1, since such
validation would require explicit knowledge of these latent variables.

However, we can instead verify Corollary 4.3, which is a direct consequence of Theorem 3.1. By
doing so, we provide indirect empirical evidence supporting the theoretical identifiability results.
To achieve this, we need collect counterfactual pairs of data instances that differ in controlled and
specific ways. These counterfactual pairs are essential for testing the implications of our theory in the
context of real-world data.
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Generating such counterfactual pairs, however, presents significant challenges. First, the inherent
complexity and nuances of natural language make it difficult to create pairs that differ in precisely the
intended contexts while leaving other aspects unchanged. Second, as highlighted in prior works (Park
et al., 2023; Jiang et al., 2024), constructing such counterfactual sentences is a highly non-trivial task,
even for human annotators, due to the intricacies of semantics and the need for precise control over
contextual variations.

We utilize the 27 counterfactual pairs introduced in (Park et al., 2023), which provide a structured
and well-curated set of counterfactual pairs. These concepts encompass a wide range of semantic
and morphological transformations, as detailed in Table 1. By leveraging this established dataset, we
ensure consistency with previous research while facilitating a robust and meaningful evaluation of
Corollary 4.3.

We first use these 27 counterfactual pairs to construct a As with size 27 × dim by using the
differences in the representations of these 27 counterfactual pairs, where dim corresponds to the
feature dimension of the used LLM, such as 4096 for the Llama-27B model. To construct the
corresponding matrix Ws, we train a linear classifier using these 27 counterfactual pairs. Specifically,
we use the representations of the counterfactual pairs as input and the corresponding values of the
latent variables as output. As a result, the corresponding linear weights for the 27 counterfactual pairs
are be used to create Ws. In our experiments, we employ the LogisticRegression classifier from the
scikit-learn library.

Note that, since the 27 counterfactual pairs involve only binary concepts, each row of As corresponds
to the direction of a concept associated with a counterfactual pair, as stated in Corollary G.1. Similarly,
as discussed in Corollary G.2, each column of Ws denotes the classifier direction for a specific pair
and aligns with the corresponding row of As for that concept. As a result, after normalizing As and
Ws to remove the arbitrary logit scaling (which is irrelevant before the softmax in cross-entropy
loss), we expect to observe that AsWs ≈ I. Therefore, we apply normalization to both As and Ws

prior to computing their product.
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Table 1: Concept names, one example of the counterfactual pairs, and the number of used pairs, taken
from (Park et al., 2023).

# Concept Example Word Pair Counts
1 verb ⇒ 3pSg (accept, accepts) 50
2 verb ⇒ Ving (add, adding) 50
3 verb ⇒ Ved (accept, accepted) 50
4 Ving ⇒ 3pSg (adding, adds) 50
5 Ving ⇒ Ved (adding, added) 50
6 3pSg ⇒ Ved (adds, added) 50
7 verb ⇒ V + able (accept, acceptable) 50
8 verb ⇒ V + er (begin, beginner) 50
9 verb ⇒ V + tion (compile, compilation) 50

10 verb ⇒ V + ment (agree, agreement) 50
11 adj ⇒ un + adj (able, unable) 50
12 adj ⇒ adj + ly (according, accordingly) 50
13 small ⇒ big (brief, long) 25
14 thing ⇒ color (ant, black) 50
15 thing ⇒ part (bus, seats) 50
16 country ⇒ capital (Austria, Vienna) 158
17 pronoun ⇒ possessive (he, his) 4
18 male ⇒ female (actor, actress) 52
19 lower ⇒ upper (always, Always) 73
20 noun ⇒ plural (album, albums) 100
21 adj ⇒ comparative (bad, worse) 87
22 adj ⇒ superlative (bad, worst) 87
23 frequent ⇒ infrequent (bad, terrible) 86
24 English ⇒ French (April, avril) 116
25 French ⇒ German (ami, Freund) 128
26 French ⇒ Spanish (annee, año) 180
27 German ⇒ Spanish (Arbeit, trabajo) 228

I EXPERIMENT ON SPARSE AUTOENCODERS

I.1 IMPLEMENTATION OF THE PROPOSED STRUCTURED SAE

The proposed structured SAE employs two regularization terms: a structured regularization to model
the dependence among latent concepts, and a sparsity regularization based on the assumption that
latent concepts may be sparsely activated. We implement it as follows:

S = ReLU(ws(fx(x)− bd) + bs), (87)
R = ReLU(wl(fx(x)− bd) + bl), (88)
z = S+R, (89)

f̄x(x) = wdz+ bd. (90)

Here:

• S denotes the sparse representations from the sparse encoder (with parameters ws,bs);

• R denotes the structured representation from the structured encoder (with parameters
wl,bl);

• z is the combined representations used for reconstruction;

• f̄x(x) denote the reconstruction of fx(x).

The loss function for training is:
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L = Ex∼Dtrain

[
∥fx(x)− f̄x(x)∥22 + λt

(
∥S∥pt

pt
+ γ∥R∥nuc

)]
, (91)

where:

• λt is the dynamically adjusted sparsity coefficient at step t, following p-annealing SAE
(Karvonen et al., 2024);

• γ is a hyperparameter that balances the sparsity penalty and the low-rank regularization;
• ∥S∥pt

pt
=

∑
i |si|pt is the adaptive Lpt

norm promoting sparsity, following p-annealing SAE
(Karvonen et al., 2024);

• ∥R∥nuc is the nuclear norm, used to encourage low-rank structure.

We estimate the nuclear norm using the top-ksvd singular values:

∥R∥nuc ≈
ksvd∑
i=1

σi, (92)

where {σi}ksvd
i=1 are the largest ksvd singular values, obtained via low-rank SVD (e.g., PyTorch’s

svd_lowrank). The value of ksvd is a tunable parameter (e.g., ksvd = 64) that trades off approxi-
mation accuracy and computational cost.

I.2 DETAILS OF EVALUATION METRIC

Obtaining p(ck = 1|x) from Supervised Linear Classification. For evaluation, we first use
27 counterfactual pairs from (Park et al., 2023), also see Table 1, to train a linear classification
using LogisticRegression classifier from the scikit-learn library, to obtain logits, i.e., unnormalized
p(ck = 1|x), for each of the 27 pairs. As a result, for each concept in these 27 concepts, we can
obtain the corresponding logit. Figure 5 shows classification accuracy of LogisticRegression classifier.
Stacking these 27 logits yields the logit vector

u =
(
u1, u2, . . . , u27). (93)

Extracting zi from trained SAEs. We use the representations fx(x) of the same 27 counterfactual
pairs from (Park et al., 2023) as input to a trained SAE, extracting the corresponding latent features z.
Let z̃ denote the element-wise exponentiation of z, i.e., z̃ = exp(z). This yields a feature matrix of
size 27×D, where D is the dimensionality of z:

z̃ =
(
z̃1, z̃2, . . . , z̃27)

T . (94)

Correlation Matrix and Assignment. For the logit vector u, and the feature matrix z̃, we compute
the Pearson correlation

Rd = corr
(
u, z̃:,d

)
, d = 1, . . . , D (95)

where z̃:,d denotes the d-th column of z̃.

Note that the estimated features z from the SAE are subject to permutation indeterminacy. To address
this, we apply the Hungarian algorithm to solve the assignment problem on Rd. This yields the
optimal assignment for each concept, allowing us to compute the assigned Pearson correlation. We
report the mean Pearson correlation across the 27 concepts.

I.3 EXPERIMENTS AND RESULTS

We train four SAE variants—top-k SAE (Gao et al., 2025), batch-top-k SAE (Bussmann et al.,
2024), p-annealing SAE (Karvonen et al., 2024), and our proposed structured SAE. Each SAE
is trained three times on activations from the final hidden layer of the pretrained Pythia 70m,
Pythia 1.4b, and Pythia 2.8b (Biderman et al., 2023) (download from https://huggingface.
co/EleutherAI), using training data from the first 200 million tokens of the Pile corpus (Gao
et al., 2020) (download from https://huggingface.co/datasets/EleutherAI/the_
pile_deduplicated).
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Experimental setup. We set the feature dimension of all SAE variants to be the same (D = 32,768)
and are trained for 20 000 optimization steps with a batch size of 10 000. We employ the Adam
optimizer with an initial learning rate of 1 × 10−4 and linearly warm up the learning rate during
the first 200 steps. For the top-k and batch-top-k SAEs, we set k = 32. For p-annealing SAEs,
we apply a sparsity warm-up of 400 steps and an initial sparsity penalty coefficient λs = 0.1. The
p-annealing-LoRa SAE uses the same p-annealing settings and additionally applies a low-rank scaling
factor γ = 0.1.

Compute resources. All experiments are conducted on a server equipped with four NVIDIA A100
GPUs (40 GB each).
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Figure 5: Classification accuracy of logistic probes across various concepts. Each bar represents the
performance for a given concept.

Pearson Correlation Coefficient. We report Pearson Correlation Coefficient (PCC) at the
20 000-step checkpoint. As summarized in Tables 3-5, the two p-annealing variants markedly
outperform the fixed-k baselines. Across the 27 concepts, the proposed structured SAE achieves bet-
ter PCC across different scales of Pythia family, confirming that sparsity and the low-rank adaptation
yield features that align more cleanly with human-interpretable concepts.

Table 2: Ablation results for the low-rank term scaling factor γ. PCC is reported as mean ± standard
deviation over multiple runs.

γ PCC (mean ± std)
10−3 0.691± 0.023
10−2 0.695± 0.019
10−1 0.704± 0.013
1 0.685± 0.021

Ablation on the low-rank coefficient. We investigate the effect of the low-rank term scaling factor
γ ∈ {10−3, 10−2, 10−1, 1} while keeping all other hyperparameters fixed. As shown in Table 2, the
PCC peaks at γ = 10−1, indicating that a moderate weighting of the low-rank term is beneficial.
Smaller or larger values of γ lead to slightly worse performance, suggesting that both under- and
over-emphasis on the low-rank term can hurt the model’s ability to capture the underlying structure.
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Table 3: PCC results at training step 20,000 on Pythia-70m. Bold values denote the best.

PCC across different SAEs (↑)

Concepts top-k batch-top-k p-annealing Our structured SAE

3psg_ved 0.533± 0.069 0.466± 0.012 0.660± 0.011 0.684± 0.008
adj_adj_+_ly 0.828± 0.054 0.918± 0.005 0.848± 0.004 0.884± 0.005
adj_comparative 0.640± 0.108 0.646± 0.087 0.536± 0.077 0.695± 0.070
adj_superlative 0.743± 0.017 0.757± 0.028 0.731± 0.021 0.792± 0.033
adj_un_+_adj 0.362± 0.041 0.353± 0.030 0.510± 0.031 0.771± 0.033
country_capital 0.237± 0.008 0.247± 0.021 0.356± 0.005 0.494± 0.003
english_french 0.501± 0.076 0.448± 0.006 0.629± 0.008 0.639± 0.005
french_german 0.615± 0.003 0.617± 0.023 0.608± 0.020 0.685± 0.050
french_spanish 0.627± 0.069 0.520± 0.054 0.643± 0.033 0.613± 0.036
frequent_infrequent 0.279± 0.014 0.292± 0.017 0.490± 0.011 0.509± 0.018
german_spanish 0.583± 0.077 0.730± 0.010 0.688± 0.021 0.713± 0.010
lower_upper 0.474± 0.080 0.442± 0.016 0.631± 0.010 0.614± 0.008
male_female 0.378± 0.040 0.326± 0.008 0.585± 0.030 0.625± 0.006
noun_plural 0.616± 0.100 0.501± 0.038 0.662± 0.024 0.640± 0.011
pronoun_possessive 0.897± 0.035 0.885± 0.037 0.967± 0.022 0.974± 0.020
small_big 0.403± 0.005 0.412± 0.040 0.603± 0.023 0.668± 0.010
thing_color 0.950± 0.008 0.899± 0.042 0.918± 0.020 0.915± 0.016
thing_part 0.421± 0.013 0.345± 0.016 0.494± 0.031 0.506± 0.008
verb_3psg 0.658± 0.035 0.588± 0.061 0.673± 0.033 0.752± 0.027
verb_v_+_able 0.723± 0.068 0.706± 0.033 0.787± 0.031 0.825± 0.018
verb_v_+_er 0.581± 0.039 0.548± 0.021 0.772± 0.025 0.748± 0.011
verb_v_+_ment 0.750± 0.013 0.778± 0.017 0.622± 0.019 0.696± 0.017
verb_v_+_tion 0.764± 0.054 0.681± 0.079 0.722± 0.048 0.794± 0.035
verb_ved 0.522± 0.064 0.583± 0.087 0.537± 0.061 0.668± 0.052
verb_ving 0.689± 0.066 0.717± 0.035 0.638± 0.026 0.737± 0.034
ving_3psg 0.467± 0.057 0.403± 0.029 0.704± 0.029 0.704± 0.010
ving_ved 0.557± 0.043 0.538± 0.067 0.691± 0.053 0.688± 0.022

J FURTHER DISCUSSION: OBSERVATIONS ON LLMS AND WORLD MODELS

J.1 LLMS MIMIC THE HUMAN WORLD MODEL, NOT THE WORLD ITSELF

As we explore the implications of our linear identifiability result, it is important to situate it within the
broader context of human cognition—specifically, how humans develop and interact with an internal
world model. In this subsection, we introduce the concept that LLMs Mimic the Human World Model,
Not the World Itself, emphasizing the distinction between the vast physical world and the compressed
abstraction humans use for reasoning and decision-making. Our analysis shows that LLMs replicate
human-like abstractions through latent variable models. We further argue that LLMs aim to emulate
this internal, compressed world model—rather than the physical world itself—by learning from
human-generated text. This distinction provides critical insight into the success of LLMs in tasks
aligned with human conceptualization and deepens our understanding of the relationship between
language models and human cognition.

Humans gradually develop their understanding of the environment through learning from others and
interacting with the world. This internal representation of our external environment is known as a
world model. A key observation is that this model is not a direct reflection of the physical world but
rather a highly compressed abstraction of it. For instance, numbers, such as 1, 2, and 3, are abstract
tools created by the human mind for reasoning and problem-solving. They do not exist as tangible
entities in the natural world. Similarly, many aspects of reality that escape human senses or even the
most sophisticated scientific instruments are absent from our mental representations.

Interestingly, our texts reflect our mental activities and emotions, providing a window into this
compressed world model. A recent study reveals a striking disparity between the limited information
throughput of human behavior (approximately 10 bits/s) and the vast sensory input available (around
109 bits/s) (Zheng & Meister, 2024). This suggests that the human world model is an efficient,
compressed abstraction, enabling us to reason, predict, and make decisions effectively. Despite this
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Table 4: PCC results at training step 20,000 on Pythia-1.4b. Bold values denote the best.

PCC across different SAEs (↑)

Concepts top-k batch-top-k p-annealing Our structured SAE

3psg_ved 0.577± 0.015 0.536± 0.013 0.629± 0.012 0.727± 0.009
adj_adj_+_ly 0.870± 0.013 0.841± 0.009 0.897± 0.020 0.940± 0.011
adj_comparative 0.760± 0.018 0.738± 0.013 0.640± 0.011 0.660± 0.010
adj_superlative 0.849± 0.022 0.871± 0.017 0.767± 0.013 0.790± 0.009
adj_un_+_adj 0.563± 0.076 0.556± 0.107 0.654± 0.021 0.749± 0.012
average 0.697± 0.004 0.686± 0.002 0.742± 0.019 0.752± 0.010
country_capital 0.802± 0.032 0.795± 0.006 0.788± 0.007 0.823± 0.012
english_french 0.836± 0.014 0.810± 0.066 0.813± 0.008 0.814± 0.011
french_german 0.701± 0.030 0.676± 0.081 0.790± 0.016 0.799± 0.012
french_spanish 0.737± 0.006 0.706± 0.041 0.823± 0.010 0.762± 0.013
frequent_infrequent 0.522± 0.029 0.569± 0.003 0.588± 0.012 0.646± 0.011
german_spanish 0.687± 0.023 0.673± 0.038 0.796± 0.009 0.783± 0.014
lower_upper 0.765± 0.007 0.746± 0.007 0.716± 0.010 0.726± 0.012
male_female 0.584± 0.047 0.617± 0.011 0.593± 0.006 0.546± 0.007
noun_plural 0.688± 0.006 0.703± 0.029 0.851± 0.014 0.814± 0.010
pronoun_possessive 0.937± 0.018 0.869± 0.031 0.980± 0.012 0.989± 0.008
small_big 0.287± 0.007 0.300± 0.008 0.536± 0.013 0.533± 0.010
thing_color 0.913± 0.019 0.937± 0.009 0.928± 0.012 0.904± 0.011
thing_part 0.397± 0.005 0.402± 0.013 0.440± 0.010 0.531± 0.014
verb_3psg 0.675± 0.090 0.619± 0.011 0.709± 0.008 0.716± 0.012
verb_v_+_able 0.785± 0.048 0.743± 0.026 0.899± 0.015 0.798± 0.013
verb_v_+_er 0.707± 0.012 0.745± 0.019 0.752± 0.011 0.781± 0.012
verb_v_+_ment 0.769± 0.014 0.603± 0.033 0.831± 0.010 0.741± 0.009
verb_v_+_tion 0.857± 0.025 0.879± 0.013 0.841± 0.012 0.818± 0.010
verb_ved 0.599± 0.027 0.674± 0.032 0.682± 0.009 0.710± 0.008
verb_ving 0.730± 0.004 0.721± 0.053 0.800± 0.013 0.794± 0.011
ving_3psg 0.612± 0.064 0.625± 0.036 0.642± 0.010 0.745± 0.014
ving_ved 0.605± 0.019 0.558± 0.008 0.645± 0.011 0.660± 0.012

compression, humans have flourished as the dominant species on Earth, demonstrating the power of
such a streamlined model.

LLMs aim to mimic not the vast and unbounded world but this human-compressed world model,
which is significantly smaller and more manageable. By learning from human text, which encodes
this abstraction, LLMs effectively replicate the patterns, reasoning, and abstractions that have proven
successful for humans. This explains the impressive performance of LLMs in tasks that align with
human understanding. Furthermore, the overlap between the latent space of LLMs (representing
human concepts) and the observed space (human text) provides a powerful mechanism for aligning
human-like abstractions with model predictions. For instance, modifying words in the observed space
often corresponds to predictable changes in latent concepts.

J.2 LLMS VERSUS PURE VISION MODELS: A FUNDAMENTAL DIFFERENCE

While LLMs model human language, which has already undergone significant compression through
human cognition, vision models face a fundamentally different challenge. In the previous subsection,
we discussed how LLMs mimic the human world model, leveraging compressed abstractions derived
from human-generated text. In contrast, vision models operate on raw, high-dimensional data from
visual inputs. Moreover, the training data for vision models represents only a tiny fraction of the
universe, constrained by the limitations of capturing devices and datasets. This vastness and lack
of compression make the task of building generalizable representations in vision models inherently
more complex than in NLP-based LLMs.

This difference in the nature of their training data and observed space might explain the behavioral
differences between LLMs and pure vision models. While LLMs benefit from the inherent abstraction
and compression of human language, vision models must contend with raw, unprocessed inputs that
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Table 5: PCC results at training step 20,000 on Pythia-2.8b. Bold values denote the best.

PCC across different SAEs (↑)

Concepts top-k batch-top-k p-annealing Our structured SAE

3psg_ved 0.589± 0.025 0.513± 0.024 0.645± 0.012 0.734± 0.027
adj_adj_+_ly 0.869± 0.036 0.797± 0.050 0.919± 0.020 0.941± 0.013
adj_comparative 0.847± 0.020 0.859± 0.010 0.817± 0.015 0.757± 0.028
adj_superlative 0.885± 0.011 0.897± 0.010 0.901± 0.017 0.787± 0.009
adj_un_+_adj 0.631± 0.086 0.690± 0.033 0.590± 0.012 0.693± 0.021
average 0.707± 0.008 0.704± 0.002 0.762± 0.011 0.771± 0.022
country_capital 0.810± 0.040 0.791± 0.034 0.892± 0.014 0.832± 0.020
english_french 0.854± 0.010 0.834± 0.010 0.842± 0.015 0.847± 0.027
french_german 0.659± 0.060 0.710± 0.035 0.743± 0.016 0.799± 0.022
french_spanish 0.741± 0.027 0.711± 0.012 0.828± 0.011 0.794± 0.019
frequent_infrequent 0.523± 0.066 0.576± 0.036 0.572± 0.018 0.670± 0.028
german_spanish 0.643± 0.040 0.646± 0.063 0.816± 0.021 0.805± 0.030
lower_upper 0.772± 0.027 0.758± 0.010 0.704± 0.012 0.739± 0.025
male_female 0.640± 0.040 0.570± 0.014 0.721± 0.018 0.640± 0.020
noun_plural 0.761± 0.024 0.737± 0.014 0.879± 0.023 0.830± 0.027
pronoun_possessive 0.918± 0.049 0.914± 0.011 0.980± 0.015 0.995± 0.021
small_big 0.347± 0.007 0.400± 0.043 0.481± 0.014 0.602± 0.032
thing_color 0.918± 0.019 0.932± 0.012 0.923± 0.007 0.901± 0.015
thing_part 0.373± 0.033 0.319± 0.021 0.457± 0.010 0.506± 0.025
verb_3psg 0.523± 0.071 0.578± 0.025 0.643± 0.012 0.739± 0.021
verb_v_+_able 0.751± 0.022 0.736± 0.023 0.832± 0.018 0.828± 0.026
verb_v_+_er 0.715± 0.052 0.790± 0.011 0.832± 0.025 0.806± 0.022
verb_v_+_ment 0.784± 0.036 0.762± 0.032 0.860± 0.015 0.854± 0.028
verb_v_+_tion 0.805± 0.053 0.845± 0.085 0.864± 0.023 0.861± 0.030
verb_ved 0.720± 0.041 0.728± 0.039 0.664± 0.012 0.752± 0.018
verb_ving 0.732± 0.060 0.755± 0.035 0.845± 0.020 0.819± 0.027
ving_3psg 0.728± 0.082 0.559± 0.117 0.690± 0.015 0.675± 0.022
ving_ved 0.562± 0.022 0.589± 0.009 0.624± 0.017 0.620± 0.019

require far greater generalization capabilities. This underscores the importance of understanding the
nuances of each modality when designing and evaluating AI systems.
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K MORE RESULTS ON LLAMA-3 AND DEEPSEEK-R1

We conduct additional experiments on recent LLMs, including Llama-3 and DeepSeek-R1, to further
evaluate our findings. The experimental setup strictly adheres to the settings described in Section H.2.
This enables a comprehensive investigation of our findings, ensuring that the results are thoroughly
evaluated and validated across diverse LLM architectures and experimental conditions. Overall, we
can see, the product As ×Ws approximates the identity matrix, supporting the theoretical findings
outlined in Corollary G.2.

Figure 6: Results of the product As ×Ws across the LLaMA-3 and DeepSeek-R1 model families.
Here, As represents a matrix derived from the feature differences of 27 counterfactual pairs, while
Ws is a weight matrix obtained from a linear classifier trained on these features.
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L FUTURE DIRECTIONS

Rethinking Invertibility Assumptions in Causal Representation Learning Our identifiability
analysis is closely related to the concept of identifiability in causal representation learning. Notably,
to the best of our knowledge, this is the first work to explore approximate identifiability in the context
of non-invertible mappings from latent space to observed space—a departure from the commonly
upheld invertibility assumption in the causal representation learning community (Brehmer et al.,
2022; Von Kügelgen et al., 2021; Massidda et al., 2023; von Kügelgen et al., 2023; Ahuja et al.,
2023; Seigal et al., 2022; Shen et al., 2022; Liu et al., 2022). We hope that our work will inspire
future research aimed at overcoming the limitations imposed by invertibility assumptions in causal
representation learning.

Embedding Causal Reasoning in LLMs Through Linear Unmixing Our linear identifiability
result lays a foundation for uncovering latent causal relationships among concepts, especially when
these variables exhibit causal dependencies within the proposed latent variable model. By showing
that the representations in LLMs are linear mixtures of latent causal variables, our analysis shows
that linear unmixing of these representations may allow for the identification of underlying latent
causal structures. This approach not only opens up the possibility of understanding causal dynamics
within LLMs but also suggests that causal reasoning, particularly in latent spaces, could be achievable
through the exploration of these linear unmixing techniques. We believe this work marks a pivotal
step toward embedding robust causal reasoning capabilities into LLMs.

M ACKNOWLEDGMENT OF LLMS USAGE

We disclose that large language models (LLMs) were used only to correct typos, improve grammar,
and refine phrasing. All scientific contributions, including problem formulation, methodology design,
theoretical proofs, experiments, and analysis of results, are exclusively the work of the authors.
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