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ABSTRACT

Concept Bottleneck Model (CBM) is a kind of powerful interpretable neural net-
work, which utilizes high-level concepts to explain model decisions and interact
with humans. However, CBM cannot always work as expected due to the trou-
blesome collection and commonplace insufficiency of high-level concepts in real-
world scenarios. In this paper, we theoretically reveal that insufficient concept
information will induce the mixture of explicit and implicit information, which
further leads to the inherent dilemma of concept and label distortions in CBM.
Motivated by the proposed theorem, we present Decoupling Concept Bottleneck
Model (DCBM), a novel concept-based model decoupling heterogeneous infor-
mation into explicit and implicit concepts, while retaining high prediction perfor-
mance and interpretability. Extensive experiments expose the success in the al-
leviation of concept/label distortions, where DCBM achieves state-of-the-art per-
formance in both concept and label learning tasks. Especially for situations where
concepts are insufficient, DCBM significantly outperforms other models based on
concept bottleneck. Moreover, to express effective human-machine interactions
for DCBM, we devise two algorithms based on mutual information (MI) estima-
tion, including forward intervention and backward rectification, which can auto-
matically correct labels and trace back to wrong concepts. The construction of
the interaction regime can be formulated as a light min-max optimization problem
achieved within minutes. Multiple experiments show that such interactions can
effectively promote concept/label accuracy.

1 INTRODUCTION
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Figure 1: Concept/label distortions in CBM. (a)
is the main pipeline in CBM. (b) CBM expects
an ideal case with all explicit concepts. (c) Het-
erogeneous concepts in real-world scenarios. (d)
Thus, CBM has to mix explicit/implicit concepts
to achieve both concept/label learning.

Concept Bottleneck Model (CBM) (Koh et al.,
2020; Losch et al., 2021) is an interactive and
interpretable AI system, which encodes the
prior expert knowledge into the neural network
and makes decisions according to correspond-
ing concepts. In detail, CBM firstly maps input
images into corresponding high-level concepts,
and then utilizes these concepts for downstream
tasks. Moreover, CBM gives the ante-hoc ex-
planations for the model’s predictions due to
its end-to-end training regimes and has been
widely applied to healthcare (Chen et al., 2021;
Rong et al., 2022), shift detection (Wijaya et al.,
2021), algorithmic reasoning (Xuanyuan et al.,
2022), and so on.

However, high-level concepts in real-world sce-
narios often suffer a troublesome collection
and commonplace insufficiency due to the con-
sumption of large amounts of resources. Thus,
the concept information is usually not sufficient
to recover label information. In this circumstance, CBM cannot fit the ground-truth labels only ac-
cording to the clean but insufficient concepts. On the contrary, to learn a better classifier, CBM
has to inject extra information into the concept layer, i.e., sacrifice the concept accuracy (Fig. 1).
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What kind of bird is this?

It is a Groove-Billed Ani for its black 

wings, solid breasts, plain head, …

But I think its head is not plain.

If you are right, it will be more likely 

a Brewer Blackbird.

What kind of bird is this?

It is a Groove-Billed Ani.

No, it is a Brewer Blackbird. 

Why did you make this mistake? 

I mistook its head for plain.

Forward 
Intervention

Backward 
Rectification

HumanDCBM

Interaction

Figure 2: Two human-machine interactive tasks in DCBM. Forward Intervention: correcting labels
according to the more accurate concepts given by human; Backward Rectification: tracking back to
wrong concepts according to the labels updated by human.

Inspired by such observations, we theoretically reveal that CBM cannot avoid the inherent trade-off
between concept and label distortions due to the mixture of explicit/implicit information.

Motivated by the theoretical results, we propose Decoupling Concept Bottleneck Model (DCBM),
a novel concept-based model, to decouple the heterogeneous information into explicit and implicit
concepts. In detail, DCBM automatically allocates the implicit concepts to auxiliary neurons, as
such the pollution of explicit concepts can be avoided. Furthermore, DCBM maximizes the inter-
pretability of the models via the Jensen-Shannon (JS) divergence constraint during training.

Equipped with the DCBM, we aim to conduct corresponding human-machine interactive tasks, re-
garded as one of the most important components for such concept-based models. However, the
design of interaction algorithms for DCBM is not straightforward due to the correlation between ex-
plicit and implicit concepts. To this end, we propose a phase-two decoupling algorithm for DCBM
to peel out the explicit information via mutual information (MI) estimation (Belghazi et al., 2018).
We formulate it into a light min-max optimization problem solved in minutes. After the phase-two
decoupling stage, we consider two interaction tasks, including forward intervention and backward
rectification, which can correct labels and trace back to wrong concepts automatically via human-
machine interaction (Fig. 2).

In summary, we make the following contributions:

• To our best knowledge, we are the first to theoretically reveal and prove the existence of inherent
concept/label distortions in CBM for the situation where high-level concepts are insufficient.
• Motivated by the theoretical results, we propose Decoupling Concept Bottleneck Model (DCBM),
a novel concept-based framework, to alleviate the distortions by automatically decoupling the con-
cepts into explicit and implicit ones during the training process.
• Extensive experiments show that DCBM achieves state-of-the-art results in both concept and label
learning tasks. In particular, compared with other concept-based models, the concept/label distor-
tions can be alleviated conspicuously for DCBM with inadequate concepts.
• We devise a novel comprehensive human-machine system, which can automatically correct labels
and ascertain wrong concepts via feedback from human experts. The system is designed to decouple
heterogeneous information by solving a light MI-based optimization problem within minutes.

2 THEORETICAL RESULTS

We firstly introduce Concept Bottleneck Model (CBM) (Koh et al., 2020), and then present the
dilemma of concept/label distortions in CBM theoretically when the concepts are insufficient.

2.1 CONCEPT BOTTLENECK MODEL (CBM)

Given N training triples {xn, cn,yn}Nn=1, where xn ∈ RD, cn ∈ Rd,yn ∈ Rk respectively indi-
cate input, concept, and label vector. With g : RD → Rd mapping from input space into concept
space and f : Rd → Rk mapping from concept space into label space, CBM defines two loss func-
tions, i.e., LY and LC , which measure the difference between the ground-truth labels (concepts)
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Figure 3: Pipeline of the proposed DCBM. ‘Exp-Outputs’ and ‘Imp-Outputs’ represent the outputs
of explicit and implicit concepts, respectively. We jointly consider three objectives, including a)
Label prediction, to optimize the label accuracy; b) Concept prediction, to optimize the concept
accuracy; c) JS Divergence, to force the model to make predictions according to explicit concepts.
As such, the issue of forcible concept/label distortions in CBM can be automatically alleviated.

and the predicted ones, respectively. Note that CBM utilizes the supervision of concepts during
training while having no access to them at test time. Specifically, CBM devises three constructions
to learn the functions g and f , i.e., Independent, Sequential, and Joint models, which are introduced
in Appendix A in detail.

2.2 MAIN THEOREM

We state a simplified version of our main theorem in this section. The full version and its corre-
sponding proof can be seen in Appendix C.

Theorem 1 (Informal). Consider a dataset {xn, c
′
n,yn}Nn=1 generated from the regime X → C →

Y with insufficient concept information. Let d1 (d2) denote the number of known (missing) concepts,
and EY (EC) denote the label (concept) error. Then, the following inequation holds for Joint CBM
with high probability:

EY ≥ Φ(d1, d2)− 2γEC , (1)

where γ ∈ R+, and Φ(d1, d2) ∈ R+ increases (decreases) with d2 (d1), respectively.

The analysis of the main theorem consists of two steps: (1) analyzing the relationship between the
number of missing concepts and the label error for Sequential CBM; (2) revealing the trade-off
between concept and label error for Joint CBM via the perturbation theory of least square prob-
lem (Higham, 2002). On the one hand, Theorem 1 reveals that the weighted sum of the concept
error (EC) and label error (EY ) are bounded by Φ. On the other hand, Φ(d1, d2) increases with more
missing concepts d2, thus the concept and label error of CBM will also increase correspondingly.
Hence, Theorem 1 reveals that the concept/label trade-off will get worse with the missing concepts.

3 METHODOLOGY

Based on the above theorem, we argue that CBM suffers from concept/label distortions. Thus, we
embark on devising a Decoupled Concept Bottleneck Model (DCBM) to relieve such distortions.

3.1 DECOUPLING CONCEPT BOTTLENECK MODEL

According to the Theorem 1 and its proof, CBM has to inject implicit information into the explicit
one to achieve low label error, which will obviously sacrifice the concept accuracy. To decouple the
aforementioned heterogeneous information, we devise an extra mapping f̃ ◦ g̃ to store the implicit
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Figure 4: Forward intervention and backward rectification in DCBM. Based on MI estimation, im-
plicit concept values are decoupled into two parts, i.e., simulated explicit concepts and residual, to
extract the information of explicit concepts from implicit ones. In forward intervention, we both
intervene explicit concepts and simulated explicit concepts through ground-truth explicit concepts,
to promote the label prediction accuracy. In the process of backward rectification, DCBM can auto-
matically trace back to the cause through a light optimization task.

information in the concept layer of previous CBM (Fig. 3). We consider two loss functions:

L1 =

N∑
n=1

LY

[
(f ◦ g + f̃ ◦ g̃)(xn),yn

]
, L2 =

N∑
n=1

LC

[
g(xn), cn

]
, (2)

where g̃ : RD → Rd̃ maps xn into implicit concept space and f̃ : Rd̃ → Rk maps implicit concept
values into the label space.

However, such designed loss functions cannot always protect the model’s interpretability, since the
predicted label might mainly depend on f̃ ◦ g̃ regardless of f ◦ g. To ensure the model interpretabil-
ity, we add an auxiliary JS Divergence constraint as follows to force the model to make decisions
according to the explicit concepts as far as possible:

L3 =

N∑
n=1

JS
[
(f ◦ g + f̃ ◦ g̃)(xn) ∥ f ◦ g(xn)

]
. (3)

The overall loss is LDCBM = L1+α ·L2+β ·L3, where α and β are hyperparameters to control the
weight of different objectives. Note that the classification accuracy of explicit parts, i.e., f ◦ g, can
be guaranteed by appropriate β, while the DCBM converges to CBM when β tends to ∞. However,
β is not that the higher the better, and we further analyze the choice of β in Sec. 4.4.

Interpretability of DCBM. Even with extremely insufficient concept information, DCBM can guar-
antee the relatively low concept/label error simultaneously, however, it is impossible to expect that
all model decisions can be interpreted according to the limited concepts. Under this situation, we
aim to make full use of the concept information and give interpretations for as many samples as
possible. To this end, we utilize the JS Divergence as a metric to evaluate the interpretability for
each data point, which reflects the change of DCBM’s prediction caused by implicit concepts, i.e.,
the black-box parts.

3.2 THE PROPOSED PHASE-TWO DECOUPLING ALGORITHM

In this section, we consider two human-machine interaction tasks for DCBM, including forward
intervention and backward rectification (Fig. 2). The forward intervention aims to correct the label
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according to the ground-truth concepts given by experts, which is proposed in (Koh et al., 2020)
for the first time. Inspired by this task, we believe that a more accurate label will also help the
identification of misclassified concepts, and thus, we propose backward rectification, a novel human-
machine interactive task, in this paper. In detail, after DCBM makes decision ŷ according to the
corresponding concepts ĉ, the above two tasks can be formulated as follows.

Forward Intervention. Human experts check the learned concepts ĉ for DCBM, and correct them
to the right concepts c∗. Then, how would the model update its decision according to the more
accurate concepts c∗?

Backward Rectification. Human experts check the learned labels ŷ for DCBM, and tell the model
that the right labels should be y∗. Then, how would the model trace back to wrong concepts accord-
ing to the more accurate labels y∗ given by human experts?

Despite being equipped with clear definitions, the algorithm design is not straightforward due to
the correlation between explicit and implicit concept values, and thus, we cannot ignore the explicit
information hiding in the implicit one when conducting two interaction algorithms. To this end, we
first separate the implicit concepts into the following two parts: (1) simulated explicit concepts, i.e.,
the information of explicit concepts, which can be represented as the output of a decouple function;
(2) the residual, which has no or limited information of explicit concepts. The above decomposition
can be obtained by an MI-based optimization problem, and we borrow the tool from MI neural
estimation (Belghazi et al., 2018) to overcome the computational cost for MI estimation.

Equipped with the pre-trained decoupling neural network, it is convenient to conduct the above two
interaction tasks. For forward intervention, we only need to replace the predicted concepts with
expert concepts in the explicit concepts layer and the input of the decoupling network, respectively,
which is in line with the green line in Fig. 4. For backward rectification, the main idea is to adjust
the explicit concept values to make the model’s decision agree with the expert label, which is in line
with the red line in Fig. 4. The detailed description of the algorithm can be found in Appendix B.

4 EXPERIMENTS: CONCEPT/LABEL LEARNING

Referring to (Koh et al., 2020; Yuksekgonul et al., 2022), we perform experiments on two real-world
benchmark datasets, including CUB (Wah et al., 2011) and Derm7pt (Kawahara et al., 2018), to show
whether the concept/label distortions can be effectively relieved. Meanwhile, experiments on three
variants of CUB are performed to show the existed concept/label distortions that CBM is suffering.
We introduce the details of datasets and other baselines in Appendix D.1 and Appendix D.2.

4.1 CONCEPT/LABEL DISTORTIONS IN CBM

We show that there indeed exists a forcible concept/label distortions in all CBMs obviously. Take
CUB dataset for example, we execute concept and label learning tasks under several cases with
different ratios of concepts, namely CUB%10, CUB%20, CUB%50, as well as the original CUB
with no concept discarded (Fig. 5). While α = 0.01 is the best concept weight introduced by (Koh
et al., 2020), we still present another one, i.e., α = 0.005, performing better on label learning task.
As expected, all these models undoubtedly suffer a severe distortion in either or both tasks, especially
label distortion for Independent and Sequential models, and concept distortion for Joint model with
α = 0.005. This phenomenon inspires us to think about the underlying cause and envision an ideal
model structure that can alleviate concept/label distortions.

4.2 METRICS AND MODEL SETTING

We introduce the metrics and model setting in Appendix D.3 and Appendix D.4, respectively.

4.3 BENCHMARKING MODEL ACCURACY

DCBM is compared with concept-based models, including Independent, Sequential, Joint, Concept-
based Model Extraction (Kazhdan et al., 2020) (CME), Concept Bottleneck Model with Additional
Unsupervised Concpets (Sawada & Nakamura, 2022) (CBM-AUC), and some models without in-
terpretability, including Standard models with/without bottleneck, and Multitask model (Table 1).
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Figure 5: Label (left) / Concept (right) prediction accuracy on CUB when concepts are randomly
dropped. We compare different cases with 10%/20%/50%/100% concepts. As expected, Indepen-
dent (IND), Sequential (SEQ), and Joint models suffer an obvious distortion in either or both tasks.

Though Joint model had little trade-off between label and concept when concepts are sufficient, we
still find the amplified concept/label distortions with more concepts invisible. To verify this, we give
two groups of concept weights to ensure the best performance in either label or concept learning
task, which are α = 0.01/0.005 in Joint model and α = 0.1/0.01 in DCBM. The results in Table 1
indicate that DCBM outperforms all other approaches, and even surpasses the models with no in-
terpretability. Note that compared with other concept-based models, with more ratios of concepts
discarded on CUB, the performance decline in both tasks is alleviated obviously for DCBM. Espe-
cially for DCBM with α = 0.1, the decline of label and concept learning tasks is -1.09% and 0.85%,
respectively, while it is 4.11%/2.73% in Joint-0.01, 5.00%/11.57% in Joint-0.005, 42.93%/2.13% in
Independent model, 30.65%/2.13% in Sequential model, 40.41%/1.21% in CME, and 0.70%/1.74%
in CBM-AUC. Moreover, DCBM-0.1 significantly outperforms other concept-based models in both
concept and label learning tasks on datasets with insufficient concepts, i.e., CUB20%, CUB10%,
Derm7pt.

The results of DCBM-0.1 in Table 1 show a counterintuitive but interesting phenomenon that label
accuracy even increases with higher ratios of concepts discarded on CUB, which is contrary to
any other approach. To illustrate this, we together consider label accuracy of DCBM-0.1, DCBM-
0.01, and Standard model without bottleneck (abbreviated as STAN). It is intuitive that with more
ratios of concepts discarded on CUB, both DCBM-0.1 and DCBM-0.01 will lose interpretability
and converge to STAN, no wonder the label accuracy of DCBM-0.1 and DCBM-0.01 converges to
the one of STAN, which is 82.54%. Therefore, the reason in our conjecture that the label accuracy
of DCBM-0.1 decreases is because α = 0.1 is so large that it forces the model to learn concepts
better while, to some extent, affecting the label accuracy. However, for DCBM-0.01, α = 0.01 is
small and under this situation, the concepts can promote label accuracy.

4.4 WEIGHT OF JS DIVERGENCE

Since the prediction is based on both explicit and implicit outputs, it is an interesting question how
the explicit and implicit outputs themselves influence the final prediction. Fig. 6 shows the Label
(a-e) / Concept (f) accuracy for DCBM with α = 0.1 on Derm7pt, CUB, and three variants of CUB,
where EXP-DCBM and IMP-DCBM present the prediction results only harnessing explicit and
implicit outputs, respectively. The results show that EXP-DCBM keeps a very low label accuracy
when the weight of JS Divergence is close to 0 and gradually transcends with the rise of weight.
By contrast, IMP-DCBM has a rather higher label accuracy than EXP-DCBM when the weight
of JS Divergence is close to 0, and keeps stable or increases slightly with the rise of weight, but
suddenly drops to a very low degree when the weight achieves a very high level, e.g., β=10.0 on
CUB and its variants. We argue that a large weight of JS Divergence forces EXP-DCBM to be
close to DCBM, and thus might damage the influence of IMP-DCBM. In Appendix E.4, we also
illustrate a counterintuitive phenomenon why the lable accuracy of IMP-DCBM rises first and then
falls precipitously as shown in Fig. 6 (a-c,e). However, though the label accuracy for DCBM’s
gradients fluctuates severely, the label accuracy for DCBM itself remains stable, with the exception
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Table 1: Accuracy (%) of concept and label learning on CUB, Derm7pt, and three variants of CUB.
We compare DCBM with interpretable (INTE.) baselines, including Independent (IND), Sequential
(SEQ), Joint, CME, and CBM-AUC models. Meanwhile, a series of black-box models are compared
due to their high performance, including Standard models with bottleneck (STAN-BNK) / without
bottleneck (STAN), and Multitask (MULTI) model. To display better performance on either task,
we employ two groups of concept weights in Joint model (α = 0.01/0.005) and DCBM (α =
0.1/0.01). The best results in each task are in bold. Our methods are marked brown.

TASK INTE. APPROACH DATASET
CUB CUB%50 CUB%20 CUB%10 DERM7PT

L
A

B
E

L

!

IND 76.65 ± 0.22 74.76 ± 1.61 61.34 ± 0.61 33.72 ± 2.12 71.28 ± 1.32
SEQ 75.95 ± 0.26 73.43 ± 0.76 65.22 ± 0.39 45.30 ± 5.44 75.68 ± 0.39

JOINT-0.01 79.64 ± 0.18 79.71 ± 0.67 78.15 ± 0.30 75.53 ± 0.29 83.02 ± 0.29
JOINT-0.005 83.10 ± 0.28 82.84 ± 0.03 80.66 ± 0.07 78.10 ± 0.36 82.29 ± 0.36

CME 78.33 ± 0.21 74.53 ± 0.04 61.78 ± 0.97 37.92 ± 0.39 79.45 ± 1.48
CBM-AUC 81.26 ± 0.37 81.20 ± 0.36 81.26 ± 0.23 80.56 ± 0.43 75.47 ± 2.83

(ours) DCBM-0.1 81.01 ± 0.40 81.34 ± 0.20 81.58 ± 0.51 82.10 ± 0.05 85.32 ± 0.39
(ours) DCBM-0.01 83.95 ± 0.12 83.53 ± 0.17 82.87 ± 0.33 82.73 ± 0.31 85.12 ± 1.04

%
STAN-BNK 81.93 ± 0.20 81.56 ± 0.44 80.39 ± 0.50 77.92 ± 0.24 83.23 ± 2.43

STAN# 82.54 ± 0.17 82.54 ± 0.17 82.54 ± 0.17 82.54 ± 0.17 82.18 ± 1.67
MULTI 83.43 ± 0.22 82.80 ± 0.14 81.35 ± 0.08 78.01 ± 0.54 84.80 ± 0.65

C
O

N
C

E
PT !

IND+
96.75 ± 0.03 96.34 ± 0.16 95.93 ± 0.11 94.62 ± 0.54 78.69 ± 0.49SEQ+

JOINT-0.01 96.89 ± 0.03 96.60 ± 0.01 95.87 ± 0.03 94.16 ± 0.07 73.83 ± 2.72
JOINT-0.005 94.30 ± 0.26 93.53 ± 0.73 91.12 ± 0.78 82.73 ± 0.99 72.54 ± 3.45

CME 95.96 ± 0.06 95.78 ± 0.06 95.54 ± 0.07 94.75 ± 0.09 79.45 ± 1.48
CBM-AUC 97.17 ± 0.06 96.77 ± 0.06 96.17 ± 0.06 95.43 ± 0.06 81.53 ± 0.59

(ours) DCBM-0.1 96.92 ± 0.04 96.90 ± 0.07 96.66 ± 0.03 96.07 ± 0.02 80.70 ± 0.22
(ours) DCBM-0.01 96.30 ± 0.12 96.14 ± 0.15 94.89 ± 0.35 90.84 ± 0.88 76.85 ± 1.91

%
STAN-BNK* 91.34 ± 0.15 90.37 ± 0.05 87.73 ± 0.16 82.20 ± 0.35 77.06 ± 0.47

MULTI 96.10 ± 0.46 95.52 ± 0.19 94.34 ± 0.57 89.13 ± 0.90 77.07 ± 1.42
# Standard models without bottleneck share the same structure regardless of the number of concepts.
+ Independent and Sequential model have no difference in x → c process.
* Standard model is trained with concepts unsupervised, thus we inject a linear probe to the bottleneck so it can predict the

concept values.

0.0 0.01 0.1 1.0 10.0

< 50

60

70

80

Weight of JS Divergence

L
ab

el
A

cc
ur

ac
y

(%
)

(a) CUB

DCBM
EXP-DCBM
IMP-DCBM

Joint-0.01

0.0 0.01 0.1 1.0 10.0

< 50

60

70

80

Weight of JS Divergence

L
ab

el
A

cc
ur

ac
y

(%
)

(b) CUB%50

DCBM
EXP-DCBM
IMP-DCBM

Joint-0.01

0.0 0.01 0.1 1.0 10.0

< 50

60

70

80

Weight of JS Divergence

L
ab

el
A

cc
ur

ac
y

(%
)

(c) CUB%20

DCBM
EXP-DCBM
IMP-DCBM

Joint-0.01

0.0 0.01 0.1 1.0 10.0

< 50

60

70

80

Weight of JS Divergence

L
ab

el
A

cc
ur

ac
y

(%
)

(d) CUB%10

DCBM
EXP-DCBM
IMP-DCBM

Joint-0.01

0.0 0.01 0.1 1.0 10.0
40

60

80

Weight of JS Divergence

L
ab

el
A

cc
ur

ac
y

(%
)

(e) Derm7pt

DCBM
EXP-DCBM
IMP-DCBM

Joint-0.01

0.0 0.01 0.1 1.0 10.0
92

94

96

98

Weight of JS Divergence

C
on

ce
pt

A
cc

ur
ac

y
(%

)

(f) Concept

CUB
CUB%50
CUB%20
CUB%10

Figure 6: Label (a-e) / Concept (f) prediction for DCBM with α = 0.1 on Derm7pt / CUB /
CUB%50,%20,%10 when the weight of JS divergence varies. EXP-DCBM and IMP-DCBM repre-
sent the predictions only harnessing explicit and implicit outputs, respectively. Furthermore, we use
a dotted line to express the label accuracy of Joint-0.01.

that the accuracy drops a little due to the nosedive of the label accuracy for IMP-DCBM. Under
this perspective, we believe that the choice of β is not arbitrary, and not always implies a trade-off
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between interpretability and accuracy. For instance, the label accuracy for DCBM keeps stable or
rises slightly, while the one of EXP-DCBM significantly improves when β varies from 0.0 to 1.0. In
addition to this, as shown in Fig. 6 (f), the influence of concept accuracy changes little with different
weights of JS Divergence, which indicates the concept robustness in terms of β. Furthermore, the
dotted lines in Fig. 6 reveal that the performance of DCBM convergences to the one of CBM when
β is sufficiently large (β = 10).

4.5 OTHER EXPERIMENTAL ANALYSIS

Actually, in addition to the weight of JS Divergence, lots of other interesting analysis is worth
discussing, which may either affect concept/label accuracy or interpretability and bring about some
further findings. We display the relationship between the weight and values of JS Divergence in
Appendix E.1 and how much the dimension of implicit concepts affects concept/label accuracy in
Appendix E.2. Moreover, we compare the label accuracy predicted only by explicit concepts with
the values of JS Divergence in Appendix E.3 and illustrate in Appendix E.4 why the label accuracy
of IMP-DCBM rises first and then falls in Fig. 6.

5 EXPERIMENTS: HUMAN-MACHINE INTERACTION

As introduced in Sec. 3.2, two algorithms based on MI estimation, including forward intervention
and backward rectification, are devised to automatically correct label predictions and trace back to
wrong concepts, while they can be achieved only by few additional training costs. In Table 2 and
Table 3, we experiment the corresponding tasks for DCBM with α = 0.1 and β = 0.01/1.0 on CUB,
CUB%50, CUB%20, CUB%10, and Derm7pt. The choices of β = 0.01/1.0 respectively represent
the best model performance and the best interpretability. It is also worth mentioning that we do
not interact with real-world human experts in the experiments but assume that the judgments given
by human experts are consistent with the concept/label values in the dataset. Therefore, we only
propose a feasible plan of human-machine interaction via DCBM and it requires further examination
to demonstrate whether the system can work as expected.

Forward Intervention. In Table 2, we display the noninterventive model performance for Joint
model with α = 0.01 and DCBM. Then, for CUB and its variants, we respectively intervene 11
(10% of the total 112) concept values for wrong predictions, while we intervene all the concepts
related to pigment network for Derm7pt, to show the intervention promotion, see JOINT-INT and
DCBM-INT. Concept values are respectively intervened to the 95th or 5th percentile of the ones
over the training distribution for positive/negative samples, which is in line with (Koh et al., 2020).
Besides, we perform a novel forward intervention algorithm called DCBM-INT-DEC, as introduced
in Sec. 3, and as expected, the label accuracy can be further promoted in most cases. Especially
for the situation where concepts are insufficient, our proposed algorithm can still provide effective
intervention instead of even severely reducing the accuracy as Joint model does. As discussed in
(Koh et al., 2020), one major reason for this phenomenon is that when the concept accuracy is low,
the learned concepts are not necessarily aligned with the ground truth concepts. Similar to CME,
the label accuracy of DCBM promotes more when more concepts are discarded. The reason is that
models with poorer concept accuracy may have a larger room for label prediction improvement.
Furthermore, we also conduct experiments to reveal how well the decoupling network is able to
reduce the MI in Appendix E.5 and its effects during prediction in Appendix E.6.

Backward Rectification. Table 3 presents the unrectified model performance (DCBM) as well
as the rectification without (DCBM-REC) / with (DCBM-REC-DEC) MI estimation. Results in
Table 3 show the effectiveness of backward rectification, where DCBM-REC and DCBM-REC-DEC
succeed in promoting concept accuracy in all cases, especially for DCBM-REC-DEC. Apart from
accuracy promotion, we also give true positive rate (TPR) and false positive rate (FPR) to detail such
promotion. The former represents the ability to discover wrong predictions while the latter illustrates
the disturbance with correct predictions. Through in-depth observation, we find that though the TPR
of DCBM-REC-DEC is low, it overpasses DCBM-DEC in prediction accuracy mainly due to a lower
FPR, namely, the number of samples mistakenly corrected by DCBM-REC-DEC is far less than that
of DCBM-REC. Furthermore, we need to declare that the backward rectification task is very difficult
because the ratio of misclassified concepts is very low, which is less than 4% in general. Thus, our
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Table 2: Forward intervention on Derm7pt, CUB and its three variants. We present the label accuracy
(%) for the original Joint model with α = 0.01, CME, and DCBM with α = 0.1, and then respec-
tively intervene 10% concepts to show the promotion, see JOINT-INT, CME-INT, and DCBM-INT.
Moreover, we intervene simulated explicit concept values decoupled from implicit concept values
(abbreviated as DCBM-INT-DEC), where label accuracy can be further improved. The best results
on each dataset are in bold.

APPROACH DATASET
CUB CUB%50 CUB%20 CUB%10 DERM7PT

JOINT (Koh et al., 2020) 79.64 ± 0.18 79.71 ± 0.67 78.15 ± 0.30 75.53 ± 0.29 83.02 ± 0.29
JOINT-INT (Koh et al., 2020) 82.04 ± 0.39 83.06 ± 0.10 80.99 ± 0.26 67.85 ± 0.42 74.15 ± 2.93
CME (Kazhdan et al., 2020) 78.33 ± 0.21 74.53 ± 0.04 61.78 ± 0.97 37.92 ± 0.39 79.45 ± 1.48

CME-INT (Kazhdan et al., 2020) 82.43 ± 0.21 80.59 ± 0.17 71.57 ± 0.36 54.31 ± 0.31 79.56 ± 1.60
(ours) DCBM+ 80.82 ± 0.13 81.49 ± 0.32 81.38 ± 0.44 82.43 ± 0.14 84.28 ± 1.78

(ours) DCBM-INT+ 81.96 ± 0.09 83.39 ± 0.77 84.76 ± 0.24 86.23 ± 0.01 86.06 ± 0.59
(ours) DCBM-INT-DEC+ 82.52 ± 0.38 84.32 ± 0.71 86.21 ± 0.11 87.34 ± 0.38 86.16 ± 0.68

(ours) DCBM* 81.01 ± 0.40 81.34 ± 0.20 81.58 ± 0.51 82.10 ± 0.05 85.32 ± 0.39
(ours) DCBM-INT* 82.59 ± 0.25 84.07 ± 0.11 85.55 ± 0.40 87.91 ± 0.25 85.54 ± 1.71

(ours) DCBM-INT-DEC* 82.80 ± 0.32 84.46 ± 0.18 85.82 ± 0.53 87.75 ± 0.23 86.16 ± 0.77
+ DCBM with β = 0.01, typically displaying the best model performance.
* DCBM with β = 1.0, owning high performance while retaining the best model interpretability.

Table 3: Backward rectification on Derm7pt, CUB and its three variants. We present the original
concept accuracy (ACC) of DCBM with α = 0.1 only on samples whose label predictions are
wrong. Then, we respectively show the accuracy promotion (ACC), true positive rate (TPR), and
false positive rate (FPR) under an optimization regime without (DCBM-REC) / with (DCBM-REC-
DEC) Decoupling Neural Network. The best results for each β are in bold.

APPROACH METRIC DATASET
CUB CUB%50 CUB%20 CUB%10 DERM7PT

DCBM+

ACC (%)

89.36 ± 0.05 88.38 ± 0.11 87.62 ± 0.12 85.24 ± 0.14 73.37 ± 2.16
DCBM-REC+ 90.02 ± 0.05 89.73 ± 0.12 89.63 ± 0.34 85.49 ± 0.47 75.39 ± 3.01

DCBM-REC-DEC+ 90.25 ± 0.08 90.18 ± 0.04 91.31 ± 0.14 89.12 ± 1.97 75.30 ± 2.97
DCBM* 89.23 ± 0.06 88.48 ± 0.22 87.48 ± 0.13 85.12 ± 0.25 71.59 ± 3.14

DCBM-REC* 90.22 ± 0.11 90.32 ± 0.08 91.22 ± 0.42 90.03 ± 0.45 72.13 ± 3.89
DCBM-REC-DEC* 90.33 ± 0.15 90.48 ± 0.05 91.35 ± 0.27 91.03 ± 0.80 72.83 ± 4.09

DCBM-REC+

TPR (%)

24.43 ± 0.42 31.24 ± 0.62 48.03 ± 0.60 64.86 ± 1.07 53.41 ± 10.77
DCBM-REC-DEC+ 22.49 ± 0.67 27.72 ± 0.27 41.87 ± 1.82 60.44 ± 9.90 53.41 ± 10.77

DCBM-REC* 24.73 ± 0.51 32.30 ± 0.56 46.51 ± 1.31 68.99 ± 1.95 37.80 ± 2.03
DCBM-REC-DEC* 24.23 ± 0.63 30.99 ± 0.88 42.76 ± 1.21 66.48 ± 3.39 33.74 ± 6.73

DCBM-REC+

FPR (%)

2.17 ± 0.42 2.58 ± 0.28 4.49 ± 0.41 10.89 ± 0.31 22.22 ± 2.74
DCBM-REC-DEC+ 1.68 ± 0.14 1.61 ± 0.11 1.70 ± 0.08 5.89 ± 3.72 21.46 ± 1.34

DCBM-REC* 1.87 ± 0.06 2.12 ± 0.16 2.38 ± 0.33 6.36 ± 0.40 16.18 ± 4.65
DCBM-REC-DEC* 1.69 ± 0.07 1.77 ± 0.21 1.70 ± 0.12 4.74 ± 1.21 12.55 ± 6.87
+ DCBM with β = 0.01, typically displaying the best model performance.
* DCBM with β = 1.0, owning high model performance while retaining the best model interpretability.

main intention is to choose several predicted concepts which are possibly wrong and then query
them to the human experts.

6 DISCUSSION AND CONCLUSION

In this paper, we theoretically reveal the inherent concept/label trade-off for CBM with insufficient
concept information and develop DCBM to expand the application range for CBM. Furthermore, we
propose a phase-two decoupling algorithm via MI-based optimization to implement human-machine
interaction tasks, including forward intervention and backward rectification. This paper also has
some limitations: (1) For the theory part, we assume k < min{d1, d2}, which is not consistent
with datasets which have abundant concepts; (2) We do not consider the leakage phenomenon of
CBMs in our methodology. Apart from addressing the limitations, we also propose other future
works as follows: (1) Extend the proposed DCBM to broad scenarios, such as graph-structured
data and bioinformatics databases; (2) Utilize the concepts information with causal relationship; (3)
Constrain the MI between explicit/implicit concepts during the training process.
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REPRODUCIBILITY STATEMENT

The source code to reproduce every experiment will be available to the public. See Appendix C for
the proof of the main theory and Appendix D for experimental details.
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A RELATED WORKS

Concepts Bottleneck Models. CBMs (Koh et al., 2020; Kazhdan et al., 2020; Losch et al., 2021)
extract the high-level expert knowledge from data and utilize them for downstream tasks, which aim
to make the AI system more interpretable and interactive. On the one hand, post-hoc CBMs (Kazh-
dan et al., 2020; Yuksekgonul et al., 2022; Bai et al., 2022) generate the concept explanations from
the pre-trained model, which has no access to concepts during training process. However, such
methods cannot guarantee that the information of concepts can be recovered from the hidden layers
of the pre-trained networks (Kazhdan et al., 2021). On the other hand, ante-hoc CBMs (Koh et al.,
2020) learn the given concepts during training process to obtain informative embedding. However,
several works (Kazhdan et al., 2021; Yuksekgonul et al., 2022) point out that ante-hoc CBMs suffer
the catastrophic label distortion with insufficient high-level concepts. In this paper, we focus on
ante-hoc CBMs and look more closely at the situations with insufficient concepts. Instead of point-
ing out the label distortions empirically (Kawahara et al., 2018; Yuksekgonul et al., 2022), we reveal
the inherent concept/label trade-off for CBM with insufficient concepts theoretically. Furthermore,
we propose DCBM to alleviate this trade-off via decoupling the heterogeneous information.

Some works also target on concept learning tasks with insufficient explicit concepts and utilize
implicit information to improve the label accuracy (Li et al., 2022; Sawada & Nakamura, 2022).
However, these methods do not constrain the power of implicit knowledge, which makes it impos-
sible to give a faithful interpretation. Furthermore, several works (Bahadori & Heckerman, 2020;
Goyal et al., 2019; Feder et al., 2021) also consider the causal effect of CBM during the intervention
phase or model the causal relationship between concepts. However, in this paper, we do not consider
the causal effect and regard it as an important future work.

Three Training Techniques for CBM. CBM (Koh et al., 2020) devises three constructions to
learn the functions g and f , i.e., Independent, Sequential, and Joint models, which are introduced as
follows:

1. Independent CBM learns f and g independently: ĝ = argming
∑N

n=1 LC [g(xn), cn],
f̂ = argminf

∑N
n=1 LY [f(cn),yn]. Note that f is trained with the ground-truth concept

c, while using ĝ(xn) as input at test time.

2. Sequential CBM learns g in the same way as Independent CMB, but uses ĝ(xn) to learn f̂ ,
i.e., f̂ = argminf

∑N
n=1 LY [f ◦ ĝ(xn),yn].

3. Joint CBM learns g and f jointly via a hyperparameter α to control the weight of two parts,
namely ĝ, f̂ = argming,f

∑N
n=1{LY [f ◦ g(xn),yn] + αLC [g(xn), cn]}.

Leakage in CBMs. Some papers (Mahinpei et al., 2021; Margeloiu et al., 2021) indicate the infor-
mation leakage phenomenon in CBMs, which may impact the interpretability of the learned model.
Moreover, Havasi et al. (2022) address this issue in CBMs and separate the concept information via a
side-channel model to improve the leakage. Unlike the leakage of concepts caused via small pertur-
bations, our paper focus on that CBMs fail to guarantee the concept/label accuracy simultaneously
with insufficient explicit information.

Other Concept Based Models. Several methods also aim to generate high-level synthetic con-
cepts automatically during the training process (Bau et al., 2017; Kim et al., 2018; Zhou et al., 2018;
Yeh et al., 2020; Parekh et al., 2021; Sarkar et al., 2022). These methods do not require explicit
domain knowledge and can give explainable patterns which are responsible for the model’s predic-
tions. However, such methods are not interactive due to the synthetic concepts. In this paper, we
utilize expert knowledge of the concepts directly and aim to design an interactive AI system.
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B DETAILS OF PHASE-TWO DECOUPLING ALGORITHM FOR DCBM

Algorithm 1: Phase-two Decoupling Algorithm
# MI-based min-max optimization for training fDEC;
Input: Explicit (implicit) concepts {ĉn}Nn=1 ({c̃n}Nn=1) learned by DCBM, decoupling

network fDEC and auxiliary network fMI with initialized parameters θDEC and θMI.
for E1 epochs do

Sample N pairs from the joint distribution {ĉn; c̃n − fDEC(ĉn)}Nn=1;
for E2 epochs do

Shuffle N residuals: {c̃jn − fDEC(ĉjn)}Nn=1;
Calculate the lower bound: L(θMI) =

1
N

∑N
n=1[fMI(ĉn; c̃n−fDEC(ĉn))]−log[ 1N

∑N
n=1 exp {fMI(ĉn; c̃jn − fDEC(ĉjn))}];

Update θMI: θMI = optim.Adam(θMI,−∇L(θMI));

Shuffle N residuals: {c̃kn
− fDEC(ĉkn

)}Nn=1;
Calculate the loss for decoupling network: L(θDEC) =

1
N

∑N
n=1[fMI(ĉn; c̃n −

fDEC(ĉn))]− log[ 1N
∑N

n=1 exp {fMI(ĉn; c̃kn
− fDEC(ĉkn

))}] + η∥fDEC(ĉ)∥22;
Update θDEC: θDEC = optim.SGD(θMI,∇L(θDEC));

# Forward Intervention;
Input: Explicit (implicit) concepts ĉ (c̃) learned by DCBM, the ground-truth concepts c∗ given

by expert, and the pre-trained decoupling network fDEC.
Calculate the residual: r = c̃− fDEC(ĉ);
Update the new predicted label: ynew = f(c∗) + f̃(fDEC(c

∗) + r);
# Backward Rectification;
Input: Explicit (implicit) concepts ĉ (c̃) learned by DCBM, the ground-truth label y∗ given by

experts, and the pre-trained decoupling network fDEC.
Initialize cnew via ĉ: cnew = ĉ;
for M epochs do

Calculate the classification loss:
LY (cnew) = LY

[
f(cnew) + f̃(c̃+ fDEC(cnew)− fDEC(ĉ)),y

∗
]
;

Update the concept cnew: cnew = optim.Adam(cnew,∇LY (cnew));

In this section, we introduce the technical detail for the design of a human-machine interactive
system in DCBM. To begin with, we decouple the information of explicit concept values ĉ ∈ Rd

from the implicit ones c̃ ∈ Rd̃. Specifically, we assume the implicit concept values c̃ can be divided
into the sum of the following two parts: (1) simulated explicit concepts, i.e., the information of
explicit concepts, which can be represented as the output of a decouple function fDEC : Rd → Rd̃,
i.e., fDEC(ĉ) ∈ Rd̃; (2) the residual, i.e., c̃ − fDEC(ĉ), which has no or limited information of
explicit concepts. To achieve the above factorization, we minimize the MI between the explicit
concepts ĉ and the residual term c̃− fDEC(ĉ), i.e., consider the following optimization problem:

min
fDEC

MI(ĉ; c̃− fDEC(ĉ)) + η∥fDEC(ĉ)∥22, (4)

where fDEC is a light neural network and η is a hyperparameter to control the energy of the decou-
pling parts. Note that once the optimization problem 4 is conducted, most information of explicit
concepts hidden in implicit ones will be absorbed into fDEC(ĉ), and the residual will have limited
information of ĉ. However, the above optimization problem cannot be solved directly due to the
challenge of MI estimation in high dimensions. To combat this, we borrow the tool from MI neural
estimation (Belghazi et al., 2018), and exploit the lower bound of MI to convert the calculation of
MI to the following optimization problem:
MI(ĉ; c̃− fDEC(ĉ)) ≥ max

fMI

E [fMI (ĉ; c̃− fDEC(ĉ))]− logE[exp {fMI(ĉ; c̃− fDEC(ĉ))}], (5)

where fMI : Rd+d̃ → R is an auxiliary network for the MI estimation. Thus, the optimization
problem 4 can be converted to the following min-max optimization:

min
fDEC

max
fMI

E [fMI (ĉ; c̃− fDEC(ĉ))]− logE[exp {fMI(ĉ; c̃− fDEC(ĉ))}] + η∥fDEC(ĉ)∥22. (6)
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Equipped with the pre-trained decoupling neural network fDEC, it is convenient to conduct the above
two interaction tasks. For forward intervention, we only need to replace the predicted concepts ĉ
by expert concepts c∗ in the explicit concepts layer and the input of decoupling network fDEC,
respectively. In detail, we update the new predicted label ynew as follows, which is in line with the
green line in Fig. 4:

ynew = f(c∗) + f̃(fDEC(c
∗) + c̃− fDEC(ĉ)). (7)

For backward rectification, the main idea is to adjust the explicit concept values ĉ to make the
model’s decision agree with the expert label y∗. In detail, we fine-tune the concept values via
backpropagation, i.e., solve the following light optimization problem and update the concept cnew,
which is in line with the red line in Fig. 4:

cnew = argmin
cnew

LY

[
f(cnew) + f̃(c̃+ fDEC(cnew)− fDEC(ĉ)),y

∗
]
. (8)

C THEORETICAL RESULTS

This section presents the inherent dilemma of concept/label distortions in CBM theoretically. The
analysis of the main theorem consists of two steps: (1) analyzing the relationship between the
number of missing concepts and the label error for Sequential CBM; (2) revealing the trade-off
between concept and label accuracy for Joint CBM via the perturbation theory of least square prob-
lem (Higham, 2002).

C.1 ASSUMPTIONS

To model the above phenomenon mathematically, we firstly introduce the functional families Fd,k

and the non-redundant assumption in Definition 1 and 2, respectively.
Definition 1. Define Fd,k as the families of linear transform from Rd to Rk:

Fd,k ≜ {f : c ∈ Rd → Wc ∈ Rk|W ∈ Rk×d,Wi,j ∼ N (0,
1

d
)}. (9)

Definition 2. Let C be a probability distribution over Rd. We say C is non-redundant if and only if:

MI(CA; CB) < H(CA), for all A,B ⊂ {1, 2, · · · , d}, A ∩ B = ∅, (10)

where MI(·; ·) and H(·) denote the mutual information and entropy, respectively.

We state our main assumption for the data generating process in Assumption 1.
Assumption 1. [Two-phase Generation] The data are generated from a two-phase processes G:

G : X g∗

−→ C f∗

−→ Y, (11)

where X ⊂ RD is the distribution of the input images, C ⊂ Rd and Y ⊂ Rk represent the corre-
sponding distribution of concepts and labels, respectively. g∗ : X → C is a Lipschitz continuous
concept mapping, which maps the data point to its corresponding concept, and f∗ is a linear classi-
fier sampled from the families of linear transform Fd,k randomly. Furthermore, we assume that the
concept distribution C satisfies the non-redundant assumption in Definition 2.

To generate the dataset, we firstly sample a data generator G from the corresponding family G. Then,
we sample N triples {xn, cn,yn}Nn=1 from the data generator G, and only select d1 < d concepts
randomly from C, denoted as {xn, c

′
n,yn}Nn=1 to simulate the case of insufficient concepts.

The non-redundant assumption reveals that arbitrary concept cannot be represented by the rest ones,
which guarantees the uniqueness of the linear probe in the proof of the main theorem. Furthermore,
we assume the concept bottleneck model comprises two modules as follows.
Assumption 2. Let g and f be two modules in CBM, where g : X → C be a powerful neural
network function which can represent arbitrary Lipschitz continuous mapping and f ∈ Fd,k is a
linear probe.

The universal approximation assumption of neural network function can be guaranteed by the theo-
rems in (Chen & Chen, 1995; Lu & Lu, 2020).
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C.2 MAIN RESULTS

Now we are ready to state our main theorem in this section as follows.

Theorem 2. Consider a dataset {xn, c
′
n,yn}Nn=1 generated from G described in Assumption 1,

and the CBM model which satisfies the Assumption 2. Let d1 (d2) denote the number of known
(unknown) concepts, and assume k < min{d1, d2}. Let EC and EY denote the ℓ2 error of concepts
and labels for CBM, respectively. Then, for all ϵ ≥ 0, the following inequation holds for Joint CBM
with probability at least 1− 2 exp (−ϵ2/2):

EY ≥ 1√
d
(
√

d2 −
√
k − ϵ)∥PU2(C2)∥F − 2∥C†

1∥2∥Y ∥FEC , (12)

where PA(B) denotes the projection of B onto the subspace span(A), C1 ∈ RN×d1(C2 ∈ RN×d2)
denotes the matrices of known (unknown) concepts, and U2 denotes the orthogonal complement
space of C1 such that span(C1 +C2) = span(C1)⊕ span(U2).

Proof Let X ≜ [x1,x2, · · · ,xN ]⊤ ∈ RN×D, C ≜ [c1, c2, · · · , cN ]⊤ ∈ RN×d, Y ≜
[y1,y2, · · · ,yN ]⊤ ∈ RN×k be the concatenation of N input images, concepts, and labels, re-
spectively. Without loss of generality, we assume that the first d1 concepts are known, and divide C
into two parts, the given concepts C1 ∈ RN×d1 and the unknown parts C2 ∈ RN×d2 , respectively.
Applying block QR factorization on C, we have:

C = [C1∥C2] = [U1∥U2]

[
B11 B12

0 B22

]
, (13)

where U1 ∈ RN×d1 and U2 ∈ RN×d2 denote two orthogonal basis matrices, and the block B11 ∈
Rd1×d1 , B12 ∈ Rd1×d2 and B22 ∈ Rd2×d2 denote the coefficient matrices. Similarly, we divide
the linear transform matrix W ∈ Rk×d in Assumption 1 as W = [W1∥W2], where W1 ∈ Rk×d1

and W2 ∈ Rk×d2 represent the linear transform matrices corresponding to C1 and C2, respectively.
It is worth mentioning that W is almost surely unique due to the non-redundant and the Gaussian
distribution assumptions in Assumption 1.

Firstly, we analyze the relationship between the number of missing concepts and the label error for
Sequential CBM. Due to the universal approximation ability of the neural network function g, we
only need to consider the following optimization problem:

min
f∈Fd1,k

N∑
n=1

∥f(c′n)− yn∥22. (14)

According to the law of data generator G, we have:

Y = CW⊤ = [U1||U2]

[
B11 B12

0 B22

] [
W⊤

1

W⊤
2

]
. (15)

Then, Y ′ ≜ U1B11W
⊤
1 +U1B12W

⊤
2 and Y ⊥ ≜ U2B22W

⊤
2 denote the optimal projection and

the residual of Y onto the subspace of span(C1), respectively. Thus, we can give the lower bound
for the ℓ2 label error of Sequential CBM Ls

Y as follows:

Ls
Y = ∥Y ⊥∥2F
= ∥U2B22W

⊤
2 ∥2F

≥ σ2
min(W2)∥PU2

(C2)∥2F ,
(16)

where σmin(W2) denotes the least singular value of W2. Due to W2 ∈ Rd2×k is the sub-matrix of
W , which sampled from a random matrix family satisfying the Gaussian distribution. According to
the random matrix theory (Davidson & Szarek, 2001; Eldar & Kutyniok, 2012), for all ϵ ≥ 0, with
probability at least 1− 2 exp (−ϵ2/2) we have:

σmin(W2) ≥
1√
d
(
√
d2 −

√
k − ϵ). (17)
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Thus, with high probability, we have:

Ls
Y ≥ 1

d
(
√

d2 −
√
k − ϵ)2∥PU2

(C2)∥2F . (18)

Next, we consider the equivalent form of the Joint CBM, which can be formulated as the following
optimization problem:

min
{ĉn}N

n=1,f∈Fd1,k

LY + αLC ,

LC =

N∑
n=1

∥ĉn − c′n∥22; LY =

N∑
n=1

∥f(ĉn)− yn∥22.
(19)

The equivalence can be guaranteed due to the universal approximation property of the neural net-
work function. Let {ĉ∗n}Nn=1 and f̂∗ be the optimizer of the optimization problem 19, and concate-
nate all {ĉ∗n}Nn=1 as Ĉ∗. Furthermore, let Ŷ ⊥ denote the projection residual of Y onto the subspace
span(Ĉ∗). Then, according to the perturbation theory of the least square problem (Higham, 2002),
we have:

∥Y ⊥ − Ŷ ⊥∥F
≤∥Ĉ∗ −C1∥F ∥C†

1Y ∥F + ∥Ĉ∗ −C1∥F ∥C†
1∥2∥Y ⊥ − Y ∥F

≤2∥Ĉ∗ −C1∥F ∥Y ∥F ∥C†
1∥2.

(20)

Then, we can obtain the lower bound of label error EY for Joint CBM as follows:

EY =∥Ŷ ⊥∥F
≥∥Y ⊥∥F − ∥Y ⊥ − Ŷ ⊥∥F
≥[Ls

Y ]
1
2 − 2∥Ĉ∗ −C∥F ∥C†

1∥2∥Y ∥F

≥ 1√
d
(
√

d2 −
√
k − ϵ)∥PU2(C2)∥F − 2∥Ĉ∗ −C1∥F ∥C†

1∥2∥Y ∥F

=
1√
d
(
√

d2 −
√
k − ϵ)∥PU2

(C2)∥F − 2∥C†
1∥2∥Y ∥FEC .

(21)

□

C.3 DISCUSSION OF THE MAIN THEORY

Note that we assume that the weight matrix W2 ∈ Rd2×k is generated from a Gaussian distribution
in Assumption 1, which is used when we bound the least singular value of the weight matrix. Note
that the assumption can be relaxed as rank(W2) = k and we make such an assumption to obtain a
more accurate description. Actually, for any matrix W2, when we add a row w ∈ Rk to it, where w
can be regarded as the weight of a new concept, we will have:[

W⊤
2 w⊤] [ W2

w

]
= W⊤

2 W2 +w⊤w ⪰ W⊤
2 W2. (22)

Thus, we can obtain σmin(W2) ≤ σmin

([
W2

w

])
, which indicates that the decrease of concept

number will increase the least singular value of the weight matrix, and hence increasing the label
error according to Eq. 16.

Moreover, we assume k < min{d1, d2}, which is not consistent with the CUB dataset. This is one
of the limitation of our theoretical result, and we regard this problem as an important future work.
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Table 4: Brief summary of the datasets. Here, # means ‘the number of’. Note that the splitting of
train-test-validation is in line with (Koh et al., 2020; Kawahara et al., 2018).

DATASET #CONCEPT #CLASS #TRAIN #VAL #TEST
CUB (Wah et al., 2011) 112

200 4796 1198 5794CUB%50 56
CUB%20 22
CUB%10 11
Derm7pt (Kawahara et al., 2018) 8 2 688 322 636

D EXPERIMENTAL PROTOCOLS

D.1 DATASET

We consider two commonly-used datasets, including bird species and dermoscopic images, as shown
in Fig. 7. Both of them express high-level concepts as such one can provide interpretability analysis.
A brief summary of datasets can be seen in Table 4.

CUB (Wah et al., 2011) Caltech-UCSD Birds-200-2011, which we call CUB in the following text, is
an extension of CUB-200 (Welinder et al., 2010), collecting a total of 200 bird species with 11,788
bird photographs. CUB comprises 312 bird attributes including wing shape, back pattern, eye color,
etc. Since the concepts are noisy and sparse, we leave only 112 binary concepts instead, following
the work (Koh et al., 2020), detailed in Table 5. This task aims to classify each bird photograph out
of 200 different species. Thanks to the splitting standard of train/test/validation dataset (Koh et al.,
2020), we only need to follow this given setting.

Derm7pt (Kawahara et al., 2018) Seven-Point Checklist Dermatology dataset, abbreviated as
Derm7pt, is a dataset comprising 1,011 groups of images. Each group contains a clinic photograph
and a dermoscopic image, respectively. Due to the lack of Seborrheic Keratosis (SK) samples, we
follow the setting of the work (Lucieri et al., 2020), only considering Melanoma (MEL) and Naevi
(NV) ones with a total of 823 groups. Derm7pt contains several authoritative concepts (Kittler et al.,
2016) including Pigmented Networks, Streaks, etc. On account of the concept absence and inter-
pretability on Melanoma detection, we leave 8 malignancy-associated binary concepts, including
Blue Whitish Veil, Pigmented Networks, and Regression Structures, as (Yuksekgonul et al., 2022)
did. We also show the concepts in Table 5. This task is a binary classification problem, judging
whether an image is a melanoma or naevus. Similarly, the train/test/validation indexes are already
given as well.

Note that CUB succeeds to have a large group of concepts, while Derm7pt fails. However, most
datasets we have investigated typically have a small number of concepts (Nevitt et al., 2006), or
have to be extracted (Tschandl et al., 2018; Rotemberg et al., 2021; Krizhevsky et al., 2009; Fong &
Vedaldi, 2018) by other trained models (Lucieri et al., 2020; Abid et al., 2021). This phenomenon
is understandable, since high-quality and abundant labeled concepts are labour-intensive and infre-
quent. This brings about a new question — What if CUB also has an insufficient group of concepts?
And then, how will CBM perform under this condition? To achieve the answer, we randomly drop
50%, 80%, and 90% concepts in CUB, respectively, and form three new datasets named CUB%50,
CUB%20, and CUB%10. We display a brief summary of the referred datasets in Table 4, while the
left concepts are randomly chosen by programs and fixed as:

• CUB50%: 1, 2, 5, 6, 8, 10, 12, 13, 18, 19, 21, 27, 28, 32, 33, 34, 37, 39, 40, 41, 43, 46, 47, 50,
52, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 75, 78, 79, 80, 81, 84, 86, 92, 93, 95, 96, 98,
100, 101, 103, 104, 107, 109.
• CUB20%: 6, 13, 18, 28, 33, 34, 37, 39, 46, 50, 52, 54, 62, 63, 65, 66, 75, 80, 96, 98, 101, 109.
• CUB10%: 6, 34, 50, 52, 54, 63, 66, 98, 101, 107, 109.

D.2 BASELINES

We adopt seven models as our baselines in this paper, including:

• Independent / Sequential / Joint models in CBM, as recommended in Sec. 2.1.
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Table 5: Concepts used in CUB and Derm7pt.
Concepts in CUB

No. Concept Name No. Concept Name No. Concept Name No. Concept Name
1 bill shape: dagger 29 back color: black 57 forehead color: yellow 85 back pattern: striped
2 bill shape: hooked seabird 30 back color: white 58 forehead color: black 86 back pattern: multi-colored
3 bill shape: all-purpose 31 back color: buff 59 forehead color: white 87 tail pattern: solid
4 bill shape: cone 32 tail shape: notched tail 60 under tail color: brown 88 tail pattern: striped
5 wing color: brown 33 upper tail color: brown 61 under tail color: grey 89 tail pattern: multi-colored
6 wing color: grey 34 upper tail color: grey 62 under tail color: black 90 belly pattern: solid
7 wing color: yellow 35 upper tail color: black 63 under tail color: white 91 primary color: brown
8 wing color: black 36 upper tail color: white 64 under tail color: buff 92 primary color: grey
9 wing color: white 37 upper tail color: buff 65 nape color: brown 93 primary color: yellow

10 wing color: buff 38 head pattern: eyebrow 66 nape color: grey 94 primary color: black
11 upperparts color: brown 39 head pattern: plain 67 nape color: yellow 95 primary color: white
12 upperparts color: grey 40 breast color: brown 68 nape color: black 96 primary color: buff
13 upperparts color: yellow 41 breast color: grey 69 nape color: white 97 leg color: grey
14 upperparts color: black 42 breast color: yellow 70 nape color: buff 98 leg color: black
15 upperparts color: white 43 breast color: black 71 belly color: brown 99 leg color: buff
16 upperparts color: buff 44 breast color: white 72 belly color: grey 100 bill color: grey
17 underparts color: brown 45 breast color: buff 73 belly color: yellow 101 bill color: black
18 underparts color: grey 46 throat color: grey 74 belly color: black 102 bill color: buff
19 underparts color: yellow 47 throat color: yellow 75 belly color: white 103 crown color: blue
20 underparts color: black 48 throat color: black 76 belly color: buff 104 crown color: brown
21 underparts color: white 49 throat color: white 77 wing shape: rounded-wings 105 crown color: grey
22 underparts color: buff 50 throat color: buff 78 wing shape: pointed-wings 106 crown color: yellow
23 breast pattern: solid 51 eye color: black 79 size: small (5 - 9 in) 107 crown color: black
24 breast pattern: striped 52 bill length: about the same as head 80 size: medium (9 - 16 in) 108 crown color: white
25 breast pattern: multi-colored 53 bill length: shorter than head 81 size: very small (3 - 5 in) 109 wing pattern: solid
26 back color: brown 54 forehead color: blue 82 shape: duck-like 110 wing pattern: spotted
27 back color: grey 55 forehead color: brown 83 shape: perching-like 111 wing pattern: striped
28 back color: yellow 56 forehead color: grey 84 back pattern: solid 112 wing pattern: multi-colored

Concepts in Derm7pt
No. Concept Name No. Concept Name No. Concept Name No. Concept Name
1 blue whitish veil: present 3 pigment network: atypical 5 regression structures: absent 7 regression structures: combinations
2 pigment network: absent 4 pigment network: typical 6 regression structures: blue areas 8 regression structures: white areas

Groove Billed Ani

Brewer Blackbird

Gadwall

Conte Sparrow

Melanoma (Clinic)

Melanoma (Dermoscopic)

Naevus (Clinic)

Naevus (Dermoscopic)

CUB Derm7pt

Figure 7: Examples of CUB (left) and Derm7pt (right) datasets. In CUB, each line indicates a bird
species, while in Derm7pt, each line corresponds to the clinic or dermoscopic images of melanoma
or nevus. The clinic and dermoscopic images are aligned up and down.

• Standard model with / without bottleneck, introduced in (Koh et al., 2020). The former learns f, g
with no concept supervised: f̂ , ĝ = argminf,g

∑N
n=1 LY [f ◦ g(xn),yn], while the latter is devised

to directly predict x → y: ĥ = argminh
∑N

n=1 LY [h(xn),yn], with mapping h : RD → Rk.
• Multitask, also introduced in (Koh et al., 2020), is devised with an additional auxiliary loss to
enable the last layer to be predictive of the concepts, which learns g, h simultaneously: ĝ, ĥ =

argming,h
∑N

n=1{LY [h(xn),yn] + αLC [g(xn), cn]}.
• CME (Kazhdan et al., 2020), also named as Concept-based Model Extraction, is based on a pre-
trained deep neural network and searches a mapping from a deep layer to each concept that performs
the best on concept accuracy, and then predicts the final label via traditional machine learning ap-
proaches.
• CBM-AUC (Sawada & Nakamura, 2022) integrates supervised concepts with unsupervised ones
trained with self-explaining neural networks (Alvarez Melis & Jaakkola, 2018) in order to alleviate
the restricted dimension of the concept layer.

Note that it is impossible for the Standard and Multitask model to be interpreted with the concepts
ignored or uncovered by the final prediction, however, since there is no trade-off between concept
and label, their performance on label prediction are competitive and worth enough attention.

Each experiment is repeated three times with mean and standard deviation reported in line with (Koh
et al., 2020), and is preformed on a machine with AMD EPYC 7742 64-Core Processor CPU,
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NVIDIA A100-SXM4-80GB GPU, and 1T RAM. All experiments in this paper are implemented by
Pytorch (Paszke et al., 2019). The source code will be made publicly available for reproduction
requirements.

D.3 METRICS

Top-1 accuracy is exploited in both label and concept tasks. The former is a multi-class learning
task, while the latter describes a multi-label classification task. In particular, in label prediction task,
we use cross entropy loss to describe the difference between the predicted label and the ground-truth
one. In concept prediction task, each concept corresponds to a binary classification mission and thus
we compute the mean accuracy for all labels, where we also use a cross entropy loss to compute the
difference of each predicted concept and the ground truth one during training process. This setting
is in line with (Koh et al., 2020).

D.4 MODEL SETTING

For each experiment, DCBM fine-tunes a pretrained Inception-v3 network (Szegedy et al., 2016),
which maps to explicit and implicit concept values, respectively, and then connects to linear layers
to obtain outputs of explicit/implicit concepts. In particular, explicit concept values are exploited
to predict x → c, while the sum of two outputs is used to predict the label. Apart from some
general hyperparameters, e.g., learning rate, we mainly search concept weight α and JS Divergence
weight β, to achieve high performance and maintain the interpretability. Detailed setting is shown
in Appendix D.4. In short, we choose α = 0.01 and α = 0.1, which respectively perform better on
concept and label learning tasks. Analysis about the choice of β is further discussed in Sec. 4.4.

For the pre-processing of the training images, we adjust the size of each image in CUB and Derm7pt
to 299×299×3 via random jittering, horizontal flip, and cropping, which is the same setting in (Koh
et al., 2020; Cui et al., 2018), while the images at test time are center-cropped and resized to 299.
Similarly, but with a few differences, in DCBM training, we increase the parameter search field. We
search hyperparameters on the validation dataset with α in [0.005, 0.01, 0.05, 0.1, 0.5, 1.0], learning
rate in [0.001, 0.01], regularization strengths in [0.0004, 0.00004], reducing learning rates by 10
times after every [10, 15, 20, 30] epochs until the rates come to 0.0001. Once these parameters are
fixed, we retrained models with training and validation datasets altogether until convergence with β
in [0.0, 0.01, 0.1, 1.0, 10.0]. In Table 1, we display the results of DCBM-0.1 and DCBM-0.01 using
β = 1.0 on almost all datasets. The mere exception is DCBM-0.01 on CUB, where we use β = 0.1
because concepts are sufficient, and we don’t need a large β to restrict JS Divergence. Such settings
can well balance the model’s accuracy and interpretability, as detailed in Fig. 6. Besides, the dimen-
sion of implicit concept values is set to 256 in all cases, as we demonstrate in Appendix E.1 that the
dimension of implicit concepts affects little on concept/label accuracy. The best model is chosen by
either the best label accuracy or the best concept accuracy on validation dataset. Each experiment is
trained with a batch size of 64 and Stochastic Gradient Descent (SGD) with a momentum of 0.9.

fMI in Sec. 3.2 is a multilayer perception (MLP), which has neuron sizes of [input size, 50, 50,
output size], where the input size equals to the dimension sum of explicit and implicit concept
values, and the output size is set as 1 to compute MI. In addition, fDEC in Sec. 3.2 is also an MLP
layer with neuron sizes of [input size, 100, 100, 100, output size], where the input size and output
size respectively equal to the dimensions of explicit and implicit concept values. Among each layer
in fMI and fDEC, we add activation functions ReLU(x) = max(0, x) to achieve nonlinearity.

For forward intervention, to obtain a rather high performance, MI estimation optimization is trained
by Adam (Kingma & Ba, 2015) with a learning rate in [0.005, 0.01, 0.05, 0.1], and the decoupling
neural network is trained by SGD with a learning rate in [0.005, 0.01, 0.05, 0.1] and momentum of
0, where MI estimation is optimized for [20, 30, 40, 50] times corresponding to each decoupling
process. We use the cross entropy on training datasets to perform early stopping. Besides, the
backward rectification is learned by Adam with a learning rate in [0.0025, 0.025] and normalization
weight in [0, 0.01, 0.1] until convergence. The best models are chosen via the best performance on
validation datasets.
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Table 6: Time overheads (seconds) on the training process of concept/label prediction (DCBM),
decoupling neural network (DEC), forward intervention (DCBM-INT-DEC), and backward rectifi-
cation (DCBM-REC-DEC) , which are recorded over an entire training process.

APPROACH DATASET
CUB CUB%50 CUB%20 CUB%10 DERM7PT

DCBM+ 33260 ± 5212 21920 ± 9138 26264 ± 6824 14654 ± 4991 3436 ± 788
DEC 362 ± 78 312 ± 83 210 ± 35 147 ± 34 491 ± 61

DCBM-INT-DEC* < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
DCBM-REC-DEC* 0.27 ± 0.01 0.34 ± 0.02 0.47 ± 0.02 0.67 ± 0.10 0.39 ± 0.13
+ High standard deviations are mainly due to the early stopping strategy during training.
* We show the time overhead of each intervened/rectified sample.
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Figure 8: (a) The relationship between β and the values of JS Divergence on CUB and its three
variants. (b-c) The impact that different dimensions of implicit concepts [32, 64, 128, 256, 512]
have on concept (b) / label (c) accuracy on CUB and its three variants with α = 0.1 and β = 1.0.

D.5 TIME OVERHEAD FOR HUMAN-MACHINE INTERACTIVE SYSTEM

The interaction system is based on a light min-max optimization introduced in Appendix B, which
can be achieved within minutes. Equipped with the pretrained decoupling networks, DCBM can
respectively perform forward intervention and backward rectification within 0.01s and 1s for each
sample. Detailed time overheads are shown in Table 6, where we choose α = 0.1 and β = 1.0 as a
typical example in all tasks. Looking from the table it is apparent that the forward intervention and
backward rectification process are much quicker than model training.

E EXPERIMENTAL ANALYSIS

E.1 HOW DOES THE WEIGHT OF JS DIVERGENCE AFFECT ITS VALUES?

In the methodology section (Sec. 3), we use β to force the prediction from explicit concepts not to be
far away from the one from both explicit and implicit concepts. An interesting question is whether
β does achieve such expectations. To evaluate this, in Fig. 8 (a), we detail the relationship between
the weight of JS Divergence and its values. When β = 0, fewer discarded concepts lead to higher
values of JS Divergence; however, with β rising from 0.0 to 10.0, the values of JS Divergence cor-
respondingly decrease to 0 in all cases, which illustrates that by choosing a higher β, the prediction
from explicit concepts can be effectively controlled to be almost the same as the prediction from
both explicit and implicit concepts.

E.2 HOW THE DIMENSION OF IMPLICIT CONCEPTS AFFECTS CONCEPT/LABEL ACCURACY?

Hyperparameters like the dimension of implicit concepts d̃ can intuitively affect the model predic-
tion. Under this perspective, in Fig. 8 (b-c), we take α = 0.1 and β = 0.01 as an example and depict
how much the dimension of implicit concepts affects concept/label accuracy on CUB and its three
variants; however, both Fig. 8 (b-c) show that the dimension of implicit concepts has little impact on
concept/label accuracy, despite some slight fluctuation reasonably exists. This phenomenon shows
the robustness of DCBM with respect to d̃.
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Figure 9: The relationship between JS Divergence and the label accuracy predicted on by explicit
concepts on CUB and its three variants. Each point represents a concrete category.

E.3 WHETHER JS DIVERGENCE RELATES TO INTERPRETABILITY?

It’s worth discussing whether the JS Divergence can evaluate the model interpretability. To address
this, in Fig. 9, we display the relationship between JS Divergence and the label accuracy predicted
by explicit concepts on CUB and its three variants. Each point in the figure represents a concrete bird
identification. Looking from an overall perspective it is apparent that the JS Divergence is generally
larger when more concepts are discarded, which indicates that the interpretability is weakened when
concepts are insufficient. This phenomenon demonstrates that the JS Divergence is an effective
metric to evaluate the model interpretability. In short, DCBM cannot give explanations for all data
points with insufficient concepts and it is also impossible for other models. However, DCBM can
give accurate predictions for data via explicit/implicit parts and meanwhile judge whether the model
decision for this data point can be interpreted by given concepts via JS Divergence. If the answer is
yes, DCBM will give the corresponding interpretation.

E.4 WHY DOES THE LABEL ACCURACY OF IMP-DCBM RISE FIRST AND THEN FALL?

It’s intuitive that with the increase of the weight of JS Divergence β, explicit concepts have a greater
impact on label learning, and thus, implicit ones are supposed to be less informative about labels;
however, we fail to see such intuition in Fig. 6 (a-c, e) and find the label accuracy of IMP-DCBM
rises first and then falls precipitously. To illustrate this counterintuitive phenomenon, we present
some detailed information in Fig. 10.

Actually, by increasing β, the distribution of explicit outputs can be forced to be similar to the sum
of explicit and implicit outputs, which leads to two consequences: 1) the implicit outputs become
similar to the explicit ones; 2) the implicit outputs tend to 0. Under this perspective, we use the
JS Divergence of explicit and implicit outputs in Fig. 10 (a) to illustrate the former and the Mean
Absolute Value (MAV) of implicit outputs in Fig. 10 (b) to illustrate the latter. Looking first of all
at CUB in Fig. 10 (a), the JS Divergence keeps stable from 0.0 to 0.1, so it’s reasonable for the
label accuracy of IMP-DCBM rises together with EXP-DCBM, but it finally drops because the JS
Divergence surges. By comparison, there’s little rise in the label accuracy of IMP-DCBM when
β changes from 0.0 to 0.1 on CUB%10, though an obvious decline of JS Divergence exists on
CUB%10. The reason is that due to the low accuracy of EXP-DCBM, the approximation to explicit
outputs cannot result in a better label accuracy for IMP-DCBM. These observations are consistent
with that shown in Fig. 6. Moreover, in Fig. 10 (b), the MAV of implicit concepts also converges to
0 as expected.

E.5 HOW MUCH CAN THE DECOUPLING NETWORK REDUCE MI?

In this section, we evaluate the decrease of MI between the explicit/implicit concepts with the help
of decoupling neural network. Followed by the setting in the above experiments, we utilize neural
MI estimation (Belghazi et al., 2018) to approximate the MI. In detail, we calculate original MI, i.e.,
MI(ĉ; c̃), and the decoupled one, i.e., MI(ĉ; c̃ − fDEC(ĉ)) on CUB and its three variants for both
β = 0.01 and β = 1 (see Fig. 11 (a-b)). Except for CUB%10, we can see a significant decline in
MI on the other three datasets. One possible reason is that the number of concepts is too small, and
thus, the decoupling network has limited room for reducing the MI.
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Figure 10: (a) JS Divergence of explicit and implicit outputs and (b) Mean Absolute Value (MAV)
of implicit outputs on CUB / CUB%10 with β from 0.0 to 10.0. Note that the JS Divergence in (a)
is different from the one in the methodology part.
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Figure 11: (a-b) MI Estimation of the original DCBM and the decoupled one using
10%/20%/50%/100% concept when (a) β = 0.01 and (b) β = 1.0. (c-d) Label accuracy of EXP-
DCBM and EXP-DCBM assisted with simulated explicit concepts (abbreviated as ‘with SEC’) using
10%/20%/50%/100% concept when (c) β = 0.01 and (d) β = 1.0.

E.6 WHETHER THE DECOUPLING NETWORK HELPS THE PREDICTION TASK?

Another interesting question is whether the decoupling network helps the prediction task for the
explicit DCBM. Actually, DCBM can naturally combine the explicit concepts ĉ with the simulated
explicit information fDEC(ĉ) to make a comprehensive decision. As detailed in Fig. 11, simu-
lated explicit information can hardly have an impact on the label prediction with a relatively higher
β = 1.0 or with sufficient concepts (β = 1.0 on CUB); however, such information can effectively
promote the label prediction when concepts are insufficient with a lower β = 0.01. The reason is
that when β is low and concepts are insufficient, the explicit concepts are not informative about class
predictions, and thus, simulated explicit concepts have a larger room for label accuracy promotion.
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