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ABSTRACT
Personalized Federated Learning (PFL) has gained attention for

privacy-preserving training on heterogeneous data. However, exist-

ing methods fail to capture the unique inherent geometric proper-

ties across diverse datasets by assuming a unified Euclidean space

for all data distributions. Drawing on hyperbolic geometry’s ability

to fit complex data properties, we present FlatLand1, a novel per-
sonalized Federated learning method that embeds different clients’

data in tailored Lorentz space. FlatLand is able to directly tackle

the challenge of heterogeneity through the personalized curva-

tures of their respective Lorentz model of hyperbolic geometry,

which is manifested by the time-like dimension. Leveraging the

Lorentz model properties, we further design a parameter decou-

pling strategy that enables direct server aggregation of common

client information, with reduced heterogeneity interference and

without the need for client-wise similarity estimation. To the best

of our knowledge, this is the first attempt to incorporate hyperbolic

geometry into personalized federated learning. Empirical results on

various federated graph learning tasks demonstrate that FlatLand
achieves superior performance, particularly in low-dimensional

settings.
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1
Our method is named after Edwin Abbott’s book "Flatland: A Romance of Many
Dimensions", highlighting our insights of exploring an extra dimension that maps

various data distributions onto different Lorentz surfaces.
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1 Introduction
Federated learning (FL) trains machine learning models across mul-

tiple clients while ensuring data privacy. Traditional FL struggles

with data heterogeneity, as one model cannot satisfy diverse lo-

cal requirements. Personalized federated learning (PFL) resolves

this by sharing common model knowledge and allowing for client-

specific adaptations. PFL approaches include segmenting models

into generic and personalized components [33], leveraging model

weights and gradients to map client relationships [35], or integrat-

ing additional modules to facilitate customization [5].

Recent studies in various domains, including text [9], images [17],

and graphs [25, 33], have shown that real-world data exhibit non-

Euclidean properties, such as scale-free structures and implicit

hierarchical relationships [1, 23]. Euclidean space, being inherently

“flat”, fails to adequately represent these characteristics, leading to

structural distortions and reduced performance [6, 24]. For example,

the CiteSeer graph dataset partitioned into 10 clients shows vary-

ing degree distributions with long-tail characteristics which are

poorly captured by Euclidean geometry, as illustrated in Figure 1(a).

Besides, the calculation of Ricci curvature values for multiple real-

world graph datasets after splitting them into 10 clients each reveals

that they all exhibit negative Ricci curvature with significantly vary-

ing values, as shown in Figure 5. Higher absolute values indicate

more pronounced non-Euclidean properties.

Moreover, embedding data from various clients into a fixed space

complicates the interpretability of model parameters, making it

difficult to segment the model into meaningful components [3]

and often expensive to assess similarities between client models.

Additionally, strategies like incorporating extra modules to aid this

process further add to the model’s complexity.

The aforementioned problems inspire us to askwhether there is
a space where we can design a tailored model for each client,
in which we can effectively represent the inherent properties
of local data and succinctly reflect the heterogeneity without
any extra calculations?

We propose to leverage Lorentz Space. With negative cur-

vature, Lorentz space has the advantage of modeling complex

data, particularly hierarchical, tree-like, and power-law distributed

data [9, 20, 36, 38]. By adjusting its curvature, it offers personal-

ized and precise data representations for each client, leveraging its

unique time-like dimension to capture diversity. This inspires us to
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Figure 1: Toy example: (a) KDE of degree distributions from
three CiteSeer clients [8], and (b) their respective 2D Lorentz
Spaces with different curvatures 𝐾 .

design a framework that embeds each client’s data into a suitable

Lorentz space.

Furthermore, the representations in Lorentz space and the op-

erations of Lorentz neural networks [7, 37] have stronger inter-

pretability. Take Figure 1(b) as an example
2
. Informally speaking,

the diversity of the distribution can be more prominently repre-

sented by the "height" of the additional time-like dimension (𝑥𝑡 ∈ R)
while maintaining the relatively similar properties in the "Flatland"
(space-like dimensions x𝑠 ∈ R𝑑 ). In this work, we focus on feder-

ated graph learning (FGL) as hyperbolic encoders have achieved

state-of-the-art results in many benchmarks [20], and this method

is generalizable to other datasets and settings.

Although the Lorentz space has demonstrated significant poten-

tial in various tasks [4, 28], applying it to personalized federated

learning (PFL) scenarios is still non-trivial. The challenge is how
to mitigate the influence of parameters related to heteroge-
neous information, and aggregate the parameters that represent

common features in the flatland without accessing client data?

Motivated by the above insights, we propose an exploratory per-

sonalized Federated learning method that embeds different clients’

data in Tailored Lorentz space, called FlatLand. To address the chal-
lenge, we formulate a parameter disentanglement strategy that can

directly aggregate shared parameters without any extra similarity

calculations. To the best of our knowledge, FlatLand is the first

work to incorporate Lorentz geometry into personalized federated

learning. It is succinct, effective, and easily interpretable. Ex-
perimental results demonstrate that FlatLand achieves superior

performance than its Euclidean counterpart, particularly in low-

dimensional representations.

2 Motivation and Insights
The related work and preliminaries are shown in Appendix A and

Appendix B. This paper focuses on graph data for its clear distribu-

tion and simpler models, facilitating the validation of our approach

using Lorentz neural networks to address heterogeneity in person-

alized federated learning. Our method is also applicable to other

datasets and tasks.

2
For convenience, all origins of Lorentz spaces in the figure are shown as the same,

but actually, their origins are not in the same location.

Problem Statement. Given clientsC = 1, 2, . . . ,𝐶 , eachwith a dataset

D𝑐 = (x𝑐𝑖 , 𝑦
𝑐
𝑖
)𝑁𝑐
𝑖=1

and distribution 𝑝𝑐 (x, 𝑦), Personalized Federated

Learning (PFL) encounters distributional heterogeneity if 𝑝𝑖 (x, 𝑦) ≠
𝑝 𝑗 (x, 𝑦) for clients 𝑖 ≠ 𝑗 . This heterogeneity can degrade perfor-

mance. The goal is to optimize personalized models 𝑓𝑐 (·;𝜽𝑐 , 𝜽𝑠 ) for
each client using specific and shared parameters 𝜽𝑐 , 𝜽𝑠 .

min

𝜽𝑐 |𝐶𝑐=1,𝜽𝑠

𝐶∑︁
𝑐=1

E(x,𝑦)∼𝑝𝑐 (x,𝑦) [L𝑐 (𝑓 (x;𝜽𝑐 , 𝜽𝑠 ), 𝑦) ] + 𝜆Ω (𝜽𝑐 |
𝐶
𝑐=1, 𝜽𝑠 ) (1)

This function merges local loss L𝑐 with regularization Ω, bal-
anced by hyperparameter 𝜆.

Our goals are
(1) to effectively represent the inherent properties of each local

client data;

(2) to succinctly reflect heterogeneity among client data and

facilitate the communication of shared information without

requiring additional computations.

In "Flatland", a two-dimensional flat plane, the same shapes
may represent the projections of various three-dimensional
objects. For instance, a circle could be the projection of either
a cylinder or a sphere from a higher dimension.

Insights: introduce a higher dimension (time axes) to "Flatland".
In the above case, "Flatland" captures the common feature of a

cylinder or a sphere, while a higher dimension (the third dimen-

sion) highlights the differences between the objects. Analogous

to our setting, informally speaking, by introducing an additional

time-like dimension, we can imagine each client’s data residing in

a unique Lorentz space (a curved world in a higher-dimensional

space), where the curvature reflects the distinct distributions (ob-

jects). "Flatland", R𝑑 (flat), serves as a metaphor for a platform

where common information (circle) is exchanged and integrated.

Motivation: why Lorentz space?
(1) Prevalent Non-Euclidean properties of real-world data. Forman-

Ricci curvature Ric measures deviations from flat (Euclidean) ge-

ometry in data structures [12, 29]. A more negative Ric indicates

a structure more suited for hyperbolic space representation [32].

Figure 2 shows varying Ric values across 10 clients from the Cite-

Seer dataset, highlighting the common non-Euclidean nature of

real-world data. Thus, employing Lorentz space with client-specific

curvature can better capture intrinsic data structure for goal (1).

(2) Strong correlation between heterogeneity and curvature. Fig-

ure 1(a) shows that distribution curves exhibit long-tailed charac-

teristic with varying skewness. In particular, Client 1’s distribution

is steeper and less Euclidean, suggesting a need for embedding in a

Lorentz space with a larger curvature (a smaller 𝐾 ), depicted in Fig-

ure 1(b). This space accommodates more tail nodes (blue stars) than

Clients 2 and 3, requiring a "roomier" embedding environment to

ensure separability and enhance performance. A larger curvature fa-

cilitates this by allowing embeddings to occupy a "higher" position

(larger 𝑥𝑡 ) in the space, where the volume expands exponentially.

The observations alignwith our goal (2) as heterogeneous proper-

ties like imbalance between tail and head nodes can be distinguished

through corresponding Lorentz spaces with different curvatures

(differed by time-like axes 𝑥𝑡 ). Meanwhile, common information
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Figure 2: The FlatLand framework.

like "the star is a tail node" is preserved in space-like dimensions x𝑠
as the same node v.

3 The FlatLand Framework
We propose a personalized federated learning framework, FlatLand,
using tailored Lorentz spaces for each client. The main steps are

outlined in Figure 2 and Algorithm 1.

S1 Initialization. At the initial communication round 𝑟 = 0,

the parameters can be divided into three parts:

(1) Curvature parameters of 𝐶 clients {𝐾1, 𝐾2, ...𝐾𝐶 } ; (Sec. 3.1)
(2) Personalized parameters of 𝐶 clients {𝜽1, 𝜽2, ..., 𝜽𝐶 }; (Sec. 3.2)
(3) Shared parameters 𝜽𝑠 of central server.

All the parameters of client 𝑖 at round 0 can be written as 𝚯
(0)
𝑖

=(
𝐾𝑖 ;𝜽

(0)
𝑖

;𝜽
(0)
𝑠

)
and server parameters as 𝜽

(0)
𝑠 .

S2 Local updates. Given learning rate 𝜂, for round 𝑟 , each

local client model performs training on the data D𝑖 to minimize

the task loss L(D𝑖 ;𝚯(𝑟 )𝑖 ) and then updating the parameters as

𝚯
(𝑟+1)
𝑖

← 𝚯
(𝑟 )
𝑖
− 𝜂∇L. (Sec. 3.3)

S3 Server updates.After local training, only shared parameters

𝜽𝑠𝑐 (𝑟+1) are updated to the server for each client 𝑐 . These are then

aggregated using FedAvg: 𝜽
(𝑟+1)
𝑠 ← 𝑁𝑐

𝑁

∑𝐶
𝑐=1 𝜽

(𝑟+1)
𝑠𝑐 , , where 𝑁 =∑

𝑐 𝑁𝑐 . The aggregated parameters are subsequently distributed to

clients for the next round.

3.1 Curvature Estimation
To embed the dataset D𝑐 of client 𝑐 ∈ C into its tailored Lorentz

space L𝑑
𝐾𝑐
, a suitable curvature 𝐾𝑐 should be first explored.

There are many comprehensive ways can assist in estimating the

suitable curvature for various types of data [13]. Given a weighted

graph 𝐺𝑐 = (𝑉 , 𝐸,𝑤) in client 𝑐 , we adopt Forman-Ricci curva-

ture and the overall curvature of the graph can be calculated as

follows Ric(𝐺) = 1

|𝐸 |
∑
(𝑥,𝑦) ∈𝐸 𝑤 (𝑥,𝑦)

(
1

𝜇𝑥
+ 1

𝜇𝑦

)
, where 𝑉 repre-

sents graph nodes and |𝐸 | the number of edges. Additionally, the

curvature can be a learnable parameter or calculated using a sim-

ple Multi-Layer Perceptron (MLP) neural network (Appendix B.3).

Here, we initialize 𝐾𝑐 with Ric(𝐺𝑐 ) as learnable.

3.2 Parameter Decoupling Strategy
This section details the fully Lorentz model’s parameters (excluding

𝐾), divided into shared 𝜽𝑠 for space-like dimensions and person-

alized 𝜽𝑐 for time-like dimension. The model has layers of fully

Lorentz neural networks that transform data within Lorentz space

(Appendix B.2).

First, without loss of generality, we decouple the function of

Lorentz linear layer in Equation (5) without the functions 𝑓 of acti-

vation, dropout, bias, and so on. Given input x(𝑙 ) =
[
𝑥
(𝑙 )
𝑡 x(𝑙 )𝑠

]𝑇
∈

L𝑛
𝐾
, 𝑥
(𝑙 )
𝑡 ∈ R, x(𝑙 )𝑠 ∈ R𝑑 in layer 𝑙 . We rewrite the learnable ma-

trix M̂(𝑙 ) in Section B.2 as

[
𝑣 (𝑙 ) v𝑇 (𝑙 )

𝑚 (𝑙 ) M(𝑙 )

]
∈ R(𝑚+1)×(𝑛+1) , 𝑣 (𝑙 ) ∈

R, v(𝑙 ) ∈ R𝑛,𝑚 (𝑙 ) ∈ R𝑚+1,M(𝑙 ) ∈ R(𝑚+1)×𝑛 . The output x(𝑙+1) of
the Lorentz linear layer could be reformulated as

x(𝑙+1) = LT(x(𝑙 ) ; M̂(𝑙 ) ) = (
√︁
∥𝑚𝑥𝑡 +Mx𝑠 ∥2 +𝐾︸                      ︷︷                      ︸
time-like 𝑥

(𝑙+1)
𝑡

, 𝑚𝑥𝑡 +Mx𝑠︸        ︷︷        ︸
space-like x(𝑙+1)𝑠

)𝑇 . (2)

Then, we decouple the parameters as follows under the deviation

from Appendix C.3:

Suppose the modelM consists of 𝐿 layers of neural net-

works,

• The personalized parameter set 𝜽𝑐 for all layers is
formulated as

𝜽𝑐 =
𝐿⋃
𝑙=1

{𝑣 (𝑙 ) , v𝑇 (𝑙 ) ,𝑚 (𝑙 ) };

• The shared parameter set 𝜽𝑠 across all layers is for-
mulated as

𝜽𝑠 =
𝐿⋃
𝑙=1

{𝑀 (𝑙 ) };

where

⋃𝐿
𝑙=1

indicates the union of parameter sets

from each layer 𝑙 from 1 to 𝐿.
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Table 1: Comparison of node classification performance across real-world datasets with varying numbers of clients. The results,
presented as mean and standard deviation, are based on five separate trials. Performances that are statistically significant
(𝑝 < 0.05) are highlighted in bold.

Cora CiteSeer ogbn-arxiv Photo

# clients 10 20 10 20 10 20 10 20

Local (𝐸) 79.94 ± 0.24 80.30 ± 0.25 67.82 ± 0.13 65.98 ± 0.17 64.92 ± 0.09 65.06 ± 0.05 91.80 ± 0.02 90.47 ± 0.15
Local (𝐿) 78.35 ± 0.05 80.46 ± 0.18 72.30 ± 0.04 69.52 ± 0.25 65.85 ± 0.09 66.75 ± 0.05 91.76 ± 0.10 90.12 ± 0.20

FedAvg 69.19 ± 0.67 69.50 ± 3.58 63.61 ± 3.59 64.68 ± 1.83 64.44 ± 0.10 63.24 ± 0.13 83.15 ± 3.71 81.35 ± 1.04
FedPer 79.35 ± 0.04 78.01 ± 0.32 70.53 ± 0.28 66.64 ± 0.27 64.99 ± 0.18 64.66 ± 0.11 91.76 ± 0.23 90.59 ± 0.06
FedProx 60.18 ± 7.04 48.22 ± 6.81 63.33 ± 3.25 64.85 ± 1.35 64.37 ± 0.18 63.03 ± 0.04 80.92 ± 4.64 82.32 ± 0.29
FedGNN 70.12 ± 0.99 70.10 ± 3.52 55.52 ± 3.17 52.23 ± 6.00 64.21 ± 0.32 63.80 ± 0.05 87.12 ± 2.01 81.00 ± 4.48
FedSage+ 69.05 ± 1.59 57.97 ± 12.6 65.63 ± 3.10 65.46 ± 0.74 64.52 ± 0.14 63.31 ± 0.20 76.81 ± 8.24 80.58 ± 1.15
GCFL 78.66 ± 0.27 79.21 ± 0.70 69.01 ± 0.12 66.33 ± 0.05 65.09 ± 0.08 65.08 ± 0.04 92.06 ± 0.25 90.79 ± 0.17

FedHGCN 72.09 ± 0.16 74.67 ± 1.50 66.98 ± 0.56 64.28 ± 0.62 OOM OOM 79.26 ± 0.56 79.57 ± 0.10
FlatLand (Ours) 80.46 ± 0.28 82.49 ± 0.25 73.90 ± 0.23 72.24 ± 0.24 67.52 ± 0.16 67.64 ± 0.04 92.49 ± 0.19 91.06 ± 0.15
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3.3 Local Training Procedure
Obtained the curvature 𝐾

(𝑟 )
𝑐 at round 𝑟 , we directly project the

client input x𝐸
𝑖
∈ D𝑐 into its corresponding Lorentz space via the

exponential map x𝐾𝑐 = exp
𝐾𝑐
o (x𝐸 ), as shown in Equation (4). Note

that to simplify the notation, all vectors x, if not superscripted, are
assumed to represent being in the Lorentz space.

Afterwards, the training data are fed into the Lorentz modelM,

the output is 𝑓 (x𝐾𝑐 ;𝜽𝑐 , 𝜽𝑠 ), 𝑦). In the graph model, in addition to

the Lorentz linear layer, there is also an aggregation operation [40],

which does not involve extra parameters. At client 𝑐 , the objective

function is

min

𝜽𝑐 |𝐶𝑐=1,𝜽𝑠
L𝑐 (𝑓 (x𝐾𝑐 ;𝜽𝑐 , 𝜽𝑠 ), 𝑦) + 𝜆∥𝜽𝑠𝑐 − 𝜽𝑠 ∥22, (3)

where 𝜆 is a hyperparameter, ∥𝜽𝑠𝑐 − 𝜽𝑠 ∥22 is the regularize term
that prevent locally updated model 𝜽𝑠𝑐 deviates too far from the

server shared parameters 𝜽𝑠 .

4 Experiments
In this section, we validate the effectiveness of FlatLand by con-

ducting experiments for node classification on a series of benchmark

datasets. The experiments are designed to address the following

research questions. RQ1. Can FlatLand outperform personalized

and hyperbolic FL baselines? RQ2. Can FlatLand still perform well

in low-dimensional settings? RQ3. Are the proposed novel compo-

nents really beneficial?

4.1 Experimental Setup
Datasets and Baselines The details about datasets are listed in

Appendix D.1. Implementation details are shown in Appendix D.2.

More detailed information can be found in our anonymous reposi-

tory. To assess FlatLand and demonstrate its superiority, we com-

pare it with the following baselines: (1) Local: clients train their

models locally without any communication, Local (𝐸) refers to self-

training in the Euclidean model, while Local (𝐿) refers to training in

the Lorentz model.; (2) FedAvg [26] and (3) FedProx [21]: the most

popular FL baselines; (4) FedPer [3]: a PFL baseline with personal-

ized model layers; (5) FedGNN [34] and (6) FedSage [39]: two FGL

baselines; (7) GCFL [35]: a PFGL baseline with client clustering and

cluster-wise model aggregation; (8) FedHGCN [10]: a hyperbolic

FGL baseline that fails considering the heterogeneity among clients.

https://anonymous.4open.science/r/FlatLand_anomynous-07FC/README.md
https://anonymous.4open.science/r/FlatLand_anomynous-07FC/README.md
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4.2 Main Experimental Results (RQ1)
Node Classification Table 1 shows that our proposed FlatLand

outperforms all baselines with statistical significance (𝑝 < 0.05).

(1) Local (𝐿) often surpasses Local (𝐸), suggesting that hyperbolic

space can better represent most datasets, though the gap is some-

times marginal. (2) Euclidean FL methods like FedAvg, FedProx,

FedGNN, and FedSage+ significantly underperform self-training.

GCFL is generally the best among Euclidean methods, but cannot

consistently beat Local (𝐸). FedPer sometimes exceeds Local (𝐸)

with small gains, highlighting challenges with heterogeneous data.

(3) FedHGCN, despite operating in hyperbolic space, underperforms

on heterogeneous datasets by not accounting for data heterogene-

ity, akin to FedAvg vs Local (𝐸) in Euclidean space. Besides, due

to the quadratic time and space complexity of FedHGCN’s node

selection module. Therefore, it can easily encounter out-of-memory

(OOM) issues with large datasets, like ogbn-arxiv. In conclusion, ex-

periments show that FlatLand can mitigate the heterogeneity, and

with larger gains on highly heterogeneous datasets like CiteSeer.

4.3 Varying Embedding Dimensions (RQ2)
Reducing embedding and hidden dimensions lowers parameter

transmission cost in federated learning. Considering hyperbolic

spaces’ representational power in lower dimensions [6], we evalu-

ated FlatLand’s ability to mitigate data heterogeneity using com-

pact representations by reducing the embedding dimension from

64 to 4 (Figure 3, CiteSeer, 20 clients). Dimensionality reduction

from 64 to 4 had a smaller impact on hyperbolic methods (FlatLand
and FedHGCN) compared to Euclidean counterparts. While Fed-

HGCN underperformed Euclidean methods at higher dimensions

but outperformed them at 16 dimensions, FlatLand consistently out-
performed all others, with its advantage over baselines becoming

more significant as dimensionality reduced.

4.4 Ablation Study (RQ3)
Figure 4 analyzes component contributions. "w/o TS" uses constant

curvature 1 for all clients instead of tailored curvatures, yielding in-

ferior performance compared to tailored curvatures approximating

local (𝐿) setting, demonstrating hyperbolic space’s effectiveness.

"w/o DS" exhibits significant fluctuations across rounds due to

aggregation incorporating heterogeneous information, adversely

impacting results. This highlights the proposed decoupling strat-

egy’s effectiveness and validates the time-like dimension’s ability

to capture heterogeneity.

5 Conclusion
FlatLand leverages hyperbolic geometry to capture heterogene-

ity across clients’ data distributions embedded in tailored Lorentz

spaces for personalized federated learning. A parameter decoupling

strategy aggregates common information server-side while mitigat-

ing heterogeneity interference, without extra client similarity esti-

mation. As the first work incorporating hyperbolic geometry into

personalized federated learning, FlatLand outperforms Euclidean

methods, especially in low dimensions, showcasing potential as an

effective solution to data heterogeneity.
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APPENDIX
A Related Work

Personalized Federated Learning With statistical heterogeneity,

conventional FL frameworks like FedAvg [26] can hardly obtain

a single global model that generalizes well to every client. Moti-

vated by this, researchers have proposed personalized FL (PFL) to

train customized local models. Generally speaking, existing PFL

techniques can be categorized into the following three groups: (1)

techniques that personalize client models via local fine-tuning [11],

(2) techniques that personalize client models via customized model

aggregation [15], and (3) techniques that personalize client mod-

els via creating localized models/layers [3]. However, these PFL

methods typically operate in Euclidean spaces to encode data sam-

ples, which can hardly capture the scale-free property and implicit

hierarchical structure embedded within client data.

Personalized Federated Graph Learning When applied to graph

data, personalized federated graph learning (PFGL) can intuitively

exhibit the problem mentioned above. For example, [35] clusters

clients based on gradients to aggregate models with similar data

distributions. Another method [33] introduces additional personal-

ized models to capture client-specific knowledge of graph structure.

[5] calculates client-client similarities to apply personalized model

aggregation with local weight masking. All these methods learn

node representations in Euclidean spaces, which cannot model

the power-law degree distributions that widely exist in real-world

graph data [1, 19]. Additionally, the client clustering procedure and

additional model components introduce computational overhead

that may not be feasible in real-world scenarios with strict privacy

constraints or limited resources.

Hyperbolic Federated Learning Very few research works have

considered incorporating hyperbolic spaces into federated settings.

[2] leverages hyperbolic distances to distill knowledge from the

global model to the local model, to mitigate model inconsistency

caused by data heterogeneity. [22] applies hyperbolic prototype

learning to capture the hierarchical structure among data samples.

As the work most similar to our FlatLand, FedHGCN [10] is a sim-

ple combination of FedAvg and hyperbolic graph neural networks

along with a node selection process. Although these methods can

benefit from the hyperbolic space to capture the hierarchical struc-

ture in the data, they do not have the personalization capability

to adaptively model client data spaces with different curvatures.

This may lead to suboptimal results when there is severe data het-

erogeneity. Therefore, our goal is to design a novel FL framework

that can encode client data in hyperbolic spaces with adaptive

curvatures using personalization techniques.

B Preliminaries
B.1 Lorentz Manifold
Given a 𝑑-dimensional Lorentz manifold L𝑑

𝐾
with a constant neg-

ative curvature −1/𝐾 (𝐾 > 0), suppose a point / vector x ∈ L𝑑
𝐾
,

which has the form x =

[
𝑥𝑡
x𝑠

]
∈ R𝑑+1 , where the first dimension

𝑥𝑡 ∈ R is called time-like dimension and others x𝑠 ∈ R𝑑 are space-
like dimensions. It satisfies the following conditions: ⟨x, x⟩L = −𝐾

and 𝑥𝑡 > 0, where ⟨x, y⟩L = −𝑥𝑡𝑦𝑡 + x⊤𝑠 y𝑠 is the Lorentzian inner

product. Note that the larger the 𝐾 , the more the intrinsic structure

of the data deviates from the flatness of Euclidean space.

Definition 1 (Lorentz Manifold). A 𝑑-dimensional Lorentz
manifold L𝑑

𝐾
with a negative curvature of −1/𝐾 (𝐾 > 0) can be de-

fined as the Riemannianmanifold
(
H𝑑
𝐾
, 𝑔ℓ

)
, where𝑔ℓ = diag( [−𝐾, 1, . . . , 1])

and H𝑑
𝐾
=

{
x ∈ R𝑑+1 : ⟨x, x⟩L = −𝐾, 𝑥0 > 0

}
.

Definition 2 (Lorentzian Inner Product). The inner product
⟨x, y⟩L for x, y ∈ R𝑑+1 can be defined as let ⟨x, y⟩L = −𝑥0𝑦0 +∑𝑑
𝑖=1 𝑥𝑑𝑦𝑑 .

Based on the constraint ⟨x, x⟩L = −𝐾 , it holds for any point

x = (𝑥0, x′) ∈ R𝑑+1 that x ∈ L𝑑𝐾 ⇔ 𝑥0 =
√︁
∥x′∥ + 𝐾 . The larger

the value of𝐾 , the greater the extent towhich the hyperbolic surface

deviates from the Euclidean plane, as it is influenced by the larger

value of 𝑥0.

Typically, inputs reside in Euclidean space and need to bemapped

into hyperbolic space. The way of projecting the data v𝐸 ∈ R𝑑 in

Euclidean to Lorentz space x ∈ L𝑑
𝐾
can be simplified as

3

x𝐾 = exp
𝐾
o

(
v𝐸

)
= exp

𝐾
o

( [
0, v𝐸

] )

=

©«
cosh

(
∥v𝐸 ∥2√
𝐾

)
︸            ︷︷            ︸

time-like dimension 𝑥𝑡

,
√
𝐾 sinh

(
∥v𝐸 ∥2√
𝐾

)
v𝐸

∥v𝐸 | |2︸                           ︷︷                           ︸
space-like dimensions x𝑠

ª®®®®®®¬
.

(4)

B.2 Fully Lorentz Neural Networks
Fully Lorentz networks [7] are proved to be ideal for PFL due to

their reduced need for space projections, enhancing computational

efficiency. These networks also incorporate Lorentz transforma-

tions (boosts and rotations), improving data heterogeneity handling

and parameter interpretability.

Given an input vector x ∈ L𝑛
𝐾
, and a linear layer matrix M̂ ∈

R(𝑚+1)×(𝑛+1) to optimize, ∀x ∈ L𝑛
𝐾
, M̂x ∈ L𝑛

𝐾
. Let M̂ =

[
v𝑇

W

]
, v ∈

R(𝑛+1) ,W ∈ R𝑚×(𝑛+1) . The fully Lorentz linear layer can be de-

noted as LT in a general form as follows:

LT(x; 𝑓 ;W) :=
(√︃
∥ 𝑓 (Wx, v)∥2 + 𝐾, 𝑓 (Wx, v)

)𝑇
. (5)

It involves a function 𝑓 that operates on vectors v ∈ R𝑛+1 and
W ∈ R𝑚×(𝑛+1) . Depending on the type of function, it can per-

form different operations. For instance, for dropout, the operation

function is 𝑓 (Wx, v) = W dropout (x).

B.3 Forman-Ricci Curvature
Curvature is a metric used in Riemannian geometry that expresses

how far a curved line deviates from a straight line, or how much a

surface deviates from planarity. In this context, knowledge of the

3
For clarity, all Lorentz space embeddings are denoted by ·𝐻 . Specifically, if the

curvature of the space is known as 𝐾 , it is denoted by ·𝐾 . In contrast, Euclidean space

embeddings are denoted by ·𝐸 .
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local and global geometrical features depends on an understanding

of sectional curvature and Ricci curvature, respectively.

Sectional Curvature. This type of curvature is determined

at any given point on a manifold by examining all possible two-

dimensional subspaces that intersect at that point. It provides a

more straightforward representation than the Riemann curvature

tensor. Recent studies [7] often treat sectional curvature uniformly

across the manifold, simplifying it to a singular constant value.

Ricci Curvature. Ricci curvature averages the sectional curva-
tures at a specific point. In graph theory, various discrete versions

of Ricci curvature have been developed, such as Ollivier-Ricci cur-

vature and Forman-Ricci curvature [12]. The Ricci curvature on

graphs is intended to assess how the local structure around a graph

edge deviates from that of a grid graph. Notably, the Ollivier ap-

proach provides a rougher estimate of Ricci curvature, whereas

the Forman method is more combinatorial and computationally

efficient.

For a weighted graph 𝐺 = (𝑉 , 𝐸,𝑤), the overall Forman-Ricci

curvature Ric(𝐺) can be calculated as follows:

Ric(𝐺) = 1

|𝐸 |
∑︁
(𝑖, 𝑗 ) ∈𝐸

Ric(𝑖, 𝑗),

where |𝐸 | represents the cardinality of the edge set 𝐸 (i.e., the

total number of edges), and Ric(𝑖, 𝑗) is the Forman-Ricci curvature

of the edge (𝑖, 𝑗), computed as

Ric(𝑖, 𝑗) =: 𝑤𝑒
©«𝑤𝑖𝑤𝑒 +

𝑤 𝑗

𝑤𝑒
−
∑︁
𝑒𝑙∼𝑖

𝑤𝑖√
𝑤𝑒𝑤𝑒𝑙

−
∑︁
𝑒𝑙∼𝑗

𝑤 𝑗
√
𝑤𝑒𝑤𝑒𝑙

ª®¬
where 𝑤𝑒 denotes the weight of the edge 𝑒 , i.e, (𝑥,𝑦), 𝑤𝑖 and 𝑤 𝑗
are the weights of vertices 𝑖 and 𝑗 , respectively. The sums over

𝑒𝑙 ∼ 𝑘 run over all edges 𝑒𝑙 incident on the vertex 𝑘 excluding 𝑒 .

Specifically, the curvature with vertex and edge weights set to 1 is

Ric(𝑖, 𝑗) := 4 − 𝑑𝑖 − 𝑑 𝑗 + 3|#Δ|,
where 𝑑𝑖 is the degree of node 𝑖 and |#Δ| is the number of 3-cycles

(i.e. triangles) containing the adjacent nodes.

Therefore, the overall Forman-Ricci curvature of the graph is

the weighted average of the curvature values of all edges.

B.4 Lorentz Transformations
In special relativity, Lorentz transformations are a family of lin-

ear transformations that describe the relationship between two

coordinate frames in spacetime moving at a constant velocity rel-

ative to each other. They can be decomposed into a combination

of a Lorentz Boost and a Lorentz Rotation [27]. The Lorentz boost,

given a velocity 𝑣 ∈ R𝑛 with ∥𝑣 ∥ < 1, is represented by the ma-

trix 𝐵, which encodes the relative motion with constant velocity

without rotation of the spatial axes. The Lorentz rotation matrix

𝑅 represents the rotation of spatial coordinates and is a special

orthogonal matrix, i.e., 𝑅⊤𝑅 = 𝐼 and det(𝑅) = 1.

Definition 3 (Lorentz Boost). A Lorentz boost represents a
change in velocity between two coordinate frames without rotation
of the spatial axes. Given a velocity v ∈ R𝑛 (relative to the speed of
light) with ∥v∥ < 1, and the Lorentz factor 𝛾 = 1√

1−∥v∥2
, the Lorentz

boost matrix is defined as:

B =

[
𝛾 −𝛾v⊤

−𝛾v I + 𝛾2

1+𝛾 vv
⊤

]
(6)

where I is the 𝑛 × 𝑛 identity matrix.

A Lorentz boost describes the geometric transformation between

two inertial reference frames moving at a constant relative velocity,

which involves a hyperbolic rotation in the space-time plane.

Definition 4 (Lorentz Rotation). A Lorentz rotation describes
a rotation of the spatial coordinates. The Lorentz rotation matrix is
defined as:

R =

[
1 0⊤

0 R̃

]
(7)

where R̃ ∈ SO(𝑛) is a special orthogonal matrix satisfying R̃⊤R̃ = I
and det(R̃) = 1.

A Lorentz rotation represents a geometric rotation or change of

orientation in the spatial dimensions of the space-time manifold,

while leaving the time dimension unchanged.

Both the Lorentz boost and the Lorentz rotation are linear trans-

formations defined directly in the Lorentz model. For any point

x ∈ L𝑛
𝐾
, we have Bx ∈ L𝑛

𝐾
and Rx ∈ L𝑛

𝐾
.

C Method Supplementary
C.1 Statistics of Forman-Ricci Curvature in

Other Datasets
We have calculated the Forman-Ricci curvature (Appendix B.3) for

each client in the Cora, Photo, and ogbn-arxiv datasets, which have

10 clients each. The statistics for CiteSeer dataset are shown in

Figure 2 Initialization.

C.2 The FlatLand Algorithm
This section introduces the pseudocode of our FlatLand, as shown
in Algorithm 1.

C.3 Derivation of Parameters Disentanglement
The reformulated Lorentz neural network in layer 𝑙 is shown as

x(𝑙+1) = LT(x(𝑙 ) ; M̂(𝑙 ) )

=

©«
√︁
∥𝑚𝑥𝑡 +Mx𝑠 ∥2 + 𝐾︸                    ︷︷                    ︸

time-like dimension 𝑥
(𝑙+1)
𝑡

, 𝑚𝑥𝑡 +Mx𝑠︸       ︷︷       ︸
space-like dimensions x(𝑙+1)𝑠

ª®®®®®¬

𝑇

.
(8)

The loss L𝑐 (𝑓 (x;𝜽𝑐 , 𝜽𝑠 ), 𝑦) of client 𝑐 , the partial derivatives can
be calculated as follows:

Time-like Dimension 𝑥 (𝑙+1)𝑡 . First, we compute the partial derivative

of 𝑥
(𝑙+1)
𝑡 with respect to the matrixM(𝑙 ) and𝑚 (𝑙 ) . Using the chain

rule:

𝜕𝑥
(𝑙+1)
𝑡

𝜕M(𝑙 )
=

𝜕

𝜕M

√︃
∥𝑚 (𝑙 )𝑥 (𝑙 )𝑡 +M(𝑙 )x

(𝑙 )
𝑠 ∥2 + 𝐾 ;

𝜕𝑥
(𝑙+1)
𝑡

𝜕𝑚 (𝑙 )
=

𝜕

𝜕𝑚

√︃
∥𝑚 (𝑙 )𝑥 (𝑙 )𝑡 +M(𝑙 )x

(𝑙 )
𝑠 ∥2 + 𝐾.
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Figure 5: Averaged Forman-Ricci curvature across datasets (Cora, ogbn-arxiv, and Amazon-Photo). Higher bars indicate more
pronounced non-Euclidean characteristics in these datasets.

Algorithm 1: FlatLand

Input :Personalized parameters 𝜽 (0)𝑐 , 𝐾
(0)
𝑐 and dataset D𝑐 , for

each client 𝑐 ∈ C
Shared parameters 𝜽

(0)
𝑠

Learning rate 𝜂

Output :Client model parameters 𝚯𝑐 =

(
𝐾𝑐 ;𝜽𝑐 ;𝜽𝑠

)
, for each

client 𝑐 ∈ C
Shared parameters 𝜽𝑠

1 Initialize model parameters: 𝜽
(0)
𝑠 and 𝚯

(0)
𝑐 =

(
𝐾
(0)
𝑐 ;𝜽 (0)𝑐 ;𝜽

(0)
𝑠

)
, for

𝑐 ∈ C;
2 for each communication round 𝑟 do
3 for each client 𝑐 in𝐶 do

4 x = exp
𝐾
(𝑟 )
𝑐

o (x) , for x ∈ D𝑐 ;
5 Client 𝑐 receives global model parameters 𝜽

(𝑟 )
𝑠 ;

6 𝚯
(𝑟 )
𝑐 =

(
𝐾
(𝑟 )
𝑐 ;𝜽 (𝑟 )𝑐 ;𝜽

(𝑟 )
𝑠

)
;

7 for local epochs 𝑒 do
8 Compute gradients

∇L = ∇
𝚯
(𝑟 )

∑
(x,y) ∈D𝑐 L𝑐 (𝑓 (x;𝚯

(𝑟 ) ), 𝑦) ;
9 end

10 Update local model 𝚯
(𝑟+1)
𝑐 ← 𝚯

(𝑟 )
𝑐 − 𝜂∇L;

11 Send 𝜽𝑠 ∈ 𝚯(𝑟+1)𝑐 to the server;

12 end
13 𝑁 =

∑
𝑐∈C |D𝑐 |;

14 Server aggregates models 𝜽
(𝑟+1)
𝑠 ← |D𝑐 |

𝑁

∑
𝑐∈C 𝜽

(𝑟+1)
𝑠𝑐 ;

15 end

Applying the chain rule, we get:

𝜕𝑥
(𝑙+1)
𝑡

𝜕M(𝑙 )
=

1

2

(
∥𝑚 (𝑙 )𝑥 (𝑙 )𝑡 +M

(𝑙 )x(𝑙 )𝑠 ∥2 + 𝐾
)− 1

2 · 2(𝑚 (𝑙 )𝑥 (𝑙 )𝑡 +M
(𝑙 )x(𝑙 )𝑠 )

· 𝜕(M
(𝑙 )x(𝑙 )𝑠 )
𝜕M(𝑙 )

=
𝑚 (𝑙 )𝑥 (𝑙 )𝑡 +M(𝑙 )x

(𝑙 )
𝑠√︃

∥𝑚 (𝑙 )𝑥 (𝑙 )𝑡 +M(𝑙 )x
(𝑙 )
𝑠 ∥2 + 𝐾

· 𝜕(M
(𝑙 )x(𝑙 )𝑠 )
𝜕M(𝑙 )

(9)

𝜕𝑥
(𝑙+1)
𝑡

𝜕𝑚 (𝑙 )
=

1

2

(
∥𝑚 (𝑙 )𝑥 (𝑙 )𝑡 +M

(𝑙 )x(𝑙 )𝑠 ∥2 + 𝐾
)− 1

2 · 2(𝑚 (𝑙 )𝑥 (𝑙 )𝑡 +M
(𝑙 )x(𝑙 )𝑠 )

·
𝜕(𝑚 (𝑙 )x(𝑙 )𝑡 )
𝜕M(𝑙 )

=
(𝑚 (𝑙 )𝑥 (𝑙 )𝑡 +M(𝑙 )x

(𝑙 )
𝑠 )√︃

∥𝑚 (𝑙 )𝑥 (𝑙 )𝑡 +M(𝑙 )x
(𝑙 )
𝑠 ∥2 + 𝐾

· 𝑥 (𝑙 )𝑡

(10)

Space-like Dimension x(𝑙+1)𝑠 . Assume that the update rule for the

space-like vector x(𝑙+1)𝑠 is given by the following formula:

x(𝑙+1)𝑠 =𝑚 (𝑙 )𝑥 (𝑙 )𝑡 +M
(𝑙 )x(𝑙 )𝑠

Similarly, we have

𝜕x(𝑙+1)𝑠

𝜕M(𝑙 )
=

𝜕

(
M(𝑙 )

)
x(𝑙 )𝑠

𝜕M(𝑙 )
,

𝜕x(𝑙+1)𝑠

𝜕M(𝑙 )
=

𝜕

(
M(𝑙 )

)
x(𝑙 )𝑠

𝜕M(𝑙 )
. (11)

"Flatland" is the space of dimension 1 : 𝑛, serving as a metaphor

for a platform where common information is exchanged and in-

tegrated. The same space-like dimension transformation x(𝑙 )𝑠 →
x(𝑙+1)𝑠 , i.e., x(𝑙 )𝑠 →

(
M(𝑙 )x(𝑙 )𝑠 +𝑚 (𝑙 )x

(𝑙 )
𝑠

)
in different client with

different curvatures, it is easy to know that the gradient of the

parameter𝑚 is only related to 𝑥𝑡 .

For better illustration, here, we let x(𝑙 ) ∈ L𝑛
𝐾
, x(𝑙+1) ∈ L𝑛

𝐾
, and

M̂(𝑙 ) ∈ R(𝑛+1)×(𝑛+1) . The introduced "Flatland" R𝑛 is defined as a

manifold spanning dimensions 1 to 𝑛. This construct serves as a

metaphorical platform for the exchange and integration of common

information, and 𝑥𝑡 serves as the heterogeneous information. Con-

sider the same transformation of a space-like vector x(𝑙 )𝑠 to x(𝑙+1)𝑠

in different clients, formulated as

x(𝑙 )𝑠 →
(
M(𝑙 )x(𝑙 )𝑠 +𝑚 (𝑙 )x

(𝑙 )
𝑠

)
,

it is easy to recognize that the gradient of the parameter𝑚 (𝑙 )

depends solely on 𝑥𝑡 (Equation (10) and Equation (11)). Therefore,

the update of parameter 𝑚 (𝑙 ) is only related to heterogeneous

information and transmitted to the server side for aggregation may

lead to performance degradation.
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C.4 Analysis
In this section, we provide further analysis to demonstrate the

effectiveness and interpretability of our method as described in

Section 3.2. Specifically, we first verify the correctness that fed-
erated learning does not cause the data in each client to deviate

from its original space during the process of parameter communi-

cation (server updates). Furthermore, we expound on the rationale

behind our proposed method from the perspectives of debiasing

and Lorentz transformation.

Proposition 1. ∀x ∈ L𝑛
𝐾
,∀M ∈ R(𝑚+1)×(𝑛+1) , we have LT(x;M) ∈

L𝑚
𝐾
.

Proof. ∀x ∈ L𝑛
𝐾
, we have ⟨LT(x;M), LT(x;M)⟩L = −𝐾 . There-

fore, LT(x;M) ∈ L𝑚
𝐾
. □

Corollary 1. Let M̂ =

[
𝑣 v𝑇

𝑚 M

]
, where M̂ ∈ R(𝑚+1)×(𝑛+1) and

Φ
(
M̂,N

)
=

[
𝑣 v𝑇

𝑚 N

]
.∀x ∈ L𝑛

𝐾
,∀M̂ ∈ R(𝑚+1)×(𝑛+1) , ∀N ∈ R𝑛×𝑛 ,

we have LT
(
x;Φ

(
M̂,N

))
∈ L𝑚

𝐾
.

Proof. Let x =

[
𝑥𝑡
x𝑠

]
∈ L𝑛

𝐾
, where 𝑥𝑡 ∈ R, x𝑠 ∈ R𝑛 . According

to Equation (2), we have:

LT

(
x;Φ(M̂,N)

)
=

[√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾
𝑚𝑥𝑡 + Nx𝑠

]
We need to prove that LT(x;Φ(M̂,N)) ∈ L𝑚

𝐾
, i.e., to prove that

it satisfies the definition condition of the Lorentz manifold ⟨·, ·⟩L =

−𝐾 :〈
LT

(
x;Φ(M̂,N)

)
, LT

(
x;Φ(M̂,N)

)〉
L

=

〈[√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾
𝑚𝑥𝑡 + Nx𝑠

]
,

[√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾
𝑚𝑥𝑡 + Nx𝑠

]〉
L

(Definition 2)

= −
(√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾

)
2

+ ∥𝑚𝑥𝑡 + Nx𝑠 ∥2

= − 𝐾

Therefore, we have proved that LT

(
x;Φ(M̂,N)

)
∈ L𝑚

𝐾
. □

This corollary implies that even after the aggregation of shared

parameters in the server, the transformation of any client vector

x ∈ L𝑛
𝐾
by this updated matrix will still yield results in the Lorentz

space L𝑚
𝐾

with the same curvature, indicating that the client’s

representation remains unaffected.

Perspectives on Debiasing.

Remark 1 (Feature Debiasing). During the local and server
updates in FlatLand, the debiasing process is inherently integrated
via the gradient of shared parametersM.

According to the derivations in Appendix C.3, it can be observed

that the gradient of the shared parametersM is highly correlated

with x𝑠 , where x𝑠 is derived from the raw input x𝐸 using the expo-

nential map in Equation (4). Therefore, given the same input x𝐸 for

different clients tailored to different Lorentz manifolds, the gradient

ofM for client 𝑐 is inherently weighted by
√
𝐾𝑐 sinh

(
∥x𝐸 ∥2√
𝐾𝑐

)
1

∥x𝐸 ∥2
,

where 𝐾𝑐 can be intuitively interpreted as the parameter that re-

flects the overall distribution of the dataset specific to client 𝑐 , which

differs from other clients. This can play a role in debiasing during

the parameter aggregation process compared to Euclidean methods.

Perspectives on Lorentz Transformations. Lorentz Boosts and
Lorentz Rotations (Appendix B.4) are interpreted as being cov-

ered by LT

(
x; M̂

)
when the dimension is unchanged [7]. We can

easily prove that the Lorentz transformations are still covered by

LT

(
·;Φ

(
M̂,N

))
, where M̂ ∈ R(𝑛+1)×(𝑛+1) , N ∈ R𝑛×𝑛 .

For any data point x ∈ D𝑐 , transformations LT

(
x; M̂

)
and

LT

(
x;Φ

(
M̂,N

))
map x to a new spacetime position, maintaining

the spacetime interval invariant (Corollary 2), thus preserving the

physical and geometric relationships within the same client, in

line with special relativity. However, clients with varying space-

time curvatures maintain distinct spacetime intervals, reflecting
differing underlying data distributions.

Moreover, according to the definition of Lorentz Rotation in

Equation (7), the server updates only theM, leaving the time-like

dimension unchanged. This operation is a relaxation of the Lorentz

rotation, consistent with our "Flatland" assumption that aggregates

only spatial dimension information.

D Experimental Supplementary
D.1 Datasets
For federated node classification, we adopt four benchmark datasets:

Cora, CiteSeer, ogbn-arxiv, and Photo [14, 30, 31]. Cora, CiteSeer,

and ogbn-arxiv are citation graphs. Photo is a product graph. Each

graph dataset is divided into a certain number of disjoint subgraphs

using the METIS graph partitioning algorithm [16], where each sub-

graph belongs to an FL client. Statistics of datasets are summarized

in Table 2.

D.2 Implementation Details
Weemploy 2-layer GCN [18] for Euclideanmodels, 2-layer LGCN [7]

for FlatLand, and HGCN with node selection for FedHGCN [10].

We conduct 100 rounds for Cora/CiteSeer and 200 rounds for larger

datasets like Photo/ogbn-arxiv, with 1-3 local epochs, use 128-dim

hidden layers. The learning rate is chosen from {0.01, 0.001}, and
weight decay uses 1𝑒 − 5. We optimize with Adam, calculate node-

level / graph-level accuracy averaged across clients. All experiments

are implemented in Python3.10, PyTorch, and run on an RTX A6000

GPU, 40G storage. Each client is allocated a worker with one round

of around 1 second for one epoch in the node classification task.

D.3 Analysis
In this section, we provide further analysis to demonstrate the

effectiveness and interpretability of our method as described in

Section 3.2. Specifically, we first verify the correctness that fed-
erated learning does not cause the data in each client to deviate

from its original space during the process of parameter communi-

cation (server updates). Furthermore, we expound on the rationale
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Table 2: Statistics of node classification datasets. We report the (average) number of nodes, edges, classes, clustering coefficient,
and heterogeneity for different numbers of clients.

Dataset Cora Citeseer ogbn-arxiv Amazon-Photo

# Clients 1 10 20 1 10 20 1 10 20 1 10 20

# Classes 7 6 40 8

Avg. # Nodes 2,485 249 124 2,120 212 106 169,343 16,934 8,467 7,487 749 374

Avg. # Edges 10,138 891 422 7,358 675 326 2,315,598 182,226 86,755 238,086 19,322 8,547

Avg. Clustering Coefficient 0.238 0.259 0.263 0.170 0.178 0.180 0.226 0.259 0.269 0.410 0.457 0.477

Heterogeneity N/A 0.606 0.665 N/A 0.541 0.568 N/A 0.615 0.637 N/A 0.681 0.751

behind our proposed method from the perspectives of debiasing

and Lorentz transformation.

Proposition 2. ∀x ∈ L𝑛
𝐾
,∀M ∈ R(𝑚+1)×(𝑛+1) , we have LT(x;M) ∈

L𝑚
𝐾
.

Proof. ∀x ∈ L𝑛
𝐾
, we have ⟨LT(x;M), LT(x;M)⟩L = −𝐾 . There-

fore, LT(x;M) ∈ L𝑚
𝐾
. □

Corollary 2. Let M̂ =

[
𝑣 v𝑇

𝑚 M

]
, where M̂ ∈ R(𝑚+1)×(𝑛+1) and

Φ
(
M̂,N

)
=

[
𝑣 v𝑇

𝑚 N

]
.∀x ∈ L𝑛

𝐾
,∀M̂ ∈ R(𝑚+1)×(𝑛+1) , ∀N ∈ R𝑛×𝑛 ,

we have LT
(
x;Φ

(
M̂,N

))
∈ L𝑚

𝐾
.

Proof. Let x =

[
𝑥𝑡
x𝑠

]
∈ L𝑛

𝐾
, where 𝑥𝑡 ∈ R, x𝑠 ∈ R𝑛 . According

to Equation (2), we have:

LT

(
x;Φ(M̂,N)

)
=

[√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾
𝑚𝑥𝑡 + Nx𝑠

]
We need to prove that LT(x;Φ(M̂,N)) ∈ L𝑚

𝐾
, i.e., to prove that

it satisfies the definition condition of the Lorentz manifold ⟨·, ·⟩L =

−𝐾 :〈
LT

(
x;Φ(M̂,N)

)
, LT

(
x;Φ(M̂,N)

)〉
L

=

〈[√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾
𝑚𝑥𝑡 + Nx𝑠

]
,

[√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾
𝑚𝑥𝑡 + Nx𝑠

]〉
L

(Definition 2)

= −
(√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾

)
2

+ ∥𝑚𝑥𝑡 + Nx𝑠 ∥2

= − 𝐾

Therefore, we have proved that LT

(
x;Φ(M̂,N)

)
∈ L𝑚

𝐾
. □

This corollary implies that even after the aggregation of shared

parameters in the server, the transformation of any client vector

x ∈ L𝑛
𝐾
by this updated matrix will still yield results in the Lorentz

space L𝑚
𝐾

with the same curvature, indicating that the client’s

representation remains unaffected.

Perspectives on Debiasing.

Remark 2 (Feature Debiasing). During the local and server
updates in FlatLand, the debiasing process is inherently integrated
via the gradient of shared parametersM.

According to the derivations in Appendix C.3, it can be observed

that the gradient of the shared parametersM is highly correlated

with x𝑠 , where x𝑠 is derived from the raw input x𝐸 using the expo-

nential map in Equation (4). Therefore, given the same input x𝐸 for

different clients tailored to different Lorentz manifolds, the gradient

ofM for client 𝑐 is inherently weighted by
√
𝐾𝑐 sinh

(
∥x𝐸 ∥2√
𝐾𝑐

)
1

∥x𝐸 ∥2
,

where 𝐾𝑐 can be intuitively interpreted as the parameter that re-

flects the overall distribution of the dataset specific to client 𝑐 , which

differs from other clients. This can play a role in debiasing during

the parameter aggregation process compared to Euclidean methods.

Perspectives on Lorentz Transformations. Lorentz Boosts and
Lorentz Rotations (Appendix B.4) are interpreted as being cov-

ered by LT

(
x; M̂

)
when the dimension is unchanged [7]. We can

easily prove that the Lorentz transformations are still covered by

LT

(
·;Φ

(
M̂,N

))
, where M̂ ∈ R(𝑛+1)×(𝑛+1) , N ∈ R𝑛×𝑛 .

For any data point x ∈ D𝑐 , transformations LT

(
x; M̂

)
and

LT

(
x;Φ

(
M̂,N

))
map x to a new spacetime position, maintaining

the spacetime interval invariant (Corollary 2), thus preserving the

physical and geometric relationships within the same client, in

line with special relativity. However, clients with varying space-

time curvatures maintain distinct spacetime intervals, reflecting
differing underlying data distributions.

Moreover, according to the definition of Lorentz Rotation in

Equation (7), the server updates only theM, leaving the time-like

dimension unchanged. This operation is a relaxation of the Lorentz

rotation, consistent with our "Flatland" assumption that aggregates

only spatial dimension information.
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