
Client-Specific Hyperbolic Federated Learning
Jiahong Liu

jiahong.liu21@gmail.com

The Chinese University of Hong Kong

Hong Kong, China

Xinyu Fu

xyfu@cse.cuhk.edu.hk

The Chinese University of Hong Kong

Hong Kong, China

Menglin Yang

menglin.yang@outlook.com

Yale University

New Haven, United States

Weixi Zhang

zhangweixi1@huawei.com

Huawei Technologies Co., Ltd.

Hong Kong, China

Rex Ying

rex.ying@yale.edu

Yale University

New Haven, United States

Irwin King

king@cse.cuhk.edu.hk

The Chinese University of Hong Kong

Hong Kong, China

ABSTRACT
Personalized Federated Learning (PFL) has gained attention for

privacy-preserving training on heterogeneous data. However, ex-

isting methods fail to capture the unique inherent geometric prop-

erties across diverse clients by assuming a unified Euclidean space

for all data distributions. Drawing on hyperbolic geometry’s ability

to fit complex data properties, we present FlatLand1, a novel per-
sonalized Federated learning method that embeds different clients’

data in tailored Lorentz space. FlatLand is able to directly tackle

the challenge of heterogeneity through the client-specific curva-

tures of their respective Lorentz model of hyperbolic geometry,

which is manifested by the time-like dimension. Leveraging the

Lorentzmodel properties, we further design a parameter decoupling

strategy that enables direct server aggregation of common client

information, with reduced heterogeneity interference and without

the need for any client-wise similarity estimation. To the best of

our knowledge, this is the first attempt to incorporate hyperbolic

geometry into personalized federated learning. Empirical results on

various federated graph learning tasks demonstrate that FlatLand
achieves superior performance in node and graph classification

tasks, particularly in low-dimensional settings.

KEYWORDS
Personalized Federated Learning, Hyperbolic Geometry

ACM Reference Format:
Jiahong Liu, Xinyu Fu, Menglin Yang, Weixi Zhang, Rex Ying, and Irwin

King. 2024. Client-Specific Hyperbolic Federated Learning . In Proceedings
of FedKDD’24 . ACM, New York, NY, USA, 11 pages.

1 Introduction
Federated learning (FL) trains machine learning models across mul-

tiple clients while ensuring data privacy. Traditional FL struggles

1
Our method is named after Edwin Abbott’s book "Flatland: A Romance of Many
Dimensions", highlighting our insights of exploring an extra dimension that maps

various data distributions onto different Lorentz surfaces.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

FedKDD’24 , August 26, 2024, Barcelona, Spain
© 2024 Association for Computing Machinery.

D
e
n
s
it
y

(b) Tailored Lorentz Space

Client 1

Client 2

Client 3

(a) Graph Degree Distribution

Degree

𝑥𝑡

𝑥𝑠

ℒ𝐾1
2ℒ𝐾2

2ℒ𝐾3
2

exp𝐨
K(𝐯)

𝐯
“ Flatland”

Figure 1: Toy example: (a) KDE of degree distributions from
three CiteSeer clients [8], and (b) their respective 2D Lorentz
Spaces with different curvatures 𝐾 .

with data heterogeneity, as one model cannot satisfy diverse lo-

cal requirements. Personalized federated learning (PFL) resolves

this by sharing common model knowledge and allowing for client-

specific adaptations. PFL approaches include segmenting models

into generic and personalized components [33], leveraging model

weights and gradients to map client relationships [35], or integrat-

ing additional modules to facilitate customization [5].

Recent studies in various domains, including text [9], images [17],

and graphs [25, 33], have shown that real-world data exhibit non-

Euclidean properties, such as scale-free structures and implicit

hierarchical relationships [1, 23]. Euclidean space, being inherently

“flat”, fails to adequately represent these characteristics, leading to

structural distortions and reduced performance [6, 24]. For example,

the CiteSeer graph dataset partitioned into 10 clients shows vary-

ing degree distributions with long-tail characteristics which are

poorly captured by Euclidean geometry, as illustrated in Figure 1(a).

Besides, the calculation of Ricci curvature values for multiple real-

world graph datasets after splitting them into 10 clients each reveals

that they all exhibit negative Ricci curvature with significantly vary-

ing values, as shown in Figure 5. Higher absolute values indicate

more pronounced non-Euclidean properties.

Moreover, embedding data from various clients into a fixed space

complicates the interpretability of model parameters, making it

difficult to segment the model into meaningful components [3]

and often expensive to assess similarities between client models.

Additionally, strategies like incorporating extra modules to aid this

process further add to the model’s complexity.

FedKDD’24 , August 26, 2024, Barcelona, Spain Jiahong Liu et al.

The aforementioned problems inspire us to askwhether there is
a space where we can design a tailored model for each client,
in which we can effectively represent the inherent properties
of local data and succinctly reflect the heterogeneity without
any extra calculations?

We propose to leverage Lorentz Space. With negative cur-

vature, Lorentz space has the advantage of modeling complex

data, particularly hierarchical, tree-like, and power-law distributed

data [9, 20, 36, 38]. By adjusting its curvature, it offers personal-

ized and precise data representations for each client, leveraging its

unique time-like dimension to capture diversity. This inspires us to

design a framework that embeds each client’s data into a suitable

Lorentz space.

Furthermore, the representations in Lorentz space and the op-

erations of Lorentz neural networks [7, 37] have stronger inter-

pretability. Take Figure 1(b) as an example
2
. Informally speaking,

the diversity of the distribution can be more prominently repre-

sented by the "height" of the additional time-like dimension (𝑥𝑡 ∈ R)
while maintaining the relatively similar properties in the "Flatland"
(space-like dimensions x𝑠 ∈ R𝑑). In this work, we focus on feder-

ated graph learning (FGL) as hyperbolic encoders have achieved

state-of-the-art results in many benchmarks [20], and this method

is generalizable to other datasets and settings.

Although the Lorentz space has demonstrated significant poten-

tial in various tasks [4, 28], applying it to personalized federated

learning (PFL) scenarios is still non-trivial. The challenge is how
to mitigate the influence of parameters related to heteroge-
neous information, and aggregate the parameters that represent

common features in the flatland without accessing client data?

Motivated by the above insights, we propose an exploratory per-

sonalized Federated learning method that embeds different clients’

data in Tailored Lorentz space, called FlatLand. To address the chal-
lenge, we formulate a parameter disentanglement strategy that can

directly aggregate shared parameters without any extra similarity

calculations. To the best of our knowledge, FlatLand is the first

work to incorporate Lorentz geometry into personalized federated

learning. It is succinct, effective, and easily interpretable. Ex-
perimental results demonstrate that FlatLand achieves superior

performance than its Euclidean counterpart, particularly in low-

dimensional representations.

2 Motivation and Insights
The related work and preliminaries are shown in Appendix A and

Appendix B. This paper focuses on graph data for its clear distribu-

tion and simpler models, facilitating the validation of our approach

using Lorentz neural networks to address heterogeneity in person-

alized federated learning. Our method is also applicable to other

datasets and tasks.

Problem Statement. Given clients C = {1, 2, . . . ,𝐶}, each with a

dataset D𝑐 = (x𝑐
𝑖
, 𝑦𝑐
𝑖
)𝑁𝑐
𝑖=1

and distribution 𝑝𝑐 (x, 𝑦), Personalized
Federated Learning (PFL) encounters distributional heterogeneity

if exists 𝑝𝑖 (x, 𝑦) ≠ 𝑝 𝑗 (x, 𝑦) for clients 𝑖 ≠ 𝑗 . This heterogeneity can

degrade performance. The goal is to optimize personalized models

2
For convenience, all origins of Lorentz spaces in the figure are shown as the same,

but actually, their origins are not in the same location.

𝑓𝑐 (·;𝜽𝑐 , 𝜽𝑠) for each client using specific and shared parameters 𝜽𝑐 ,
𝜽𝑠 .

min

𝜽𝑐 |𝐶𝑐=1,𝜽𝑠

𝐶∑︁
𝑐=1

E(x,𝑦)∼𝑝𝑐 (x,𝑦) [L𝑐 (𝑓 (x;𝜽𝑐 , 𝜽𝑠), 𝑦)] + 𝜆Ω (𝜽𝑐 |
𝐶
𝑐=1, 𝜽𝑠) (1)

This function merges local loss L𝑐 with regularization Ω, bal-
anced by hyperparameter 𝜆.

Our goals are

(1) to effectively represent the inherent properties of each local

client data;

(2) to succinctly reflect heterogeneity among client data and

facilitate the communication of shared information without

requiring additional computations.

In "Flatland", a two-dimensional flat plane, the same shapes
may represent the projections of various three-dimensional
objects. For instance, a circle could be the projection of either
a cylinder or a sphere from a higher dimension.

Insights: introduce a higher dimension (time axes) to "Flatland".
In the above case, "Flatland" captures the common feature of a

cylinder or a sphere, while a higher dimension (the third dimen-

sion) highlights the differences between the objects. Analogous

to our setting, informally speaking, by introducing an additional

time-like dimension, we can imagine each client’s data residing in

a unique Lorentz space (a curved world in a higher-dimensional

space), where the curvature reflects the distinct distributions (ob-

jects). "Flatland", R𝑑 (flat), serves as a metaphor for a platform

where common information (circle) is exchanged and integrated.

Motivation: why Lorentz space?
(1) Prevalent Non-Euclidean properties of real-world data. Forman-

Ricci curvature Ric measures deviations from flat (Euclidean) ge-

ometry in data structures [12, 29]. A more negative Ric indicates

a structure more suited for hyperbolic space representation [32].

Figure 2 shows varying Ric values across 10 clients from the Cite-

Seer dataset, highlighting the common non-Euclidean nature of

real-world data. Thus, employing Lorentz space with client-specific

curvature can better capture intrinsic data structure for goal (1).

(2) Strong correlation between heterogeneity and curvature. Fig-

ure 1(a) shows that distribution curves exhibit long-tailed charac-

teristic with varying skewness. In particular, Client 1’s distribution

is steeper and less Euclidean, suggesting a need for embedding in a

Lorentz space with a larger curvature (a smaller 𝐾), depicted in Fig-

ure 1(b). This space accommodates more tail nodes (blue stars) than

Clients 2 and 3, requiring a "roomier" embedding environment to

ensure separability and enhance performance. A larger curvature fa-

cilitates this by allowing embeddings to occupy a "higher" position

(larger 𝑥𝑡) in the space, where the volume expands exponentially.

The observations alignwith our goal (2) as heterogeneous proper-

ties like imbalance between tail and head nodes can be distinguished

through corresponding Lorentz spaces with different curvatures

(differed by time-like axes 𝑥𝑡). Meanwhile, common information

like "the star is a tail node" is preserved in space-like dimensions x𝑠
as the same node v.

Client-Specific Hyperbolic Federated Learning FedKDD’24 , August 26, 2024, Barcelona, Spain

Step3: Server UpdatesStep1: Initialization Step2: Local Updates

(Lorentz Neural Networks)

exp𝐨
𝐾1

exp𝐨
𝐾2

exp𝐨
𝐾3

(Curvature Estimation, Exponential Map)

𝑥𝑡

𝐱𝑠

𝐱𝑠

𝐱𝑠

“FlatLand”

𝚯𝟏

𝚯𝟐

𝚯𝟑

𝚯𝟏

𝐾1 𝜽𝐬𝜽1

𝚯𝟐

𝐾2 𝜽𝐬𝜽2

𝚯𝟑

𝐾3 𝜽𝐬𝜽3

ഥ𝜽𝒔

(Shared Parameters)

Figure 2: The FlatLand framework.

3 The FlatLand Framework
We propose a personalized federated learning framework, FlatLand,
using tailored Lorentz spaces for each client. The main steps are

outlined in Figure 2 and Algorithm 1.

S1 Initialization. At the initial communication round 𝑟 = 0,

the parameters can be divided into three parts:

(1) Curvature parameters of 𝐶 clients {𝐾1, 𝐾2, ...𝐾𝐶 } ; (Sec. 3.1)
(2) Personalized parameters of 𝐶 clients {𝜽1, 𝜽2, ..., 𝜽𝐶 }; (Sec. 3.2)
(3) Shared parameters 𝜽𝑠 of central server.

All the parameters of client 𝑖 at round 0 can be written as 𝚯
(0)
𝑖

=(
𝐾𝑖 ;𝜽

(0)
𝑖

;𝜽
(0)
𝑠

)
and server parameters as 𝜽

(0)
𝑠 .

S2 Local updates. Given learning rate 𝜂, for round 𝑟 , each

local client model performs training on the data D𝑖 to minimize

the task loss L(D𝑖 ;𝚯(𝑟)𝑖) and then updating the parameters as

𝚯
(𝑟+1)
𝑖

← 𝚯
(𝑟)
𝑖
− 𝜂∇L. (Sec. 3.3)

S3 Server updates.After local training, only shared parameters

𝜽𝑠𝑐 (𝑟+1) are updated to the server for each client 𝑐 . These are then

aggregated using FedAvg: 𝜽
(𝑟+1)
𝑠 ← 𝑁𝑐

𝑁

∑𝐶
𝑐=1 𝜽

(𝑟+1)
𝑠𝑐 , , where 𝑁 =∑

𝑐 𝑁𝑐 . The aggregated parameters are subsequently distributed to

clients for the next round.

3.1 Curvature Estimation
To embed the dataset D𝑐 of client 𝑐 ∈ C into its tailored Lorentz

space L𝑑
𝐾𝑐
, a suitable curvature 𝐾𝑐 should be first explored.

There are many comprehensive ways to assist in estimating the

suitable curvature for various types of data [13]. Given a weighted

graph 𝐺𝑐 = (𝑉 , 𝐸,𝑤) in client 𝑐 , we adopt Forman-Ricci curva-

ture and the overall curvature of the graph can be calculated as

follows Ric(𝐺) = 1

|𝐸 |
∑
(𝑥,𝑦) ∈𝐸 𝑤 (𝑥,𝑦)

(
1

𝜇𝑥
+ 1

𝜇𝑦

)
, where 𝑉 repre-

sents graph nodes and |𝐸 | the number of edges. Additionally, the

curvature can be a learnable parameter or calculated using a sim-

ple Multi-Layer Perceptron (MLP) neural network (Appendix B.3).

Here, we initialize 𝐾𝑐 with Ric(𝐺𝑐) as learnable. The curvature

parameters represent client-specific inherent data characteristics

and thus do not require sharing and aggregating.

3.2 Parameter Decoupling Strategy
This section details the fully Lorentz model’s parameters (excluding

𝐾), divided into shared 𝜽𝑠 for the space-like dimensions and per-

sonalized 𝜽𝑐 for the time-like dimension. The model has layers of

fully Lorentz neural networks that transform data within Lorentz

space (Appendix B.2).

First, without loss of generality, we decouple the function of

Lorentz linear layer in Equation (5) without the functions 𝑓 of acti-

vation, dropout, bias, and so on. Given input x(𝑙) =
[
𝑥
(𝑙)
𝑡 x(𝑙)𝑠

]𝑇
∈

L𝑛
𝐾
, 𝑥
(𝑙)
𝑡 ∈ R, x(𝑙)𝑠 ∈ R𝑛 in layer 𝑙 . We rewrite the learnable ma-

trix M̂(𝑙) in Section B.2 as

[
𝑣 (𝑙) v𝑇 (𝑙)

𝑚 (𝑙) M(𝑙)

]
∈ R(𝑚+1)×(𝑛+1) , 𝑣 (𝑙) ∈

R, v(𝑙) ∈ R𝑛,𝑚 (𝑙) ∈ R𝑚+1,M(𝑙) ∈ R(𝑚+1)×𝑛 . The output x(𝑙+1) of
the Lorentz linear layer could be reformulated as

x(𝑙+1) = LT(x(𝑙) ; M̂(𝑙)) = (
√︁
∥𝑚𝑥𝑡 +Mx𝑠 ∥2 +𝐾︸ ︷︷ ︸
time-like 𝑥

(𝑙+1)
𝑡

, 𝑚𝑥𝑡 +Mx𝑠︸ ︷︷ ︸
space-like x(𝑙+1)𝑠

)𝑇 . (2)

Then, we decouple the parameters as follows under the deviation

from Appendix C.3:

Suppose the modelM consists of 𝐿 layers of neural net-

works,

• The personalized parameter set 𝜽𝑐 for all layers is
formulated as

𝜽𝑐 =
𝐿⋃
𝑙=1

{𝑣 (𝑙) , v𝑇 (𝑙) ,𝑚 (𝑙) };

• The shared parameter set 𝜽𝑠 across all layers is for-
mulated as

𝜽𝑠 =
𝐿⋃
𝑙=1

{M(𝑙) };

where

⋃𝐿
𝑙=1

indicates the union of parameter sets

from each layer 𝑙 from 1 to 𝐿.

FedKDD’24 , August 26, 2024, Barcelona, Spain Jiahong Liu et al.

Table 1: Comparison of node classification performance across real-world datasets with varying numbers of clients. The results,
presented as mean and standard deviation, are based on five separate trials. Performances that are statistically significant
(𝑝 < 0.05) are highlighted in bold.

Cora CiteSeer ogbn-arxiv Photo

clients 10 20 10 20 10 20 10 20

Local (𝐸) 79.94 ± 0.24 80.30 ± 0.25 67.82 ± 0.13 65.98 ± 0.17 64.92 ± 0.09 65.06 ± 0.05 91.80 ± 0.02 90.47 ± 0.15
Local (𝐿) 78.35 ± 0.05 80.46 ± 0.18 72.30 ± 0.04 69.52 ± 0.25 65.85 ± 0.09 66.75 ± 0.05 91.76 ± 0.10 90.12 ± 0.20

FedAvg 69.19 ± 0.67 69.50 ± 3.58 63.61 ± 3.59 64.68 ± 1.83 64.44 ± 0.10 63.24 ± 0.13 83.15 ± 3.71 81.35 ± 1.04
FedPer 79.35 ± 0.04 78.01 ± 0.32 70.53 ± 0.28 66.64 ± 0.27 64.99 ± 0.18 64.66 ± 0.11 91.76 ± 0.23 90.59 ± 0.06
FedProx 60.18 ± 7.04 48.22 ± 6.81 63.33 ± 3.25 64.85 ± 1.35 64.37 ± 0.18 63.03 ± 0.04 80.92 ± 4.64 82.32 ± 0.29
FedGNN 70.12 ± 0.99 70.10 ± 3.52 55.52 ± 3.17 52.23 ± 6.00 64.21 ± 0.32 63.80 ± 0.05 87.12 ± 2.01 81.00 ± 4.48
FedSage+ 69.05 ± 1.59 57.97 ± 12.6 65.63 ± 3.10 65.46 ± 0.74 64.52 ± 0.14 63.31 ± 0.20 76.81 ± 8.24 80.58 ± 1.15
GCFL 78.66 ± 0.27 79.21 ± 0.70 69.01 ± 0.12 66.33 ± 0.05 65.09 ± 0.08 65.08 ± 0.04 92.06 ± 0.25 90.79 ± 0.17

FedHGCN 72.09 ± 0.16 74.67 ± 1.50 66.98 ± 0.56 64.28 ± 0.62 OOM OOM 79.26 ± 0.56 79.57 ± 0.10
FlatLand (Ours) 80.46 ± 0.28 82.49 ± 0.25 73.90 ± 0.23 72.24 ± 0.24 67.52 ± 0.16 67.64 ± 0.04 92.49 ± 0.19 91.06 ± 0.15

64 32 16 8 4
#dim

0

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y(
%

)

(ours)

Performance on CiteSeer (20 Clients)

FedPer FedProx GCFL FedHGCN FlatLand

Figure 3: Performance of CiteSeer (20 clients) with varying dimensions
for node classification scenario.

0 20 40 60 80 100
round

66

68

70

72

74

76

78

80

A
cc

ur
ac

y(
%

)

Local (L) baseline

Performance on Cora (10 Clients)

w/o TS
w/o DS
FlatLand (ours)

Figure 4: Ablation study of FlatLand on
the Cora dataset.

3.3 Local Training Procedure
Obtained the curvature 𝐾

(𝑟)
𝑐 at round 𝑟 for client 𝑐 , we directly

project the client input x𝐸
𝑖
∈ D𝑐 into its corresponding Lorentz

space via the exponential map x𝐾𝑐 = exp
𝐾𝑐
o (x𝐸), as shown in Equa-

tion (4). Note that to simplify the notation, all vectors x, if not
superscripted, are assumed to represent being in the Lorentz space.

Afterward, the training data are fed into the corresponding

Lorentz model, the output is 𝑓 (x𝐾𝑐 ;𝜽𝑐 , 𝜽𝑠). In the graph model,

in addition to the Lorentz linear layer, there is also an aggregation

operation [40], which does not involve extra parameters. At client

𝑐 , the objective function is

min

𝜽𝑐 |𝐶𝑐=1,𝜽𝑠
L𝑐 (𝑓 (x𝐾𝑐 ;𝜽𝑐 , 𝜽𝑠), 𝑦) + 𝜆∥𝜽𝑠𝑐 − 𝜽𝑠 ∥22, (3)

where 𝜆 is a hyperparameter, ∥𝜽𝑠𝑐 − 𝜽𝑠 ∥22 is the regularize term
that prevent locally updated model parameters 𝜽𝑠𝑐 deviates too far

from the server shared parameters 𝜽𝑠 .

4 Experiments
In this section, we validate the effectiveness of FlatLand by con-

ducting experiments for node classification on a series of benchmark

datasets. The experiments are designed to address the following

research questions. RQ1. Can FlatLand outperform personalized

and hyperbolic FL baselines? RQ2. Can FlatLand still perform well

in low-dimensional settings? RQ3. Are the proposed novel compo-

nents really beneficial?

4.1 Experimental Setup
Datasets and Baselines The details about datasets are listed in

Appendix D.1. Implementation details are shown in Appendix D.2.

To assess FlatLand and demonstrate its superiority, we compare it

with the following baselines:

(1) Local: clients train their models locally without any communi-

cation, Local (𝐸) refers to self-training in the Euclidean model, while

Local (𝐿) refers to training in the Lorentz model.; (2) FedAvg [26]

and (3) FedProx [21]: the most popular pederated learning base-

lines; (4) FedPer [3]: a personalized federated learning baseline with

personalized model layers; (5) FedGNN [34] and (6) FedSage [39]:

two federated graph learning baselines; (7) GCFL [35]: a personal-

ized federated graph learning baseline with client clustering and

cluster-wise model aggregation; (8) FedHGCN [10]: a hyperbolic

FGL baseline that fails considering the heterogeneity among clients.

Client-Specific Hyperbolic Federated Learning FedKDD’24 , August 26, 2024, Barcelona, Spain

4.2 Main Experimental Results (RQ1)
Node Classification Table 1 shows that our proposed FlatLand

outperforms all baselines with statistical significance (𝑝 < 0.05).

(1) Local (𝐿) often surpasses Local (𝐸), suggesting that hyperbolic

space can better represent most datasets, though the gap is some-

times marginal. (2) Euclidean FL methods like FedAvg, FedProx,

FedGNN, and FedSage+ significantly underperform self-training.

GCFL is generally the best among Euclidean methods, but cannot

consistently beat Local (𝐸). FedPer sometimes exceeds Local (𝐸)

with small gains, highlighting challenges with heterogeneous data.

(3) FedHGCN, despite operating in hyperbolic space, underperforms

on heterogeneous datasets by not accounting for data heterogene-

ity, akin to FedAvg vs Local (𝐸) in Euclidean space. Besides, due

to the quadratic time and space complexity of FedHGCN’s node

selection module. Therefore, it can easily encounter out-of-memory

(OOM) issues with large datasets, like ogbn-arxiv. In conclusion, ex-

periments show that FlatLand can mitigate the heterogeneity, and

with larger gains on highly heterogeneous datasets like CiteSeer.

4.3 Varying Embedding Dimensions (RQ2)
Reducing embedding and hidden dimensions lowers parameter

transmission cost in federated learning. Considering hyperbolic

spaces’ representational power in lower dimensions [6], we evalu-

ated FlatLand’s ability to mitigate data heterogeneity using com-

pact representations by reducing the embedding dimension from

64 to 4 (Figure 3, CiteSeer, 20 clients). Dimensionality reduction

from 64 to 4 had a smaller impact on hyperbolic methods (FlatLand
and FedHGCN) compared to Euclidean counterparts. While Fed-

HGCN underperformed Euclidean methods at higher dimensions

but outperformed them at 16 dimensions, FlatLand consistently out-
performed all others, with its advantage over baselines becoming

more significant as dimensionality reduced.

4.4 Ablation Study (RQ3)
Figure 4 analyzes component contributions. "w/o TS" uses constant

curvature 1 for all clients instead of tailored curvatures, yielding in-

ferior performance compared to tailored curvatures approximating

local (𝐿) setting, demonstrating hyperbolic space’s effectiveness.

"w/o DS" exhibits significant fluctuations across rounds due to

aggregation incorporating heterogeneous information, adversely

impacting results. This highlights the proposed decoupling strat-

egy’s effectiveness and validates the time-like dimension’s ability

to capture heterogeneity.

5 Conclusion
FlatLand leverages hyperbolic geometry to capture heterogene-

ity across clients’ data distributions embedded in tailored Lorentz

spaces for personalized federated learning. A parameter decoupling

strategy aggregates common information server-side while mitigat-

ing heterogeneity interference, without extra client similarity esti-

mation. As the first work incorporating hyperbolic geometry into

personalized federated learning, FlatLand outperforms Euclidean

methods, especially in low dimensions, showcasing potential as an

effective solution to data heterogeneity.

REFERENCES
[1] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex

networks. Reviews of modern physics 74, 1 (2002), 47.
[2] Xuming An, Li Shen, Han Hu, and Yong Luo. 2024. Federated Learning with

Manifold Regularization and Normalized Update Reaggregation. Advances in
Neural Information Processing Systems 36 (2024).

[3] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav

Choudhary. 2019. Federated Learning with Personalization Layers. CoRR
abs/1912.00818 (2019).

[4] Mina Ghadimi Atigh, Julian Schoep, Erman Acar, Nanne Van Noord, and Pascal

Mettes. 2022. Hyperbolic image segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 4453–4462.

[5] Jinheon Baek, Wonyong Jeong, Jiongdao Jin, Jaehong Yoon, and Sung Ju Hwang.

2023. Personalized subgraph federated learning. In International Conference on
Machine Learning. PMLR, 1396–1415.

[6] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. 2019. Hyperbolic

graph convolutional neural networks. Advances in neural information processing
systems 32 (2019).

[7] Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong

Sun, and Jie Zhou. 2021. Fully hyperbolic neural networks. arXiv preprint
arXiv:2105.14686 (2021).

[8] Richard ADavis, Keh-Shin Lii, and Dimitris N Politis. 2011. Remarks on some non-

parametric estimates of a density function. Selected Works of Murray Rosenblatt
(2011), 95–100.

[9] Bhuwan Dhingra, Christopher J Shallue, Mohammad Norouzi, Andrew M Dai,

and George E Dahl. 2018. Embedding text in hyperbolic spaces. arXiv preprint
arXiv:1806.04313 (2018).

[10] Haizhou Du, Conghao Liu, Haotian Liu, Xiaoyu Ding, and Huan Huo. 2024. An

efficient federated learning framework for graph learning in hyperbolic space.

Knowledge-Based Systems 289 (2024), 111438.
[11] Alireza Fallah, Aryan Mokhtari, and Asuman E. Ozdaglar. 2020. Personalized Fed-

erated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning

Approach. In NeurIPS.
[12] Forman. 2003. Bochner’s method for cell complexes and combinatorial Ricci

curvature. Discrete & Computational Geometry 29 (2003), 323–374.

[13] Zhi Gao, Yuwei Wu, Yunde Jia, and Mehrtash Harandi. 2021. Curvature gen-

eration in curved spaces for few-shot learning. In Proceedings of the IEEE/CVF
international conference on computer vision. 8691–8700.

[14] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets

for Machine Learning on Graphs. In NeurIPS.
[15] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei,

and Yong Zhang. 2021. Personalized Cross-Silo Federated Learning on Non-IID

Data. In AAAI. AAAI Press, 7865–7873.
[16] George Karypis and Vipin Kumar. 1995. METIS –Unstructured Graph Partitioning

and Sparse Matrix Ordering System, Version 2.0.

[17] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and

Victor Lempitsky. 2020. Hyperbolic image embeddings. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 6418–6428.

[18] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR (Poster). OpenReview.net.
[19] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and

Marián Boguná. 2010. Hyperbolic geometry of complex networks. Physical
Review E 82, 3 (2010), 036106.

[20] Keegan Lensink, Bas Peters, and Eldad Haber. 2022. Fully hyperbolic convolu-

tional neural networks. Research in the Mathematical Sciences 9, 4 (2022), 60.
[21] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and

Virginia Smith. 2020. Federated Optimization in Heterogeneous Networks. In

MLSys. mlsys.org.

[22] Xinting Liao, Weiming Liu, Chaochao Chen, Pengyang Zhou, Huabin Zhu, Yan-

chao Tan, Jun Wang, and Yue Qi. 2023. HyperFed: hyperbolic prototypes ex-

ploration with consistent aggregation for non-IID data in federated learning.

In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence. 3957–3965.

[23] Jiahong Liu, Philippe Fournier-Viger, Min Zhou, Ganghuan He, and Mourad

Nouioua. 2022. CSPM: Discovering compressing stars in attributed graphs. Infor-
mation Sciences 611 (2022), 126–158.

[24] Jiahong Liu, Menglin Yang, Min Zhou, Shanshan Feng, and Philippe Fournier-

Viger. 2022. Enhancing hyperbolic graph embeddings via contrastive learning.

arXiv preprint arXiv:2201.08554 (2022).
[25] Jiahong Liu, Min Zhou, Philippe Fournier-Viger, Menglin Yang, Lujia Pan, and

Mourad Nouioua. 2022. Discovering representative attribute-stars via minimum

description length. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 68–80.

[26] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In Artificial intelligence and statistics. PMLR,

1273–1282.

FedKDD’24 , August 26, 2024, Barcelona, Spain Jiahong Liu et al.

[27] Valter Moretti. 2002. The interplay of the polar decomposition theorem and the

Lorentz group. arXiv preprint math-ph/0211047 (2002).

[28] Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and Guoying

Zhao. 2021. Hyperbolic deep neural networks: A survey. IEEE Transactions on
pattern analysis and machine intelligence 44, 12 (2021), 10023–10044.

[29] Romeil S Sandhu, Tryphon T Georgiou, and Allen R Tannenbaum. 2016. Ricci

curvature: An economic indicator for market fragility and systemic risk. Science
advances 2, 5 (2016), e1501495.

[30] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and

Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Mag. 29, 3
(2008), 93–106.

[31] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. CoRR
abs/1811.05868 (2018).

[32] Li Sun, Junda Ye, Jiawei Zhang, Yong Yang, Mingsheng Liu, Feiyang Wang, and

Philip S Yu. 2024. Contrastive sequential interaction network learning on co-

evolving riemannian spaces. International Journal of Machine Learning and
Cybernetics 15, 4 (2024), 1397–1413.

[33] Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, and Chengqi Zhang.

2023. Federated Learning on Non-IID Graphs via Structural Knowledge Sharing.

In AAAI. AAAI Press, 9953–9961.

[34] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. 2021.

FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommen-

dation. CoRR abs/2102.04925 (2021).

[35] Han Xie, Jing Ma, Li Xiong, and Carl Yang. 2021. Federated graph classification

over non-iid graphs. Advances in neural information processing systems 34 (2021),
18839–18852.

[36] Menglin Yang, Zhihao Li, Min Zhou, Jiahong Liu, and Irwin King. 2022. Hicf:

Hyperbolic informative collaborative filtering. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 2212–2221.

[37] Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and

Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic

space. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. 3770–3781.

[38] Menglin Yang, Min Zhou, Jiahong Liu, Defu Lian, and Irwin King. 2022. HRCF:

Enhancing collaborative filtering via hyperbolic geometric regularization. In

Proceedings of the ACM Web Conference 2022. 2462–2471.
[39] Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu-Ming Yiu. 2021. Subgraph

Federated Learning with Missing Neighbor Generation. In NeurIPS. 6671–6682.
[40] Yiding Zhang, XiaoWang, Chuan Shi, Nian Liu, and Guojie Song. 2021. Lorentzian

graph convolutional networks. In Proceedings of the Web Conference 2021. 1249–
1261.

Client-Specific Hyperbolic Federated Learning FedKDD’24 , August 26, 2024, Barcelona, Spain

APPENDIX
A Related Work

Personalized Federated Learning With statistical heterogeneity,

conventional FL frameworks like FedAvg [26] can hardly obtain

a single global model that generalizes well to every client. Moti-

vated by this, researchers have proposed personalized FL (PFL) to

train customized local models. Generally speaking, existing PFL

techniques can be categorized into the following three groups: (1)

techniques that personalize client models via local fine-tuning [11],

(2) techniques that personalize client models via customized model

aggregation [15], and (3) techniques that personalize client mod-

els via creating localized models/layers [3]. However, these PFL

methods typically operate in Euclidean spaces to encode data sam-

ples, which can hardly capture the scale-free property and implicit

hierarchical structure embedded within client data.

Personalized Federated Graph Learning When applied to graph

data, personalized federated graph learning (PFGL) can intuitively

exhibit the problem mentioned above. For example, [35] clusters

clients based on gradients to aggregate models with similar data

distributions. Another method [33] introduces additional personal-

ized models to capture client-specific knowledge of graph structure.

[5] calculates client-client similarities to apply personalized model

aggregation with local weight masking. All these methods learn

node representations in Euclidean spaces, which cannot model

the power-law degree distributions that widely exist in real-world

graph data [1, 19]. Additionally, the client clustering procedure and

additional model components introduce computational overhead

that may not be feasible in real-world scenarios with strict privacy

constraints or limited resources.

Hyperbolic Federated Learning Very few research works have

considered incorporating hyperbolic spaces into federated settings.

[2] leverages hyperbolic distances to distill knowledge from the

global model to the local model, to mitigate model inconsistency

caused by data heterogeneity. [22] applies hyperbolic prototype

learning to capture the hierarchical structure among data samples.

As the work most similar to our FlatLand, FedHGCN [10] is a sim-

ple combination of FedAvg and hyperbolic graph neural networks

along with a node selection process. Although these methods can

benefit from the hyperbolic space to capture the hierarchical struc-

ture in the data, they do not have the personalization capability

to adaptively model client data spaces with different curvatures.

This may lead to suboptimal results when there is severe data het-

erogeneity. Therefore, our goal is to design a novel FL framework

that can encode client data in hyperbolic spaces with adaptive

curvatures using personalization techniques.

B Preliminaries
B.1 Lorentz Manifold
Given a 𝑑-dimensional Lorentz manifold L𝑑

𝐾
with a constant neg-

ative curvature −1/𝐾 (𝐾 > 0), suppose a point / vector x ∈ L𝑑
𝐾
,

which has the form x =

[
𝑥𝑡
x𝑠

]
∈ R𝑑+1 , where the first dimension

𝑥𝑡 ∈ R is called time-like dimension and others x𝑠 ∈ R𝑑 are space-
like dimensions. It satisfies the following conditions: ⟨x, x⟩L = −𝐾

and 𝑥𝑡 > 0, where ⟨x, y⟩L = −𝑥𝑡𝑦𝑡 + x⊤𝑠 y𝑠 is the Lorentzian inner

product. Note that the larger the 𝐾 , the more the intrinsic structure

of the data deviates from the flatness of Euclidean space. The formal

definitions are shown as follows:

Definition 1 (Lorentz Manifold). A 𝑑-dimensional Lorentz
manifold L𝑑

𝐾
with a negative curvature of −1/𝐾 (𝐾 > 0) can be de-

fined as the Riemannianmanifold
(
H𝑑
𝐾
, 𝑔ℓ

)
, where𝑔ℓ = diag([−𝐾, 1, . . . , 1])

and H𝑑
𝐾
=

{
x ∈ R𝑑+1 : ⟨x, x⟩L = −𝐾, 𝑥0 > 0

}
.

Definition 2 (Lorentzian Inner Product). The inner product
⟨x, y⟩L for x, y ∈ R𝑑+1 can be defined as let ⟨x, y⟩L = −𝑥0𝑦0 +∑𝑑
𝑖=1 𝑥𝑖𝑦𝑖 .

Based on the constraint ⟨x, x⟩L = −𝐾 , it holds for any point

x = (𝑥0, x′) ∈ R𝑑+1 that x ∈ L𝑑𝐾 ⇔ 𝑥0 =
√︁
∥x′∥ + 𝐾 . The larger

the value of𝐾 , the greater the extent towhich the hyperbolic surface

deviates from the Euclidean plane.

Typically, inputs reside in Euclidean space and need to bemapped

into hyperbolic space. The way of projecting the data v𝐸 ∈ R𝑑 in

Euclidean to Lorentz space x ∈ L𝑑
𝐾
can be simplified as

3

x𝐾 = exp
𝐾
o

(
v𝐸

)
= exp

𝐾
o

([
0, v𝐸

])

=

©­­­­­­«
cosh

(
∥v𝐸 ∥2√
𝐾

)
︸ ︷︷ ︸

time-like dimension 𝑥𝑡

,
√
𝐾 sinh

(
∥v𝐸 ∥2√
𝐾

)
v𝐸

∥v𝐸 | |2︸ ︷︷ ︸
space-like dimensions x𝑠

ª®®®®®®¬
.

(4)

B.2 Fully Lorentz Neural Networks
Fully Lorentz networks [7] are proved to be ideal for PFL due to

their reduced need for space projections, enhancing computational

efficiency. These networks also incorporate Lorentz transforma-

tions (boosts and rotations), improving data heterogeneity handling

and parameter interpretability.

Given an input vector x ∈ L𝑛
𝐾
, and a linear layer matrix M̂ ∈

R(𝑚+1)×(𝑛+1) to optimize, ∀x ∈ L𝑛
𝐾
, M̂x ∈ L𝑛

𝐾
. Let M̂ =

[
v𝑇

W

]
, v ∈

R(𝑛+1) ,W ∈ R𝑚×(𝑛+1) . The fully Lorentz linear layer can be de-

noted as LT in a general form as follows:

LT(x; 𝑓 ; M̂) :=
(√︃
∥ 𝑓 (Wx, v)∥2 + 𝐾, 𝑓 (Wx, v)

)𝑇
. (5)

It involves a function 𝑓 that operates on vectors v ∈ R𝑛+1 and
W ∈ R𝑚×(𝑛+1) . Depending on the type of function, it can per-

form different operations. For instance, for dropout, the operation

function is 𝑓 (Wx, v) = W dropout (x).

B.3 Forman-Ricci Curvature
Curvature is a metric used in Riemannian geometry that expresses

how far a curved line deviates from a straight line, or how much a

surface deviates from planarity. In this context, knowledge of the

3
For clarity, all Lorentz space embeddings are denoted by ·𝐻 or with no superscript.

Specifically, if the curvature of the space is known as𝐾 , it is denoted by ·𝐾 . In contrast,

Euclidean space embeddings are denoted by ·𝐸 .

FedKDD’24 , August 26, 2024, Barcelona, Spain Jiahong Liu et al.

0 1 2 3 4 5 6 7 8 9
Client

0

5

10

15

20

25

30
Ri

cc
i (G

)
Cora

0 1 2 3 4 5 6 7 8 9
Client

0

100

200

300

400

500

600

Ri
cc

i (G
)

ogbn-arxiv

0 1 2 3 4 5 6 7 8 9
Client

0

25

50

75

100

125

150

175

Ri
cc

i (G
)

Photo

Figure 5: Averaged Forman-Ricci curvature across datasets (Cora, ogbn-arxiv, and Amazon-Photo). Higher bars indicate more
pronounced non-Euclidean characteristics in these datasets.

local and global geometrical features depends on an understanding

of sectional curvature and Ricci curvature, respectively.

Sectional Curvature. This type of curvature is determined

at any given point on a manifold by examining all possible two-

dimensional subspaces that intersect at that point. It provides a

more straightforward representation than the Riemann curvature

tensor. Recent studies [7] often treat sectional curvature uniformly

across the manifold, simplifying it to a singular constant value.

Ricci Curvature. Ricci curvature averages the sectional curva-
tures at a specific point. In graph theory, various discrete versions

of Ricci curvature have been developed, such as Ollivier-Ricci cur-

vature and Forman-Ricci curvature [12]. The Ricci curvature on

graphs is intended to assess how the local structure around a graph

edge deviates from that of a grid graph. Notably, the Ollivier ap-

proach provides a rougher estimate of Ricci curvature, whereas

the Forman method is more combinatorial and computationally

efficient.

For a weighted graph 𝐺 = (𝑉 , 𝐸,𝑤), the overall Forman-Ricci

curvature Ric(𝐺) can be calculated as follows:

Ric(𝐺) = 1

|𝐸 |
∑︁
(𝑖, 𝑗) ∈𝐸

Ric(𝑖, 𝑗),

where |𝐸 | represents the cardinality of the edge set 𝐸 (i.e., the

total number of edges), and Ric(𝑖, 𝑗) is the Forman-Ricci curvature

of the edge (𝑖, 𝑗), computed as

Ric(𝑖, 𝑗) =: 𝑤𝑒
©­«𝑤𝑖𝑤𝑒 +

𝑤 𝑗

𝑤𝑒
−
∑︁
𝑒𝑙∼𝑖

𝑤𝑖√
𝑤𝑒𝑤𝑒𝑙

−
∑︁
𝑒𝑙∼𝑗

𝑤 𝑗
√
𝑤𝑒𝑤𝑒𝑙

ª®¬
where 𝑤𝑒 denotes the weight of the edge 𝑒 , i.e, (𝑥,𝑦), 𝑤𝑖 and 𝑤 𝑗
are the weights of vertices 𝑖 and 𝑗 , respectively. The sums over

𝑒𝑙 ∼ 𝑘 run over all edges 𝑒𝑙 incident on the vertex 𝑘 excluding 𝑒 .

Specifically, the curvature with vertex and edge weights set to 1 is

Ric(𝑖, 𝑗) := 4 − 𝑑𝑖 − 𝑑 𝑗 + 3|#Δ|,
where 𝑑𝑖 is the degree of node 𝑖 and |#Δ| is the number of 3-cycles

(i.e. triangles) containing the adjacent nodes.

Therefore, the overall Forman-Ricci curvature of the graph is

the weighted average of the curvature values of all edges.

B.4 Lorentz Transformations
In special relativity, Lorentz transformations are a family of lin-

ear transformations that describe the relationship between two

coordinate frames in spacetime moving at a constant velocity rel-

ative to each other. They can be decomposed into a combination

of a Lorentz Boost and a Lorentz Rotation [27]. The Lorentz boost,

given a velocity 𝑣 ∈ R𝑛 with ∥𝑣 ∥ < 1, is represented by the ma-

trix 𝐵, which encodes the relative motion with constant velocity

without rotation of the spatial axes. The Lorentz rotation matrix

𝑅 represents the rotation of spatial coordinates and is a special

orthogonal matrix, i.e., 𝑅⊤𝑅 = 𝐼 and det(𝑅) = 1.

Definition 3 (Lorentz Boost). A Lorentz boost represents a
change in velocity between two coordinate frames without rotation
of the spatial axes. Given a velocity v ∈ R𝑛 (relative to the speed of
light) with ∥v∥ < 1, and the Lorentz factor 𝛾 = 1√

1−∥v∥2
, the Lorentz

boost matrix is defined as:

B =

[
𝛾 −𝛾v⊤

−𝛾v I + 𝛾2

1+𝛾 vv
⊤

]
(6)

where I is the 𝑛 × 𝑛 identity matrix.

A Lorentz boost describes the geometric transformation between

two inertial reference frames moving at a constant relative velocity,

which involves a hyperbolic rotation in the space-time plane.

Definition 4 (Lorentz Rotation). A Lorentz rotation describes
a rotation of the spatial coordinates. The Lorentz rotation matrix is
defined as:

R =

[
1 0⊤

0 R̃

]
(7)

where R̃ ∈ SO(𝑛) is a special orthogonal matrix satisfying R̃⊤R̃ = I
and det(R̃) = 1.

A Lorentz rotation represents a geometric rotation or change of

orientation in the spatial dimensions of the space-time manifold,

while leaving the time dimension unchanged.

Both the Lorentz boost and the Lorentz rotation are linear trans-

formations defined directly in the Lorentz model. For any point

x ∈ L𝑛
𝐾
, we have Bx ∈ L𝑛

𝐾
and Rx ∈ L𝑛

𝐾
.

Client-Specific Hyperbolic Federated Learning FedKDD’24 , August 26, 2024, Barcelona, Spain

C Method Supplementary
C.1 Statistics of Forman-Ricci Curvature in

Other Datasets
We have calculated the Forman-Ricci curvature (Appendix B.3) for

each client in the Cora, Photo, and ogbn-arxiv datasets, which have

10 clients each. The statistics for CiteSeer dataset are shown in

Figure 2 Initialization.

C.2 The FlatLand Algorithm
This section introduces the pseudocode of our FlatLand, as shown
in Algorithm 1.

Algorithm 1: FlatLand

Input :Personalized parameters 𝜽 (0)𝑐 , 𝐾
(0)
𝑐 and dataset D𝑐 , for

each client 𝑐 ∈ C
Shared parameters 𝜽

(0)
𝑠

Learning rate 𝜂

Output :Client model parameters 𝚯𝑐 =

(
𝐾𝑐 ;𝜽𝑐 ;𝜽𝑠

)
, for each

client 𝑐 ∈ C
Shared parameters 𝜽𝑠

1 Initialize model parameters: 𝜽
(0)
𝑠 and 𝚯

(0)
𝑐 =

(
𝐾
(0)
𝑐 ;𝜽 (0)𝑐 ;𝜽

(0)
𝑠

)
, for

𝑐 ∈ C;
2 for each communication round 𝑟 do
3 for each client 𝑐 in𝐶 do

4 x = exp
𝐾
(𝑟)
𝑐

o (x) , for x ∈ D𝑐 ;
5 Client 𝑐 receives global model parameters 𝜽

(𝑟)
𝑠 ;

6 𝚯
(𝑟)
𝑐 =

(
𝐾
(𝑟)
𝑐 ;𝜽 (𝑟)𝑐 ;𝜽

(𝑟)
𝑠

)
;

7 for local epochs 𝑒 do
8 Compute gradients

∇L = ∇
𝚯
(𝑟)

∑
(x,y) ∈D𝑐 L𝑐 (𝑓 (x;𝚯

(𝑟)), 𝑦) ;
9 end

10 Update local model 𝚯
(𝑟+1)
𝑐 ← 𝚯

(𝑟)
𝑐 − 𝜂∇L;

11 Send 𝜽𝑠 ∈ 𝚯(𝑟+1)𝑐 to the server;

12 end
13 𝑁 =

∑
𝑐∈C |D𝑐 |;

14 Server aggregates models 𝜽
(𝑟+1)
𝑠 ← |D𝑐 |

𝑁

∑
𝑐∈C 𝜽

(𝑟+1)
𝑠𝑐 ;

15 end

C.3 Derivation of Parameters Disentanglement
The reformulated Lorentz neural network in layer 𝑙 is shown as

x(𝑙+1) = LT(x(𝑙) ; M̂(𝑙))

=

©­­­­­«
√︁
∥𝑚𝑥𝑡 +Mx𝑠 ∥2 + 𝐾︸ ︷︷ ︸

time-like dimension 𝑥
(𝑙+1)
𝑡

, 𝑚𝑥𝑡 +Mx𝑠︸ ︷︷ ︸
space-like dimensions x(𝑙+1)𝑠

ª®®®®®¬

𝑇

.
(8)

The loss L𝑐 (𝑓 (x;𝜽𝑐 , 𝜽𝑠), 𝑦) of client 𝑐 , the partial derivatives can
be calculated as follows:

Time-like Dimension 𝑥 (𝑙+1)𝑡 . First, we compute the partial derivative

of 𝑥
(𝑙+1)
𝑡 with respect to the matrixM(𝑙) and𝑚 (𝑙) . Using the chain

rule:

𝜕𝑥
(𝑙+1)
𝑡

𝜕M(𝑙)
=

𝜕

𝜕M

√︃
∥𝑚 (𝑙)𝑥 (𝑙)𝑡 +M(𝑙)x

(𝑙)
𝑠 ∥2 + 𝐾 ;

𝜕𝑥
(𝑙+1)
𝑡

𝜕𝑚 (𝑙)
=

𝜕

𝜕𝑚

√︃
∥𝑚 (𝑙)𝑥 (𝑙)𝑡 +M(𝑙)x

(𝑙)
𝑠 ∥2 + 𝐾.

Applying the chain rule, we get:

𝜕𝑥
(𝑙+1)
𝑡

𝜕M(𝑙)
=

1

2

(
∥𝑚 (𝑙)𝑥 (𝑙)𝑡 +M

(𝑙)x(𝑙)𝑠 ∥2 + 𝐾
)− 1

2 · 2(𝑚 (𝑙)𝑥 (𝑙)𝑡 +M
(𝑙)x(𝑙)𝑠)

· 𝜕(M
(𝑙)x(𝑙)𝑠)
𝜕M(𝑙)

=
𝑚 (𝑙)𝑥 (𝑙)𝑡 +M(𝑙)x

(𝑙)
𝑠√︃

∥𝑚 (𝑙)𝑥 (𝑙)𝑡 +M(𝑙)x
(𝑙)
𝑠 ∥2 + 𝐾

· 𝜕(M
(𝑙)x(𝑙)𝑠)
𝜕M(𝑙)

(9)

𝜕𝑥
(𝑙+1)
𝑡

𝜕𝑚 (𝑙)
=

1

2

(
∥𝑚 (𝑙)𝑥 (𝑙)𝑡 +M

(𝑙)x(𝑙)𝑠 ∥2 + 𝐾
)− 1

2 · 2(𝑚 (𝑙)𝑥 (𝑙)𝑡 +M
(𝑙)x(𝑙)𝑠)

·
𝜕(𝑚 (𝑙)x(𝑙)𝑡)
𝜕𝑚 (𝑙)

=
(𝑚 (𝑙)𝑥 (𝑙)𝑡 +M(𝑙)x

(𝑙)
𝑠)√︃

∥𝑚 (𝑙)𝑥 (𝑙)𝑡 +M(𝑙)x
(𝑙)
𝑠 ∥2 + 𝐾

· 𝑥 (𝑙)𝑡

(10)

Space-like Dimension x(𝑙+1)𝑠 . Assume that the update rule for the

space-like vector x(𝑙+1)𝑠 is given by the following formula:

x(𝑙+1)𝑠 =𝑚 (𝑙)𝑥 (𝑙)𝑡 +M
(𝑙)x(𝑙)𝑠

Similarly, we have

𝜕x(𝑙+1)𝑠

𝜕M(𝑙)
=

𝜕

(
M(𝑙)x(𝑙)𝑠

)
𝜕M(𝑙)

,
𝜕x(𝑙+1)𝑠

𝜕𝑚 (𝑙)
=

𝜕

(
𝑚 (𝑙)x(𝑙)𝑡

)
𝜕𝑚 (𝑙)

. (11)

For better illustration, here, we let x(𝑙) ∈ L𝑛
𝐾
, x(𝑙+1) ∈ L𝑛

𝐾
, and

M̂(𝑙) ∈ R(𝑛+1)×(𝑛+1) . The introduced "Flatland" R𝑛 is defined
as a manifold spanning dimensions 1 to 𝑛. This construct
serves as a metaphorical platform for the exchange and in-
tegration of common information, and 𝑥𝑡 serves as the het-
erogeneous information. Consider the same transformation of a

space-like vector x(𝑙)𝑠 to x(𝑙+1)𝑠 in different clients, formulated as

x(𝑙)𝑠 →
(
M(𝑙)x(𝑙)𝑠 +𝑚 (𝑙)x

(𝑙)
𝑡

)
, it is easy to recognize that the gradi-

ent of the parameter𝑚 (𝑙) depends solely on 𝑥𝑡 and𝐾 (Equation (10)

and Equation (11)). Therefore, the update of parameter𝑚 (𝑙) is only
related to heterogeneous information and transmitted to the server

side for aggregation may lead to performance degradation.

FedKDD’24 , August 26, 2024, Barcelona, Spain Jiahong Liu et al.

C.4 Analysis
In this section, we provide further analysis to demonstrate the

effectiveness and interpretability of our method as described in

Section 3.2. Specifically, we first verify the correctness that fed-
erated learning does not cause the data in each client to deviate

from its original space during the process of parameter communi-

cation (server updates). Furthermore, we expound on the rationale

behind our proposed method from the perspectives of debiasing

and Lorentz transformation.

Proposition 1. ∀x ∈ L𝑛
𝐾
,∀M ∈ R(𝑚+1)×(𝑛+1) , we have LT(x;M) ∈

L𝑚
𝐾
.

Proof. ∀x ∈ L𝑛
𝐾
, we have ⟨LT(x;M), LT(x;M)⟩L = −𝐾 . There-

fore, LT(x;M) ∈ L𝑚
𝐾
. □

Corollary 1. Let M̂ =

[
𝑣 v𝑇

𝑚 M

]
, where M̂ ∈ R(𝑚+1)×(𝑛+1) and

Φ
(
M̂,N

)
=

[
𝑣 v𝑇

𝑚 N

]
.∀x ∈ L𝑛

𝐾
,∀M̂ ∈ R(𝑚+1)×(𝑛+1) , ∀N ∈ R𝑛×𝑛 ,

we have LT
(
x;Φ

(
M̂,N

))
∈ L𝑚

𝐾
.

Proof. Let x =

[
𝑥𝑡
x𝑠

]
∈ L𝑛

𝐾
, where 𝑥𝑡 ∈ R, x𝑠 ∈ R𝑛 . According

to Equation (2), we have:

LT

(
x;Φ(M̂,N)

)
=

[√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾
𝑚𝑥𝑡 + Nx𝑠

]
We need to prove that LT(x;Φ(M̂,N)) ∈ L𝑚

𝐾
, i.e., to prove that

it satisfies the definition condition of the Lorentz manifold ⟨·, ·⟩L =

−𝐾 :〈
LT

(
x;Φ(M̂,N)

)
, LT

(
x;Φ(M̂,N)

)〉
L

=

〈[√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾
𝑚𝑥𝑡 + Nx𝑠

]
,

[√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾
𝑚𝑥𝑡 + Nx𝑠

]〉
L

(Definition 2)

= −
(√︁
∥𝑚𝑥𝑡 + Nx𝑠 ∥2 + 𝐾

)
2

+ ∥𝑚𝑥𝑡 + Nx𝑠 ∥2

= − 𝐾

Therefore, we have proved that LT

(
x;Φ(M̂,N)

)
∈ L𝑚

𝐾
. □

This corollary implies that even after the aggregation of shared

parameters in the server, the transformation of any client vector

x ∈ L𝑛
𝐾
by this updated matrix will still yield results in the Lorentz

space L𝑚
𝐾

with the same curvature, indicating that the client’s

representation remains unaffected.

Perspectives on Debiasing.

Remark 1 (Feature Debiasing). During the local and server
updates in FlatLand, the debiasing process is inherently integrated
via the gradient of shared parametersM.

According to the derivations in Appendix C.3, it can be observed

that the gradient of the shared parametersM is highly correlated

with x𝑠 , where x𝑠 is derived from the raw input x𝐸 using the expo-

nential map in Equation (4). Therefore, given the same input x𝐸 for

different clients tailored to different Lorentz manifolds, the gradient

ofM for client 𝑐 is inherently weighted by
√
𝐾𝑐 sinh

(
∥x𝐸 ∥2√
𝐾𝑐

)
1

∥x𝐸 ∥2
,

where 𝐾𝑐 can be intuitively interpreted as the parameter that re-

flects the overall distribution of the dataset specific to client 𝑐 , which

differs from other clients. This can play a role in debiasing during

the parameter aggregation process compared to Euclidean methods.

Perspectives on Lorentz Transformations. Lorentz Boosts and
Lorentz Rotations (Appendix B.4) are interpreted as being cov-

ered by LT

(
x; M̂

)
when the dimension is unchanged [7]. We can

easily prove that the Lorentz transformations are still covered by

LT

(
·;Φ

(
M̂,N

))
, where M̂ ∈ R(𝑛+1)×(𝑛+1) , N ∈ R𝑛×𝑛 .

For any data point x ∈ D𝑐 , transformations LT

(
x; M̂

)
and

LT

(
x;Φ

(
M̂,N

))
map x to a new spacetime position, maintaining

the spacetime interval invariant (Corollary 1), thus preserving the

physical and geometric relationships within the same client, in

line with special relativity. However, clients with varying space-

time curvatures maintain distinct spacetime intervals, reflecting
differing underlying data distributions.

Moreover, according to the definition of Lorentz Rotation in

Equation (7), the server updates only theM, leaving the time-like

dimension unchanged. This operation is a relaxation of the Lorentz

rotation, consistent with our "Flatland" assumption that aggregates

only spatial dimension information.

D Experimental Supplementary
D.1 Datasets
For federated node classification, we adopt four benchmark datasets:

Cora, CiteSeer, ogbn-arxiv, and Photo [14, 30, 31]. Cora, CiteSeer,

and ogbn-arxiv are citation graphs. Photo is a product graph. Each

graph dataset is divided into a certain number of disjoint subgraphs

using the METIS graph partitioning algorithm [16], where each sub-

graph belongs to an FL client. Statistics of datasets are summarized

in Table 2.

D.2 Implementation Details
Weemploy 2-layer GCN [18] for Euclideanmodels, 2-layer LGCN [7]

for FlatLand, and HGCN with node selection for FedHGCN [10].

We conduct 100 rounds for Cora/CiteSeer and 200 / 300 rounds

for larger datasets like Photo/ogbn-arxiv, with 1-3 local epochs,

using 128-dim hidden layers. The learning rate is chosen from

{0.01, 0.001, 0.002}, and weight decay uses from {1𝑒 − 5, 1𝑒 − 4}. We

optimize with Adam and calculate the average node-level / graph-

level accuracy across clients. All experiments are implemented in

Python3.10, PyTorch, and run on an RTX A6000 GPU, 40G storage.

Each client is allocated a worker with one round of around 1 second

for one epoch in the node classification task.

Client-Specific Hyperbolic Federated Learning FedKDD’24 , August 26, 2024, Barcelona, Spain

Table 2: Statistics of node classification datasets. We report the (average) number of nodes, edges, classes, clustering coefficient,
and heterogeneity for different numbers of clients.

Dataset Cora Citeseer ogbn-arxiv Amazon-Photo

Clients 1 10 20 1 10 20 1 10 20 1 10 20

Classes 7 6 40 8

Avg. # Nodes 2,485 249 124 2,120 212 106 169,343 16,934 8,467 7,487 749 374

Avg. # Edges 10,138 891 422 7,358 675 326 2,315,598 182,226 86,755 238,086 19,322 8,547

Avg. Clustering Coefficient 0.238 0.259 0.263 0.170 0.178 0.180 0.226 0.259 0.269 0.410 0.457 0.477

Heterogeneity N/A 0.606 0.665 N/A 0.541 0.568 N/A 0.615 0.637 N/A 0.681 0.751

	Abstract
	1 Introduction
	2 Motivation and Insights
	3 The FlatLand Framework
	3.1 Curvature Estimation
	3.2 Parameter Decoupling Strategy
	3.3 Local Training Procedure

	4 Experiments
	4.1 Experimental Setup
	4.2 Main Experimental Results (RQ1)
	4.3 Varying Embedding Dimensions (RQ2)
	4.4 Ablation Study (RQ3)

	5 Conclusion
	References
	A Related Work
	B Preliminaries
	B.1 Lorentz Manifold
	B.2 Fully Lorentz Neural Networks
	B.3 Forman-Ricci Curvature
	B.4 Lorentz Transformations

	C Method Supplementary
	C.1 Statistics of Forman-Ricci Curvature in Other Datasets
	C.2 The FlatLand Algorithm
	C.3 Derivation of Parameters Disentanglement
	C.4 Analysis

	D Experimental Supplementary
	D.1 Datasets
	D.2 Implementation Details

