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ABSTRACT

Functional effect prediction of mutations, especially for properties like catalytic
activity, holds greater significance for clinicians and protein engineers than tra-
ditional pathogenicity predictions. Recent approaches leveraging static ESM1
embeddings or multimodal features (e.g. embeddings, structures, and evolution-
ary data) either (1) fall short in accuracy or (2) involve complex preprocessing
pipelines. Moreover, functional effect prediction suffers from (3) a lack of stan-
dardized datasets and metrics for robust benchmarking. We address these chal-
lenges by systematically optimizing ESM2-based functional effect prediction:
Through extensive ablation studies, we demonstrate that fine-tuning significantly
outperforms static embeddings, scaling laws for model size are non-transferable
and LoRA matches full fine-tuning performance, deviating from trends observed
in natural language processing. Our framework, ESM-Effect, fine-tunes 35M
ESM2 layers with an inductive bias regression head achieving state-of-the-art per-
formance. It slightly surpasses multimodal competitor PreMode indicating redun-
dancy in structural and evolutionary features. We further propose a benchmarking
framework featuring robst test datasets and strategies, and the relative Bin-Mean
Error (rBME), as a metric designed to emphasize prediction accuracy in chal-
lenging, non-clustered, and rare gain-of-function regions. rBME better reflects
model performance compared to commonly used Spearman’s rho, as evidenced
by improved plot-based analyses. As ESM-Effect exhibits mixed transferability
to different unseen mutational regions, we identify multiple areas for improvement
such as finer-grained pretraining strategies.

1 INTRODUCTION

Accurate prediction of mutation effects remains a central challenge in computational biology, as mu-
tations exhibit heterogeneous impacts on health and disease. This challenge is further exacerbated
by the rapid increase in mutations identified in routine patient sequencing, driven by the decreasing
cost of sequencing technologies (Pasmans et al., 2021). While Deep-Mutational Scans (DMS, i.e.
measuring a specific property of all possible mutations in a given protein) offer clinicians precise
functional insights, they are laborious, expensive and rare, often failing to cover the full protein of
interest (Karczewski et al., 2020). These limitations underscore the need for accurate computational
methods to efficiently predict the functional effect of mutations.

With the advent of artificial intelligence, advanced deep learning models (Krizhevsky et al., 2017)
join the traditionally machine-learning-dominated landscape of mutation prediction (Ioannidis et al.,
2016; Adzhubei et al., 2010). The current landscape is characterized by two axes (cf. Figure 1):

• (a) whether the mutation effect is predicted as a unidirectional pathogenicity score or a
bidirectional functional effect (i.e., increasing or decreasing a specific property or activity)
and

• (b) whether the model performs classification or regression.

Most existing models focus on pathogenicity prediction (i.e. how physiological or wildtype-similar
a mutation is) and use regression-based approaches. These models adopt a generalist strategy, scor-
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Regression: pathogenicity score (0-1)
Regression: DMS measurement

Pathogenicity/Fitness

Classification: 
Gain-of-Function vs Loss-of-Function

Functional Effect

Protein-specific DMS Fine-Tuning:

ESM1b (Brandes et al. Nat. Gen.)  
-no fine-tuning, just likelihood ratio of 
mutation according to MLM pretraining 
-outperforms EVE

AlphaMissense (Chen et al. 
Science) 

-AlphaFold & MLM pre-training

-supervised fine-tuning on binary 
labels according to variant 
frequency

-outperforms EVE & ESM1b

EVE (Frazer et al. Nature) 
-unsupervised training on MSAs

-outperforms previous SOTA 
(PolyPhen, REVEL etc.)

CPT-1 (Jagota et al. Genome Biol.)  
-EVE, ESM-1v, MSA, AF2 etc. features with linear 
regression model

-pretrained on 5 DMS -> transfer to other DMS in inference

-outperforms ESM-1v, EVE and partly ESM-NLR (cf. table)

VariPred (Lin et al. Scientific 
Reports) 


-outperforms EVE & ESM-1v 
on ClinVar

-PLM wildtype & mutant 
mutation position 
embeddings -> shallow DNN 
-> binary classification

LoGoFunc (Stein et al. Genom. Med.) 
-classifier on GoF, LoF samples 
collated from databases with AF2, 
physicochemical, biological features

-train data with unrealistic 
distribution: LoF and GoF are 
overrepresented, neutral lacking

PreMode (Zhong et al.) 
-fine-tuning: protein-specific with DMS

-outperforms augmented EVE and 
ESM1b 

PreMode (Zhong et al.) 
-supervised pathogenicity 
prediction pretraining, GAT model 
with AF2 structure, MSA & PLM 
embeddings as features

-slightly outperforms 
AlphaMissense, EVE etc. on 
ClinVar

ESM-1v-NLR (Lafita et al. ICLR) 
-fine-tuning on 25 Mutation Scans with param-free 
normalization head

-overall moderate performance gain compared to ESM-1v 
base

Other approaches: 
-static ESM-1b embeddings + NN

-FT ESM2 for residue annotations

Classification: binary labels 
(pathogenic vs benign)

outperformed by

pan-protein prediction

outperformed 
by

New SOTA: Our ESM-Effect 
Framework 

-FT ESM2 model + custom regression 
head with inductive biases

-outperforms multi-modal PreMode

-SOTA for Protein-specific DMS Fine-
Tuning

Generalist vs. Specialist 
Models Tradeoff

Generalists 
-predictions not limited to one 
protein -> pan-protein use

-predictions are less accurate

-Application to high-
throughput assessment of 
variants BUT limited clinical 
usefulness

Specialists 
-predictions limited to training 
protein (perhaps similar 
proteins)

-predictions have higher 
accuracy/correlation & reflect 
DMS measurement range

-Application to mutations in 
training protein, but outside 
of mutations covered by DMS 
-> somewhat clinically useful

CPT-
1

NLR
-

ESM

ESM-
1v EVE

Alpha
Misse
nse

BRCA1 0.56 0.44 0.43 0.52 0.56

RASH 0.45 0.49 0.4 0.48 0.46

MSH2 0.42 0.42 0.4 0.39 0.42

AI struggles to capture 
the full complexity of 

biological mechanisms

Abbreviations 
-AF2 AlphaFold2

-MSA Multiple-Sequence-Alignment

-PLM Protein Language model

-DNN Dense neural network

-SOTA state-of-the-art

-FT fine-tuned

-GoF, Lof Gain/Loss-of-Function

-DMS Deep Mutational Scan

-MLM Masked Language Modeling

Figure 1: Survey of existing methods illustrating the trade-off between broadly applicable but less
precise models and highly precise models limited to their training protein. Notably, the latter can
produce high-quality predictions only for mutations within the same protein as the training DMS.
Despite this limitation, such models remain valuable, as DMS datasets typically focus on specific
protein domains and often contain incomplete data due to failed mutagenesis experiments.

ing all possible variants across the (human) proteome . This enables high-throughput screening
and facilitates proteome-wide mapping (Cheng et al., 2023). However, pathogenicity predictors
— whether trained on multiple DMS datasets, ClinVar annotations or physiological sequences —
struggle to accurately predict the bidirectional functional effects of specific mutations, such as rare
gain-of-function enzyme mutations. This limitation arises from the biological complexity and speci-
ficity required for such tasks, which cannot be reliably captured by large-scale pretraining and the
current architectures (Livesey & Marsh, 2023). However, clinical decision-making often depends on
understanding the precise functional effect of mutations (i.e. increase/decrease of a specific protein
property) (Iyer et al., 2023).

In this paper, we address these limitations by

• (1) first evaluating the shortcomings and potential of existing methods for both
pathogencity and functional effect prediction and

• (2) then developing the optimal framework for ESM2-based functional effect prediction
through detailed ablations of various fine-tuning strategies and prediction head architec-
tures. Based on these insights, we propose the ESM-Effect framework, which achieves
state-of-the-art (SOTA) performance on functional effect predictions outperforming multi-
modal competitors.

• (3) Finally, we analyze the strengths and weaknesses of ESM-Effect’s capabilities and pro-
pose robust benchmarks to facilitate further progress in the field.
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2 BACKGROUND

Mutation Effect Prediction as a question of pathogenicity Mutations affect proteins in diverse
ways, making precise measurement of their impact challenging. To simplify, the concept of ”mu-
tation pathogenicity” categorizes mutations as either ”pathogenic” (disrupting physiological protein
function) or ”benign.” Pathogenic mutations typically reduce organism fitness and are rare in natural
sequences, such as those in UniRef (Suzek et al., 2007), representing the physiological sequence
space. Models can learn pathogenicity from large datasets of natural sequences, scoring the likeli-
hood of mutations based on their presence in (physiological) evolutionary or MSA data (Meier et al.,
2021). However, this broad definition oversimplifies the diverse effects mutations can have. For ex-
ample, pathogenic mutations in an ion channel might either increase or decrease affinity (Kullmann
& Hanna, 2002), whereas pathogenic mutations in collagen disrupt its fibrillary structure (Dalgleish,
1997).

Mutation Effect Prediction as a question of functional effects In contrast, functional effect pre-
diction considers a wider range of impacts, such as catalytic activity, binding and stability, which
are more directly applicable to precision medicine and protein engineering. However, achieving
high accuracy requires both protein-specific supervised data (Zhong et al., 2024) and appropriate
architectures (incl. training strategies).

3 RELATED WORK

3.1 PROTEIN MODELING AND PATHOGENICITY PREDICTION

Methods like AlphaFold2 (AF2) predict protein structures from MSAs, capturing evolutionary in-
formation about residue interactions (Jumper et al., 2021) and Transformer-based Protein Language
Models (PLMs), like ESM-1b and ESM2, learn protein semantics by predicting masked amino acids
from evolutionary sequences (Rives et al., 2021; Lin et al., 2023; Rao et al., 2020). As these mod-
els learn sequence and structure physiology they be directly applied to predict the lack thereof in
form of the likelihood ratio of a mutant and wildtype residue (e.g., AlphaMissense, EVE building
on MSAs (Cheng et al., 2023; Frazer et al., 2021) and pretrained PLMs like ESM-1v (Meier et al.,
2021; Brandes et al., 2023)). Some methods refine predictions using DMSs, which offer sufficient
signal for pathogenicity despite heterogeneous properties across different DMSs. Examples include
fine-tuning ESM-1v on 25 DMSs with a Normalized Log-odds Ratio (NLR) head (Lafita et al.,
2024) and combining EVE, ESM-1v, and AF2 features in a regression model (Jagota et al., 2023).
However, these methods struggle with multi-directional functional effects, particularly for Gain-of-
Function mutations in DMSs like SNCA (Livesey & Marsh, 2023). In summary, while pathogenicity
models effectively distinguish benign and pathogenic mutations, they fall short in predicting multi-
dimensional functional effects as demonstrated in the Appendix 7.1.

3.2 MODELS FOR FUNCTIONAL EFFECT PREDICTION

To address functional effect prediction, existing models extend pathogenicity predictors: Derbel
et al. (2023) and Marquet et al. (2022) use static ESM embeddings combined with a neural net-
work head to predict functional effects from DMSs. Saadat & Fellay (2024) fine-tune ESM2 for
residue-level protein sequence annotation (e.g., identifying functional features like active sites) and
then classify mutations based on the probability difference of annotated features between reference
and mutant sequences, comparing this to ClinVar labels rather than DMSs. LoGoFunc, another
method, performs three-class classification using a diverse feature set to make genome-wide predic-
tions (Stein et al., 2023).

Studying the extent of the expected benefit of fine-tuning PLMs, Schmirler et al. (2024) showed that
ESM2 fine-tuned with Low-Rank-Adaptation and a neural network regressor on top of the mean
mutant embeddings outperforms the simple, Non-PLM baselines Homology-Based Inference and
the statistical model Reference Free Analysis (RFA) on three DMS (AAV, GFP and GB1).

The latest and most complex model for functional effect prediction is PreMode (Zhong et al., 2024;
Zhong & Shen, 2022), which is pretrained on 4.7M pathogenicity-labeled mutations and then fine-
tuned on a specific DMS. PreMode uses the static wildtype embeddings (650M ESM2 model),
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MSAs and additional mutation-specific features as node vectors and the AF2-predicted structure as
a distance matrix for a star graph attention model. PreMode outperforms a Random Forest model,
pretrained 650M ESM2 embeddings with a single layer perceptron and other state-of-the-art meth-
ods given the same input features as PreMode (e.g. EVE). Besides, the authors’ preliminary analyses
showed that LoF, GoF and neutral mutations have distinct but overlapping (i.e. no unique intervals
exclusive to any one class) distributions for pLDDT scores, conservation levels, and solvent acces-
sibility.

Finally, pathogenicity predictors like CPT-1 and ESM-1v NLR can also be used for functional effect
prediction, but their accuracy is limited due to their generalist nature.

3.3 DATABASES AND EXISTING BENCHMARKS FOR MUTATION EFFECT PREDICTION

To advance and compare pathogenicity predictors, large databases of annotated mutations, Deep
Mutational Scans (DMS) and clinical annotations have been developed as well as numerous exper-
imental efforts exploring and testing mutations in the wet lab (Backman et al., 2021; Dunham &
Beltrao, 2021; Esposito et al., 2019; Exome Aggregation Consortium et al., 2016; Gao et al., 2023;
The UniProt Consortium et al., 2023). Notable resources include ProteinGym, which serves both as
a repository for Deep Mutational Scans (DMS) and as a benchmarking platform for evaluating the
latest pathogenicity predictors (Notin et al., 2023). Similarly, MaveDB provides a curated repository
of DMSs, while ClinVar includes clinical annotations with benign and pathogenic labels (Landrum
et al., 2018; Rubin et al., 2021).

Livesey & Marsh (2023) used 26 DMS to benchmark 55 pathogenicity predictors reporting
respectable performance (measured by Spearman correlation and AUROC) in distinguishing
pathogenic variants. However, their findings underscore substantial variability across predictors,
with particularly poor performance on DMSs that included gain-of-function (GoF) mutations.

4 ESM-EFFECT

4.1 PROBLEM STATEMENT

As existing methods either do not fine-tune ESM2, only use static embeddings or different re-
gression heads, we begin the development of ESM-Effect by detailed ablations of combinations of
different training regimen and regression heads. Thereby, we hope to distill the most performant
characteristics of existing approaches into ESM-Effect which we then compare to the multi-modal
PreMode model which uses embeddings, AF2 structure and MSAs to assess the benefit of multi-
modality.

4.2 ESM-EFFECT: DEVELOPING THE OPTIMAL PREDICTION ARCHITECTURE

ESM2 Model Size Scaling laws in natural language processing (NLP) suggest that larger models
are more compute-efficient for modest datasets (Kaplan et al., 2020). These principles have also
been shown to hold in biological applications, with increasing ESM2 model size leading to lower
language modeling loss and better performance structure prediction (Lin et al., 2023). To investigate
whether these trends extend to the downstream task of functional effect prediction, we evaluated
ESM2 models of varying sizes on AAV, GB1, and GFP DMS datasets (models trained by Schmirler
et al. (2024)) along with the validation perplexity reported by Lin et al. (2023) (cf. Figure 2),
finding that scaling laws do not hold in this context. No obvious performance improvements emerge
with larger models across all DMS unformly, and we observe comparable results across model
sizes. Consequently, we select the 35M ESM2 model due to its favorable balance of computational
efficiency and performance.

The Value of Fine-Tuned Embeddings Previous approaches to functional effect prediction have
relied on static embeddings from fully frozen ESM models combined with various prediction heads
(Marquet et al., 2022; Derbel et al., 2023; Zhong et al., 2024). To evaluate whether this limita-
tion constrains performance, we compare static 35M ESM2 embeddings to fine-tuned 35M ESM2
embeddings (with the last two layers unfrozen) across four DMS datasets. Both approaches use
a prediction head that inputs the mean of the mutant embeddings into a Single-Layer Perceptron
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Figure 2: 1 - Kaplan et al. (2020) scaling laws do not extend to downstream functional effect fine-
tuning performance but are consistent with pretraining metrics (e.g. validation perplexity, CASP14
performance). Minimal performance difference between fine-tuning regimens (LoRA vs. full Fine-
Tuning). 2 - Significant benefit from fine-tuned embeddings. * indicates that only three of five
available seeds were used due to resource limitations. 3 - Minimal performance differences be-
tween Fine-Tuning strategies. Unfreezing the last two layers was selected for ESM-Effect due to
interpretability advantages etc. Information on training characteristics for the PTEN DMS is in the
Appendix 7.7. 4 - Analysis of the optimal regression head. Note that mutation position based heads
require maximal 10 epochs for optimal performance while mean based heads take longer and suffer
from instable training for PTEN DMS (cf. Appendix 7.7)

(SLP) for a fair comparison. As shown in Figure 2, fine-tuned embeddings consistently outperform
static embeddings, despite dataset-specific variations. These results point out a critical shortcoming
of existing methods and establish fine-tuning as a key design choice for ESM-Effect.

LoRA vs Full vs Partly Fine-Tuning Our previous analysis of the data from Schmirler et al. (2024)
also demonstrated that LoRA and full fine-tuning achieve comparable performance. To indepen-
dently validate this and extend the analysis, we evaluated LoRA, full fine-tuning and partial fine-
tuning (unfreezing the last one or two layers) on three diverse DMS datasets. As shown in Fig-
ure 2, all three strategies performed equivalently. This result diverges from findings in NLP tasks,
where LoRA has been shown to underperform full fine-tuning in domains like programming and
mathematics (Biderman et al., 2024). Accordingly, the functional effect prediction task exhibits
unique characteristics, making LoRA and layer-freezing viable alternatives for parameter-efficient
fine-tuning within the ESM-Effect framework. For further development, we selected the strategy of
unfreezing the last two layers for ESM-Effect due to its reduced need for extensive hyperparameter
tuning and improved interpretability (cf. Appendix refsec:ablation).

Regression head With the optimal model size and fine-tuning strategy determined, we subsequently
evaluated the optimal regression head for the ESM-Effect framework. Previous methods have pri-
marily used either the mean embedding of the mutant sequence or combined static embeddings of
the mutant and wildtype sequences at the mutation position as input to a feed-forward neural net-
work. Building on fine-tuning the 35M ESM2 model (with 10 of 12 layers frozen), we evaluated
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Figure 3: Architecture of full ESM-Effect. Embedding parts and data used for optimized ESM-
Effect is highlighted in light green.

four regression head designs across four DMS datasets: (1) The mean embedding of the mutant
sequence, (2) a linear combination of the mean embeddings of mutant and wildtype sequences, (3)
the embedding at the mutation position of the mutant sequence and (4) a linear combination of the
mutation position embeddings of mutant and wildtype sequences.

This analysis allowed us to assess (1) the relative importance of the mutation position and (2) the spe-
cific wildtype residue as references to the physiological sequence space. As shown in Figure 2, while
all four regression heads performed similarly for SNCA and NUDT15 DMS datasets, the mutation
position-based regression head significantly outperformed mean-embedding-based approaches for
the PTEN stability and PTEN enzyme activity DMS datasets. Notably, this performance gain oc-
curred even though the second mean-based approach incorporated information about the mutation
position and wildtype residue, showing the utility of the mutation position as a valuable inductive
bias for these tasks.

The ESM-Effect architecture comprises the 35M ESM2 model with 10 of 12 layers frozen and a
neural network regression head. This regression head processes the mutant and wildtype sequence
embedding at the mutation position (cf. Figure 3).The model’s performance is driven by two key
inductive biases in the regression head:

• the mutation effect is relative to a wildtype sequence

• mutation impact is largest at the mutation position

While the full architecture, incorporating both mutant and wildtype embeddings, directly imple-
ments these biases, a simpler variant — using only the mutation position embedding of the mutant
sequence — achieves comparable performance with approximately half the computational cost. We
term this streamlined version the optimized ESM-Effect model, as it encapsulates both inductive
biases in a minimal and efficient form.

5 RESULTS

5.1 PERFORMANCE COMPARISON: OPTIMIZED ESM-EFFECT OUTPERFORMS EXISTING
SOTA METHOD PREMODE

Next, we compare ESM-Effect to the state-of-the-art method, PreMode, which is pretrained on
millions of pathogenic variants and fine-tuned on nine diverse DMSs. Unlike ESM-Effect, which
relies solely on sequence input and its learned embeddings, PreMode incorporates static ESM2
embeddings, AF2 structures, and multiple sequence alignments (MSAs). Given the significant per-
formance gains that multimodal approaches achieve in the natural language domain, we anticipated
PreMode to outperform ESM-Effect. However, PreMode’s ablation analysis reveals only a marginal
performance drop when any one of the three modalities is excluded, indicating that the information
they provide for functional effect prediction is largely redundant.
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Figure 4: Performance Comparison of ESM-Effect with multi-modal PreMode. Stars indicate ESM-
Effect mean performance on the same five 80-20 train-test split seeds as PreMode.

Indeed, optimized 35M ESM-Effect performs slightly better than PreMode despite having
two input modalities less (cf. Figure 4, Table 1). ESM-Effect models almost always outperform
PreMode by varying margins except for the DMSs measuring mutation impact on CCR5 antibody
binding which suggests that PreMode’s knowledge of AF2 structure gives it a competitive advantage
because protein structure is involved. The full ESM-Effect model and the optimized model almost
always perform on par. This relates to our discussion of the arguable existence of one fixed wild-
type sequence in the Appendix and underpins that ESM2’s own understanding of the physiological
sequence space suffices and it does not require the (or ”a specific”) wildtype residue as orientation
towards to phyiological sequence space. Besides, we also experimented with Test-Time-Training
finding mixed improvements (cf. Appendix 7.3) (Bushuiev et al., 2024).

model
ESM
Effect

full

ESM
Effect
optim.

ESM2 10/12
frozen mean

SLP
(embed.)

ESM2
LoRA
mean

PreMode

task name

ASPA: enzyme activity 0.747 0.738 0.470 0.746
ASPA: stability 0.819 0.817 0.477 0.818
CCR5: binding Ab2D7* 0.583 0.584 0.426 0.609
CYP2C9: enzyme activity 0.846 0.830 0.528 0.820
GCK: enzyme activity* 0.680 0.680 0.422 0.674
NUDT15: enzyme activity 0.676 0.661 0.646 0.491 0.636 0.658
PTEN: enzyme activity* 0.600 0.602 0.544 0.395 0.475 0.597
PTEN: stability* 0.726 0.718 0.653 0.540 0.650 0.703
SNCA: enzyme activity* 0.640 0.646 0.647 0.531 0.646 0.617

Table 1: Table comparing the mean spearman rho on DMS between ESM-Effect models, PreMode
and other setups on 3 or 5 seeds. Mean models use the mutant sequence only.
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Visualisation of Bin-Mean Error Calculation

SNCA

PTEN

Scatter plot of Predictions vs DMS Scores
Calculate mean error and 


plot along DMS score range group predictions into 100 equal-sized bins

BME: calculate mean of all bin's means

Figure 5: Visualization of the BME calculation steps. Predictions stem from LoRA ESM2 +
SLP(mutant embeddings) fine-tuned on SNCA seed 0 and PTEN seed 1 for 20 epochs.

5.2 BENCHMARKING FRAMEWORK FOR FUNCTIONAL EFFECT PREDICTION

General Remarks While established benchmarks, such as the ProteinGym, exist for pathogenic-
ity prediction, uniform benchmarks including reliable metrics and standardized testing datasets for
functional effect prediction are lacking hampering useful comparisons and impeding progress in the
field. To address this bottleneck, we propose datasets, including train-test splits, evaluation metrics,
and visualizations, to provide a more realistic framework for assessing functional effect predictors.
Thus, we encourage future research to adopt and build upon this framework.

Datasets We trained and benchmarked ESM-Effect on the same 9 DMS datasets and corresponding
test splits used by PreMode, ensuring 1:1 comparability. In previous work, score calculation methods
— such as normalization and aggregation of DMS experiment replicas — have often been unclear, as
have decisions regarding the inclusion of wildtype scores and the reference sequence isoform used.
Standardizing on PreMode datasets or ensuring exact sharing of datasets in the field will address
these ambiguities.

We further recommend a more rigorous testing regimen: instead of relying on random data splits,
we propose evaluating models on DMS mutations from sequence intervals distinct from those in the
training data. This approach provides a more realistic measure of the model’s ability to generalize
to new biological contexts (see Section 5.4). For consistency, it is essential to not only share train-
test splits but also the full DMS dataset and to standardize testing intervals across studies.

Metrics: The relative Binned-Mean Error (rBME) For pathogenicity prediction, general corre-
lation with DMS scores is often evaluated using scale-invariant metrics like Spearman rank cor-
relation, as implemented in the ProteinGym benchmark. Spearman correlation is well-suited for
pathogenicity because it evaluates monotonic relationships and is robust to scale differences across
DMS score distributions. However, functional effect prediction requires more nuanced evaluation,
particularly for rare, biologically significant mutations, which can be overshadowed by the majority
of mutations with neutral effects. Standard metrics like Spearman can mask biases, as models often
focus on more frequent, neutral mutations.

To address this, we propose the relative Binned-Mean Error (rBME), a metric that evaluates model
performance across distinct mutation effect bins, emphasizing accuracy for rare but impactful mu-
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tations (cf. Figure 5): Let the DMS scores and predicted scores (of the test set) be denoted as yi and
ŷi, respectively, for i = {1, 2, . . . , N}, where N is the total number of test mutations.

Define the relative error for each mutation i as:

relative errori =
|yi − ŷi|

max(|yi|, ϵ)
,

where ϵ is a small constant to avoid division by zero. Next, group the data points into nbins equal-
width bins based on the value range of yi, where bk represents the k-th bin (typically, nbins = 100).
While the model effectively learns the true distribution of DMS scores — capturing clustered regions
with many neutral mutations and producing realistic predictions — this step is crucial to mitigate
metric bias and ensure balanced treatment across all regions, including easy-to-predict clusters and
hard-to-predict, wider regions with rare but biologically significant Gain-of-Function mutations.
The relative Bin Mean Error (rBME) is given by the mean of the mean error per bin bk where |bk| is
the number of data points in bin bk:

relative Bin Mean Error (rBME) =
1

nbins

nbins∑
k=1

1

|bk|
∑
i∈bk

errori,

Normalization of absolute error facilitates comparisons across different DMS, whereas the unnor-
malized BME metric is suitable for cross-model comparisons on the same DMS. While the op-
timized ESM-Effect achieves comparable Spearman correlations for PTEN and SNCA (0.59 and
0.63, respectively; cf. Figure 6), the scatter plots reveal a stark difference in performance. This
discrepancy is accurately captured by the rBME metric, which reflects the disparity (0.87 vs. 1.40).

5.3 PREDICTION ANALYSIS
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Figure 6: Analysis of optimized ESM-Effect and
LoRA fine-tuned ESM2 with SLP(mutant mean
embdding).

While most previous studies compare predic-
tion performance with a single metric, only
plotting predictions vs. ground truth truly re-
flects performance. Importantly, a realistic plot
should have the same scale for DMS scores
and predicted scores axes (i.e. be quadratic)
and indicate ideal predictions with an angle bi-
sector. Figure 6 compares the prediction char-
acteristics of the optimized ESM-Effect model
and the LoRA ESM2 model with a regres-
sion head on top of the mean mutant sequence
embeddings. The prediction patterns of op-
timized ESM-Effect and LoRA ESM2 mean
have distinct prediction characteristics, espe-
cially for PTEN enzyme activity, where it per-
forms worse (cf. Section 5.1).

The prediction patterns on the SNCA DMS cor-
relate with the high metrics (e.g. spearman rho,
low BME and rBME): the models can reliably
distinguish activity scores in the upper realm
of the DMS score distribution from scores in
the lower core region (score -0.2 to 0.2). To
further investigate the fine-tuning behavior of
ESM2 we analyzed the finer-grained number of
unfrozen layers (compared to full, 10/12 frozen
layers and no fine-tuning above) and the position of one unfrozen layer in the model but none influ-
enced model performance (cf. Appendix 7.2.
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5.4 INVESTIGATING TRANSFER CAPABILITIES

As part of our proposed benchmarking framework, testing optimized ESM-Effect not by using a
random split of the DMS but by using distinct sequence intervals for selecting train and testing mu-
tations assesses generalization: the model has to infer the effect of mutations in the testing interval
based on its understanding of the pretraining interval and learned effects from the rest of the protein.
We selected SNCA because it features a unique sequence position-to-score relationship as shown in
Figure 7. Notably, the last 40 residues are predicted by MobiDB-lite to form a disordered region,
lacking stable secondary structure (Necci et al., 2017).

0 20 40 60 80 100 120 140
SNCA sequence position

0.2
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0.4

0.6

DM
S 

sc
or
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Spearman: 0.72
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Pearson: 0.88
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Highlighted Intervals
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Interval 3: 120-140

0 100

Transfer Learning: Training and Testing on Distinct Intervals of SNCA DMS
Highlighted Testing intervals vs. Rest for Train

Figure 7: Investigating optimized ESM-Effect’s
Transfer capabilities on SNCA DMS. Model
trained on three random seeds achieves a spear-
man rho of 0.646. Each testing interval accounts
for 14-15% of the total dataset, while the random
split used 20%.

The transfer performance of ESM-Effect is
highly dependent on the interval: while the
model performs better on intervals enriched
with rare, high-score mutations compared to
random splits (spearman rho 0.72 vs. 0.65), it
struggles within the disordered interval without
these mutations (Spearman rho: -0.02). These
results show the limitations of current state-of-
the-art functional effect prediction models and
underscore the challenges in modeling protein
regions with distinct structural and mutational
properties.

6 CONCLUSION

With our step-by-step model development ap-
proach building on and improving on previ-
ous methods, we develop a new state-of-the-
art functional effect predictor: ESM-Effect -
an ESM2-finetuning architecture with inductive
bias regression head - outperforms SOTA com-
petitors across a range of DMS while sparing
structure and MSAs features and focusing on
task-specific adaptation of PLM embeddings.

The survey of the pathogenicity and functional
effect predictor landscape alongside our analy-
ses reveals shortcomings of current models for
a meaningful biological and medical applica-
tion. The transfer capabilities vary greatly and show that the field of mutation effect prediction
has still a long way to go until it can guide treatments and is truly beneficial for real-world applica-
tions. We hope to shorten this way with the proposed Benchmarking Framework which emphasizes
realistic benchmarking instead of inflated performances and facilitates comparison with future mod-
els.

For the downstream task of Deep Mutational Scan (DMS) fine-tuning, our analyses revealed unex-
pected patterns that diverge from typical natural (and protein) language model scaling behaviors.
Notably, test performance remained almost constant across increasing model sizes, and Low-Rank
Adaptation (LoRA) consistently matched the performance of full fine-tuning. These observations
suggest that the model’s utility for DMS prediction may be fundamentally constrained by the limi-
tations of current pretraining approaches. We hypothesize that only low-level, universal knowledge
— largely invariant to model size — contributes meaningfully to DMS prediction. The performance
plateau indicates that the current pretraining paradigm struggles to capture the nuanced and detailed
biological knowledge required for comprehensive mutational effect prediction.

While current pretraining methods are effective in decoding sequence and structural aspects, they
seem to fall short in capturing the complex biochemical reactions and interactions of proteins that
are only weakly and implicitly encoded in sequence and structure. This suggests the need for new
pretraining data sources and objectives (Li et al., 2024), capable of uncovering deeper biological
insights to advance the field.
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7 APPENDIX

7.1 PATHOGENICITY PREDICTORS PERFORM POOR FOR FUNCTIONAL EFFECTS:
ALPHAMISSENSE VS. DMS

Pathogenicity predictors like AlphaMissense carve out the edges of the physiological sequence
space, but fall short for accurate functional effect prediction for knowledge of the respective pro-
tein’s biological mechanism is required (cf. Figure 8)
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Figure 8: SOTA pathogenicity predictor AlphaMissense on DMS data. Note that the DMSs some-
times not cover the entire protein sequence.

7.2 ABLATION AND MODEL ANALYSIS

Layer Probing To investigate how the number of trainable layers affects performance, we retrained
optimized ESM-Effect with a descending number of layers frozen: the results show that the number
of frozen layers has no impact on test performance, as long as at least one layer remains unfrozen,
allowing the model to adapt to the specific task (cf. Figure 9). Given that a single unfrozen layer
can suffice for fine-tuning, we further explored whether its position within the network affects per-
formance: the test performance remains consistent regardless of the unfrozen layer’s position. Even
when only the first layer (immediately after the embedding layer) is unfrozen, it can still influence
the subsequent layers, enabling the model to produce informative embeddings for the regression
head at the final layer.

Transformer Parts Ablation. To investigate which components of the Transformer architecture
contribute most to performance, multiple models were trained with specific parts of the last two lay-
ers unfrozen. These include feed-forward layers, attention mechanisms, and individual components
of the attention module—key, query, value, and output projection layers. Performance (cf. Figure 9)
increases progressively, starting from the embedding layer, followed by key, query, value, and output
projections, then the feed-forward and attention layers, and finally, the full last two layers.

This analysis suggests that ESM2 does not encode mutation-specific knowledge in individual layers,
as it does for structural features such as contacts and binding sites (Vig et al., 2020). Fine-tuning
performance is largely invariant to the position or number of fine-tuned layers, indicating that adap-
tation likely arises from task-specific tuning of the overall embeddings rather than mutation-specific
mechanisms. Notably, the differences observed across Transformer components demonstrate the
parameter efficiency of multi-head self-attention, which achieves competitive performance with ap-
proximately half the parameters of the feed-forward layers.
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Figure 9: Ablation study of ESM-Effect: Fine-Tuning and Layer probing. Ablating Transformer
parts of optimized ESM-Effect on 3 SNCA seeds.
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Figure 10: Customizing ESM2 backbone on SNCA sequence while maintaining general knowledge
and preventing catastrophic forgetting.

7.3 EXPERIMENTS WITH TEST-TIME-TRAINING (TTT)

As Bushuiev et al. (2024) showed, fine-tuning a pretrained PLM backbone on a specific protein
sequence that is used for a given inference task improves performance (Bushuiev et al., 2024). For
instance, unsupervised mutation pathogenicity prediction from PLMs without a regression head
benefited from TTT. Here, we sought to apply this technique to ESM-Effect using a similar approach
for supevised functional: first we customize (i.e. fine-tune) the ESM2 backbone on the protein
sequence of the DMS. Then we train the backbone with the ESM-Effect head on top on a DMS. To
customise the 35M ESM2 model, we started with the hyperparamters recommended by Bushuiev
et al. (2024) However, this led to rapid overfitting to the DMS sequence: for the target DMS sequence
and another non-DMS related sequence, we monitored the percentage of correctly predicted tokens
and their probability when predicting the each token in the sequence individually (with a mask for
that token). We used this strategy to adjust the learning rate to maintain accuracy of the non-related
sequence while achieving increased accuracy on the TTT/DMS sequence (cf. Figure 10). Based on
the results we selected 1e-5 as optimal, customized the ESM2 backbone and trained ESM-Effect on
three seeds of the SNCA DMS.

Experiments with SNCA (seeds 0–2) reveal only minor performance differences between the non-
TTT and TTT models, depending on the metric used. Consequently, no significant benefit from TTT
is observed in this setting.

7.4 GENERALIZATION TEST
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Figure 11: Customizing ESM2 backbone on SNCA sequence while maintaining general knowledge
and preventing catastrophic forgetting.

Figure 12: Matrices comparing the mean catalytic
activity scores for all wildtype residue - substi-
tuting amino acid pairs between the train (GCK)
and test (SRC) data. Histogram comparing the
catalytic score distributions for the Glucokinase
training DMS and the SRC kinase testing DMS.
This shows that the I.I.D. assumption does not
hold true anymore. Accordingly, ESM-Effect per-
forms poor

To investigate to what extent ESM-Effect might
learn features from one member of a protein
family that may allow it to generalize to other
family members we trained ESM-Effect on the
Glucokinase DMS (with 20% test split) and
evaluated its performance on the test split and
on a second DMS from the SRC tyrosine kinase
(Ahler et al., 2019).

First, we analyze the difference between the
two DMS: we counted frequencies for each of
the 1919 wildtype - mutant amino acid pairs
to investigate distributional shift bias. The
frequencies are dependent on the relative fre-
quency of the respective wildtype amino acid in
the sequence but also whether the experimental
readout for the mutation succeeded. The cosine
similarity of the two frequency matrices is 0.88
and Spearman rho is 0.62 suggesting that DMS-
specific mutation frequencies may only have a
mild impact on generalization. Second, we in-
vestigated the distribution of the catalytic activ-
ity scores (cf. Histogram Figure 3).

After min-max scaling the SRC DMS scores to
the range of GCK DMS scores, we compare the
two matrices with the mean catalytic activity
score for each wildtype-mutant amino acid pair
finding that they are fairly distinct: although cosine similarity is still at 0.736, Spearman correlation
is 0.1.

The histogram in Figure 3 underscores that the two DMS represent two completely different
distributions, which is biologically plausible: even though both are kinases, their binding pocket
and catalytic domain are fairly distinct as they process completely different substrates. Thus, we
expect generalization to be poor. And indeed generalization is very poor: there is almost no
correlation between predictions and ground truth scores (Spearman rho 0.03) despite training on a
kinase DMS (Figure 4).
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Figure 13: ESM-Effect was trained on 80 percent of mutation from the GCK DMS. Left column
shows performance on 20 percent testing data versus poor performance when evaluating general-
ization from the Glucokinase to the SRC tyrosine kinase. The three different colors and regression
lines represent the respective thirds of the score range corresponding to the three effect classes (LoF,
Neutral and GoF). The overall Spearman rho for the test split is 0.67 and the Harmonic Spearman is
0.28

7.5 DISSECTING THE NOTION OF A WILDTYPE SEQUENCE

Over the course of ongoing evolution many different variants of sequences evolve and are selected
for fitness. Thus, one fixed, unique ”wild-type” sequence does not exist. Only different versions
of sequences exist which have different properties. The term ”mutation” and ”variant” build on the
arguable existence of one unique, static ”wild-type” sequence in which one amino-acid is substituted
forming the mutant sequence. Nonetheless, a physiological, natural sequence space exists compris-
ing many functionally and fitness-regarding equivalent ”wild-type” sequences which are curated in
databases like UniProt (The UniProt Consortium et al., 2023), UniRef or SwissProt (Suzek et al.,
2007; Boeckmann, 2003). These databases typically list one fixed, reference/”wild-type” sequence
but also other isoforms. And different amino acid alterations in these physiological sequences may
be viewed as mutations in contexts like precision medicine, where the wildtype sequence (space) for
a given oncogene is established. In this light, the task of variant pathogenicity prediction equates to
carving out the edges of the physiological sequence space. So the notion of one unique wild-type
sequence is less applicable to variant pathogenicity prediction models, since the models learn a no-
tion of physiological sequence spaces to which they compare a given sequence at inference. Yet they
require a reference sequence (one version of the physiological wildtype) to compare the likelihood
of the variant amino acid to: There is no effect without a reference to compare the effect to. The
same applies to supervised, specialists models trained on DMSs. While we train models that only
take the mutated sequence as input to predict the DMS score, the DMS score itself is being calcu-
lated by comparing the enrichment of the cell expressing the mutant sequence to cells expressing
the reference sequence. In general, variant prediction is not possible without a reference sequence
(as part of the physiological sequence space).
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7.6 EMBEDDING ANALYSIS

Seeking to understand how fine-tuned ESM2 embeddings compare to baseline ESM2 embeddings
- the reason ESM-Effect outperforms PreMode - we obtained the embeddings for 100 GCK DMS
test mutations from both models and analyzed them using the UMAP dimensionality reduction tech-
nique. However, there are no clusters and coloring the data points according to their catalytic activity
does not show any relationship either. This might be due to the regression head’s role of extracting
meaningful features from the embedding (as it is trained with an order-of-magnitude higher learning
rate) or due the UMAP assumption of a uniform distribution not holding true for ESM2 embeddings
as they are probably not uniformly distributed across the entire manifold but rather form clusters.

7.7 TRAINING MEAN EMBEDDING MODELS

Fine-tuning ESM2 models with a regression head using the mean sequence embedding presents
unique challenges that do not arise when using mutation position embeddings. Notably, these is-
sues are specific to the PTEN stability and enzyme activity DMS datasets and are not observed for
SNCA or NUDT15. Training with the mean embedding often exhibits instability, characterized by
spiking losses and abrupt fluctuations in performance. Additionally, convergence is slow, requiring
more than 20–30 epochs, because the mean embedding condenses information from many model
parameters into a lossy representation, making it harder for the model to capture fine-grained mu-
tation effects. Furthermore, the gradients from the regression head propagate less directly through
the mean operation to the ESM2 model, compared to using the mutation position embedding, where
the gradients flow directly from the head to the relevant model parameters. This instability mainly
applies to fine-tuning the full ESM2 model on the PTEN enzyme activity DMS compared to frozen
or LoRA-based models. Therefore the PTEN enzyme activity comparison in Figure 2 is lacking
given our limited compute resources in order to train enough models for enough epochs in the fully
unfrozen setups.

7.8 METHODS

7.8.1 TRAINING

We don’t fine-tune all parameters of the model but freeze the top 10 of 12 layers for the 35M model
and split the learning rate: ESM2 parameters are updated by 1e-5 and prediction head parameters
by 1e-4 times the local batch size. We use gradient accumulation for larger batches with a local
batch size of 4 and 2 accumulation steps. Dropout rate was set to twenty percent and we train for
10 epochs with a one cycle learning rate scheduler. AdamW was used with β1 = 0.9, β2 = 0.999,
ϵ = 1e−8 and weight decay coefficient = 0.01. Training time for a DMS with 6k mutations for 10
epochs is roughly 1 1

2 up to 2 hours on a NVIDIA L4 GPU depending on evaluation and monitoring.

7.8.2 DATA

We used the same DMSs as in PreMode to compare performance: the exact same 20 percent test split
with five different seeds was used for random splitting. Note that when using data from the PreMode
repository the same csv file contains scores for all properties of the DMS if there are multiple. As
the score column names are not indicative of the measurement, and the same measurement type has
different score column indices for different datasets we specify them here:

We used the same amount of unfreezed ESM2 backbone weights and did not adjust the capacity
of the model to the size of the dataset. To evaluate generalization from training on GCK we use
a DMS of the SRC kinase from MAVEDB containing 3372 mutations (Ahler et al., 2019; Rubin
et al., 2021). To adjust the scale of the score measurement from the SRC DMS to GCK DMS we
use min-max scaling. Code is available in the following GitHub repository: https://github.
com/lovelacecode/ESM-Effect.
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Protein column name for enzyme activity
SNCA score.1
CYP2C9 score.1
NUDT15 score.2
CCR5 stability: score.1

binding: Abd7: score.2
binding HIV-1: score.3

ASPA score.2
GCK score.1
PTEN score.2

Table 2: Mapping of proteins to column names containing enzyme activity scores.
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