
Under review as a conference paper at ICLR 2024

SOLVING THE QUADRATIC ASSIGNMENT PROBLEM
USING DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The Quadratic Assignment Problem (QAP) is an NP-hard problem which has
proven particularly challenging to solve: unlike other combinatorial problems like
the traveling salesman problem (TSP), which can be solved to optimality for in-
stances with hundreds or even thousands of locations using advanced integer pro-
gramming techniques, no methods are known to exactly solve QAP instances of
size greater than 30. Solving the QAP is nevertheless important because of its
many critical applications, such as electronic wiring design and facility layout
selection. We propose a method to solve the original Koopmans-Beckman for-
mulation of the QAP using deep reinforcement learning. Our approach relies on
a novel double pointer network, which alternates between selecting a location in
which to place the next facility and a facility to place in the previous location. We
train our model using A2C on a large dataset of synthetic instances, producing
solutions with no instance-specific retraining necessary. Out of sample, our solu-
tions are on average within 7.5% of a high-quality local search baseline, and even
outperform it on 1.2% of instances.

1 INTRODUCTION

Reinforcement learning has been used to solve problems of increasing difficulty over the past decade.
Examples include AI models developed by Mnih et al. (2013) to play Atari video games and by
Silver et al. (2018) to play chess and go. These successes have inspired a wave of research on using
reinforcement learning to tackle hard problems.

One area of exciting progress has been in the use of reinforcement learning to solve combinatorial
optimization problems. These problems are an ideal case study for reinforcement learning: they
are almost always NP-hard, and are therefore among the hardest problems in computer science;
at the same time, they are easy to state and experiment with. Initial work by Bello et al. (2016)
tackled the traveling salesman problem (TSP), perhaps the most well-studied combinatorial opti-
mization problem. Subsequent works by Nazari et al. (2018), Kool et al. (2018), Delarue et al.
(2020), Li et al. (2021) focused on the more complex capacitated vehicle routing problem. More
recently, approaches have been proposed for vehicle routing problems with time windows (Falkner
& Schmidt-Thieme, 2020) and min-max routing problems (Son et al., 2023). These approaches
share a constructive design, in which a high-quality solution is sequentially constructed; in contrast,
Ma et al. (2021) and Wu et al. (2021) propose improvement designs, where a feasible solution is
iteratively improved.

These works have made valuable progress on solving combinatorial optimization problems with
reinforcement learning, relying on specially-designed attention mechanisms (Kool et al., 2018), ma-
trix embeddings (Kwon et al., 2021) or modified training algorithms (Kwon et al., 2020). However,
one drawback is that they typically do not outperform existing non-learning approaches for the spe-
cific combinatorial optimization problems they consider (Cappart et al., 2023). Such an outcome is
not very surprising, since existing combinatorial solvers are the result of decades of research and
problem-specific optimizations. For example, the Concorde TSP solver by Applegate et al. (2002)
can easily solve TSPs with thousands of locations to optimality. Yet this outcome motivates further
research into problems where reinforcement learning can bring value beyond existing algorithms.

One possible path is to look for harder problems. While most combinatorial optimization problems
are NP-hard, some are more NP-hard than others. For instance, the quadratic assignment problem

1

Under review as a conference paper at ICLR 2024

(QAP) is not only NP-hard to solve exactly; it is also NP-hard to solve approximately (with a con-
stant approximation ratio, see Sahni & Gonzalez, 1976). In the operations research literature, the
QAP is often described as “one of the hardest combinatorial optimization problems” (Loiola et al.,
2007) that “seems to defy all solution attempts except for very limited sizes” (Erdoğan & Tansel,
2011). This complexity means there is potential for learning approaches to make an impact.

In this paper, we present a reinforcement learning approach for the quadratic assignment problem.
We first formulate it as a sequential decision problem, which we solve using policy gradient algo-
rithms. Our approach relies on a novel double pointer network which can construct a sequence of
decisions which alternates between one “side” of the assignment problem and the other.

We construct a novel combination of successful techniques in the literature on reinforcement learn-
ing for combinatorial optimization. We reformulate the quadratic assignment problem as a sequen-
tial decision problem, in order to leverage sequence-to-sequence decoding architectures (Sutskever
et al., 2014; Vinyals et al., 2015), which were successfully applied by Nazari et al. (2018) for the
capacitated vehicle routing problem. Additionally, we leverage an attention mechanism, first intro-
duced by Vaswani et al. (2017) and often applied to combinatorial problems (Kool et al., 2018). We
also use graph convolutional networks (Chung et al., 2014) to embed problem data. We note that
our approach relies on a constructive design rather than an improvement design.

Machine learning approaches for QAP are somewhat scarce in the literature. Nowak et al. (2018)
propose a supervised learning approach, training their model on previously solved problem in-
stances. More recently, Wang et al. (2019) and Wang et al. (2020) propose novel embedding tech-
niques to extract high-quality solutions to graph matching problems closely related to quadratic
assignment. The complexity of QAP remains an obstacle, with Pashazadeh & Wu (2021) identi-
fying particular challenges that learning approaches must overcome in order to make progress on
solving the QAP.

2 THE QUADRATIC ASSIGNMENT PROBLEM

2.1 PROBLEM FORMULATION

Several versions of the QAP exist; in this work, we focus on the original formulation from Koopmans
& Beckmann (1957). We are given a set of n facilities, denoted by F, and a set of n candidate
locations, denoted by L; the flow from facility i to facility j is denoted by Fi,j , and the distance
from location k to location ` is denoted by Dk,`. If we place facility i at location k and facility j at
location `, we incur a cost of Fi,j ·Dk,`, representing the cost of transporting Fi,j units of flow across
the distance Dk,`. Let Xi,k be the binary decision variable that takes the value 1 if we place facility
i in location k, and 0 if we do not. We can formulate the QAP as the following integer program:

min
nX

i=1

nX

k=1

nX

j=1

nX

`=1

Fi,jDk,`Xi,kXj,` = F ·
�
XDX>� (1a)

s.t.
nX

i=1

Xi,k = 1 8k 2 [n] (1b)

nX

k=1

Xi,k = 1 8i 2 [n] (1c)

Xi,k 2 {0, 1} 8i 2 [n], k 2 [n]. (1d)

Constraint (1b) ensures that each location is assigned exactly one facility, while constraint (1c)
ensures that each facility is assigned exactly one location. The objective function (1a) can be written
as a sum (left) or as the “dot product” of two matrices (right) — by “dot product” here we mean the
sum of the elementwise product of F and XDX>.

The QAP is difficult to solve as an integer program because of the nonlinear nature of its objec-
tive. Not only is the problem NP-hard: Sahni & Gonzalez (1976) also showed that the existence of a
polynomial-time approximation algorithm with constant factor for QAP would imply that P = NP .
In this sense, it is “harder” than many other combinatorial optimization problems. For example,

2

Under review as a conference paper at ICLR 2024

though the metric traveling salesman problem is also NP-hard, a 3/2-approximate solution can al-
ways be obtained in polynomial time (Christofides, 1976). Indeed, it can be shown that the QAP
generalizes many other combinatorial optimization problems.

2.2 SEQUENTIAL VIEW

In order to solve the QAP using deep reinforcement learning, we need a way to solve this combina-
torial optimization problem as a sequence of decisions. We can then learn the best decision to take
at each step, given the decisions taken in the past. We choose a sequential formulation in which we
first select a location, then a facility to place in this location; once this pair has been selected, we
choose the next location, then another facility to place in this location; and so on until each location
has received a facility.

Formally, the state of the system st at time step t is represented as an alternating sequence of loca-
tions and facilities, ending at a location if t is odd, and at a facility if t is even. For example, at t = 4
we can write s4 = (`0, f1, `2, f3), where `0 2 L and `2 2 L are the locations selected in steps 0 and
2, while f1 and f3 are the facilities selected in steps 1 and 3. In this case, facility f1 was placed in
location `0, facility f3 in location `2, and we are now seeking our next location.

Given this characterization of the state space, the action space straightforwardly consists of the set
of remaining facilities if the last element of the sequence st is a location, and the set of remaining
locations if the last element of the sequence st is a facility (or the sequence is empty). In our
example, the action a4 must be selected from the set L\{`0, `2}. We can therefore write this action
as a4 = `4, and given this action, we deterministically transition to the state s5 = (`0, f1, `2, f3, `4).

In order to complete our sequential framework, we also need to define an intermediate cost function
at each step t:

rt(st, at) =

8
><

>:

t�1
2P

p=0

�
Ff2p+1,ft ·D`2p,`t�1 + Fft,f2p+1 ·D`t�1,`2p

�
if t is odd (at = ft),

0 if t is even (at = `t).
(2)

In other words, when we place facility ft at location `t�1, we incur the distance cost of transporting
the flows from all previously placed facilities to facility ft as well as the distance cost of transporting
the flows from ft to all previously placed facilities.

For simplicity, in this paper we restrict ourselves to symmetric QAP instances, where the flow from
facility i to facility j equals the flow from facility j to facility i, i.e., Fi,j = Fj,i for all i, j. Addi-
tionally, we make the assumption that the locations are points in R2, and we consider the Euclidean
distances between these locations. As a result, the matrix D is also symmetric, and the inner sum-
mand in (2) simplifies to 2Ff2p+1,ftD`2p,`t�1 .

We emphasize that this decomposition is far from trivial. In the QAP, the cost of placing a facility
in a location depends not just on the current facility and the current location, but indeed on the
placements of every other facility. As a result, a sequential decomposition is less readily constructed
than for other combinatorial optimization problems, For instance, the traveling salesman problem
can be written as a sequence of locations (“cities”) to visit, with the agent incurring the distance
from the current city to the next city at each step. In comparison, our proposed sequential model is
far less intuitive — a necessity given the intrinsic difficulty of the QAP.

3 DEEP REINFORCEMENT LEARNING MODEL

The objective of this paper is to develop an approach to learn an optimal policy ⇡
⇤(·) mapping

each state st to an optimal action at. We rely on a policy gradient approach in which we directly
parametrize the policy, and learn its parameters using an advantage-actor-critic (A2C) approach. We
now describe the architecture of the neural network modeling our policy.

3

Under review as a conference paper at ICLR 2024

Figure 1: Diagram of double pointer network. The “upper” and “lower” GRU blocks share the same
weights; since this is a decoding architecture, the output of each GRU of each type is an input to
the next GRU of the same type. The “upper” pointer network selects locations, while the “lower”
pointer network selects facilities.

3.1 EMBEDDINGS

We observe from formulation (1) that a QAP instance is uniquely specified by the n ⇥ n matrix F
of flows between all facility pairs, and the n ⇥ n matrix D of distances between all location pairs.
The first step of our method is to embed this data into higher-dimensional spaces.

We would like to embed each of the n locations in a higher-dimensional space in a way that incor-
porates the notion of distance, and separately embed each of the n facilities in a higher-dimensional
space in a way that incorporates the notion of flow. For the locations, we start from an 2 ⇥ n

matrix (one column per location). We use three sequential one-dimensional convolution layers (1d-
ConvNet) to embed the matrix of locations into Rdk⇥n (each location is represented as a vector of
length dk).

For the facilities, we take advantage of the flow matrix symmetry to represent the facilities as the
nodes of an undirected complete weighted graph; the weight of edge (i, j) represents the flow Fi,j =
Fj,i. With this transformation, a natural choice of embedding is to use a graph convolutional network
(GCN). By applying 3 sequential GCNs, we obtain an embedding where each facility is represented
as a vector in Rdk , resulting in a dk ⇥ n facility embedding matrix.

3.2 DOUBLE POINTER NETWORK

In order to produce an alternating sequence of locations and facilities, we develop a novel double
pointer network architecture. Like Nazari et al. (2018), we observe that the QAP inputs (locations
and facilities) are not ordered to begin with: as a result, unlike traditional sequence-to-sequence
architectures, an encoding step is not necessary. We therefore construct a decoder which takes in
an arbitrary start token and consists of 2n alternating blocks of type U (“upper”) and L (“lower”).
We need two different chains of pointer network units because, unlike routing problems which can
be formulated as sequentially selecting elements (“cities”) from a single set, we must pair elements
from one set with elements from another set. Our double pointer network aims to generate such an
alternating sequence.

Pointer blocks of type U take as input either the start token, or the embedding of the last selected
facility, and output a vector of length n containing the probabilities of next selecting each location
`k. Pointer blocks of type L take the embedding of the last selected location as input, and output

4

Under review as a conference paper at ICLR 2024

a vector of length n containing the probabilities of placing facility i in this location. The output of
each pointer block of type U is also an input to the next block of type U , and the output of each
pointer block of type L is also an input to the next block of type L. A diagram of the decoding
pointer network is shown Figure 1.

In order to output these action probabilities, each pointer block consists of a Gated Recurrent Unit
(GRU, see Chung et al., 2014, for implementation details). The output of the GRU, of dimension
dk, is then passed through an attention layer, which we describe in the next section.

3.3 ATTENTION

In order to convert the output of GRU of type U or L, we introduce an attention layer. Informally,
this layer performs the “pointing” part of the pointer network, by comparing the output of the GRU
(a vector in Rdk) to the vectors embedding each location (or facility), and producing a vector of n
probabilities specifying the next location (or facility) to select.

Attention can refer to several related but different mechanisms. Our approach is closest to the
one used by Nazari et al. (2018): we compute an attention and context vector as intermediate steps
before producing a vector of output probabilities. However, we remove the nonlinear tanh activation
function; we also use the output of the pointer block instead of the hidden state (noting that the two
are the same for a single-layer RNN). Without loss of generality, we describe the attention procedure
for the upper pointer network (location selection).

The attention layer consists of three major steps. The first step is to compute an n-dimensional
attention vector. We first consider the matrix of all embedded locations, denoted by L 2 Rdk⇥n,
whee each column is a dk-dimensional location embedding. We obtain an extended location matrix
by appending the dk-dimensional GRU output to the end of each column of L, and denote this
extended location matrix by L̃ 2 R2dk⇥n. Let va 2 Rdi and Wa 2 Rdi⇥2dk be a vector and matrix
of trainable parameters. The attention vector is then given by

a> = softmax
⇣
v>
a f(WaL̃)

⌘
,

where f(·) designates an arbitrary activation function. Nazari et al. (2018) use f(·) = tanh(·); in
our implementation we simply use the identity function f(x) = x.

The second step is to compute a context vector c 2 Rdk , which is obtained as a weighted com-
bination of the location embeddings, where the weights are specified by the attention vector, i.e.
c = La. Finally, the third step closely resembles the first step, using the context vector as input and
producing the output probability vector o as

o> = softmax
⇣
v>
o f(WoL̂)

⌘
,

where va 2 Rdi and Wa 2 Rdi⇥2dk are trainable parameters, and m̂L 2 R2dk⇥n is obtained by
appending the context vector c to each column of the embedding matrix L.

The output vector o is n-dimensional and sums to one. It represents the probability of selecting
each of the n locations as our next action; in other words, at step t, the probability of taking action
at = `k is specified by o

t
k, where ot designates the output vector of pointer block t. For lower

pointer blocks, we replace the matrix L of location embeddings with the matrix of flow embeddings
in all three steps. We train two sets of attention parameters: one shared between all the upper pointer
units, and one shared between all the lower pointer units.

3.4 TRAINING

We train the model our model via Advantage Actor-Critic (A2C, see Mnih et al., 2016). A2C is a
policy gradient algorithm which requires a critic network to estimate the problem value function.
Given a value function estimate V (st) for any state st, the advantage At of taking a particular action
at in state st is defined as

At(at) = rt(st, at) + �V (st+1)� V (st).

Given a sample path (s0, a0, s1, a1, . . . , sT), we can use the policy gradient theorem to compute
that the gradient of our loss function r✓J(✓) with respect to trainable parameters ✓ is proportional

5

Under review as a conference paper at ICLR 2024

to
PT�1

t=0 r✓ log ⇡✓(st)At(at). We therefore define our training objective as

l(✓) =
T�1X

t=0

r✓ log ⇡✓(st)At(at) + ↵

T�1X

t=0

(At(at))
2 + �

T�1X

t=0

H(ot),

where ↵ is a parameter controlling the importance of the critic training loss in the overall training
loss, and � is a regularization parameter; for � > 0, the regularization term seeks to maximize the
entropy of our current policy to encourage exploration.

The critic network has a very simple architecture: a multi-layer perceptron (MLP) with an input
dimension of 2n2 +2n (the flattened flow and distance matrices, concatenated with the sequence of
indices of previously selected locations and facilities). Our MLP includes two hidden layers with
512 and 1024 neurons, respectively.

4 RESULTS

4.1 DATA AND SETUP

We generate a dataset of QAP instances from the following distribution: locations are sampled
uniformly at random in the two-dimensional unit square. The flow from facility i to facility j is
sampled uniformly at random from [0, 1]. We add the obtained random matrix to its transpose to
yield a symmetric flow matrix, then set the diagonal elements to zero. For most experiments, we use
a training set of up to 100,000 instances and evaluate results on a test set of 1,000 different instances
from the same distribution.

We train for 20 epochs, using a batch size of 50 instances. For regularization, we add a dropout
probability of 0.1. For our largest training data set size (100,000 instances), our typical training time
per epoch on 2 NVIDIA A100 GPUs is 20 minutes and 1 hour for n = 10 and n = 20, respectively.

To reduce both noise in the results and overfitting, we cache the trained model at every epoch and
evaluate it on a separate validation dataset of 1000 QAP instances. We report all metrics using the
best cached model, not the last obtained model.

When evaluating sample paths during training, we sample from the action selection distribution to
ensure exploration. At test time, we deterministically select the action with the highest probability.
We also implement a beam search procedure where we continuously maintain the top 5 or 10 highest-
probability sample paths so far; once the terminal state is reached, we keep the path with the lowest
cost on the particular instance under study.

4.2 BASELINE

The most rigorous optimization approach for combinatorial problems like QAP is integer program-
ming, using a specialized solver like Gurobi (Gurobi Optimization, LLC, 2023). However, as
mentioned previously, integer programming approaches can be very slow for the QAP, so a more
tractable baseline is desirable. We choose a simple swap-based local search heuristic (see Algo-
rithm 1 in the appendix). Given an initial feasible solution, the heuristic greedily swaps the locations
of facility pairs as long as a cost-reducing swap exists; when no such swap exists or when we reach
an iteration limit of 1000, the heuristic terminates.

Our key success metric is the percentage gap between the objective value csol of our solution and
the objective value of the solution cswap obtained via the swap heuristic, i.e., (csol � cswap)/cswap.

4.3 MODEL PERFORMANCE

We first evaluate the performance gap of our model as compared to the swap heuristic for QAP
instances of size n = 10 and n = 20. We compare the “greedy” version of our RL model (where the
highest-probability action is selected deterministically at each step) with beam-search versions with
beam sizes 5 and 10. Results are shown in Table 1. On average, our reinforcement learning model
produces results within 7.5% of the swap combinatorial heuristic. Performance is quite consistent,
with a worst-case (95th percentile) gap below 15% in most cases. We note that performance remains

6

Under review as a conference paper at ICLR 2024

consistent across varying instance sizes: for n = 20, the average performance gap stays roughly the
same as for n = 10, but the 95th percentile gap decreases markedly. Similarly, the fraction of test
instances with a gap below 10% increases significantly from n = 10 to n = 20; however, for n = 10
the RL method is the best one (negative gap) on up to 1.5% of instances, while we never outperform
the baseline for n = 20.

Table 1: Performance gap of RL approach for varying QAP instance size.

Performance gap (%) Fraction (%) of instances
n Method Average 95th percentile Gap 10% Gap 0%

10
RL-Greedy 9.09 16.39 59.9 0.5
RL-Beam 5 7.64 14.55 74.1 1.0
RL-Beam 10 7.14 13.94 78.2 1.4

20
RL-Greedy 8.19 11.75 82.0 0.0
RL-Beam 5 7.67 11.15 87.7 0.0
RL-Beam 10 7.46 10.85 90.1 0.0

We also perform runtime comparisons for our models and the combinatorial baselines, with results
shown in Table 2. All runtime experiments (evaluating our RL model, or calling Gurobi or the swap
solver) are performed on a single laptop (Macbook Pro with M1 chip). We first observe that Gurobi
requires several orders of magnitude more time than any other method, timing out after two minutes
on the majority of instances for both n = 10 and n = 20. For n = 10, it does produce substantially
better solutions than any other method, but for n = 20 it is significantly outperformed by the swap
heuristic.

We also find that even though our RL model does not quite match the performance of the swap
solver in terms of objective, it achieves its results with a significant reduction in running time (up
to an order of magnitude without using beam search). These runtime results are a reminder of the
value of a reinforcement learning algorithm that can solve previously unseen combinatorial prob-
lems by simply evaluating a neural network (admittedly, a complex one). Additionally, we observe
that for n = 20, the RL approaches are a thousand times faster than Gurobi, yet almost match its
performance (within 2%). Finally, even though the swap baseline produces the best solutions, we
observe that its runtime increases by a factor of 10 from n = 10 to n = 20, while the runtime of
our RL approaches increases by a factor of 2. This linear trend is valuable since it means RL has the
potential to tackle even larger problem instances.

Table 2: Runtime and performance of RL approach versus standard combinatorial methods. Results
are averaged over 10 instances for Gurobi and 1000 instances for other methods, and are presented
with standard errors. Note the standard errors for RL-Greedy are somewhat overestimated due to
batching. For tractability, we set a timeout of 120s for Gurobi, and observe that it times out on the
majority of instances

n = 10 n = 20
Method Average cost Runtime (s) Average cost Runtime (s)

Gurobi 20.41± 0.70 119.4± 0.6 95.90± 2.28 120.3± 0.009

Swap 21.29± 0.10 0.02± 0.0001 91.02± 0.25 0.2± 0.001
RL-Greedy 23.21± 0.10 0.002± 0.003 98.48± 0.27 0.004± 0.005
RL-Beam 5 22.91± 0.10 0.03± 0.0001 97.98± 0.27 0.06± 0.0001
RL-Beam 10 22.80± 0.10 0.05± 0.0005 97.78± 0.27 0.1± 0.0004

4.4 ABLATION STUDIES AND ADDITIONAL RESULTS

We now study the impact of various components if our model via ablation studies. We first con-
sider the value of the attention layer, which is often a critical component of RL frameworks for

7

Under review as a conference paper at ICLR 2024

Table 3: The value of attention. Ablation study conducted on problem size n = 10. The train and
test sets both have 1000 instances, and we train for 100 epochs.

Decoder Method Performance gap (%)
architecture Train Test

MLP
RL-Greedy 10.86 10.82
RL-Beam 5 9.64 9.61
RL-Beam 10 9.18 9.18

Attention
RL-Greedy 9.62 9.58
RL-Beam 5 8.33 8.26
RL-Beam 10 7.79 7.77

Figure 2: Effect of training dataset size and number of epochs on out-of-sample performance. Gap
measured relative to the swap baseline.

combinatorial optimization. To conduct this ablation study, we replace every attention block with a
simple one-layer MLP, transforming the dk-dimensional GRU output into an n-dimensional proba-
bility vector. We compare performance in Table 3. We observe that the attention layer is responsible
for approximately 1.5 percentage points of performance improvement, or about a 20% improvement
in relative terms. Note that in this study, we report the performance of the final model (and not the
best cached model according to the validation set).

This result is not very surprising: attention mechanisms are an essential component of many modern
deep learning architectures for their ability to relate components of the problem (e.g., words in a
sentence) to each other. This architecture allows us to learn a policy that can be tailored to each
instance and therefore can generalize well out of sample.

Finally, we compare the out-of-sample results of our model as we vary the training dataset size and
the number of training epochs. The results for n = 10 are shown in Figure 2. We observe that
increasing the number of epochs seems to have a larger impact on the greedy model performance
than increasing the number of training samples. The beam search models benefit about equally from
more epochs as they do from more training data points.

5 DISCUSSION

The results presented in Section 4 are encouraging. They demonstrate that reinforcement learning
approaches for QAP have potential, obtaining performance gaps of under 7.5% on problem instances
of size n = 10 and n = 20. We also empirically verify the complexity of solving the QAP exactly,
with our Gurobi solver timing out after two minutes, usually with a suboptimal solution (especially
for n = 20).

8

Under review as a conference paper at ICLR 2024

In contrast with Pashazadeh & Wu (2021), we therefore find that there is tremendous potential to
solve the QAP with reinforcement learning. At the same time, challenges remain: first and foremost,
to further increase the performance of RL approaches to more closely match both Gurobi and the
swap baseline. More generally, there is a fundamental gap between classic optimization approaches,
which provide not only a solution but also a certificate of its optimality, and RL approaches, which
only provide a solution. If the goal is only to provide solutions, then we feel that a particularly
intractable problem like QAP is a good choice for further study — indeed the results in Table 2
show that RL evaluation is even faster than the swap heuristic — the persistence of this effect at
higher problem sizes would make a strong case for further research in this direction.

If the goal of RL approaches for combinatorial optimization is to truly compete with established
optimization methods, then it is of interest to design methods that produce not just high-quality
solutions but also lower bounds that prove their quality — an exciting direction for future research.

REFERENCES

David Applegate, William Cook, Sanjeeb Dash, and André Rohe. Solution of a min-max vehicle
routing problem. INFORMS Journal on computing, 14(2):132–143, 2002.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovic. Combinatorial optimization and reasoning with graph neural networks. J. Mach.

Learn. Res., 24:130–1, 2023.

Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
1976.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning with com-
binatorial actions: An application to vehicle routing. Advances in Neural Information Processing

Systems, 33:609–620, 2020.

Güneş Erdoğan and Barbaros C Tansel. Two classes of quadratic assignment problems that are
solvable as linear assignment problems. Discrete Optimization, 8(3):446–451, 2011.

Jonas K Falkner and Lars Schmidt-Thieme. Learning to solve vehicle routing problems with time
windows through joint attention. arXiv preprint arXiv:2006.09100, 2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and

statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv

preprint arXiv:1803.08475, 2018.

Tjalling C Koopmans and Martin Beckmann. Assignment problems and the location of economic
activities. Econometrica: journal of the Econometric Society, pp. 53–76, 1957.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural

Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information

Processing Systems, 34:5138–5149, 2021.

9

https://www.gurobi.com
https://www.gurobi.com

Under review as a conference paper at ICLR 2024

Jingwen Li, Yining Ma, Ruize Gao, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Deep
reinforcement learning for solving the heterogeneous capacitated vehicle routing problem. IEEE

Transactions on Cybernetics, 52(12):13572–13585, 2021.

Eliane Maria Loiola, Nair Maria Maia De Abreu, Paulo Oswaldo Boaventura-Netto, Peter Hahn, and
Tania Querido. A survey for the quadratic assignment problem. European journal of operational

research, 176(2):657–690, 2007.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. Ad-

vances in Neural Information Processing Systems, 34:11096–11107, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing

systems, 31, 2018.

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. Revised note on learning quadratic
assignment with graph neural networks. In 2018 IEEE Data Science Workshop (DSW), pp. 1–5.
IEEE, 2018.

Mostafa Pashazadeh and Kui Wu. On the difficulty of generalizing reinforcement learning frame-
work for combinatorial optimization. arXiv preprint arXiv:2108.03713, 2021.

Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. Journal of the ACM

(JACM), 23(3):555–565, 1976.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Jiwoo Son, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Solving np-hard min-max routing
problems as sequential generation with equity context. arXiv preprint arXiv:2306.02689, 2023.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in

Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-

tion processing systems, 30, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-

tion processing systems, 28, 2015.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks
for deep graph matching. In Proceedings of the IEEE/CVF international conference on computer

vision, pp. 3056–3065, 2019.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Graduated assignment for joint multi-graph
matching and clustering with application to unsupervised graph matching network learning. Ad-

vances in Neural Information Processing Systems, 33:19908–19919, 2020.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057–5069, 2021.

10

	Introduction
	The Quadratic Assignment Problem
	Problem formulation
	Sequential view

	Deep Reinforcement Learning Model
	Embeddings
	Double pointer network
	Attention
	Training

	Results
	Data and setup
	Baseline
	Model performance
	Ablation studies and additional results

	Discussion
	Appendix
	Implementation Details
	Case Study: RL-Greedy vs Swap

