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Abstract

The Model Parameter Randomisation Test (MPRT) is widely acknowledged in
the eXplainable Artificial Intelligence (XAI) community for its well-motivated
evaluative principle: that the explanation function should be sensitive to changes
in the parameters of the model function. However, recent works have identified
several methodological caveats for the empirical interpretation of MPRT. To
address these caveats, we introduce two adaptations to the original MPRT—
Smooth MPRT and Efficient MPRT, where the former minimises the impact that
noise has on the evaluation results through sampling and the latter circumvents
the need for biased similarity measurements by re-interpreting the test through
the explanation’s rise in complexity, after full parameter randomisation. Our
experimental results demonstrate that these proposed variants lead to improved
metric reliability, thus enabling a more trustworthy application of XAI methods.

1 Introduction

The problem of evaluating the quality of an explanation method in eXplainable Artificial Intelligence
(XAI) remains unsolved due to the frequent absence of ground truth explanation labels [1, 2, 3].
To address this issue, numerous quantitative evaluation methods have been proposed [4, 5, 6, 2, 7,
5, 8, 9, 10, 11, 12, 13, 6, 14, 2, 15, 16]. Among these, the Model Parameter Randomisation Test
(MPRT) [15] measures the degree to which an explanation deteriorates as the model parameters
are progressively randomised, i.e., layer-by-layer, starting from the output. This test posits that a
greater difference in the explanation function’s output, in response to parameter randomisation,
signifies a higher quality of the explanation method.
In recent years, however, multiple independent research groups have provided constructive
observations on the methodological choices in the original MPRT [17, 18, 19, 20]. These
encompass the selection of pairwise similarity for measuring explanation difference [20], the order
of layer randomisation [20], the choice of explanation preprocessing [17, 20] and the dependency
on the model task [19, 18]. Given the considerable adoption of MPRT in the XAI community and
its potential to influence the acceptance or rejection of different explanation methods, these raised
concerns deserve a closer examination. Do evaluations based on the original MPRT optimally
inform us about the quality of an explanation method, or can we improve its reliability?
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Figure 1: Schematic visualisation of the original MPRT [15] (top), identified shortcomings (middle)
and proposed solutions (bottom). Solid arrows signify shortcomings directly addressed by our proposed
metrics, while dashed arrows denote those addressed through ideas from previous work [17, 20]. (a) The
MPRT evaluates an explanation method by randomising f ’s parameters in a top-down, layer-wise fashion
and thereafter calculating explanation similarity ρ(e, ê) at each layer through comparing explanations e

of the original model f and ê of the randomised model f̂ . (b) Pre-processing : normalisation and taking
absolute attribution values significantly impact MPRT results, potentially deleting pertinent information
about feature importance carried in the sign. (c) Layer-order : top-down randomisation of layers in
MPRT does not yield a fully random output, preserving properties of the unrandomised lower layers and
thus affecting the evaluation of faithful explanations. (d) Similarity measures: the pairwise similarity
measures used in the original MPRT [15] are noise-sensitive, e.g., from gradient shattering and thus
likely to impact evaluation rankings of XAI methods. (e) sMPRT extends MPRT by incorporating a
“denoising” preprocessing step that averages explanations over N perturbed inputs, aiming at reducing
noise in local explanation methods. (f) eMPRT reinterprets MPRT by evaluating the faithfulness of the
explanation method by comparing its rise in complexity, before and after full model randomisation.

The foundational idea behind MPRT—that the explanation function should be sensitive to the
model’s parameters—is both insightful and important. Our work seeks to build upon this initial
work, addressing its shortcomings, namely, the order of layer randomisation and the selection
of pairwise similarity measures, discussed in detail in Section 2.1.1 and illustrated in Figure 1.
We introduce two MPRT variants, Smooth MPRT (sMPRT) and Efficient MPRT (eMPRT),
where the sMPRT mitigates sensitivity to shattering noise (cf. [20]) by denoising, i.e., averaging
attributions over N perturbed inputs and the eMPRT evaluates explanation faithfulness by
quantifying the rise in complexity after full parameter randomisation, thus obviating a biased
similarity measurement. We release these methods under the existing Quantus [3] evaluation
framework1.
Our methods, despite being an iteration, carry substantial importance. To deploy XAI in real-world
applications, such as safety-critical domains, we need to focus on developing reliable quantitative
evaluation metrics for existing explanation methods. This work contributes to ensuring that the
continuous development of XAI methods remains both theoretically sound and empirically valid.

1Code at: https://github.com/understandable-machine-intelligence-lab/Quantus.
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2 Preliminaries

For clarity in the following discussion, we first present the core notation.
Local Explanations. Let f : X 7→ Y, f ∈ F be a differentiable black-box model that maps
inputs x ∈ RD to predictions y ∈ RC with C classes, where F denotes the function space. We
assume that f consists of L layers f1, · · · , fL, such that f(x) = fL ◦ · · · ◦ f1(x). To interpret
the behavior of f , local explanation methods [21, 22, 23, 24, 25] attribute importance scores
to features of input x. Given a model’s prediction y, we define an explanation e ∈ RD via the
explanation function Φλ : RD × F × Y 7→ RD, as e = Φ(x, f, y; λ). Then E denotes the space
of possible explanations w.r.t. f with Φλ ∈ E.
Evaluating Explanations. Due to the lack of ground truth explanations for black-box models,
evaluating the quality of Φ is generally non-trivial [1, 26, 2, 27]. This issue can be circumvented by
instead measuring specific properties of explanations, such as stability (e.g. [4, 5, 6]), complexity
(e.g., [9, 7, 28]) or faithfulness (e.g., [15, 7, 11]). For a comprehensive overview of existing
evaluation properties, we refer to [3] and [27]. We define a quality estimate q ∈ RM as the
output of an evaluation function Ψτ : E × RD × F × Y 7→ R, parameterised by τ such that
q = Ψτ (Φ,x, f, y). Then O denotes the space of possible evaluations w.r.t. e and Ψ ∈ O.

2.1 Model Parameter Randomisation Test (MPRT)

We define the original MPRT [15] in the following.
Definition 1 (MPRT). Let ΨMPRT

τ : E × RD × F × Y 7→ R be an evaluation function that
computes a quality estimate q̂ ∈ R that measures the similarity between the original explanation
e and the explanation ê := Φ(x, f̂ t

l , y) corresponding to the perturbed model f̂ t
l randomised in a

top-down fashion up to layer l ∈ [L, L − 1, . . . , 1]:

q̂MPRT = ρ(e, ê), (1)

with ρ : RD × RD 7→ R as a similarity function.

For Φ to be sensitive to the parameter randomisation, Equation 1 should yield values such that
q̂MPRT ≪ 1. This means low similarity between e and ê for a given class y. As denoted in
the superscript of f̂l, the direction of layer randomisation is completed top-down, i.e., f̂ t

l with
l ∈ [L, L − 1, . . . , 1]. For bottom-up randomisation, we denote f̂ b

l with l ∈ [1, 2, . . . , L].

2.1.1 Methodological Caveats

In the following, we summarise the concerns that have been raised about various methodological
aspects of MPRT, specifically its choice of (a) pre-processing, (b) layer-order and (c) similarity
measure. For each issue, we put forward a solution.
(a) Pre-processing. In the original formulation of MPRT [15], the explanations e and ê are
normalised using their minimum and maximum values. This is problematic as these statistics
are highly variable and almost arbitrary across attributions, complicating meaningful comparison
across randomisations [20]. Taking absolute attribution values may erase meaningful information
[17]—a caveat already addressed by the seminal work [15]. (Proposed Solution) To maintain the
original scale and distribution of the explanation, we recommend normalising e by the square
root of the average second-moment estimate [20] (see Equation 5 in Supplement) which does
not constrain attributions to a fixed range and enhances comparability across methods and
randomisations [20].
(b) Layer-order. While one might intuitively expect a significant difference in the explanation
output upon top-layer randomisation, i.e., ρ(e, ê) ≪ 1 with f̂ t

l up to layer l ∈ [L, L−1, . . . , 1]; [20]
provides evidence to the contrary. As discussed in-depth in the original publication [20], top-down
randomisation induces only modest alterations in the forward pass where (i) irrelevant features
from lower, non-randomised layers persist in higher, randomised layers, (ii) high activations
in lower layers are relatively likely to continue to dominate the network’s response and (iii)
architectures with skip connections, e.g., ResNets [29] maintain a baseline explanation that stays
constant even after randomisation, preserving certain features. As such, only a limited degree

3



of change between e and ê can be expected from faithful explanation methods post-model
randomisation. (Proposed Solution) To avoid preserving information in the forward pass, it is
advisable to perform bottom-up randomisation (as further discussed in the Supplement 6.2) or
perform the comparison of explanations only after full randomisation (see Equation 3.
(c) Similarity Measures. Another shortcoming identified by [20] is the property of SSIM and other
pairwise similarity measures, e.g., Spearman Rank Correlation, to be minimised by statistically
uncorrelated random processes. This is problematic since it implies that certain explanation
methods with more intrinsic (shattering) noise, e.g., gradient-based methods, will be favoured
in ranking comparisons, ultimately biasing evaluation outcomes. (Proposed Solution) While no
solution has been proposed to date, we put forward the sMPRT and eMPRT modifications which
separately addresses the issues by denoising attributions as a pre-processing step and replacing
the pairwise similarity measure with a complexity measure, respectively.

3 Methods

In the following, we provide mathematical details and motivations for sMPRT and eMPRT.

3.1 Smooth Model Parameter Randomisation Test (sMPRT)

We first propose the sMPRT, which makes a small adaptation to the original MPRT, aimed
at removing (shattering) noise observed in local explanation methods [30]. Inspired by [21, 25]
we introduce a preprocessing step to the evaluation procedure—given an input x, generate N
perturbed instances x̂i, compute their attributions Φ(x̂i, f, y; λ) and then perform the MPRT
evaluation on the averaged denoised attribution estimates. We define the sMPRT in the following.
Definition 2 (sMPRT). Let ΨsMPRT

τ : E × RD × F × Y 7→ R be an evaluation function that
computes a quality estimate q̂ ∈ R that measures the similarity estimates between explanations
ei := Φ(x̂i, f, y; λ) and êi := Φ(x̂i, f̂ b

l , y; λ) averaged over i ∈ [1, N ]:

q̂sMPRT = ρ

(
1
N

N∑
i=1

ei,
1
N

N∑
i=1

êi

)
, (2)

where x̂i = x + ηi, ηi ∼ N (0, σ) and ||ηi||p ≤ ϵ holds with high probability, with σ, ϵ ∈ R.

Similar to Equation 1, to indicate low similarity between e and ê, we expect values such that
q̂sMPRT ≪ 1 from Equation 2. As discussed in the Supplement, to set σ, we follow the heuristic
provided in the original publication [21], i.e., σ/(xmax − xmin). For N , we find that N = 50
provides consistent results (see Supplement 6.3).
Problems with sMPRT. Despite sMPRT’s capability to reduce sensitivity to shattering noise
(see Figure 2), sMPRT has notable drawbacks. First, it demands additional sampling (N ≥ 50,
see Figure 7), significantly increasing computational cost compared to standard MPRT. Second,
the practice of removing noise by adding noise is already a defining characteristic in some
attribution methods, e.g., SmoothGrad [21] and NoiseGrad [25], limiting sMPRT’s efficacy
with these methods and blurring the distinction with their baseline methods. Third, the degree
of noisiness is an arguable property of attribution methods and removing it before evaluation
may yield non-representative or biased results which may create performance discrepancies upon
real-world application. Lastly, sMPRT introduces hyperparameters σ and N , which may not
be tunable on any given data domain, e.g., climate data [31]. To this end, we next investigate
alternative modifications to MPRT.

3.2 Efficient Model Parameter Randomisation Test (eMPRT)

To address caveats (b) and (c) and improve upon the efficiency of the original MPRT, we
introduce eMPRT. This test effectively removes the layer-by-layer pairwise comparison between
e and ê and instead compute the relative rise in explanation complexity using only two model
states, i.e., the original- and fully randomised model. We define eMPRT in the following.
Definition 3 (eMPRT). Let ΨeMPRT

τ : E × RD × F × Y 7→ R be an evaluation function that
computes a quality estimate q̂ ∈ R that measures the relative rise in the complexity of the
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explanation from a fully randomised f̂ , i.e., ê := Φ(x, f̂ , y; λ), such that:

q̂eMPRT = ξ(ê) − ξ(e)
ξ(e) (3)

with ξ : RD 7→ R is a complexity function, e.g., defined through Equation 4.

Since Φ ought to faithfully capture the behaviour of the model f—a fully randomised model
(resulting in higher entropy of fL(x), as shown in Figure 3 (e) should therefore lead to reduced
information content in its explanation ê. Equation 3 quantifies this heightened explanation
complexity as a rise in relative entropy, where a positive value, i.e., q̂eMPRT > 0 indicates a
rise in complexity and a negative value, i.e., q̂eMPRT < 0 suggests a decrease in complexity. If
q̂eMPRT = 0, no change in explanation complexity was observed.
To set ξ, we employ a histogram entropy measure, grounded in Shannon-Entropy [32]. Specifically,
attribution values e are binned across B distinct slots where for each ith bin we compute the
frequency ci and derive the corresponding normalised probability, pi as follows:

ξ(e) = −
B∑

i=1
pi log(pi) where pi = ci∑B

i=1 ci

. (4)

Opting for this complexity measure offers three advantages: preservation of the inherent sign of
attributions, implicit normalisation and adaptability to diverse dimensionalities and distributions,
wherein B can be contextually chosen.
Advantages with eMPRT. Generally, since explanations need only be computed twice, pre-
and post-model randomisation, eMPRT is significantly more computationally efficient compared
to MPRT. It further avoids issues related to layer-order as well as the choice of normalisation
function (since the chosen entropy function already normalises implicitly, see Equation 4). Most
importantly, by incorporating the initial unperturbed complexity estimate, i.e., ξ(e) into Equation
3, eMPRT anchors its quality estimate by the explanation method’s inherent complexity, which
makes the evaluation scores more comparable across explanation techniques and models.

4 Results

The subsequent section provides a detailed analysis of our findings. Details on hyperparameters,
as well as additional experiments, can be found in the Supplementary Material 6.1-6.5. Code to
replicate the experiments can be found in the GitHub repository2.
Denoising Attributions with sMPRT. Figure 2 visualises sMPRT scores with progressive
randomisation of layers, in the bottom-up order. Results are shown for VGG-16 [33] and ResNet-
18 [29] models for ImageNet [34], four different attribution methods and two choices of N (where

ImageNet - ResNet18ImageNet - VGG16

Figure 2: sMPRT (N = 50) versus MPRT (N = 1) results, showing that denoising attributions with
sMPRT can degrade SSIM performance, which is most pronounced for gradient-based methods. orig
and final denote the unrandomised and fully randomised model states, respectively.

2Code at: https://github.com/annahedstroem/sanity-checks-revisited
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MNIST - LeNet fMNIST - LeNet eMPRT across tasks

ImageNet - ResNet18ImageNet - VGG16

(b)(a)

(e)

(d)(c)

Figure 3: eMPRT curves (a)-(d) depicting the rise in complexity ξ(ê) upon progressive layer randomisation
with bottom-up randomisation f̂b

l for different models and datasets and aggregated eMPRT scores (e)
for comparative benchmarking of different explanation methods.

N = 1 corresponds to the original MPRT). We observe that sMPRT—i.e., increasing the number
of noise samples N to 50—significantly affects the evaluation outcome, with the degree of change
varying for different attribution methods. Interestingly, after removing noise by adding noise, the
investigated attribution methods perform more similarly under randomisation. This observation
complements the theoretical findings of [20], which finds that the similarity scores computed by
MPRT may be skewed in favour of (noisy) gradient-based explanation methods.
eMPRT in Action. Figure 3 visualises eMPRT curves in (a)-(d) with progressive randomisation
of layers and aggregated eMPRT scores in (e), across tested tasks. Results are shown for ten
different attribution methods and a random attribution baseline.
First, the different explanation methods begin with varying complexity where no single explanation
method consistently outperforms others across tested tasks. Even after full model randomisation,
no method approaches the theoretical limit to randomness (dark blue) one might expect from an
explanation that acts maximally faithful to f̂ . Second, by comparing the model complexity (black,
computed as non-discretised entropy of the model’s output layer post-softmax, see Equation 6)
with the different explanation complexities, we may anchor our expectation of how the complexity
of an ideal explanation, i.e., “true to its model” [35], ought to develop. Interestingly, none of the
explanation functions mirror the model function’s complexity. Third, the progression of eMPRT
curves exhibits considerable variation across different tasks. While variation is expected (given
architectural specifics such as ResNets’ skip connections), it may be difficult for a practitioner to
interpret the explanation method’s faithfulness across the different layers. As a more meaningful
and robust measure of explanation faithfulness, we propose comparing explanations only before
and after full model randomisation (see Equation 3). In Supplement 6.4, we further discuss
the extent to which the evaluation rankings of explanation methods differ between eMPRT
and MPRT. Notably, the random attribution method—serving as a theoretical lower bound for
explanation faithfulness—–consistently receives lower evaluation scores under eMPRT compared
to MPRT, signifying an advantage with the eMPRT metric.
Meta-Evaluation. Importantly, to understand how the variants MPRT, sMPRT and eMPRT
differ in terms of metric performance characteristics, we set out a benchmarking experiment,
following the meta-evaluation methodology outlined in [3]. Each metric is assigned a summarising
meta-consistency score, i.e., MC ∈ [0, 1]. A higher MC score, approaching 1, signifies greater
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Figure 4: Average MC scores per metric across tested tasks (see in Table 1 in Supplement 6.5),
aggregated over 3 iterations with K = 5 perturbations. Here, M2, M3, M4, and M5 represent different
combinations of XAI methods, with M2 ={GradientSHAP, IntegratedGradients}, M3 ={Saliency, LRP-
z+, Input×Gradient},M4 ={Gradient, GradCAM, LRP-ε, Guided-Backprop}, M5 =Guided-Backprop,
GradientSHAP, GradCAM, LRP-ϵ, Saliency}. The colour intensity denotes the task, i.e., the dataset and
model combination.

reliability and superior performance based on the tested criteria. Details on the meta-evaluation
framework can be found in the original publication [27]. A more comprehensive breakdown of
the benchmarking results is included in Supplement 6.5, with experimental details in 6.1.
As Figure 4 illustrates, MPRT is generally outperformed by any of its variants (eMPRT or sMPRT)
across the tested tasks and attribution sets {M2, · · · , M5} (see symbols over grouped bars).
eMPRT and sMPRT consistently exhibit high reliability, substantiating its general applicability.
These results are encouraging, as they suggest that the modifications made to MPRT have
rendered the original metric more reliable. That said, Figure 4 shows that no variant showcases
perfect reliability, i.e., where MC = 1. This underlines the need for a continuously cautious
application of XAI metrics, reflecting the broader challenge in XAI where ground truth explanation
labels are often absent. Despite the performance advantage that eMPRT and sMPRT demonstrate,
a contextualised (and not monolithic) metric adoption in XAI is strongly advocated.

5 Conclusion

In this work, we proposed two extensions of the MPRT [15], sMPRT and eMPRT, that address
the caveats of pairwise similarity measures and layer randomisation order, which experimentally
demonstrated improved reliability across various datasets- and model applications. Note, however,
that both proposed variations of the MPRT suffer from unique drawbacks as well, with sMPRT
being computationally inefficient, hyperparameter-dependent and confounding the noise existing
in the attributions, an arguably explanation method-specific property. eMPRT, on the other
hand, may possibly vary between different tasks, e.g., data-specific factors such as the size of the
objects in a vision dataset. Each metric of evaluation has its own advantages and drawbacks,
and we therefore emphasise the need for a broader evaluation, encompassing several properties
to evaluate explanation quality.
Since both sMPRT and eMPRT employ fundamentally different mechanisms, a combination of
both holds promise and will be subject to future work. Additionally, while we have started to
explore the topic of layer-order for randomisation (see the Supplements 6.2), this analysis is not
complete, with especially bottom-up randomisation deserving further empirical validation.
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6 Supplementary Material

The Supplementary material first describes experimental hyperparameters used in the main paper
in detail and then discusses several additional experimental results.

6.1 Experimental Setup

Software Environment. All experiments were implemented in python, using PyTorch [36] for
deep learning. zennit [37] and captum [38] packages were used to compute explanations. The
Quantus [3] package was utilised to for evaluations with MPRT and extended to implement
sMPRT and eMPRT. The MetaQuantus library was employed for meta-evaluation [27].

Data. As shown by [19, 18], MPRT can be sensitive to the choice of task. We therefore aim
to cover a wide range of datasets in this work. We use three image classification datasets in
the experiments: ImageNet (ILSVRC2012 [39]), MNIST[40] and fMNIST [41]. For MNIST and
fMNIST, we randomly sample 1000 test samples and for ImageNet we use the first 1000 samples
of the validation set for experiments discussed in Figure 2 and randomly select 300 test samples
for experiments showcased in Figure 3 and Figures 4-12.

Models. The experiments are performed using different neural network models, including
architectures such as LeNets [42] and ResNets [29] and VGGs [33], which contributes to the
robustness of our findings. For MNIST and fMNIST, we train LeNets to an accuracy of 98.14% and
87.44% respectively. The training of all models is performed in a similar fashion; employing SGD
optimisation with a standard cross-entropy loss, an initial learning rate of 0.001 and momentum
of 0.9. All models are trained for 20 epochs each. For ILSVRC-15 [34] and ILSVRC2012 [39],
we use the ResNet-18 model [29] and VGG-16 [33] with pre-trained weights given the ImageNet
dataset, accessible via PyTorch [36].
Explanation Methods and Preprocessing. We evaluated the following explanation methods
using the MPRT variants: Gradients [43, 44], Saliency [45], Input×Gradient [46], GradCAM [24],
GradientSHAP [47] with 5 samples, SmoothGrad [21] (with 20 noisy samples and a noise level
of 0.1/(xmax − xmin) as implemented as default in zennit [37], Integrated Gradients [23] (with
20 iterations and a baseline of zero), Guided Backpropagation [48] and two distinct variations of
Layer-wise Relevance Propagation (LRP) [10, 49]: application of the LRP-ε-rule [10] to all layers
(called LRP-ε) and application of the LRP-z+-rule [49] to all layers (called LRP-z+). For random
attribution (as a control variant) we sampled from a uniform distribution, i.e., êi ∼ U(1, 0).
Since preprocessing can significantly affect the results of MPRT [17], we only take the absolute
values for methods where the sign has no meaning in terms of feature importance (Saliency and
SmoothGrad) and only consider the positive values for GradCAM, as per the original paper [24].
While the histogram entropy we used for eMPRT already normalises inputs implicitly, the SSIM
used to measure explanation difference in MPRT and sMPRT requires normalisation to make
attributions at different scales before and after randomisation comparable. For this purpose, we
utilised normalisation by the square root of the average second-moment estimate (cf. Supplement
of [20]), as this normalisation does not impose as much additional variance as normalisation by,
e.g., maximum value would. The normalisation is defined as follows:

norm(e) = eh,w(
1

HW

∑
h′,w′ e2

h′,w′

)1/2 , (5)

where êh,w is the value of the explanation map at pixel location (h, w) and H, W denote the
height and width, respectively3.

MPRT Hyperparameters. In the original paper [15], different similarity measures are used
e.g., Structural Similarity Index (SSIM) [50], Spearman Rank Correlation and HOG. We employ
SSIM [50], motivated by its widespread adoption in existing literature [15, 16, 20].

3This normalisation technique guarantees that the mean squared distance of each attribution score to
zero equals one. As the procedure does not constrain attributions to a fixed range, it is not designed for
visual representation but aims to preserve a measure useful for comparing the distances between different
explanation methods.
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sMPRT Hyperparameters. For the experiments with sMPRT, we employ SSIM [50] to
measure explanation similarity. For generating noise (σ), we used an adaptive standard deviation
of 0.2/(xmax − xmin), following the original heuristic presented in [21]. For the number of noise
samples (N) to average over, we investigated the following values: 1, 20, 50, 300. Evaluation
for those values is shown in Supplement 6.3. While a larger N generally improves the denoised
explanation estimate, it also increases computation time significantly. For Section 3.1, we thus
chose N = 50 as our estimate with acceptable runtime.

eMPRT Hyperparameters. In our experiments, for Equation 4, we empirically set the bin count
B = 100, which demonstrated robust performance across diverse experiments and explanation
methods. Although various statistical rules like Freedman-Diaconis’ [51] and Scotts’ [52] exist
for optimising B, initial tests indicated inconsistency in their performance, largely due to their
assumption of data normality, which is generally not applicable to attribution data.
To measure model complexity, we computed the Shannon entropy of the model output (post-
softmax) probabilities as follows:

ξ(fL(x)) = −
|L|∑
i=1

p(xi) log2(p(xi)) (6)

Meta-Evaluation Details. To meta-evaluate the metrics, i.e., capture their metric performance
characteristics in terms of statistical reliability, we employed the MetaQuantus library [3]. For this,
we measured both their resilience to noise (NR) and their reactivity to adversary (AR) by inducing
controlled perturbations, where we applied minor and disruptive perturbations to the input- and
model spaces, respectively4. Here, we computed the intra- (IAC) and inter-consistency (IEC)
scores, which include measuring the similarity in score distributions and ranking of different
explanation methods (post-perturbation), respectively. Each metric received a summarising
meta-consistency (MC) score with MC ∈ [0, 1]:

MC =
(

1
|m∗|

)
m∗T m where m =

IACNR

IACAR

IECNR

IECAR

 , (7)

with m∗ = R4 represents an optimally performing quality estimator as defined by the all-one
indicator vector. For exact definitions for the contents of the meta-evaluation vector m, we refer
to the original publication [27].

Meta-Evaluation Hyperparameters. For empirical assessment, we utilised the pre-existing
tests available in the MetaQuantus library [3] and their associated hyperparameters. The existing
MetaQuatus tests are accessible via the GitHub repository5. All metrics have been implemented in
Quantus [3]. We executed these metrics over K = 5 perturbations, spanning 3 iterations with the
test configurations as outlined in the notebook6. To ensure a fair comparison among the metrics,
we adhered to uniform hyperparameter settings, as specified by the normalisation formula in
Equation 5. Given that the MetaQuantus library necessitates each metric to yield a single quality
estimate q̂ ∈ R per sample, we calculated the correlation coefficient for the fully randomised
models in both MPRT and sMPRT, which is anticipated to enhance their performance.

6.2 Effect of Layer Randomisation Order on MPRT Results

To avoid the preservation of significant portions of the forward pass that occurs with the latter
(cf. and 2.1.1 (b) and [20]), [20] proposes to randomise layers in bottom-up order instead of

4We applied i.i.d additive uniform noise such that x̂i = x + δi with δi ∼ U(α, β) for the Input
Perturbation Test and applied multiplicative Gaussian noise to all weights of the network, i.e., θ̂i =
θ · νi with νi ∼ N (µ,Σ) for the Model Perturbation Test. The hyperparameters α, β, µ, Σ were set
according to the original publication [27].

5Code at: https://github.com/annahedstroem/MetaQuantus/.
6See hyperparameter settings at notebook: https://github.com/annahedstroem/MetaQuantus/

blob/main/tutorials/Tutorial-Getting-Started-with-MetaQuantus.ipynb
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top-down. Since bottom-up layer-order randomises the lowest layers first, such preservation
cannot occur.
Given the use of bottom-up randomisation in sMPRT, and its current lack of empirical validation,
we briefly examine its impact on MPRT in the following. Note that a better option may be to
avoid progressive layer randomisation altogether, simply comparing the unrandomised state with
the fully randomised state (see Equation 3).
Figure 5 compares MPRT rankings for top-down (top) and bottom-up (bottom) randomisation
order. Note that in contrast to the seminal work [15], we apply a different preprocessing to the
explanations where we normalise by the square root of the average second-moment estimate [20]
(also cf. discussion in Section 2.1.1, caveat (a)). We also take absolute values only for Saliency
and SmoothGrad.
First, we validate that the model is sufficiently disturbed by both orderings by also tracking
the model accuracy. This is indeed the case for all four settings (see black lines), where the
accuracy drops to random for the ImageNet experiments (around 0.001) immediately after the
respective first layer is randomised. MPRT results are strongly affected by the randomisation order,
however—not only do all explanation methods perform better with bottom-up randomisation,
but since their SSIM drops more steeply with randomisation, the differences in SSIM score
between methods significantly diminish. Especially, methods that appeared almost invariant to
model parameters with top-down randomisation (LRP-z+ and Guided Backpropagation) show
significantly more faithfulness to the model with bottom-up randomisation.
The above observations are confirmed by Figure 6 (a1) and (a2): Explanation methods perform
better under the MPRT with bottom-up randomisation (i.e., the dotted hatch bars are lower than
the striped bars). While this does not translate to the categorical rankings between explanation

ImageNet - ResNet18ImageNet - VGG16
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Figure 5: Effect of layer randomisation order on MPRT results for ImageNet, using VGG16 (left) and
ResNet18 (right). The black line shows how model accuracy changes with randomisation, other lines
show the SSIM measured by MPRT for different explanation methods. orig and final denote the
unrandomised and fully randomised model states, respectively. (Top) Top-down randomisation, starting
with the output layer, as performed by [15]. (Bottom) Bottom-up randomisation, starting with the lowest
layer, as suggested by [20]. Model accuracy degrades with the same speed for both randomisation orders.
However, there is an significant discrepancy in explanation method SSIM scores: differences between
methods seem much more severe for top-down than bottom-up randomisation.
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Figure 6: Effect of layer randomisation order on MPRT results. Evaluation was performed for VGG16
(left) and ResNet18 (right) models, on the ImageNet dataset. a1 and a2 : Area under MPRT curves (cf.
Figure 5) for various XAI methods and both layer orders. Percentile (0, 25, 50, 75, 100) statistics are
visualised. b1 and b2 : Relative ranking changes between XAI methods from top-down to bottom-up
order. Note that a lower score in (a) corresponds to a higher ranking in (b). (c1 and c2): Values of
intermediate explanation e (cf. [20]), assigned to 100 bins according to their absolute value (x-axis) vs.
the average amount of change with randomisation for values in each bin (y-axis).

methods (b1) and (b2), which seem only slightly affected by randomisation order, keep in mind
that there are also other interfering effects to consider, such as the sensitivity of SSIM to noise
[20], as described in Section 2.1.1, issue (c). These effects are likely to confound the bottom-up
results as well and are addressed separately by the sMPRT and eMPRT metrics proposed in this
work.
To understand why bottom-up randomisation leads to generally better MPRT performance, we
inspect the (LRP-ε) explanations el of the intermediate activations at layer l —i.e, el explains
the output of layer l as opposed to the whole model (which would correspond to output layer
L). The values of the original explanation el are sorted into 100 equidistant bins according to
their magnitude. We then randomise the model bottom-up or top-down, to compute randomised
explanations êl. For bottom-up and top-down order, we randomise only the first and last
parameterised layer of the model, respectively.
For each bin, we evaluate how much the explanation values change on average under each
randomisation (i.e., we compute the average |êl − el| for each bin). Figure 6 (c1) and (c2)
shows the results of this analysis for two different layers l—for each model, an intermediate layer
(top) in addition to the output layer (bottom). Here, we observe that bottom-up randomisation
(orange line) affects both the intermediate layer explanation and the last layer explanation,
while top-down randomisation (blue line) only affects the latter (although significantly less than
bottom-up randomisation). Bottom-up randomisation seems to have a stronger impact on the
model’s reasoning compared to top-down randomisation. For a robust MPRT, it is necessary to
randomise the model output as fully as possible—because only then faithful explanations can be
expected to change significantly [20]. In this aspect, bottom-up randomisation seems to be a
better choice compared to top-down randomisation.

6.3 sMPRT: Additional Experiments

In the following, we investigate the effect of the number of perturbed samples N on sMPRT
results. To make the curves obtained from sMPRT (cf. Figure 2) comparable across different
N , we condense them to a singular value by computing the area below each curve (denoted as
AUC). Lower AUC indicates more faithfulness towards model parameters.
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ImageNet - ResNet18ImageNet - VGG16

Figure 7: Effect of number of perturbed samples N on sMPRT results for VGG16 (left) and ResNet18
(right) on ImageNet data. The plots indicate how the area under the mean sMPRT curve (AUC) changes
with N for different explanation methods (i.e. the area under the curves as shown in Figure 2). Up to
N = 50, there seems to be a steep change in AUC, especially for gradient-based methods. After that,
the AUC curves flatten out, indicating a converged estimate of the denoised samples.

Figure 7 shows how these AUC values progress with increasing N . Especially gradient-based
methods seem to vary significantly with N . However, the AUC seems to converge for large N ,
indicating that the estimation of the denoised samples also converges. While slight variations
can be observed up to the last investigated value, N = 300, AUC does not change much after
N = 50. For the sake of efficient evaluation, we therefore recommend to use N = 50 to obtain a
decent estimate of the correct ranking, albeit a larger N will always yield a better estimation.

6.4 eMPRT: Additional Experiments

In Figure 8, the categorical rankings derived from the evaluation metrics MPRT and eMPRT are
visualised for ten distinct attribution methods, as well as a random attribution. Rankings are
organised in descending order, where R1 denotes the best performance and R11 is the worst score.
The findings corroborate those of [27], demonstrating considerable variability in explanation
rankings between the two metrics. In contrast to the original publication [15], which asserted
Guided Backpropagation as inferior to gradient-based methods such as Gradient and SmoothGrad,
our eMPRT evaluation reveals a contrasting ranking, even advancing Guided Backpropagation
above its gradient-based counterparts. The random attribution—serving as a theoretical lower
bound for explanation quality–consistently receives lower scores for eMPRT compared to MPRT,
signifying an advantage of our proposed metric.

6.5 Benchmarking: Additional Details

In this section, we present a detailed breakdown of the benchmarking results. First, we present the
numerical version of Figure 4, presented in the main manuscript. Here, M2 ={GradientSHAP, In-
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Figure 8: Relative ranking of ten attribution methods and a random attribution using MPRT and eMPRT
evaluation. The rankings, consistent with findings from [27], vary significantly between the two metrics.
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tegratedGradients}, M3 ={Saliency, LRP-z+, Input×Gradient},M4 ={Gradient, GradCAM, LRP-
Eps, Guided-Backprop}, M5 =Guided-Backprop, GradientSHAP, GradCAM, LRP-ϵ, Saliency}.

Table 1: Meta-evaluation benchmarking results, aggregated over 3 iterations with K = 5. The top-
performing metric in each setting is highlighted in bold. If it outperforms the next-best-performing metric
by at least one standard deviation, it is underlined. Higher values are preferred.

Setting XAI Methods eMPRT (↑) sMPRT (↑) MPRT (↑)

fMNIST LeNet
M2 0.625 ± 0.002 0.613 ± 0.119 0.594 ± 0.088
M3 0.717 ± 0.012 0.610 ± 0.083 0.653 ± 0.058
M4 0.677 ± 0.091 0.643 ± 0.005 0.617 ± 0.033
M5 0.626 ± 0.064 0.680 ± 0.023 0.647 ± 0.057

MNIST LeNet
M2 0.690 ± 0.051 0.608 ± 0.111 0.550 ± 0.030
M3 0.740 ± 0.036 0.580 ± 0.006 0.600 ± 0.048
M4 0.653 ± 0.046 0.555 ± 0.015 0.539 ± 0.019
M5 0.618 ± 0.012 0.623 ± 0.004 0.597 ± 0.012

ImageNet ResNet18
M2 0.577 ± 0.047 0.608 ± 0.042 0.576 ± 0.045
M3 0.709 ± 0.047 0.658 ± 0.054 0.691 ± 0.045
M4 0.646 ± 0.052 0.678 ± 0.050 0.673 ± 0.057
M5 0.628 ± 0.023 0.651 ± 0.050 0.639 ± 0.039

ImageNet VGG16
M2 0.548 ± 0.032 0.533 ± 0.06 0.523 ± 0.043
M3 0.651 ± 0.047 0.649 ± 0.051 0.650 ± 0.050
M4 0.630 ± 0.041 0.688 ± 0.052 0.637 ± 0.053
M5 0.610 ± 0.039 0.613 ± 0.041 0.597 ± 0.043

In the following Figures 9-12, we show the different area graphs which each contains the entries
of the meta-evaluation vector (set as coordinates on a 2D plane).
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Figure 9: A graphical representation of the benchmarking results for M = 2 for MPRT, sMPRT
and eMPRT, aggregated over 3 iterations with K = 5. The grey area indicates the area of an
optimally performing estimator, i.e., m∗ = R4. The MC score (indicated in brackets) is averaged
over MPT and IPT. Higher values are preferred.

By inspecting the coloured areas of the respective estimators in terms of their size and shape, we
can deduce the overall performance of both failure modes (NR, AR). Here, larger coloured areas
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Figure 10: A graphical representation of the benchmarking results for M = 2 for MPRT, sMPRT
and eMPRT, aggregated over 3 iterations with K = 5. The grey area indicates the area of an
optimally performing estimator, i.e., m∗ = R4. The MC score (indicated in brackets) is averaged
over MPT and IPT. Higher values are preferred.

imply better performance on the different scoring criteria and the grey area indicates the area of
an optimally performing quality estimator, i.e., m∗ = R4. The shades of the different colours,
i.e., purple, orange and green indicate the datasets and are used consistently across the Figures
9-12 (as well as Figure 4 in the main manuscript). The columns show the tasks and the rows
the different metrics: MPRT, sMPRT and eMPRT. With few exceptions, eMPRT and sMPRT
demonstrate superior performance, on both the input- and the model perturbation tests, across
tested tasks and subsets of attribution methods.
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Figure 11: A graphical representation of the benchmarking results for M = 2 for MPRT, sMPRT
and eMPRT, aggregated over 3 iterations with K = 5. The grey area indicates the area of an
optimally performing estimator, i.e., m∗ = R4. The MC score (indicated in brackets) is averaged
over MPT and IPT. Higher values are preferred.
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Figure 12: A graphical representation of the benchmarking results for M = 2 for MPRT, sMPRT
and eMPRT, aggregated over 3 iterations with K = 5. The grey area indicates the area of an
optimally performing estimator, i.e., m∗ = R4. The MC score (indicated in brackets) is averaged
over MPT and IPT. Higher values are preferred.
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