
Remember what you did so you know what to do next

Manuel R. Ciosici, Alex Hedges, Yash Kankanampati, Justin Martin,
Marjorie Freedman, Ralph Weischedel

manuelc@isi.edu, mrf@isi.edu, weisched@isi.edu

Information Sciences Institute, University of Southern California

Abstract
We explore using a moderately sized large lan-
guage model (GPT-J 6B parameters) to create a
plan for a simulated robot to achieve 30 classes
of goals in ScienceWorld, a text game simulator
for elementary science experiments. Previously
published empirical work claimed that large
language models (LLMs) are a poor fit (Wang
et al., 2022) compared to reinforcement learn-
ing. Using the Markov assumption (a single
previous step), the LLM outperforms the rein-
forcement learning-based approach by a factor
of 1.4. When we fill the LLM’s input buffer
with as many prior steps as possible, improve-
ment rises to 3.5x. Even when training on only
6.5% of the training data, we observe a 2.2x
improvement over the reinforcement-learning-
based approach. Our experiments show that
performance varies widely across the 30 classes
of actions, indicating that averaging over tasks
can hide significant performance issues.

In work contemporaneous with ours, Lin
et al. (2023) demonstrated a two-part approach
(SwiftSage) that uses a small LLM (T5-large)
complemented by OpenAI’s massive LLMs to
achieve outstanding results in ScienceWorld.
Our 6-B parameter, single-stage GPT-J matches
the performance of SwiftSage’s two-stage ar-
chitecture when it incorporates GPT-3.5 turbo
which has 29-times more parameters than GPT-
J.

1 Introduction

Our research interest is in using a modest-sized,
self-hosted large language model (LLM) for plan-
ning so that a robot can execute the plan(s)
to achieve goals. Google’s InnerMonologue
project (Huang et al., 2023) uses PALM (540B
parameters) and a real robot; Lin et al. (2023) use
a small LLM (T5-large) but for many decisions
relies on the massive model GPT-4 (OpenAI, 2023)
to achieve goals in ScinceWorld. Our study uses
GPT-J (6B parameters, Wang (2021)) in an open-
source, simulated environment, ScienceWorld (SW,

Wang et al. (2022)). We selected ScienceWorld
for this study since it (1) supports several types of
primitive actions, many types of entities, and 30
classes of tasks representing significantly differing
challenges; (2) provides a simulator for the envi-
ronment, including natural state changes (e.g., ice
melting, a butterfly emerging from a chrysalis); (3)
may benefit from applying common sense knowl-
edge; (4) might be improved by external knowledge
from a knowledge graph or from text; and (5) had a
substantial amount of training data so that we could
explore the effect of training set size. Our empirical
results contrast with those of Wang et al. (2022),
who evaluated five architectures via individually
training 30 different models, one for each of the 30
classes of tasks. Those models chose the next step
given the current text feedback from the simulator
and the previous action (i.e., Markov assumption).
By contrast, we train a single GPT-J model to cover
all 30 classes of tasks and explore filling the LLM’s
input buffer with as much game history as fits. A
contemporaneous study (Lin et al., 2023) uses two
models: T5-large makes routine decisions; when
needed for some decisions, the architecture calls
GPT-4. Though performance relying on GPT-4 ex-
ceeds GPT-J, when Lin et al. (2023) used GPT-3.5
Turbo, rather than GPT-4, performance is compa-
rable to our results with GPT-J which uses 29-fold
fewer parameters than GPT-3.5 Turbo.

What we have learned is:
1. By including a sequence of previous actions,

not just the most recent one, the average score
triples compared to DRRN.

2. Performance of the LLM model degrades
gracefully with much less training data. With
only 6.5% of the training data, the score dou-
bles compared to DRRN.

3. If one uses all the training data provided, GPT-
J learns enough that adding a pre-condition
system text does not help (i.e., overall perfor-
mance stays the same or drops slightly).



4. Despite previous findings that LLMs perform
poorly in ScienceWorld, we find they outper-
form the DRRN by a factor of 3.5.

5. The 6B parameter GPT-J can match the per-
formance of complex dual-LLM architectures
that rely on LLMs 29 times larger than GPT-J.

2 Related Work

Reinforcement Learning (RL). Jansen (2022) sys-
tematically surveyed the available text game envi-
ronments, RL techniques, and some of the field’s
challenges, such as low-complexity text environ-
ments and the limitations of classic planning tech-
niques such as PDDL (Ghallab et al., 1998) when it
comes to text game environments. Two of the sur-
veyed RL methods (DRRN and CALM) achieved
the highest scores in the original ScienceWorld
evaluation (Wang et al., 2022). DRRN (He et al.,
2016) is one of the most successful RL methods for
text games. When playing ScienceWorld, DRRN
requires assistance from the game in the form of a
list of valid actions to choose, as ScienceWorld’s
action space is too large for the model (Wang et al.,
2022). CALM (Yao et al., 2020) attempts to ad-
dress DRRN’s need for a list of valid actions by
using a language model (GPT-2) to generate a set
of actions for its RL component to choose from.
Despite succeeding in some text games, RL strug-
gles to play games with large action spaces or those
that require background knowledge not learnable
from the game.

Language models have recently surpassed RL
methods in traditional RL benchmarks, including
playing Atari games (Chen et al., 2021; Janner
et al., 2021). Kim et al. (2022) used DistilBERT
(Sanh et al., 2020) for its common sense to improve
on DRRN in Zork1, Zork3, and 12 other text games
that pre-date ScienceWorld. Singh et al. (2021) ex-
plored building on BART (Lewis et al., 2020) as a
world model for playing Zork1 and eight other text
games that pre-date ScienceWorld. Most recently,
Lin et al. (2023) employed T5 (Raffel et al., 2020)
for an initial plan to achieve ScienceWorld goals
and GPT-4 (OpenAI, 2023) to re-plan when the T5
model was challenged.

Language models generally approach the prob-
lem as a sequence modeling task, performing the
equivalent of offline reinforcement learning (Levine
et al., 2020). LLMs can also store large amounts
of world knowledge, giving them a potential ad-
vantage over pure RL methods in environments

that require prior knowledge, like ScienceWorld.
Some recent work has shown how extremely large
language models (over 100B parameters) can plan
in simulated and real-world environments (Huang
et al., 2022; Ahn et al., 2022; Huang et al.,
2023). SayCan (Ahn et al., 2022) and Inner Mono-
logue (Huang et al., 2023) use a huge language
model (e.g., a 540B parameter PaLM, Chowdhery
et al. (2022)) to create a plan for a robot to convert
into actions. In contrast to InnerMonologue, the
system in this paper uses a language model that
is 90 times smaller (6B parameter GPT-J, Wang
(2021)), which both plans and turns its plan into
low-level actions, though in a simplified, simulated
environment.

3 The task

3.1 ScienceWorld Description

ScienceWorld (Wang et al., 2022) is a multiroom
text game that tests scientific reasoning abilities
at the level of a standard elementary school sci-
ence curriculum. It contains 30 different classes
of tasks, each with many variations that challenge
the player to adapt to environmental changes. The
variations challenge players to demonstrate work-
ing knowledge of scientific concepts and experi-
ments rather than the declarative knowledge usually
demonstrated by question-answering LLMs. For
example, some task variations prevent memoriza-
tion (e.g., by randomizing object locations). Others
require a different experimental path by changing
the nature of the task (e.g., melting aluminum in-
stead of ice) or by adding obstacles (e.g., a broken
stove requires players to find another heat source).
ScienceWorld also tests players’ ability to gener-
alize by including tasks where the target object is
known and can, therefore be solved using prior
knowledge (e.g., determining the boiling point of
water) and tasks where the target object is unknown,
and the player must perform a scientific experiment
(e.g., determining the boiling point of an unknown
liquid substance). There are 7 207 total task vari-
ations across the 30 tasks, split unevenly among
the tasks with a minimum of 10 variations per task
and a maximum of 1 386. The game allocates 50%
of all variations for training, 25% for development,
and 25% for testing.

ScienceWorld has over 1 000 possible actions,
of which a few tens or hundreds are valid at any
point. Players receive points when they achieve
task-specific milestones and a score of 0 if they do



not perform the required task or perform it incor-
rectly, e.g., focusing on an animal when the task
is to find a plant. Furthermore, the design of the
train/dev/test split is such that players do not en-
counter test tasks during training. For example, if
melting ice is a training task, test and dev include
variations of the melting task that involve different
materials (e.g., aluminum), requiring different tem-
peratures, and even alternative heat sources (e.g., a
forge instead of a stove). The train/dev/test setup
makes the game difficult for traditional RL systems
as it requires agents to generalize from the train set
based on background world knowledge, which RL
agents typically do not have.

3.2 Data generation

For any task variation, ScienceWorld can automati-
cally generate one or more unique gold paths con-
sisting of actions that will achieve the required
goals. For training data, we generate up to 3 unique
gold paths for variations in the train set, yielding
7 359 unique gameplays. From this training data
set, we sample several smaller train sets. We cre-
ate one training set containing only one unique
gold path per task variation, yielding 3 589 unique
gameplays. We also create a task-balanced train-
ing set by sampling a maximum of 18 gameplays
per task from the half-sized training set1, result-
ing in 480 unique gameplays, almost evenly dis-
tributed across the 30 ScienceWorld tasks but in-
cluding only a small subset of each task’s varia-
tions, thus challenging agents to generalize from
much less varied data. All the training data we used
is available at https://github.com/isi-vista/
science_world_data.

4 Results

4.1 Training

We fine-tuned GPT-J on ScienceWorld games tran-
scribed as a natural language dialog between an
agent and the game. The agent issues actions; the
game replies with the current observation but does
not mention the score. This plain text sequence-
modeling format differs from prior approaches to
framing the RL problem as a sequence modeling
task (see Appendix A for details). Formulating
games as dialog transcripts allows us to use any
autoregressive pretrained LLM and take advantage
of the vast prior knowledge encoded in modern

1For tasks with fewer than 18 variations, we take as many
gold paths are there are task variations.

transformer-based LLMs. Except for one experi-
ment condition, we fill GPT-J’s input buffer with
as much prior history as possible.

We train GPT-J-based models for the follow-
ing conditions: All train Markov uses the entire
training data of 7 359 games, but only gives GPT-J
the prior action and game observation (i.e., uses a
Markov assumption, like the agents tested by Wang
et al.); All train uses the entire training data set
and fills GPT-J’s input buffer; No variations uses
roughly half of the training data (as described in
the previous section) and fills GPT-J’s input buffer.
Finally, Up to 18 games is trained only on the
small subset of 18 task variations per task (480
games, approximately 6.5% of the entire training
data) but fills GPT-J’s input buffer. We include
a complete description of the training details and
hyper-parameters in Appendix B.

To evaluate potential improvements to the LLM
from external components, we designed a precondi-
tions checker to assist the LLM. The preconditions
system parses ScienceWorld’s text descriptions and
keeps track of the state of doors and drawers (open
or closed). If GPT-J attempts to reopen an object
already in an open state, the preconditions system
intercepts GPT-J’s output preventing it from reach-
ing ScienceWorld. The preconditions system then
replies to GPT-J pretending to be the game and to
have performed the requested action. By prevent-
ing redundant actions from reaching the game, the
preconditions system prevents GPT-J from wasting
game turns on needless close or open actions. The
preconditions system aims to add programmatic
support for common sense and alleviate LLM ten-
dencies to occasionally emit redundant actions.

4.2 Evaluation

Unlike Wang et al. (2022), who evaluated using a
sample of 300 dev games (16.5% of dev), or Lin
et al. (2023) who evaluated on a sample of only
270 test games, we evaluate over the full test set
of 1 819 games. The prior literature is also incon-
sistent about computing scores. As in this work,
Wang et al. (2022) assume that failed games have
a score of 0 while Lin et al. (2023) use the score
just prior to the agent failing. We include a de-
tailed comparison of our testing setup with that
of Wang et al. (2022) and Lin et al. (2023) in Ap-
pendix C. Like Wang et al. (2022), we report results
after evaluations with an environment limit of 100
actions/steps, meaning that during the evaluation,

https://github.com/isi-vista/science_world_data
https://github.com/isi-vista/science_world_data


Games Actions (% of total)

Train Score Std.
Dev. Improv. Won Lost Valid AVs IOs IS RAs Other

1 DRRN N/A 17.95 1.0x
GPT-J

2 All train Markov 7 359 24.74 1.05 1.4x 117 74 61.13 3.51 31.14 2.43 1.77 0.02

3 All train 7 359 62.57 4.32 3.5x 1 012 383 90.51 0.06 4.68 2.51 2.07 0.17

4 No variations 3 589 63.35 6.94 3.5x 1 037 372 90.39 0.07 4.28 3.08 2.00 0.19

5 Up to 18 games 480 39.78 2.35 2.2x 479 682 83.59 0.39 11.46 2.81 1.46 0.30

Table 1: ScienceWorld scores over the 1 819 games that comprise the test set. The train column shows the number
of train games available during training. Improv. = relative improvement over DRRN. AVs = Affordance Violations;
IOs = Invalid Objects; IS = Invalid Syntax; RAs = Redundant Actions. Note that the sum of won and lost games
does not equal the total number of test games; as in many games, agents obtain a score that is neither 0 (lose) nor
100 (win).

games end if an agent fails, wins, or reaches the
action/step limit. We discuss the effect of the 100
action limit on evaluation in Appendix E.

Out of the box, ScienceWorld only reports a
player’s score, no other performance metrics. To
better understand a model’s behavior, we analyzed
our game transcripts to count the numbers of games
lost and won (0 or 100 points) and to classify each
action emitted by GPT-J as either valid or one of
five categories of invalid actions: Affordance Vio-
lations (AVs, e.g., the agent tried to pour a chair),
Invalid Objects (IOs, i.e., the agent tries to interact
with a non-existent, hallucinated object), Invalid
Syntax (IS, i.e., the action is valid English, but is
not a valid ScienceWorld command), Redundant
Actions (RAs, e.g., the agent tries to open an al-
ready open door), and Other. We present our re-
sults in Table 1, where each score is the mean over
five training runs with different random seeds. All
our GPT-J-based agents outperform the DRRN, the
best-performing agent in the original ScienceWorld
evaluation (Wang et al., 2022).

All train Markov, the GPT-J model trained on
the entire training data using the Markov assump-
tion (i.e., conditioning actions only on the prior
action and the game feedback) outperforms DRRN
by a factor of 1.4 (row 2). Only 61.13% of the
actions emitted by this model are valid, and almost
a third (31.14%) involve non-existing objects. Our
result starkly contrasts those of Wang et al. (2022)
who evaluated an LLM trained with the Markov
assumption (a T5 architecture (Raffel et al., 2020)
initialized with the Maccaw weights (Tafjord and
Clark, 2021)) and found it performed poorly. De-
spite T5 being twice the size of the GPT-J in our
experiments (11B parameters vs. 6B), it only ob-

tained 8 points on the entire test set, 3.1 times less
than our Markov-instructed GPT-J (our weakest
model). We postulate that our Markov-instructed
GPT-J agent outperforms T5 due to our more nat-
ural formulation of the task and GPT-J’s longer
maximum input length (2 048 word pieces vs. 512).

All train, the model trained on the entire set of
7 359 games, and which conditioned its actions on
as much history as possible (on average the previ-
ous 43.42 actions, see Appendix A), outperformed
DRRN by a factor of 3.5 (row 3). The model won
1 012 games (55% of the 1 819 test games) and
rarely emitted invalid actions (90.51% action valid-
ity).

Adjusting the training data such that each vari-
ation only appears with a single solution reduces
the training data to slightly less than half. However,
the resulting model (No variations, row 4) obtains
a score almost one point higher than using all train-
ing (row 3). The model still wins, on average, 1 037
games (57%) with an action validity of 90.39%.

If we evaluate these two non-Markov models
(All train training and No variations using the eval-
uation methodology of Lin et al. (2023), the scores
change little (62.59 vs. 62.57 for All train; 61.24
vs. 63.35 for No variations). While these scores
are far from the top performing SwiftSage system
(T5 + GPT-4), they are similar to the 62.22 score
obtained by the T5 + GPT-3.5-turbo SwiftSage sys-
tem (Lin et al., 2023, Table 3). Thus, the single
model 6B-parameter GPT-J model closes the gap
to the approximately 29 times larger dual model
which incorporated GPT-3.5-turbo.

Interestingly, even when only 480 games are
available for training (a mere 6.5% of the train-
ing data), GPT-J learns to play ScienceWorld and



RAs (%) +P. RAs (%) Score

All train Markov 1.77 0.95 +0.03

All train 2.07 0.99 −0.06

No variations 2.00 0.74 −0.14

Up to 18 games 1.46 0.67 +0.07

Table 2: Percentage of Redundant Actions (RAs) emit-
ted by our models before and after adding the precondi-
tions system (+P) and the change in SW scores.

still achieves a 2.2x improvement over DRRN (Up
to 18 games, row 5). This model wins far fewer
games (26.3%), emits fewer valid actions (83.59%),
and has a tendency to try to interact with halluci-
nated objects (11.46% of its actions involve non-
existing objects). Despite the lower improvement
over DRRN, this result indicates that GPT-J can
generalize from even small amounts of training
data. We hypothesize that the background knowl-
edge GPT-J gained during its pre-training drives its
ability to generalize from such little training data.

All our results have a standard deviation of only
a few points, indicating good stability over the five
training runs with different seeds. However, like
Wang et al., we find that our models’ performance
varies greatly across the 30 tasks. We discuss the
per-task performance in Appendix D.

We show the effect of the preconditions system
in Table 2. The preconditions system almost halves
the percentage of redundant actions passed from
our models to ScienceWorld. However, the Sci-
enceWorld score changes only a fraction of a point,
inconsistently, up or down. The lack of change in
the ScienceWorld score is not surprising. We eval-
uate all models with an environment step/actions
limit of 100, meaning we can interpret the percent-
ages in the RAs column as the average count of
redundant actions per game. Even if the precondi-
tions system prevented all redundant actions, that
would only give each agent about two extra ac-
tions per game, not enough to influence the final
score meaningfully. Despite the lack of increase
in the ScienceWorld score, the preconditions sys-
tem achieves the goal of removing non-common
sensical actions from the LLM-game interaction.

5 Discussion and Conclusion

LLMs still exhibit non-common-sensical behav-
iors, such as emitting redundant actions or trying
to interact with nonexistent objects. External com-
ponents such as the precondition system shown in

this work can help alleviate some of these behav-
iors. Other external components could assist LLMs
with structured knowledge. Such knowledge could
be quickly inspected and updated by humans. Our
team has yet to succeed in significantly assisting
the LLM using external knowledge sources. While
we have managed to teach the LLM to interact with
a Q&A system that could answer Is-A questions for
the four classification tasks, such knowledge was
already present in the LLM, as evidenced by the
high scores on classification tasks in Appendix D.

Despite Wang et al. (2022)’s findings that LLMs
perform poorly in ScienceWorld, we find that with
a careful formulation of the prompt and access to
prior interactions with the game, even a single rea-
sonably sized LLM achieves a 3.5x improvement
over DRRN. The 6B-parameter GPT-J models can
match the performance of SwiftSage T5 + GPT-
3.5-turbo, a more complex architecture that uses a
model 29 times larger than GPT-J.

Even when learning from just a few hundred
games (6.5% of the training data), GPT-J achieves
a 2.2x improvement over DRRN. Despite the size-
able overall score improvement, the LLM performs
poorly on some ScienceWorld tasks. The strong
correlation between the performance of our GPT-
J-based models suggests that some tasks are gen-
uinely more difficult for the LLM.

Limitations

This paper shows that an agent based on GPT-J, a
Large Language Model (LLM), can perform ele-
mentary science experiments in a simulated text
environment. Our GPT-J agent outperforms the
state-of-the-art reinforcement learning models by
a factor of 3.5 using a single model rather than
DRRN’s 30 task-specific models. While GPT-J’s
performance is impressive, readers should remem-
ber that Large Language Models like GPT-J have
unforeseen gaps in knowledge and their behavior
is often unpredictable. It is appealing to look at our
experience with GPT-J and assume that one can
fine-tune LLMs and then task them with operating
machinery or robots in the real world. However,
due to LLMs’ unpredictable behavior, such an ap-
proach could result in material damage or even
injure humans, animals, or the environment. This
warning also applies to cases where LLMs are al-
lowed to operate computer APIs which, despite
their virtual nature, can have undesired effects in
the real world. Should LLMs be allowed to oper-



ate APIs or real-world machinery, they should not
be given complete control over the tools but oper-
ate within carefully chosen boundaries strictly en-
forced through software or through physical means.

When considering using LLMs to plan and exe-
cute in new domains, one should remember that the
LLM used in this paper benefited not just from the
opportunity to learn from example experiments but
also from its background knowledge. By its nature,
knowledge of elementary science is widely spread
in texts on the web, such as those that comprised
GPT-J’s pre-training data. For a detailed presen-
tation of GPT-J’s pre-training corpus, we direct
readers to Gao et al. (2020).

Finally, when interacting in ScienceWorld,
LLMs have a text-only view of the environment.
The environment is described via text with just the
detail necessary for accomplishing the tasks, akin
to having access to perfect Computer Vision and a
system that can filter out trifling information, allow-
ing the LLM to focus on planning. Access to per-
fect Computer Vision and relevance filters is a sub-
stantial limitation common to all approaches that
operate in text-only environments. More research
is necessary to understand how to teach LLMs to in-
corporate information from other modalities, such
as sight and sound. Approaches such as PaLM-
E (Driess et al., 2023) have shown that it is possi-
ble to integrate multiple modalities into Extremely
Large Language Models. But, at 526B parameters,
these models’ compute and energy requirements
seem to make them impractical for onboard pro-
cessing of mobile robotics platforms.

Ethics Statement

Environmental impact questions arise for any sci-
entific work that involves Large Language Mod-
els (LLMs). Most of the energy consumption of
LLMs occurs during pre-training (Patterson et al.,
2021). This work relies on already pre-trained lan-
guage models, which we only fine-tune. GPT-J,
an LLM with 6B parameters, is small enough to
be fine-tuned on a single modern compute node,
contrasted with LLMs using hundreds of billions of
parameters. For fine-tuning, we use nodes with 4x
NVIDIA A6000 GPUs, and we further increase the
training efficiency by offloading the optimizer from
GPU memory via DeepSpeed (Ren et al., 2021; Ra-
jbhandari et al., 2020), thus eliminating the need
for the newest, most power-hungry GPUs.

Acknowledgements

This material is based on research supported by
DARPA under agreement number N66001-19-
24032. The U.S. Government is authorized to
reproduce and distribute reprints for Governmen-
tal purposes, notwithstanding any copyright nota-
tion thereon. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies or endorsements, either expressed or im-
plied, of DARPA or the U.S. Government.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yev-

gen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu,
Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang,
Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jes-
month, Nikhil Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Kuang-Huei Lee, Sergey
Levine, Yao Lu, Linda Luu, Carolina Parada, Pe-
ter Pastor, Jornell Quiambao, Kanishka Rao, Jarek
Rettinghouse, Diego Reyes, Pierre Sermanet, Nico-
las Sievers, Clayton Tan, Alexander Toshev, Vincent
Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
Mengyuan Yan, and Andy Zeng. 2022. Do As I Can
and Not As I Say: Grounding Language in Robotic
Affordances. arXiv:2204.01691 [cs].

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. 2021. Decision trans-
former: Reinforcement learning via sequence model-
ing. In Advances in Neural Information Processing
Systems, volume 34, pages 15084–15097. Curran As-
sociates, Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,

http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2204.01691
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf


and Noah Fiedel. 2022. PaLM: Scaling Language
Modeling with Pathways. arXiv:2204.02311 [cs].

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe
Yu, Wenlong Huang, Yevgen Chebotar, Pierre Ser-
manet, Daniel Duckworth, Sergey Levine, Vincent
Vanhoucke, Karol Hausman, Marc Toussaint, Klaus
Greff, Andy Zeng, Igor Mordatch, and Pete Florence.
2023. PaLM-E: An Embodied Multimodal Language
Model. arXiv:2303.03378 [cs].

Leo Gao, Stella Rose Biderman, Sid Black, Laurence
Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800GB Dataset of Diverse Text for Language Model-
ing. arXiv:2101.00027 [cs].

Malik Ghallab, Adele Howe, Craig Knoblock, Drew
McDermott, Ashwin Ram, Manuela Veloso, Daniel
Weld, and David Wilkins. 1998. PDDL—the plan-
ning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Com-
putational Vision and Control.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li-
hong Li, Li Deng, and Mari Ostendorf. 2016. Deep
reinforcement learning with a natural language action
space. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (ACL).
ACL - Association for Computational Linguistics.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
9118–9147. PMLR.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet,
Tomas Jackson, Noah Brown, Linda Luu, Sergey
Levine, Karol Hausman, and brian ichter. 2023. In-
ner monologue: Embodied reasoning through plan-
ning with language models. In Proceedings of The
6th Conference on Robot Learning, volume 205 of
Proceedings of Machine Learning Research, pages
1769–1782. PMLR.

Michael Janner, Qiyang Li, and Sergey Levine. 2021.
Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Informa-
tion Processing Systems, volume 34, pages 1273–
1286. Curran Associates, Inc.

Peter Jansen. 2022. A systematic survey of text worlds
as embodied natural language environments. In Pro-
ceedings of the 3rd Wordplay: When Language Meets
Games Workshop (Wordplay 2022), pages 1–15, Seat-
tle, United States. Association for Computational
Linguistics.

Minsoo Kim, Yeonjoon Jung, Dohyeon Lee, and Seung-
won Hwang. 2022. PLM-based world models for
text-based games. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1324–1341, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Sergey Levine, Aviral Kumar, George Tucker, and Justin
Fu. 2020. Offline Reinforcement Learning: Tuto-
rial, Review, and Perspectives on Open Problems.
arXiv:2005.01643 [cs].

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Prithviraj
Ammanabrolu, Faeze Brahman, Shiyu Huang, Chan-
dra Bhagavatula, Yejin Choi, and Xiang Ren. 2023.
SwiftSage: A Generative Agent with Fast and Slow
Thinking for Complex Interactive Tasks.

OpenAI. 2023. Gpt-4 technical report.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021. Car-
bon emissions and large neural network training.
arXiv:2104.10350 [cs].

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
16.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-
Offload: Democratizing Billion-Scale model train-
ing. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 551–564. USENIX Associ-
ation.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Ishika Singh, Gargi Singh, and Ashutosh Modi. 2021.
Pre-trained language models as prior knowledge for
playing text-based games.

http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2303.03378
http://arxiv.org/abs/2303.03378
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://www.researchgate.net/profile/Craig-Knoblock/publication/2278933_PDDL_-_The_Planning_Domain_Definition_Language/links/0912f50c0c99385e19000000/PDDL-The-Planning-Domain-Definition-Language.pdf
https://www.researchgate.net/profile/Craig-Knoblock/publication/2278933_PDDL_-_The_Planning_Domain_Definition_Language/links/0912f50c0c99385e19000000/PDDL-The-Planning-Domain-Definition-Language.pdf
https://www.microsoft.com/en-us/research/publication/deep-reinforcement-learning-natural-language-action-space/
https://www.microsoft.com/en-us/research/publication/deep-reinforcement-learning-natural-language-action-space/
https://www.microsoft.com/en-us/research/publication/deep-reinforcement-learning-natural-language-action-space/
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v205/huang23c.html
https://proceedings.mlr.press/v205/huang23c.html
https://proceedings.mlr.press/v205/huang23c.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://doi.org/10.18653/v1/2022.wordplay-1.1
https://doi.org/10.18653/v1/2022.wordplay-1.1
https://doi.org/10.18653/v1/2022.emnlp-main.86
https://doi.org/10.18653/v1/2022.emnlp-main.86
https://doi.org/10.48550/arXiv.2005.01643
https://doi.org/10.48550/arXiv.2005.01643
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=FvAOJ67bmt
https://openreview.net/forum?id=FvAOJ67bmt
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2107.08408
http://arxiv.org/abs/2107.08408


Oyvind Tafjord and Peter Clark. 2021. General-
Purpose Question-Answering with Macaw.
arXiv:2109.02593 [cs].

Ben Wang. 2021. Mesh-Transformer-JAX: Model-
Parallel Implementation of Transformer Lan-
guage Model with JAX. https://github.com/
kingoflolz/mesh-transformer-jax.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and
Prithviraj Ammanabrolu. 2022. ScienceWorld: Is
your agent smarter than a 5th grader? In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11279–11298,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and
Karthik Narasimhan. 2020. Keep CALM and ex-
plore: Language models for action generation in text-
based games. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 8736–8754, Online. Association
for Computational Linguistics.

0 10 20 30 40 50 60 70 80
Number of Actions

0

500

1000

1500

2000

2500

3000

3500

N
u

m
b

e
r 

o
f 

in
p

u
t 

b
u

ff
e
rs

Number of actions in GPT-J’s prompt during training (AVG: 43.42)

Figure 1: Histogram illustrating the number of actions
that fit in GPT-J input for the All train training set.

A Sample ScienceWorld dialog

We fine-tune GPT-J on a formulation of Science-
World games transcribed as a natural language di-
alog between an agent (A) and the game (G). The
agent issues actions, and the game replies with the
current observation. Unlike prior work that mod-
eled RL algorithms using language models, we
provide no information about the current score or
score yet to be achieved. Listing 1 illustrates the
dialog format. Training GPT-J becomes an autore-
gressive text modeling task over the dialog format.
During inference, we fill GPT-J’s input buffer with
as much history as possible in the form of prior
(action, observation) tuples in the dialog format
and expect GPT-J to generate an action row (i.e.,
the text after A :). GPT-J’s input buffer, limited to a
maximum of 2048 word pieces, can accommodate,
on average, 43 prior actions using the dialog format
(Figure 1).

Our plain text, natural language sequence model-
ing format differs from prior approaches to framing
Reinforcement Learning as a sequence modeling
task. Instead of natural language input, Janner et al.
(2021) use special tokens to represent a discretized
version of the previous states and actions as input to
a transformer decoder that predicts the next action.
Notably, the transformer is a bespoke model, not
a pre-trained Language Model. For The Decision
Transformer (Chen et al., 2021), raw inputs are
projected into a continuous space using a learned
linear projection, and the projections become The
Decision Transformer’s input. Another difference
between our simplified dialog modeling technique
and The Decision Transformer is that our input

http://arxiv.org/abs/2109.02593
http://arxiv.org/abs/2109.02593
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/2022.emnlp-main.775
https://aclanthology.org/2022.emnlp-main.775
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704


does not contain information about the game score
of the yet unrealized score. This frees up space
in the LLMs input buffer to allow for more prior
history.

B Training details

We trained GPT-J with bfloat16 representations us-
ing DeepSpeed stage 2 model parallelism over 4
NVIDIA A6000 GPUs. We used the AdamW opti-
mizer with a weight decay of 0.01 and offloaded it
to system memory via DeepSpeed (Ren et al., 2021;
Rajbhandari et al., 2020). We train each model for
two epochs over its corresponding train data and
a batch of 16 (one input per batch, four gradient
accumulation steps, 4 GPUs) and a learning rate of
1e-4.

C Evaluation setup

After training on each model’s respective training
data, we evaluated each agent on the task variations
provided in ScienceWorld’s test set. The evaluation
required agents to play a total of 1 819 games split
unevenly over the 30 tasks. The distribution of
games to tasks appears in the Games column of
Table 5.

By contrast, Wang et al. (2022) measured
DRRN’s performance against a random sample of
the dev set every 500 steps during DRRN’s train-
ing and reported the average score for the last 10%
of training steps. For a fair comparison between
DRRN and our models, we trained DRRN using
the published code and parameters, evaluated it
against the entire ScienceWorld test set, and re-
ported DRRN’s performance in Table 1.

Before we tested our trained DRRN model on
the test set, we confirmed that our training was
successful by performing the same evaluation as in
the original ScienceWorld paper. In this evaluation,
our trained DRRN obtained 18.92 points, similar
to the published 17 points. Since these results are
close, we conclude that our retrained DRRN model
matches the capabilities of the DRRN model from
the original ScienceWorld paper. For completeness,
we also evaluated our trained DRRN model on the
entire dev set, where it obtained 18.11 points com-
pared to the 17.95 that it obtained when evaluated
on the entire test set (i.e., the result we include in
Table 1). The difference in performance between
DRRN on dev and test is similar to what we ob-
served for our GPT-J-based models.

One final thing to note is that there are several

ways to compute mean performance in Science-
World. In Table 1, we report scores averaged over
the 1 819 games in the test set. This mean gives
equal weight to each game in the set. But, since
variations are nonuniformly distributed over tasks,
the contribution of each task to the final score is
determined by the number task of variations in the
test set (e.g., the Changes of State (Boiling) task
only has 9 variations in test, while Friction (known
surfaces) has 348 variations). Wang et al. (2022)
computed the mean score by calculating the mean
score per task and then the mean score over the 30
tasks. This method gives equal weight to each task
while potentially obscuring failures in tasks with
many variations. The difference between the two is
similar to that between micro- and macro-precision,
and both methods are valid. In Table 3, we com-
pare the micro- and macro- averaged scores. The
macro score is lower than the micro score for GPT-
J-based models. Nonetheless, the best-performing
GPT-J-based model still outperforms DRNN by a
factor of 2.7.

Micro
Score

Improv. Macro
Score

Improv.

DRRN 17.95 1.0x 18.75 1.0x
All train Markov 25.19 1.4x 22.73 1.2x
All train 62.57 3.5x 50.60 2.7x
No variations 63.35 3.5x 50.61 2.7x
Up to 18 games 39.78 2.2x 34.29 1.8x

Table 3: Comparison of micro- and macro- scores.

D Scores per Task

Table 1 shows that our GPT-J-based agent can
achieve up to 3.5x the score of DRRN. Looking
into the average scores separated by task provides
further insight into the successes and shortcomings
of the LLM approach to playing ScienceWorld.
Table 5 shows results split by task and by task cate-
gory. Each row in the table is based on five training
and evaluation runs with different seeds. In each
cell, we present the mean score and the standard
deviation.

Like Wang et al. (2022), we find that perfor-
mance varies considerably from task to task. Even
for our best model, All train, the scores range from
0 points (on Mixing paints (tertiary colors)) to 100
points on several tasks, e.g., Identify longest-lived
animal. However, it is not just the score that varies
from task to task. We observe many variations in



Listing 1: An example transcript as used to train GPT-J.

Your task is to measure the melting point of chocolate , which is located around
the kitchen. First , focus on the thermometer. Next , focus on the chocolate.
If the melting point of chocolate is above -10.0 degrees celsius , focus on
the blue box. If the melting point of chocolate is below -10.0 degrees
celsius , focus on the orange box. The boxes are located around the kitchen.

A: look around
G: This room is called the hallway. In it, you see: the agent; a substance

called air; a picture. You also see: A door to the art studio (that is
closed); A door to the bedroom (that is closed); A door to the greenhouse (
that is closed); A door to the kitchen (that is closed); A door to the
living room (that is closed); A door to the workshop (that is closed)

A: inventory
G: In your inventory , you see: an orange
A: open door to kitchen
G: The door is now open.
A: go to kitchen
G: You move to the kitchen.
A: look around
G: This room is called the kitchen. In it, you see: the agent; a substance

called air; a blue box (containing nothing); a chair. On the chair is:
nothing .; a counter. On the counter is: a bowl (containing a red apple , a
banana , an orange , a potato), a drawer .; a cupboard. The cupboard door is
closed. ; a freezer. The freezer door is closed. ; a fridge. The fridge door
is closed. ; a glass jar (containing a substance called sodium chloride); a
lighter; a orange box (containing nothing); a oven , which is turned off.

The oven door is closed. ; a painting; a sink , which is turned off. In the
sink is: nothing .; a substance called soap; a stopwatch , which is
deactivated. ; a stove , which is turned off. On the stove is: nothing .; a
table. On the table is: a glass cup (containing nothing).; a thermometer ,
currently reading a temperature of 10 degrees celsius. You also see: A door
to the bathroom (that is closed); A door to the hallway (that is open); A
door to the outside (that is closed)

A: pick up thermometer
G: You move the thermometer to the inventory.
A: focus on thermometer in inventory
G: You focus on the thermometer.
A: look around
G: This room is called the kitchen. In it, you see: the agent; a substance

called air; a blue box (containing nothing); a chair. On the chair is:
nothing .; a counter. On the counter is: a bowl (containing a red apple , a
banana , an orange , a potato), a drawer .; a cupboard. The cupboard door is
closed. ; a freezer. The freezer door is closed. ; a fridge. The fridge door
is closed. ; a glass jar (containing a substance called sodium chloride); a
lighter; a orange box (containing nothing); a oven , which is turned off.

The oven door is closed. ; a painting; a sink , which is turned off. In the
sink is: nothing .; a substance called soap; a stopwatch , which is
deactivated. ; a stove , which is turned off. On the stove is: nothing .; a
table. On the table is: a glass cup (containing nothing).. You also see: A
door to the bathroom (that is closed); A door to the hallway (that is open);
A door to the outside (that is closed)

A: open freezer
G: The freezer is now open.
A: look in freezer
G: Inside the freezer is: nothing
...



the values for standard deviation (shown in paren-
theses next to each score), with many tasks having
a standard deviation multiple times larger than the
ones in Table 1 and included at the bottom of Ta-
ble 5.

All four models’ performance varies a lot with
the task. A strong Pearson correlation between the
per-task results of all four models (Table 4) hints
that some tasks are genuinely more difficult for our
GPT-J models.

All
train

All
train
Markov

No vari-
ations

Up
to 18
games

All train 1
All train Markov 0.83 1
No variations 0.99 0.84 1
Up to 18 games 0.89 0.73 0.91 1

Table 4: Pearson correlation between the results in the
corresponding columns of Table 5.

E Environment step limits

Evaluating the performance of players in a turn-
based game raises the question of after how many
steps should one report and compare performance.
Wang et al. (2022) and Lin et al. (2023) report the
performance of models allowed to play up to 100
actions. This paper also reports performance up to
a maximum of 100 actions.

However, the training games that ScienceWorld
generates suggest that evaluations with more than
100 steps might be necessary. Figure 2 shows that,
while the average length of training games is 57
actions and the great majority of games in the train-
ing set can be completed in less than 100 steps, a
considerable number of games require more than
100 actions to complete. (Lin et al., 2023) cited
computational costs as an argument for evaluating
up to only 100 actions

Computational costs are less important for the
GPT-J models we evaluate since the models are
small enough to run on a modern workstation.
However, we still report results after a maximum of
100 actions because (1) it makes our results easier
to compare to prior literature and (2) because we
see diminishing returns from running evaluation
past 100 actions. Figure 3 shows our models’ Sci-
enceWorld test score as a function of the number of
game turns/actions. While the Markov assumption
GPT-J (All train Markov) flat-lines after about 50

0 20 40 60 80 100 120 140 160 180 200
Number of Actions

0

100

200

300

400

500

600

700

N
u

m
b

e
r 

o
f 

G
a
m

e
s

Number of actions in training games (AVG: 56.90)

Figure 2: Histogram of the number of actions in games
from the No variations train set.

turns/actions, the other GPT-J-based models con-
tinue to meaningfully accumulate points up to the
evaluation limit of 100 turns/actions. Past the 100
actions limit, the increase in ScienceWorld scores
is marginal for all our models.



Task Games All train All train Markov No variations Up to 18 games

Matter
Changes of State (Boiling) 9 1.13 (2.29) 0.18 (0.10) 2.51 (3.77) 7.20 (6.93)
Changes of State (Melting) 9 0.31 (0.37) 0.13 (0.12) 2.44 (3.74) 14.42 (11.18)
Changes of State (Freezing) 9 0.00 (0.00) 0.00 (0.00) 0.96 (2.14) 8.84 (8.63)
Changes of State (Any) 9 0.24 (0.18) 0.04 (0.06) 1.91 (3.47) 19.00 (14.80)

Measurement
Use Thermometer 135 63.39 (15.55) 20.23 (7.18) 73.59 (21.92) 29.30 (6.47)
Measuring Boiling Point (known) 109 17.76 (8.27) 13.90 (11.68) 11.28 (10.98) 22.88 (13.18)
Measuring Boiling Point (unknown) 75 52.03 (17.23) 53.58 (32.09) 59.19 (7.20) 52.60 (21.57)

Electricity
Create a circuit 5 82.08 (11.26) 25.00 (9.10) 92.36 (4.80) 77.80 (8.27)
Renewable vs Non-renewable Energy 5 59.36 (15.15) 12.72 (4.20) 58.72 (11.50) 45.28 (11.29)
Test Conductivity (known) 225 40.02 (21.31) 16.35 (3.90) 42.58 (16.30) 30.57 (14.14)
Test Conductivity (unknown) 150 52.20 (2.56) 37.66 (0.34) 60.67 (21.67) 46.15 (3.74)

Classification
Find a living thing 75 96.62 (7.55) 50.10 (4.61) 99.84 (0.35) 72.18 (12.33)
Find a non-living thing 75 100.00 (0.00) 66.91 (5.61) 99.73 (0.60) 52.68 (19.29)
Find a plant 75 99.47 (1.19) 43.71 (6.29) 99.40 (0.68) 46.65 (11.72)
Find an animal 75 96.87 (7.01) 48.68 (6.54) 99.91 (0.20) 71.79 (26.36)

Biology
Grow a plant 33 11.92 (0.45) 5.95 (0.14) 12.47 (0.99) 9.09 (1.47)
Grow a fruit 33 46.72 (4.93) 11.60 (0.92) 44.78 (9.55) 25.08 (11.05)

Chemistry
Mixing (generic) 8 41.13 (8.86) 10.13 (3.38) 35.63 (8.84) 28.45 (5.23)
Mixing paints (secondary colours) 9 0.00 (0.00) 10.67 (3.65) 0.00 (0.00) 0.67 (1.49)
Mixing paints (tertiary colours) 9 0.00 (0.00) 5.27 (1.88) 0.00 (0.00) 0.58 (1.29)

Biology
Identify longest-lived animal 32 100.00 (0.00) 71.25 (2.61) 98.75 (1.71) 60.63 (22.30)
Identify shortest-lived animal 32 100.00 (0.00) 66.25 (4.76) 98.13 (4.19) 48.13 (17.48)
Identify longest-then-shortest-lived animal 32 100.00 (0.00) 58.75 (7.36) 98.75 (1.71) 50.41 (21.90)
Identify life stages (plant) 5 45.72 (6.58) 19.40 (6.47) 46.56 (19.76) 29.20 (10.53)
Identify life stages (animal) 4 6.00 (10.84) 8.60 (2.61) 12.00 (11.51) 7.00 (5.70)

Forces
Inclined Planes (determine angle) 42 76.67 (6.84) 12.48 (1.05) 59.83 (8.07) 39.86 (4.55)
Friction (known surfaces) 348 81.86 (4.19) 12.46 (0.61) 82.18 (4.73) 43.92 (2.00)
Friction (unknown surfaces) 42 74.12 (8.15) 13.48 (1.02) 73.52 (8.23) 42.00 (6.72)

Biology
Mendelian Genetics (known plants) 30 35.79 (17.24) 8.57 (0.00) 24.64 (15.14) 22.85 (6.16)
Mendelian Genetics (unknown plants) 120 36.49 (12.83) 7.59 (0.02) 29.04 (7.00) 23.44 (6.34)

Overall 1 819 62.57 (4.32) 24.74 (1.05) 63.35 (6.94) 39.78 (2.35)

Table 5: Results by task for GPT-J-based agents



0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200

All train All train Markov No variations Up to 18 games

Figure 3: Mean ScienceWorld score as a function of game actions (steps). Each line is the average of evaluating five
runs trained with different seeds. We stopped running All train Markov early due to its consistent flat line.


