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ABSTRACT

High-quality speech synthesis models may be used to spread misin-
formation or impersonate voices. Audio watermarking can combat
misuse by embedding a traceable signature in generated audio. How-
ever, existing audio watermarks typically demonstrate robustness to
only a small set of transformations of the watermarked audio. To
address this, we propose MaskMark, a neural network-based digital
audio watermarking technique optimized for speech. MaskMark
embeds a secret key vector in audio via a multiplicative spectrogram
mask, allowing the detection of watermarked speech segments even
under substantial signal-processing or neural network-based trans-
formations. Comparisons to a state-of-the-art baseline on natural and
synthetic speech corpora and a human subjects evaluation demon-
strate MaskMark’s superior robustness in detecting watermarked
speech while maintaining high perceptual transparency.

Index Terms— Watermarking, speech synthesis, synthetic me-
dia

1. INTRODUCTION

Generative speech models have numerous beneficial applications,
such as aiding individuals with speech difficulties and fostering cre-
ative expression. However, they can also be used for malicious pur-
poses, including voice impersonation and disseminating false infor-
mation. Recent speech synthesis systems allow users to “deepfake”
the voices of public figures to make statements ranging from incon-
gruous and comedic to offensive and hateful [1,12]]. Voice conversion
has been used to replicate the voices of famous singers [3]], igniting
debates on copyright and intellectual property. Moreover, the preva-
lence of realistic synthetic media has been used in attempts to cast
doubt on the authenticity of digital evidence in court [4].

Developers and providers of generative speech models there-
fore need methods to identify speech produced by their mod-
els, while preserving the sonic quality of the generated speech,
thereby ensuring that creative applications are not hindered. Ex-
isting classification-based approaches to synthetic speech detection
leverage neural network systems trained on corpora of synthetic
speech to recognize characteristic artifacts [5| 6]; however, such
approaches often fail to generalize to unseen synthesis systems.
Moreover, the distribution of synthetic speech is constantly evolv-
ing: many once-characteristic synthesis artifacts (e.g. aliasing and
pitch inconsistency) have been mitigated through architectural ad-
vances [7, 18], and recent systems achieve results comparable to
natural speech in human listening tests [9}[10]. As speech synthesis
technology improves, synthetic speech classification systems will
likely face an increasingly difficult task.

One promising alternative is digital audio watermarking, where
an embedding algorithm conceals a traceable signature (key) in audio
signals and a corresponding detection algorithm determines whether
the key is present in an audio signal. This allows the watermarked
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output of a speech synthesis system to be distinguished from natural
speech, even in the absence of other identifying artifacts [L1]].

To enable practical synthetic speech detection, a watermark
should satisfy two criteria. First, to avoid compromising the quality
of synthetic speech, the watermark should be perceptually trans-
parent — imperceptible to human listeners. Second, the watermark
should be robust — capable of operating with strong detection ac-
curacy even when the watermarked audio is significantly altered.
Such alterations may include passive transformations of the wa-
termarked audio from transmission over digital and physical chan-
nels (e.g. equalization, reverberation, codec compression); active
transformations that occur through benign user interactions (e.g.
processing synthetic speech clips to remove pauses); and transfor-
mations specifically intended to thwart watermark detection (e.g.
pitch/time-scale modification).

Existing speech watermarks struggle to provide robust discrim-
ination between watermarked and unwatermarked speech while
maintaining the requisite perceptual transparency for widespread
use. Tai & Mansour propose an autocorrelation-based spread-
spectrum watermark for suppressing wake-word detection on Ama-
zon Alexa [12]. While their proposed “Eigen” watermark achieves
state-of-the-art performance in discriminating between short wa-
termarked and unwatermarked speech segments in realistic acoustic
environments, the watermark is vulnerable to certain transformations
such as pitch- and time-scale modification.

Others have sought to leverage the strengths of deep neural net-
works for watermarking audio in a data-driven manner. Liu et al.
propose training paired embedder and detector networks to perform
music watermarking in the wavelet domain [13]. However, their
method requires long audio segments for embedding and produces
clearly audible artifacts when applied to speech. Pavlovi¢ et al. also
propose training paired networks to watermark short speech seg-
ments [14]]. While their “DNN-A” system demonstrates strong per-
ceptual transparency, it is not robust to common editing distortions.
Moreover, we find that the low-capacity training scheme employed
by Pavlovié et al. results in the detector “overfitting” to a small set of
key vectors, producing unacceptably high false-positive rates when
discriminating between watermarked and unwatermarked speech.

To address these shortcomings we propose MaskMark, a ro-
bust neural network-based watermarking method for speech audio.
We compare MaskMark to Eigen and DNN-A, the strongest signal-
processing and neural network-based speech watermarks, respec-
tively, of which we are aware. Our contributions are as follows:

* We design a novel network architecture for embedding wa-
termarks in short (< 2s) speech segments via a multiplicative
spectrogram mask, and build on the method of Pavlovi¢ et al.
to significantly improve robustness and discriminative perfor-
mance.

e We show that MaskMark achieves superior robustness to
Eigen and DNN-A under a comprehensive set of audio trans-
formations encompassing editing manipulations, channel
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Fig. 1. The proposed MaskMark architecture.

effects, and attacks designed to remove watermarks.

» Through objective and subjective evaluations, we show that
MaskMark maintains perceptual transparency competitive
with or better than Eigen, the only baseline method to demon-
strate practical performance.

2. WATERMARKING METHOD

We propose a neural network-based method for watermarking
speech audio. Building upon the approach of Pavlovi¢ et al. [14], we
use a two-network system to embed and detect watermarks, where
each watermark is represented as a binary key vector of length 512,
drawn from a fixed pool of n keys. An embedder network conceals
a watermark key within a given carrier audio recording, while a
detector network recovers the watermark by predicting the key vec-
tor contained in the carrier. The networks are trained such that the
vector predicted by the detector closely matches the key embedded
within a watermarked carrier but is essentially random for unwa-
termarked audio. Thus, given knowledge of the embedded key, the
operator of the detector can distinguish between watermarked and
un-watermarked audio by comparing any predicted vectors to the
known key via a calibrated similarity threshold.

2.1. Architecture

Embedder: Our novel embedder network takes as input a key vec-
tor and carrier signal to be watermarked. To allow for embedding
in high sample-rate audio, the carrier is resampled to 48kHz and a
magnitude spectrogram is computed with a frame length of 1024
samples, hop length of 512 samples, and Hann window. The key
vector is repeated and concatenated with each frame, and the result
projected to a hidden dimension of 576 channels. This embedded
representation then passes through six Conformer [15] layers with
feed-forward dimension 768, six attention heads, and kernel size 5.
The output is projected to match the frequency dimension of the
carrier spectrogram and bounded to [16_5, oo) to obtain a mask.
After multiplying the mask and carrier magnitude spectrogram, we
take the inverse Fourier transform using the original carrier phase to
obtain the watermarked waveform. In total, the embedder network
contains 14.3m parameters. Whereas DNN-A directly generates the
complex spectrogram of the watermarked audio, we find that the use
of a real-valued spectrogram mask to embed the watermark allows
our approach to easily generalize across input sample rates and pre-
vents the embedder from introducing noise in silent regions of the
carrier, as the masking operation is multiplicative. Additionally, the
redundant frame-level embedding and Conformer module allow our
embedder to robustly encode a larger set of key vectors and thereby
avoid the “overfitting” behavior described in Section[3:2]

'We provide audio examples at
https://interactiveaudiolab.github.io/project/maskmark.html

Detector: We adopt the fully-convolutional detector of Pavlovi¢ et
al. with minor modifications. We prepend an additional strided con-
volutional layer, resulting in a receptive field of approximately one
second at 48kHz (versus the original two seconds at 16kHz), and
operate the detector on the same magnitude spectrogram representa-
tion as the embedder rather than a complex spectrogram. The detec-
tor predicts a 512-dimensional vector of unnormalized probability
scores v, where v; represents the probability that the ‘" bit in the
watermark key is 1. At inference time, we quantize detector outputs
to {0, 1}°'? using a fixed threshold of ¢, = 0.5. In total, our detector
network contains 5.1m parameters.

Scoring: As in previous works, we assume the detector operator
has access to a watermark key [12} 14} 116]. Given candidate audio,
we compute the proportion of matching bits between the detector’s
quantized output and the known key to obtain a score S that is then
compared to a calibrated threshold 7. If S > 7, we conclude the
candidate audio contains the watermark. We find this outperforms
other scoring methods such as cosine distance, mean squared error,
and binary cross-entropy.

2.2. Training

While Pavlovié et al. use a private speech dataset, we train on the
VCTK dataset [17], totalling 44 hours of audio across 108 speak-
ers sampled at 48kHz. We train on 2-second random excerpts for
70, 000 iterations with batch size 64 and mixed precision. We use a
fixed set of n=64 random watermark keys rather than the n==6 used
by DNN-A, as we find this prevents the detector from “overfitting”
to the key set and encourages more uniform random predictions over
unwatermarked audio (see Section[3:2).

At each training iteration, we energy-normalize carrier audio to
—24dBFS, apply a random phase shift, and pass the carrier to the
embedder network alongside a randomly selected key vector to ob-
tain watermarked audio. Watermarked audio is then passed through
a differentiable channel simulation. While past works have focused
on additive noise, pass filters, and reverberation [13}[14], we also
consider pitch- and time-scale modification, as such transformations
often prove especially destructive to watermarks. Our simulation
encompasses low- and high-pass filtering at 4000Hz and 500Hz,
respectively; recorded environmental noise [18, [19} 20] at 20-35
dBSNR; sample dropout with probability 0.001; reverberation ap-
plied via recorded and simulated impulse responses [19,21]; phase-
vocoder pitch shift of up to 1 semitone; speed change of +5%;
and spectral gating applied via a threshold relative to the highest-
magnitude bin of each spectrogram frame [22]. We find that training
on this relatively small set of transformations allows MaskMark to
generalize to a much broader set of unseen conditions (see Section

3:2).

At each training step, we randomly select three of the aforemen-
tioned transformations and apply each with an independent proba-
bility of 25%. Transformed audio is then passed to the detector net-
work, which predicts an unnormalized probability distribution over



the key vector. We compute two losses: binary cross-entropy loss
on the detector predictions and embedded watermark keys; and a
multi-resolution spectrogram loss on the embedder output and in-
put [23] to encourage perceptual transparency. Gradients of the
cross-entropy loss are propagated to both the detector and embed-
der (through the differentiable channel simulation), while gradients
of the spectrogram loss are propagated only to the embedder. We
balance the respective norms of these gradients within the embedder
in a ratio of L:O using the method of Défossez et al. [24] before
performing an update. To ensure stability, we use AutoClip [25] to
perform adaptive gradient clipping in both the embedder and detec-
tor networks at the 10 percentile. We use the NAdam optimizer
[26] with learning rate 2e—4, 31 =0.9, $2=0.999, and weight decay
le—6.

3. EXPERIMENTS

We perform experiments (1) validating MaskMark’s ability to ro-
bustly discriminate between watermarked and unwatermarked audio
and (2) measuring its perceptual transparency and objective quality
metrics. We evaluate on two datasets unseen in training. To rep-
resent current synthesis systems, we use the VITS text-to-speech
model [9] to resynthesize utterances from 10 unseen VCTK speak-
ers at 24kHz; and to represent high-quality future synthesis systems,
for which generated speech may be “indistinguishable” from natu-
ral speech, we use the natural speech DAPS “clean” subset [27]],
containing studio recordings of 20 speakers sampled at 44.1kHz.

3.1. Baselines and comparison methodology

Eigen: We implement the Eigen watermark of Tai & Mansour [12]
using an embedding band of 3-4kHz, non-overlapping windows of
length 100ms, segment length N, = 2, and repetition N, = 50
to obtain a watermark length of one second as in the original work.
Because the watermark strength parameter (3 is not specified in the
original work, we evaluate two configurations with 8 = 1.0 and
B = 0.5 to balance perceptual transparency and robustness.
DNN-A: We implement the DNN-A watermark of Pavlovi¢ et al.
[14] using the hyperparameters detailed in the original work, includ-
ing the differentiable transform set, and train on 2-second excerpts
of the VCTK dataset for 140, 000 iterations to ensure convergence.
Our implementation achieves comparable robustness (as measured
by key recovery under the dropout, filtering, and noise transforms
considered in the original work) and perceptual transparency (as
measured by PESQ [28] and SNR) to the authors’ implementation.
Conflicting sample rates: MaskMark operates at 48kHz, Eigen at
44.1kHz, and DNN-A at 16kHz. For MaskMark and Eigen, we ac-
count for sample rate differences by resampling audio before and
after embedding. For DNN-A, we split carrier audio into two bands
at 8kHz before embedding. The low band is resampled to 16kHz,
embedded, and resampled to the original dataset rate (44.1kHz for
DAPS, 24kHz for VITS). We then balance the energy of the two
bands to match their pre-embedding ratio and sum. We find this does
not impact robustness, and allows for fair listening comparisons be-
tween watermarking methods at the original dataset rates.
Watermark length: Following Pavlovié et al., we perform robust-
ness evaluations at a watermarked segment length of 2 seconds. The
proposed MaskMark is capable of embedding at arbitrary lengths
due to redundant frame-wise processing, and we simply repeat the
Eigen watermark. For MaskMark and Eigen, which render detection
scores at 1-second intervals, we take the maximum over all scores

produced for a segment. Finally, for our perceptual evaluations we
embed repeatedly to cover entire utterances.

3.2. Robustness to audio transformations

We evaluate the robustness of the proposed and baseline water-
marks in a synthetic speech detection scenario. For each of the
aforementioned watermarks and datasets, we sample 2000 two-
second excerpts and embed with random keys to generate pairs
of watermarked and unwatermarked utterances. We then apply an
audio transformation (see below) and compute detector scores for
the transformed utterances using the known keys. For Eigen, we
compute the self-correlation score as defined by Tai & Mansour
[12]. For both MaskMark and DNN-A, we compute the bitwise
similarity score described in Section [2.1] to allow for fair compar-
isons. For a watermark to be of practical use, the distributions of
synthetic (watermarked) and natural (unwatermarked) scores should
be sufficiently separated to allow for reliable detection with a low
false-positive rate; following previous work in synthetic media de-
tection [29]], we compute the achievable true positive rate when the
threshold 7 is empirically calibrated to fix the false positive rate at
1.0% (TPR@1%FPR).

We evaluate the robustness of the proposed and baseline meth-
ods over a set of 26 realistic audio transformations, including 18 un-
seen in training. Signal-processing: we modify the training trans-
formations listed in Section to use unseen impulse responses,
noise recordings, and speed change ratios within the interval +5%;
we also lower noise SNR to 10dB. For evaluation we implement
the following additional transformations: Mu-Law quantization with
256 channels; dynamic range compression [30]; constant phase shift
in +; clipping applied at the 95*® percentile of observed ampli-
tudes; OGG-Vorbis compression; equalization across six bands, each
with randomly sampled gain in +1dB; silence removal; and phase-
vocoder time-stretching in the interval £10%. Neural vocoding: we
transform audio by resynthesizing from mel-spectrograms using the
pre-trained neural vocoder models BigVGAN [[7], Vocos [31], Dif-
fWave [32], and HiFIiGAN [33]. The mel-spectrogram representa-
tion discards a large amount of information from the audio, which is
subsequently inferred by the vocoder. As a result, this transformation
may substantially alter or destroy embedded watermarks while main-
taining much of the audio’s perceptual quality. Neural codec com-
pression: we transform watermarked audio by applying the state-of-
the-art neural codec models Descript Audio Codec (DAC) [34] and
Encodec [24]. Similar to vocoding, neural network-based compres-
sion reconstructs audio from a tight information bottleneck and may
degrade the effectiveness of embedded watermarks. Neural speech
enhancement (DNN SE): speech enhancement models remove or
suppress non-speech sounds from a recording; thus, if an embedded
watermark can be distinguished from the carrier speech (e.g. if it
manifests audible artifacts), it may be partially or wholly removed.
We use pretrained Demucs [23]] and MetricGAN+ [35] models.

Experimental results are in Figure[2] We find that while DNN-A
often recovers embedded key vectors with high accuracy, the method
can not distinguish between watermarked and unwatermarked au-
dio at sufficiently low false-positive rates to be of practical use. We
hypothesize training on n=6 keys causes the detector network to
“overfit”; as a result, on average 4% of unwatermarked utterances
are mapped extactly to key vectors (and thus perfect detector scores)
even in the absence of any transformations — an impractical lower
bound on the operating false positive rate.

By contrast, MaskMark achieves competitive or better robust-
ness under every evaluated transformation when compared to Eigen.
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Fig. 2. TPR@1%FPR for watermarks under selected transformations, indicating the robustness of each method when configured to operate
with a fixed 1% false-positive rate. Scores in the top row are for the DAPS dataset, scores in the bottom row for our VITS dataset. MaskMark
(proposed) is robust to more transformations than the baselines. DNN-A has a true positive rate of 0% for false-positive rates below 4%.

MaskMark performs significantly better in the average and worst
case over each set of transformations with the exception of neural
speech enhancenent (in which both Eigen and MaskMark show
near-perfect performance) and neural codec compression, for which
Eigen performs better on the VITS dataset in the average case.
MaskMark demonstrates strong robustness to transformations for
which other methods fail completely at low false positive rates
(time-stretching, neural vocoding), and generalizes far outside its
relatively small training dataset and limited training distribution of
signal-processing transformations.

3.3. Perceptual transparency

We assess the perceptual transparency of MaskMark through stan-
dard speech quality metrics and a human listener study. Follow-
ing prior work [14]], we compute SNR and PESQ [28] scores over
500 pairs of watermarked and unwatermarked utterances on each
dataset. We sample 5-second excerpts from the DAPS dataset and
full recordings from the VITS dataset to ensure sufficiently long ut-
terances. Additionally, we conduct a human listening study on Pro-
lific ﬂ in which 119 participants are asked to distinguish between
pairs of watermarked and unwatermarked utterances. In this format,
a 50% identification rate corresponds to a perfectly transparent wa-
termark, while higher identification rates correspond to diminished
transparency. We select 50 utterance pairs from each dataset, yield-
ing a total of n=800 trials per method. Each utterance is assigned to
16 different participants from the United States. The participants are
required to wear headphones and pass a listening test to ensure they
can distinguish subtle differences in audio samples. Each assignment
covers 4 utterances processed by all testing methods and 4 secret val-
idation tests to ensure participants are paying attention. Participants
can complete as many unique assignments as they please, and are
paid at $15 per hour. Tableshows the results of our evaluations. .
While MaskMark produces the lowest average SNR, we note
that SNR is designed to measure the magnitude of additive perturba-
tions of the original signal, while our method produces highly corre-
lated filtering-like perturbations through the use of spectral masking.
This lets MaskMark introduce large-magnitude perturbations while
also maintaining the highest PESQ scores of all evaluated methods.
In the human evaluation, we find that all methods, save DNN-A,
are distinguishable from clean audio at p < 0.001. While DNN-A

Zhttps://www.prolific.co/

obtains the best perceptual transparency, this comes at the expense
of detection performance too poor for practical use: it fails to detect
true watermarks when the false positive rate is < 4%. We note that,
even when given a clean reference and explicitly instructed to listen
for the watermark, listeners are only able to correctly distinguish be-
tween MaskMark and clean audio roughly 60% of the time, where
chance performance is 50%. Via the Chi-Squared independence test,
Eigen (8=1.0) is significantly more perceptible than the proposed
method at p << 0.001, while Eigen (8=0.5) does not differ sig-
nificantly (p = 0.3057 for DAPS and p = 0.918 for VITS). Over-
all, MaskMark is not significantly more perceptible than the “weak”
Eigen configuration (8=0.5) while achieving superior robustness to
the “strong” Eigen configuration (56=1.0).

SNR?T PESQT  Perceptual ID

Speech dataset DAPS VITS DAPS VITS DAPS  VITS
4

Eigen [12], 8 = 1.0 23.40 21.10 424 4.12 782% 76.3%

Eigen [12], 3 =0.5 28.82 2643 4.44 440 614% 60.5%

MaskMark 19.55 22.01 4.56 4.59 63.9% 60.8%

Table 1. Objective speech quality metrics and human identification
rates. DNN-A values are shaded to indicate it fails to detect water-
marked speech at low false-positive rates (< 4%).

4. CONCLUSION

In this work we propose MaskMark, a novel neural network-based
watermark for synthetic speech detection. Experimental results
show that MaskMark can discriminate between watermarked and
unwatermarked speech more robustly than state-of-the-art signal-
processing and neural network-based speech watermark baselines,
while matching or exceeding the perceptual transparency of the
only baseline to achieve nontrivial robustness. Although neural
network-based transformations (vocoder resynthesis and neural
codec compression) are challenging for watermarks, the proposed
system proves more robust to these transformations than the base-
lines. Future work may incorporate such transformations directly
into training to improve robustness, or explore the effectiveness
of stronger optimization-based adversarial attacks on watermark
detectors.
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