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Abstract

Self-consistency (SC) is a widely used test-time inference technique for improv-
ing performance in chain-of-thought reasoning. It involves generating multiple
responses, or “samples” from a large language model (LLM) and selecting the
most frequent answer. This procedure can naturally be viewed as a majority vote
or empirical mode estimation. Despite its effectiveness, SC is prohibitively ex-
pensive at scale when naively applied to datasets, and it lacks a unified theoretical
treatment of sample efficiency and scaling behavior. In this paper, we provide the
first comprehensive analysis of SC’s scaling behavior and its variants, drawing on
mode estimation and voting theory. We derive and empirically validate power law
scaling for self-consistency across datasets, and analyze the sample efficiency for
fixed-allocation and dynamic-allocation sampling schemes. From these insights,
we introduce Blend-ASC, a novel variant of self-consistency that dynamically
allocates samples to questions during inference, achieving state-of-the-art sample
efficiency. Our approach uses 6.8x fewer samples than vanilla SC on average,
outperforming both fixed- and dynamic-allocation SC baselines, thereby demon-
strating the superiority of our approach in terms of efficiency. In contrast to existing
variants, Blend-ASC is hyperparameter-free and can fit an arbitrary sample budget,
ensuring it can be easily applied to any self-consistency application.

1 Introduction

Test-time inference has emerged as a promising direction for improving the performance of large
language models (LLMs) on reasoning-intensive tasks (Wei et al., 2022; Snell et al., 2025). These
techniques encourage models to “think more" by either exploring diverse reasoning paths (Yao
et al., 2023) or producing longer outputs (Muennighoff et al., 2025). Among such approaches,
self-consistency (SC) (Wang et al., 2023), also known as Vote @ n, has become widely adopted due
to its simplicity and efficiency: for each question, it suffices to sample n chain-of-thought generations
and select the most frequent answer. In other words, SC is equivalent to a plurality vote across the
sampled outputs, and can be viewed as selecting the empirical mode of the LLM’s answer distribution.

Despite these clear ties to mode estimation and voting theory, most attempts to improve or analyze
SC have relied on ad-hoc statistical methods or semantic approaches (Du et al., 2025; Chen et al.,
2023), often overlooking insights from the rich existing literature. The absence of these fundamental
approaches leaves SC and its variants without a principled analysis of their sample efficiency, as well
as provable guarantees. Yet such an analysis is essential, since SC can be highly inefficient at scale.
Under a fixed sampling budget, vanilla SC distributes samples uniformly across questions, regardless
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Figure 1: (Left) Blend-ASC outperforms SC, ASC, Fixed-Allocation SC, and asymptotically-optimal
PPR-1vl, by converging to the limiting answer the fastest on aligned questions. (Right) SC exhibits
scaling laws across free-response datasets, with power-law convergence to its limiting error.

of their difficulty. The efficiency could be improved by allocating samples adaptively, focusing more
on harder questions (Aggarwal et al., 2023; Li et al., 2024). While such adaptive variants of SC
can dramatically enhance efficiency, they remain rather underexplored. To address this gap, this
work provides a comprehensive analysis of the sample efficiency of SC and its related variants using
mode-estimation and voting theory results. We show that SC follows power-law scaling and identify
variants with accelerated and even exponential error decay. Following our analysis, we introduce
Blend-ASC, a novel adaptive SC algorithm that achieves the best empirical sample efficiency.

Motivated by existing mode estimation results, our algorithm matches the initial performance of
existing SC variants in the low-sample regime and outperforms all variants at scale. To ensure ease
of use for practitioners, we also adapt our method and existing methods to be hyperparameter-free.
Ultimately, our algorithm leads to a significant improvement in sample efficiency, requiring 6.8 %
fewer samples on average than vanilla SC.

Main contributions. Our contributions can be summarized as follows:

1. We leverage mode estimation and voting theory (Aeeneh et al., 2025; Anand Jain et al., 2022) to
analyze the scaling and sample efficiency of SC, fixed-allocation SC, and dynamic-allocation SC,
identifying clear power laws for SC performance and accelerated convergence for SC variants.
Our theoretical results are tighter than previous work on per-question scaling (Huang et al., 2025a)
and are the first to cover dynamic allocation SC.

2. We introduce Blend-ASC, a hyperparameter-free SC variant that achieves optimal sample-
efficiency for a given budget, by combining an asymptotically-optimal algorithm with an existing
adaptive variant.

3. We validate our results with extensive experiments and simulations across models and benchmarks,
demonstrating practical benefits.

2 Self-Consistency as Mode Estimation and Majority Vote

Setup. Let ¢ be an input question, fed to an LLM that outputs a chain- =(3-1)-2
of-thought (CoT) yielding a final answer r. Let u(-|q) be the distri- l
bution of such answers. We say that the LLM is aligned to a ques-
tion ¢ if the true response r* is the mode of the LLM distribution, i.e.,

r* = argmax, pi(r | q), and misaligned otherwise. Self-Consistency (SC) ~ / i) \d
samples © CoT generations r1, ... 7, ~ p(r | ¢) and the output is the most 5.4

frequent answer. In other words, an empirical distribution /i, is generated l l l %
based on x sampled answers, and the output of SC is the empirical mode 1

rsc = argmax, fi,(r | ¢) = argmax, » ., 1[r; = r]. One can notice . .
that if the model is aligned to g, SC converges to the correct response as l

x — 00 as fiz (-] g) converges to (- | ¢). Otherwise, SC converges to an 4

incorrect response, which implies the model is inherently not capable of Figure 2: Example of SC.
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Figure 3: Margin correlates with decay rate across several model and dataset combinations, where
decay is fit for = > 16 for € to have negligible impact on the bound.’

answering question g. Thus, SC sample efficiency is measured by the rate of convergence to the true
mode. From a voting theory perspective, we can view the support of . as a list of candidates, and
each response r; is a vote from i.i.d. voters who select candidates with probability p(- | q).

Per-question scaling. To understand the non-asymptotic behavior of self-consistency, we analyze
its convergence rate on a single question. Considering an aligned question g, we upper bound the
expected error of SC defined by

err(z, q) = Plrsc # r*] = P |argmax fi,(r | ¢) # argmax u(r|q)| .

Existing voting theory results grow unbounded as the number of candidates, or unigue responses,
increases (Aeeneh et al., 2025; Hu et al., 2024). Note that LLMs can vacuously produce infinite
unique responses for a question®. We therefore extend the error bound in Aeeneh et al. (2025) to
handle numerous unique responses. We address this by grouping the tail of low-probability responses
in p1(-| q), deriving a stronger bound by bounding P [rsc # r*] over top k < K answers.

Theorem 1. Let q be a model-aligned question. Without loss of generality, we consider the
unique responses sorted according to (- | q) in descending order, denoting their corresponding
probabilities by p1 > pa > p3 > .... Let p, = >, p; with k that satisfies py, < pa. Then,
for the empirical distribution fi, from x samples, the self-consistency error satisfies

err(z, q) < exp(—z((v/p1 — \/272)2 +€))

with € — 0 as ¢ — oo with rate O (10%) For misaligned q, the bound holds for 1 — err(x, q).

The proof is deferred to Appendix C.1. By restricting k to the smallest integer such that pi, < po,
we substantially reduce the effective number of candidates. In general, Theorem | demonstrates
exponential error convergence with rate m = (\/p1 — /P2 )2, which we refer to as the margin. The
margin reflects model confidence by quantifying the gap between its most likely answer and the
second most likely one. Note that Li et al. (2025) and Huang et al. (2025a) also consider the notion
of margin, while in a broader range of unsupervised learning tasks, it is common to rely on empirical
margin distributions, even when the estimates may be potentially noisy (Feofanov et al., 2024; Xie
et al., 2024).

To validate this finding empirically, we consider three recent models, LLaMA-3.2-3B, Qwen-2.5-
Math, and Qwen-2.5-32B, evaluated on MMLU, MATH, and GPQA-Diamond. For each question,
we estimate the margin using 100 samples. We calculate the empirical decay rate by fitting an
exponential curve to the mode estimation error. Fig. 3 shows that all models’ performance exhibits a
clear correlation between the margin and the error decay rate with an increasing number of voting
samples. This behavior is consistent across models and benchmarks as illustrated in Appendix D.

Comparison with prior work. Huang et al. (2025a) introduces a per-question sample-efficiency
bound, stating that z > 2log(3)/(p1 — p2)? many samples achieves an error of 4. Our result achieves

2We use z > 4 for GPQA-Diamond to have a sufficient sample size.
3For a free-response math question, the set of unique responses could be the set of integers.



error less than or equal to § when = > log(3)/((y/P1 — v/P2)* + €). We have a tighter result when
2(\/P1 — /P2)% + €) > (p1 — p2)?. To show this, we note that € — 0 as z increases, so we consider

the simplified bound with ¢ = 0, which always holds. As (/1 — v/72)* = 27221 we have
that

1 (V/P1 + /P2)? _ 2/p1° +2\/pa _ 2

(Vo1 —D2)?2  (m—p2)? —  (m—p2)? T (p1—p2)?’

which implies our result. This suggests that margin is a more natural measure of confidence in SC
compared to the absolute difference p; — p». Besides the per-question bound, we provide a general
analysis on the dataset setting to improve SC efficiency, which they do not explore.

3 Scaling Laws on Dataset Performance

We broaden our analysis by extending it to the study of the sample efficiency over benchmarks and
datasets, the setting in which sample efficiency can be meaningfully improved. Such a study is more
informative than individual questions as it provides insights into the empirical behavior of SC when
aggregated over a full dataset.

Synthetic datasets. In order to study a dataset-level performance theoretically, we now consider a
dataset D of infinitely many aligned questions, (g;);cn with margins m;. Using the theoretical error
model err(z, ¢;) = exp(—m;x) from Theorem 1, the expected dataset error with = samples for each
question is

1
err(z, D) = By, wunit(p) [er1(2, ¢5)] = Eq, ~unif(p) [exp(—m;z)] = / e~ % pp(m)dm
0

which is precisely the Laplace Transform £L{pp(m)} where pp(m) is the probability density function
of margin across D. Note that £L{pp(m)} scales as 2~ /2 if p(m) o m~'/? and scales as a
power law if p(m) does as well and the exponent is greater than —1. We prove that we only need
pp(m) o< m~'/2 near 0 to have 2~/2 scaling (see Lemma 5 in Appendix). Then, since our error
model is only dependent on margin, m = (/p1 — /D2 )2, we show that margin naturally leads to

power law scaling and often encourages pp(m) oc m~'/2 near 0 for several constructive examples
of families of datasets D defined as follows:

D;. Distribution of top two probabilities (p;, p2) is uniform across A = {(z,y) [0 <y <z <
1,z +y <1}, ie., g(p1,p2) : A — Rxq, g = Unif(A).

D,. Distribution of (p1, p2) is weighted by (p1 + p2)™ for n > 0, ie, g(p1,p2) x (p1 + p2)™.
This arbitrarily downweights questions where both p; and p, are low, which are questions
where the model has low confidence and considers several responses.

Ds. Distribution g(p1, p2) = (/p1 — /D2)>" for n > 0. We refer to this case as adversarial, as it
arbitrarily down-weights low-margin questions to encourage faster convergence. Regardless,
L{pp(m)} oc m~"~1/2 has power-law scaling.

We now state our main result for this broad family of datasets below.

Proposition 2. For a broad class of datasets {Dy,Ds}, the margin distribution satisfies

lim,,_,o+ p(m) \/%, and for adverserial dataset Ds, lim,,,_,o+ p(m) oc m™ /2,

We illustrate these results in Fig. 4 where we show the theoretical error decay for the three dataset
families considered above. We observe power law scaling in both margin and error decay, consistent
with what our theory predicts. As expected, the adversarial dataset D3 exhibits a faster convergence
due to its favorable reweighting of low-confidence questions. To show that models also naturally have
power-law scaling in margin, we sample up to 100 questions from each dataset and apply a KDE to
“simulate" a continuous distribution. These synthetic datasets have margin distributions remarkably
close to those observed for datasets D; and D,. This suggests that our theoretical setup is realistic
enough to provide insights about the performance of SC in real-world benchmarks.
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Figure 4: Large dataset sizes induce power-law scaling. (Left) Margin distribution for D1 — D3 with
n = 1. (Middle) Error scaling D; — D3, with D3 having the fastest convergence. (Right) Margin
distribution from sampling 100 points from each dataset and applying KDE.
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Figure 5: Scaling behavior of Self-Consistency on aligned (left), misaligned (middle), and full (right)
datasets for free-response (top) and multiple-choice (bottom) benchmarks.

Empirical results.  Finally, we provide a more nuanced illustration of the observed scaling law on
real-world datasets in Fig. 5. We plot the true error rate across multiple-choice and free-response
benchmarks with Llama-3.2-3B on GSM8K and Qwen-32B on GPQAdiamond across temperatures
ranging from 0.4 to 1. In each plot and for each temperature, we report the slope of the scaling law
as «v. Our first observation is that for aligned questions (left), we have extremely strong power-law
scaling, with weaker power-law scaling for misaligned questions. This can be attributed to the fact
that Theorem 1 is not as strong for misaligned questions as mentioned in the proof.

For full datasets, we combine both contributions from both aligned and misaligned questions. In the
case of free-response questions, we observe a consistent power-law scaling (top row). As for the
multiple-choice questions, the behavior is often non-monotonic (bottom row). We hypothesize that
this is because free-response questions distribute over many wrong answers, while multiple-choice
questions concentrate on a few wrong answers, inflating the proportion of misaligned questions. The
latter behavior is also well-aligned with the observations made by Schaeffer et al. (2025), who showed
that the test-time inference performance scaling in the case of multiple-choice tasks is difficult to
predict. Chen et al. (2024) also reported that SC can even hurt performance in multiple-choice tasks
as aligned questions converge to complete accuracy while misaligned questions converge to certain
error or ties. Additional graphs are in Appendix E.

4 Optimal Adaptive Self-Consistency

A major drawback of SC when used on datasets is sample efficiency. Some questions only need a few
samples, while others require hundreds, yet we use the same number of samples per question for the
whole dataset. This motivates adaptive SC, which allocates samples per question given some budget



of total samples. We consider two settings: fixed allocation, where samples are allocated a priori, and
dynamic allocation, where samples are allocated during inference.

Fixed methods can be used when there is information about questions. Dynamic methods rely on
consistency in the sample empirical distribution to inform mode stability.

4.1 Fixed Allocation

Consider any setting where we a priori have information on questions that may inform model
performance, such as question difficulty or subject. Then we may adjust the number of samples for
the question based on these attributes, such as, for example, (Wang et al., 2025b) that allocates one
sample for “easy" questions. To quantify the sample efficiency of fixed allocation, we consider the
optimal setting where we have full information on the question, or oracle access to .

We assume that err(x, ¢;) = exp(—m;z) and let z,, be the number of samples allocated to question
q; and T be the average samples per question. Then we have err(z, D) = Ey, wunif(p)[exp(—mizy, )].
Since error only depends on margin, oracle access to  means that we can access the margin m; for
any ¢;. So based on m;, we should optimally choose x,,. We see that all questions with the same
margin should have the same number of samples, so we can let z,, = x,,,, be a function of margin.
Suppose now that we have any two questions ¢; and g; with the same margin m; = m;. The total error
is exp(—m;q,) + exp(—myzq;) > 21/exp(—mixg, ) exp(—mz,,) = 2exp(—m;(2q, + x4,)/2).
So it is optimal to distribute samples equally among questions with the same margin. Then we can
define z,,, € M C {f | f:(0,1] — N} where M is the set of functions from (0, 1] to N such that

_ 1 _
T = fo Zmp(m)dm for some average number of samples Z. We can express the error as

1
ert(zm, D) = min Bq,unif(p)[exp(=mizm,)] = min /0 exp(—may, )p(m)dm

which becomes a constrained convex optimization problem. For a tractable, closed-form solution,
we weaken our assumption to have z; > 0 and solve this problem by means of the following
proposition.

Proposition 3. Under the above assumptions and with p(m) o< m~" for r € (0,1), the optimal
sample allocation is

R m~1(logm —log \) ifm > \
™0 ifm<A

_ __1 . . 0 __1—r
where as T — 0o, A ~ T~ r. This gives us an error convergence rate of approximately T~ "+
which becomes T~ in the special case of r = %

The intuition behlnd thlS Sample allo- 1 Theoretical Fixed Allocation Erl::A Distributi(::‘c‘)sfzxotes with Margin
cation is that for a sufficiently small ] — =06 T e
margin (m < A), it is no longer ef- —TE0
ficient to allocate any samples. This

is because the marginal improvement

of a single sample is less than adding

a sample to a question with a higher -l e ——
margin. We illustrate our obtained Number of Samples O S

results and the above-mentioned in- _, . . . .
tuition of optimal fixed allocation Figure 6: (Left) Fixed-Allocation SC scaling. (Right) The
number of allocated samples closely follows the theoretical

in Fig. 6. We use the error model distribution d di h ;
e~ ""mi with margins extracted from istribution depending on the margin.

running Llama-3.2-3B on MATH. The obtained scaling law across different temperatures confirms
the accuracy of our theoretical result in the large sample regime. Finally, Fig. 6 (right) shows how the
fixed allocation sampling works depending on the margin: low-margin questions where the LLMs is
uncertain of the answer get more samples (margin is close to 0 on the x-axis), while the number of
samples for high-margin (rightmost part of the x-axis) questions converges quickly to 1.
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4.2 Dynamic Allocation

Instead of assigning a fixed number of samples a priori for each question, dynamic allocation
adaptively samples during inference until a stopping criterion S; indicates that the self-consistency
output rsc achieves high confidence. Following Shah et al. (2020), these criteria require at least
x(8s,¢;) = Q(In1/6) samples for question ¢;, where 6 € (0, 1) denotes the target expected error.

Existing adaptive variants such as Adaptive SC (ASC, Aggarwal et al., 2023) and Early-Stopping SC
(ESC, Li et al., 2024) achieve state-of-the-art sample efficiency, substantially reducing the number of
samples compared to vanilla SC. However, they are difficult to use as they require extensive parameter
tuning and cannot be reliably used in settings with fixed budget constraints. Additionally, their
allocation schemes are not grounded in a solid theory and rely on stopping conditions derived from
heuristics. In this section, we introduce hyperparameter-free variants and provide the first theoretical
analysis of the optimal dynamic allocation within the SC framework.

Stopping criterion: PPR-1v1l. By looking at self-consistency from the mode estimation perspective,
we build upon results derived by Anand Jain et al. (2022) for martingale confidence sequences. We
introduce PPR-1v1 stopping criterion that we describe below. At each iteration, we allocate a sample
to the question with the lowest confidence, evaluated by (K — 1)Beta(z,ny + 1,no + 1) where K
refers to the number of possible unigue answers, and n; and ns are counts for the two most frequent
answers. For target error §, the stopping criterion is defined as Beta(%, ny+1,ne+1) < %.
Asymptotically optimal allocation. A key property of the PPR-1v1 stopping criterion is that it
has a theoretically optimal exponential decay in error for predicting the mode since it converges to
O(In 5) samples as & — 0. In Corollary 4, we extend this result to the dataset setting.

Corollary 4. Given a dataset D, a target error 6 € (0,1) and stopping condition PPR-1v]
denoted as Ss, we have that

lim E i ~Unif (D)

where x(Ss, q;) > sup m In (ﬁ) := LB(9, ¢;) and p is a cate-
p:arg max(p)F#arg max u(-|q)
gorical distribution with the same support as p( - | q).

Thus, Corollary 4 establishes the theoretically optimal decay rate for dynamic allocation and shows
that the PPR-1v1 algorithm achieves this rate. The latter is also supported empirically in the large
sample regime, as can be seen in Fig. 7. Thus, the introduced PPR-1v1 is an asymptotically optimal
stopping condition, which makes it distinguished from the other methods used in ASC and ESC.

Our approach: Blend-ASC. Despite the theoretical guarantees for the PPR-1v1 method, we have
empirically found that in the low-sample regime, it tends to be pessimistic, and simpler policies like
ASC are very efficient. This motivated us to introduce Blend-ASC that combines the best of the
two worlds. For each question, two rankings R; and R, are assigned based on ASC and PPR-1vl
confidence scores. Then, at step ¢ out of 7" total samples, we generate a response for the question
that minimizes the linearly-scaled ranking (1 — %)Rl + %Rg. We also observe that PPR-1v1 overly
concentrates samples on a few questions, so we exclude questions with over 16 times the number of
samples than the average question.

Hyperparameter-free and fixed budget. For each question, ASC and ESC sample until they reach
a stopping criterion defined by input hyperparameters, and then move to the next question. This
results in a variable number of samples per instance, as allocations are stochastic across questions. In
contrast, we jointly allocate samples across all questions. We reformulate our stopping criterion into
a parameter-free confidence score, and assign samples to questions with low confidence. See more
details in Appendix A and Appendix B.

Developing hyperparameter-free methods is an important improvement over existing methods. First,
both ASC and ESC require tuning two hyperparameters, increasing the difficulty of implementation
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Figure 7: Across many datasets and model combinations, Blend-ASC consistently outperforms all
methods in mode-estimation, achieving the lowest sample efficiency for target error.

as users need to optimize for efficiency and cost. In contrast, our method is lightweight and can
directly reach a desired budget. It iteratively increases the confidence for each question, so we can
evaluate our algorithm’s performance during runtime to prematurely stop it after it has converged.

Related work. We note that despite extensive adaptations to SC (Wang et al., 2025a; Taubenfeld
et al., 2025), there are few papers analyzing SC behavior and sample efficiency both empirically and
theoretically. Chen et al. (2024) showed that there is often no monotonic increase in SC performance
with samples on multiple choice benchmarks. Ruan et al. (2024) uses “observational” scaling laws
which fit curves across several LLMs to predict SC behavior, but observe a weak scaling trend with
FLOPs. From a theoretical point of view, Hu et al. (2024) introduced a per-question bound on error,
but the bound scales with the number of unique reasoning steps, which can be vacuously large. Huang
et al. (2025a) provide per-question bound similar to Theorem | with detailed comparisons in the
dedicated section, but they are limited to the per-question setting and do not explore improving
efficiency.

5 Numerical experiments

Benchmarks and models. We evaluate our findings using a variety of models, including LLaMA-
3.2-3B, Qwen2.5-MATH-7B, and Qwen2.5-32B, and temperature settings from 0.4 to 1.0. We
evaluate on both free response and multiple choice datasets, including GSM8K, MATH, MMLU, and
GPQA-Diamond. Due to the high computational cost of scaling test-time inference, directly running
inference can be prohibitively expensive in time and compute. So, we sample 100 generations per
question from an LLM to form the “true” LLM distribution. SC is performed by sampling from
the corresponding multinomial distribution. We focus on aligned questions as done in Huang et al.
(2025a). This allows a fair baseline as fixed allocation SC is not appropriate for misaligned questions,
as it would allocate a single sample to misaligned questions.

Baselines. We use hyperparameter-free ASC and PPR-1v1 as dynamic allocation baselines, each
run 100 times per model and benchmark pair. Fixed allocation SC is intractable as our problem is a
non-convex integer programming problem, so we use a modified method. We leave implementation
details in Appendix B. To assess the sample efficiency of SC variants, we calculate the error of SC at
64 and 128 samples, and then identify the least number of average samples required to match the
error for each variant. If a method does not reach the desired error, we set the samples used to 64 or
128.

Results. In both Fig. 7 and Table 1, we observe that Blend-ASC consistently achieves optimal
performance. SC has reliable performance improvements, but performs worse on the low-sample



GSMS8K MATH GPQA-Diamond Average
Llama-3B Qwen-Math Llama-3B Qwen-Math Llama-3B Qwen-32B Improvement

SC@n | Algorithm

Fixed-Allocation 15 9 18 10 27 15 4.66x
64 Adaptive SC 13 6 16 7 33 13 5.93x
Blend-ASC (Ours) 11 6 14 7 26 8 6.78x
Fixed-Allocation 34 14 45 19 77 37 4.60x
128 Adaptive SC 128 11 77 13 102 29 4.97x
Blend-ASC (Ours) 22 9 31 12 80 25 6.92x

(a) Sample efficiency at temperature 0.8.

3 GSMSK MATH GPQA-Diamond Average

SC@n | Algorithm

Llama-3B Qwen-Math Llama-3B Qwen-Math Llama-3B Qwen-32B Improvement
Fixed-Allocation 23 17 25 11 53 23 2.53x%

64 Adaptive SC 21 10 31 9 49 30 2.56x%
Blend-ASC (Ours) 16 9 20 8 49 21 3.12x%
Fixed-Allocation 36 21 41 15 82 37 3.31x

128 Adaptive SC 128 13 68 13 87 43 2.18x
Blend-ASC (Ours) 25 12 29 10 90 26 4.00%

(b) Sample efficiency at temperature 1.0.

Table 1: Sample efficiency of adaptive methods under different temperatures. We compare how many
samples are required to achieve a lower accuracy on aligned questions than SC using 64 and 128
samples.

regime. Fixed-Allocation SC performs strongly, reducing samples by 4.6 times compared to SC.
But it is only competitive with the unreasonable assumption of complete oracle access to p, which
is never available, and underperforms ASC and Blend-ASC. This suggests that allocating samples
before inference using prior information is never optimal. With our parameter-free and fixed budget
modifications, dynamic allocation is also easier to use than allocating samples beforehand.

For dynamic allocation, PPR-1v1 is the worst method in the low-sample regime but can
beat ASC in the large-sample regime, as its theoretical exponential performance suggests. ASC
performs strongly in the low-sample regime but often gets stuck at large samples, highlighting its
weakness in having no theoretical convergence guarantees. Finally, Blend-ASC matches ASC in
the low-sample regime but dominates as we scale up samples, reducing the number of prompts
by 6.8 times compared to SC. These performance gains highlight the usefulness of the provided
theoretical analysis in practice. Finally, we note that the exponential error decay suggests that we can
push the number of drawn samples even further. This is highlighted by the fact that Blend-ASC
curves in almost all plots in Fig. 7 are not plateauing even for as many as 10% samples. This can be
particularly suited for public model releases where even the slightest performance gain at the expense
of a drastically larger compute budget is acceptable.

6 Conclusion and Future Work

In this work, we introduce a comprehensive framework based on mode estimation and voting theory,
leading to theoretical convergence guarantees and scaling laws. We first analyze SC performance on
individual questions and identify power-law scaling behavior across full datasets. With this foundation,
we derived improved theoretical sample efficiency results for variants on synthetic datasets, which
are validated by empirical results. Finally, we introduced Blend-ASC, a novel parameter-free SC
variant that combines an asymptotically optimally SC variant with Adaptive SC. Experiments show
that Blend-ASC consistently outperforms all previous methods.

We believe that mode estimation and voting theory results on weighted voting can inspire similar
analysis for other test-time inference methods that use a verifier or LLM to generate scores and then
perform majority vote, such as Best-of-N-Weighted or Self-Calibration (Snell et al., 2025; Huang
et al., 2025b). We can also leverage the mean and median estimation literature to analyze SC variants
that predict continuous values, such as with time-series prediction (Liu et al., 2025).
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A Adaptive SC and Early-Stopping SC

ASC specifically looks at the counts of the two most frequent classes, n; and ny, sampled with

probabilities p; and ps. It considers a Beta prior on the distribution of pll_’ﬁpz, and retrieves its

posterior distribution given observed counts n; and ns. Then the stopping condition activates when
the probability of p; < py is lower than some fixed threshold 7:

1/2
P p; <p2]:/ Beta(z,n1 + 1,ne+ 1)de <7
0
or we reach some maximum number of samples. We then output n;.

ESC repeatedly samples windows of size w and continues until we reach a maximum num-
ber of samples or a window where all samples have the same answer, in which ESC returns that
answer. From a mode-estimation perspective, ESC is not theoretically optimal, as it should strictly
return the empirical mode regardless of the last window’s unique answer (though they often coincide).

Finally, they do not admit a straightforward extension to a setting with a fixed budget of samples,
making them unreliable and difficult to use. The average number of samples is determined by
hyperparameters, and even with the same set of parameters, the number of samples on each instance
is stochastic.

B Implementation details

Fixed allocation. In practice, the optimal fixed allocation for a true dataset is infeasible as the
average error for a question g given = samples is often non-convex in z. Since = must be integers, we
are thus solving a non-convex integer programming over potentially thousands of variables (sample
allocation for each question). However, we observe in Section 2 that the average error for a question
highly correlates with a convex and strictly decreasing exponential upper bound.

We can closely approximate Fixed Allocation SC as a convex integer programming prob-

lem by allocating samples according to a convex and monotonic approximation, where we apply
local smoothing approaches and then fit an exponential approximation for high sample questions.
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Under these assumptions, for any question ¢, each additional sample yields strictly positive but
diminishing improvements in error. Thus, we can greedily allocate samples at each iteration to the
question with the highest marginal improvement.

Dynamic allocation. To develop hyperparameter-free methods, we create an array for confidences,
which is measured for each question based on the consistency of the current samples for that question.
Each confidence is initialized to —oo (or a small initial value). We have another array that stores
the sampled responses for each question. Then, at each iteration, we choose the question with the
lowest confidence to sample via a heap. After updating our counts array, we update our confidence as
follows: for ASC our confidence is f01/2 Beta(x, n1 +1,n2+1)dz and for PPR-1v1 our confidence is
(K —1)Beta(x,n1 + 1,12+ 1).* For PPR-1v1 specifically, as we don’t have access to K a priori, we
modify K to be min(2, K ) where K is the number of unique answers seen thus far while sampling.

“We modify the confidence in PPR-1v1 for when K = 1 and when we only have n; 4+ n2 = 1 to avoid
degenerate confidences.
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C Proofs

C.1 Proof of Theorem 1

We assume the distribution of answers to the question ¢, y(- | ¢), has a finite support of n items. We
also denote 7.y = argmax,. (- | ¢) (assuming that argmax outputs a single value). Then, following
Theorem 3 of Aeeneh et al. (2025), for any ¢, we have

Plrsc # rmax] < exp{—a((vp1 — vP2)" +€))} = (K = 1) - exp{—z((/p1 - VP2)" +€))}

where € has no dependence on K and ties are broken randomly (as assumed in SC). The number
of unique answers K can be arbitrarily large (such as the space of integers), which weakens the
inequality. Nevertheless, in practice, nearly all probability mass concentrates on a few answers, so
we prove that we can bound P [rsc # 7max] by truncating to only the top k < K answers.

Without loss of generality, let the support of x(-| ¢) be A = {aq,...,ax} with p; = p(a; | g) such

that p; > -+ > pr and a1 = ryax. Suppose x answers are sampled 71,72, ..., 7, ~ u(- | ¢) and let
the count vector be (n1, ..., ng) where n; = Z?Zl 1[r; = a;]. Define the tail bucket distribution /

of the original i by aggregating all answers a; for ¢ > k into ay:

ﬁ(ailq):u(%lq) ifi <k,

fila;|q) =32y plajlq) ifi=k.
Finally, by 7sc we denote the self-consistency answer sampled from /(- | q).
We prove that P [rsc # Tmax] < P [Fsc 7 Tmax) by considering all possible count vectors. We can
create an injection from the set of count vectors for y into the set of count vectors for fi defined

K .
as (ny,...,ng) = (n1,...,Ng_1, Ej:k nj). Consider all count vectors where we could have

Tsc # Tmax (under tiebreaks). Then there exists some ¢ € {2,..., K} such that n, = max; n; > n.
If ¢ < k, then in the bijected vector for i, n; > ny. Butif i > k, then for i, we have the final

element is Zf:k n; > n; > ny. If we have a strict inequality, then n; > n; and both rsc # rmax
and 'FSC 75 Tmax-

Consider when we have n; = n;. Now, as we break ties randomly, every count vector has some

probability of failure equal to % We show that in each case, the probability of failure

is the same or increases when we biject from (n1,...,nx) = (n1,...nk—1,> 5, n;). i <
k, we have three cases: either Zj(:k n; < n, Z]K:k n; = n, ZJK:k n; > n;. In the first
case, | arg max; n;| doesn’t change as for all j € {k,..., K} we have n; # max; n; for u and

Zf:k n; # max; n; for fi, so the probability of failure stays the same as | arg max; n;| doesn’t
change. In the second case, at most one j € {k,..., K} satisfies n; = argmax; n;, but we are
guaranteed Zf: x j = argmax; n;, so | arg max; n;| either doesn’t change or strictly increases
(which increases our probability of failure). In the final case, we have complete failure for z. In all
cases, the probability of failure stays the same or increases as desired. If ¢ > k, either 25{: My =1y

or Zj{: & T > n;. In the first case, |arg max; nj| stays the same, and in the latter case, we have
complete failure for fi. So we see that for all count vectors where we could have rsc # rmax, the
probability of failure stays the same or increases for [, $0 P [rsc # Tmax] < P [Fsc # Tmax)-

Then we can bound P [Fsc # rmax| using the bound from Aeeneh et al. (2025), proving our result.

When our distribution is aligned, .« is the correct answer, so err(z,q) = P [rsc # rmax] and
we upper bound this error. When our distribution is misaligned, then to bound 1 — err(z, ¢), we
notice that whenever SC predicts correctly, rsc # 7max @S Tmax 1S an incorrect answer. Then

1- eI‘I'(ZL', q) < P [TSC 7é 7ﬂmax]~
C.2  Proof of Proposition 2
We demonstrate that many synthetic datasets exhibit 2~ /2 scaling under self-consistency by first

demonstrating that we only need pp(m) oc m~ /2 near 0 to have 2~ /2 scaling. Then, since our error
model is only dependent on margin, m = (/p; — /D2 )?, we show that margin naturally encourages
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Figure 8: From Fig. 4, we observe that synthetic dataset Dy, Ds, D3 have power-law scaling under
our theoretical error model. Here, we show that our kernel-smoothed distribution has approximately
x~1/2 error scaling.

pp(m) x m~'/2 near 0 by considering various synthetic datasets where the proportion of questions

with top two probabilities (p1, p2) is uniform across A = {(z,y) |0 <y <z <1l,z4+y <1} or
weighted by (p1 + p2)™. We demonstrate that even adversarially designed datasets that minimize
margin also exhibit power law scaling.

The first lemma demonstrates that we only require p(m) to have m~'/2 behavior when m € (0, b]
for small b to get a power law lower bound on err(z, D).

Lemma 5. Consider the function class

az—1/2 ifx <b
h(z) otherwise

F= {f(:c) e P((0,1]) | f() { ,a > 0,Yz h(z) 20}

Forany f € F, L{f} = %’y(%, bx) + O(e"%) where v(%,bz) = \/m(2®(V2bx) — 1) is the
lower incomplete gamma function and ® is the Gaussian cumulative density function and ®(x)

. . — 2
converges rapidly to 1 with rate e =% /2.

Proof. The Laplace Transform is
b 1
L{f}= / e at™Y2dt —l—/ e h(t)dt
0 b

fbl e~th(t)dt is O(e~"7) as the integral of h must be bounded for f to be a distribution. Then we
have

b
L{f} = a/ e T2t 4 O(e7b7)
0

_ a/oba; o (E)—l/Q dﬂ N O(e_b””)

T T

a

bx
:i —u —1/2d 9] —bzy _ % lb 9] —bx
ﬁ/ T R+ 0(e) = L) + O )

Next, we demonstrate that several synthetic datasets D have p(m) € f.
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Lemma 6. Let the distribution of (p1,p2) across D be g(p1,p2) : A — Rxo where A =
{(z,9) |0 <y <2 < lLz+y <1} Ifg = Unif(A), then p(m) = —— —m —

3vm
VM2 —m + 22, which implies that lim,,, o+ p(m) o \/%

Proof. We consider the cumulative distribution function of m, F'(m). Let A4,, = {(z,y) € A |

(V- yi)? < m}.
F(m) = //(x,y)eAm g(z,y)dxdy = 4//(z’y)€Am dzdy

We now find the area of A,,. Notice that \/z — \/y < y/m implies z < (y/m + ,/y)? and we have
x—y=m+2ymy. Let) =z +yand & = z — y. Then we have y = 3(§ — &) which gives us
& —m < /2m(§ — 2). So either # < m or (# —m)? < 2m(g — 2). For the latter case, we have
§ > 5% 4+ Lm. We can express the constraints of Aas§ < land0< §— & < §+ & < 2, the
latter can be decomposed as § > & > 0. When & < m, all points (&, ) where 0 < & < § < 1 are
sufficient, and for & > m, we see that ;-2 + 2m > & so all points ;—4% + Im < § < 1 are
sufficient.

Expressing this as an integral, we have

1 m ! 1 1
—F(m) = // didj = / (1—2)ds +/ max (0, 1— —&2 - m> di
2 (3,9)€D(Am) 0 m 2m 2

V2m—m?2
1 1
:m(1—T)+/ (1—:@2—m)d5c

2) ") om” 2
v2m—m?2
1
= /2m — m? (1 - T) . #2di
2 2m J,,
1 3 1 3 3
= —V2m-m?2 —— ([ V2m —-—m2 —m
2m 6m
1 3 21 2
= —+/2m —m? er—:f\/E\/meSer—
3m 6 3 6

where @ is the transformation (z,y) — (3(z — y), 3(z + y)) and we remove a factor of 2 from the

Jacobian in our transformation. The second equality uses 1 — 522 — 3m < 0 when & > v/2m — m2.
Taking the derivative, we have

d 1 3 2 1 2m
e Fm) = VB 2y (g )+ 5

1 2
- V2w Ve —my
NG 3

p(m) =

O

The uniform distribution assumption is clearly not realistic, but we claim that power scaling is natural.
Consider another class of datasets with distribution of (p1, p2) weighted by (p1 + p2)" for n > 0.
This arbitrarily downweights questions where both p; and ps are low, which are questions where the
model has low confidence and considers several responses. We again observe that p(m) oc m~1/2
when m — 0.
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Lemma 7. Let g(p1,p2)  (p1 + p2)™ for n > 0, then

n+1
1—m n+1\n+2
anrl +(n+1 +27(n+1)§ mn+1
( )\/Q—m\/m = ) 20 +1

_9~ (n+1)7§:1 n+tl 1 imﬁﬂmn—wg/z
i ) 2i+1dm

which implies that lim,,,_,o+ p(m) NG

Proof. Suppose we have (x + y)™

1
F(m) = // g(z,y)dzdy = // —(x +y)"dzdy
(‘/Evy)eAm, (-17 y)eAnL Z

for normalizing constant Z, and from Lemma 6, we have

m 1 v2m—m? 1
F(m) « / / 9y dydz +/ / 9y dydz
0 m m ﬁiQ%»%m

Equivalently, we have

V2m—m?2 1 1 n+1 m
F(m) / 1 - <552 + m> di + / 1 —m"di
m 2m 2 0

g Y=
=42m —m?2 — (2m)_("+1) Z < . >m2(”+1_’) / #2ds — mnt?
i=0 m

2(n+1 %)

2m —m? = 27 D) Z nel Vam = i) e
) 241 +1

(m2i+1mn—i+3/2 _ mn+2) _ 2
+1

=/2m —m2 — 2~ (1) Z <n + 1) !
pard i 27

Taking the derivative, we have

d 1—-m sy n+1\n+2
n+1 —(n+1) n+1
p(m) de( ) -m +(n+1)\/m\/* Z( i )2i+1m

n+1

+1 1 d 21+1 .

9~ (n+1) n 92— n—i+3/2
Z i 2+ 1dm m

1

ro We have T scaling (up to constant) when m — 0. The first and third term decay to 0 as m — 0

from the m™*! term. For the last term

d 2i+1 3 2i+1 ; 2i+1 2i ;
— /2 m m— i+3/2 _ n4i—= 2 m mn71+1/2_ 2 —m mn71+3/2
dm = 2) 2V/2 —m

As 2 — m approaches 2 as m — 0 the and ¢ is at most n + 1, the first term is at best on the order of
m~1/? (again giving us \/L scaling), while the second term is at best on the order of m'/2 which

decays to 0. O

Suppose we could observe an even faster convergence. Since questions with low margin converge the
slowest, such a dataset should heavily downweight low-margin questions, so we consider g(p1,p2) =
(vP1 — /P2 )2" for n > 0. We can attempt to arbitrarily down-weight p; — py by increasing n.
However, we still have power law scaling, giving us the desired predictable gains.
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Lemma 8. Let g(p1,p2)  (\/p1 — +/P2)*" for n > 0, then

n+1
1-m n+1\n+2
o+l 1 27(n+1) n+1
F(m)x —m"" +(n+1)——+ E b

V2 —my/m = {
n+1 .

) 21+ 1dm

which implies that lim,,,_,¢+ p(m) o \/%

Proof. Suppose we have g(z,y) = (/x — \/y)m
1
(@y)€Am (@) EAn £

for some normalizing factor Z and from Lemma 6, we have

m 1 n vV2m—m?2 1
o</ / (5- V7= ) dgdm/ / (95— Vi —22) dyd
0 m m 2%”562+%m

(m) I>(m)

We have p(m) = 4~ F(m) oc #2-11(m) 4+ 4% I>(m). Using the Leibniz Integral rule, we have

dm
L () = (i- W)"dzﬂ/om ;n/l (5 Viz —22)" agai

m
1

= [ (5-VZ=m?) dg—/ (m = Vmz=2?)" di
0

and
gy = L= 1( yz_gmmg)”dyd@_/l(g_ 7o) dg
dm V2m —m?2 J1 m

2m7m28 1
N

— [ (o= viEr—m) g+ T |
m

‘We then have

m n n V2m—m?2
p(m)(x—/ (m— m2—:L‘2 dz + m—/ (a? —1)d:13
m m

O 2
3
n (9 V2m —m?
= - / m —vVm2 —m2sin® 6 )cos9d9+m<m\/2mm2+ﬂ;2m>
m

2 \3
<m2 +(1-2m)v2m — m2)

For the first term, we define 6 via & = msin § As m — 0, we see that the very last term dominates

and scales as m”~!/2. Functions proportional to m™~'/2 have Laplace Transforms that are also
—n—1/2

n—1

/2
= —mnt! / (1 + cos )" cos 0df +
0

power laws with rate m
O



C.3 Proof of Proposition 3

The fixed allocation objective is
1
min/ exp(—ma, )p(m)dm
0

under the constraint that fol Tmdm = T and x,, € N. We make the simplifying assumption that
x(m) € [0, 00) to avoid integer programming. As our error models, exp(—mz,, ), are smooth and
monotone, this continuous relaxation only changes results by a negligible rounding error.

Under Lagrangian optimality, the solution is of the following form:

_ [m~t(logm —log\) ifm > X
m =0 ifm < A

for some A > 0. The budget constraint then becomes

1
:E:/ (logm—log)\)}Lm)dm
A m

1
err(:f,D):/ dm+>\/ pm)
0 A m

Suppose the distribution of margin is of the form p(m) = (1 — «) - m~ for some « € (0,1). Then
the budget constraint is

and the error becomes

1 1
z=(1- a)/}\ m~ " *logmdm — (1 — ) log)\/)\ m~ 1" %dm

1_
= a [m_o‘logm]i\
a
1-— 1-— 1-—
= o 2a+ alog)\
o @

1
“1%dm — (1 - ) log)\/ m~ " %dm
A

As T — oo, we see that A scales proportional to Z~=. We can also express the error for

A 1
err(z, D) = (1 — a)/ m~“dm + (1 — a))\/ m~ 1" %dm
0 A

— l/\pa _
« «

l1—«

A

. _ __l=a .
Again, as T — oo, we have that our error scales as A% and therefore 2~ = . In the special case
where o = %, we have that error scales as 2! as £ — 0.

From Proposition 3, questions with very small margins, less than ), are ignored since allocating to
them is inefficient. Fig. 9 confirms the predicted allocation and convergence across synthetic datasets,
and we observe strong accelerated power-law scaling behavior on benchmarks.

C.4 Proof of Corollary 4

Anand Jain et al. (2022) showed that PPR-1v1 is asymptotically optimal per question. We briefly
show that this extends to the dataset setting. First, from Shah et al. (2020), we have

Theorem 9. For ¢ € (0, 1) and stopping condition Ss, the expected number of samples is at
least

1 1
©(Ss, qi) > . sup ‘ Wl (245> LB(d, ;)

p:arg max(p)#arg max pu(-|q)
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Theoretical Fixed Allocation Error Distribution of Votes with Margin
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Figure 9: We use the error model e™""**m: using margins extracted from running Llama-3.2-3B
on GSMB8K. (Left) We observe weak power-law scaling initially that tapers off in the high-sample
regime. (Right) Samples closely follow the theoretical distribution from Lagrangian optimality.

where p is a categorical distribution with the same support as u( - | q).

and from Anand Jain et al. (2022), we have

P
Theorem 10. Let the stopping criteria of PPR-1v1 be Sffor any 9. Then lim 2(S; ’q_i) =1
5—0+ LB(éiql)

First, at best, we can have exponential error scaling as any specific question has exponential error
scaling. Let ¢; = argmin cp sup RCGiC Ta)p) and p; be the corresponding
p:arg max(p)z#arg max u(-|q) ’

distribution. PPR-1v1 achieves the asymptotically optimal exponential scaling as

o KL(u(-19), pi) P . ©(Sy, 45)
lim Ey. Ui 8P ¢ < lim E,. oun; kSl IR P |
o0t In(yhs) U (2S5 0)] < fim, Boyvnio) | o5y 5
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D Additional results on margin correlation
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Figure 10: We compare the empirical decay rate with margin, and observe high Pearson correlation.
This substantiates our theoretical error model in Section 3
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E Additional results on dataset scaling laws
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Figure 11: We observe strong power law scaling on aligned questions and weaker power law scaling
on misaligned questions. For free-response benchmarks (blue), power-law scaling is prominent up to
100 samples. For multiple-choice benchmarks (red), we cannot reliably predict performance.
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F Additional results on Blend-ASC
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Figure 12: We compare all self-consistency variants on mode estimation across several temperatures.
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. GSMSK MATH GPQA-Diamond Average

SC@n | Algorithm

Llama-3B Qwen-Math Llama-3B Qwen-Math Llama-3B Qwen-32B | Improvement
Fixed-Allocation 23 13 28 11 56 30 2.39 x

64 Adaptive SC 24 7 31 10 45 21 2.78x
Blend-ASC (Ours) 13 6 19 9 38 18 3.73%
Fixed-Allocation 32 75 43 14 81 42 2.68%

128 Adaptive SC 128 10 77 14 67 33 2.33x
Blend-ASC (Ours) 19 9 30 11 57 25 5.09%

(a) Sample efficiency at temperature 0.6.
GSMSK MATH GPQA-Di d
SC@n | Algorithm QA-Diamon Average
Llama-3B Qwen-Math Llama-3B Qwen-Math Llama-3B Qwen-32B Improvement
Fixed-Allocation 15 9 18 10 27 15 4.66x

64 Adaptive SC 13 6 16 7 33 13 5.93x
Blend-ASC (Ours) 11 6 14 7 26 8 6.78%
Fixed-Allocation 34 14 45 19 77 37 4.60x

128 Adaptive SC 128 11 77 13 102 29 4.97x
Blend-ASC (Ours) 22 9 31 12 80 25 6.92x

(b) Sample efficiency at temperature 0.8.
GSMSK MATH GPQA-Diamond
SC@n | Algorithm Q Average
Llama-3B Qwen-Math Llama-3B Qwen-Math Llama-3B Qwen-32B Improvement
Fixed-Allocation 23 17 25 11 53 23 2.53%

64 Adaptive SC 21 10 31 9 49 30 2.56x%
Blend-ASC (Ours) 16 9 20 8 49 21 3.12x
Fixed-Allocation 36 21 41 15 82 37 3.31x

128 Adaptive SC 128 13 68 13 87 43 2.18x
Blend-ASC (Ours) 25 12 29 10 90 26 4.00x

(c) Sample efficiency at temperature 1.0.

Table 2: Comparison of sample efficiency across adaptive methods under different temperatures.
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