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Abstract

Reinforcement learning (RL) has emerged as001
a promising approach to fine-tune offline pre-002
trained GPT-2 model in task-oriented dialogue003
systems. In order to obtain human-like on-004
line interactions while extending the usage of005
RL, building pretrained user simulators (US)006
along with dialogue systems (DS) and facilitat-007
ing jointly fine-tuning via RL becomes preva-008
lent. However, existing methods usually asyn-009
chronously update US and DS to ameliorate the010
ensued non-stationarity problem, which could011
bring a lot of manual operations, lead to sub-012
optimal policy and less sample efficiency. The013
paradigm of iterative training implicitly dress014
the distributional shift problem caused by com-015
pounding exposure bias. To take a step fur-016
ther for tackling the problem, we introduce an017
Co-Evolutional framework of Task-Oriented018
Dialogue (CETOD) with bias estimator, which019
enables bias-aware synchronously update for020
RL-based fine-tuning whilst takes advantages021
from GPT-2 based end-to-end modeling on US022
and DS. Extensive experiments demonstrate023
that CETOD achieves state-of-the-art success024
rate, inform rate and combined score on Multi-025
WOZ2.1 dataset.026

1 Introduction027

Traditionally, task-oriented dialogue (TOD) sys-028

tems are trained via pipeline approaches by decom-029

posing the task into multiple independent modules030

(Wen et al., 2017; Chen et al., 2020). Recently,031

recasting the TOD as a unified language model-032

ing task with leveraging supervised pretrained lan-033

guage model like GPT-2 (Radford et al., 2019)034

becomes prevailing, which thoroughly avoids the035

cross-module error accumulation problem in the036

pipeline approach. However, GPT-2 suffers from037

exposure bias (He et al., 2019; Zhang et al., 2020a;038

Arora et al., 2022) problem that the model has never039

been exclusively exposed to its own predictions dur-040

ing training thus leads to accumulated errors in the041

Figure 1: The length of user act and system act.

KL divergence(%) User Act Length System Act Length
Supervised Learning(SL) 17.48 2.08

Asynchronous Update 17.0 2.23
Co-Evolutional Update 4.27 0.58

Table 1: Comparison of KL divergence on length of user
act, system act between different training methods and
MultiWOZ2.1 dataset.

output generation process during test. To avoid 042

such problem, leveraging reinforcement learning 043

(RL) could be one of the antidotes (Keneshloo et al., 044

2020) because the optimization direct relies on its 045

own outputs with rewards (e.g., success rate) as 046

update guidance rather than the ground-truths. 047

RL requires large amounts of online interactions 048

for training. However, interacting with human 049

users is time-consuming and costly. An intuitive 050

way for establishing communications with an RL- 051

based dialogue system (DS) is training a GPT-2 052

based user simulator (US) which learns from real 053

data to mimic human behavior (Shi et al., 2019). 054

However, serving as each other’s environment to 055

interact with, joint update makes both US and 056

DS learning under non-stationarity conditions (Liu 057

and Lane, 2017), Existing methods usually employ 058

asynchronous update (Fig. 2(a)) which update US 059

first and then update DS to ameliorate this issue. 060

Joint update brings compounding exposure bias 061

problem which is the deviation due to self-carrying 062

bias and unseen input distribution from the envi- 063

ronment in the process of online interactions. Com- 064

paring the act length of US and DS in Fig. 1, the 065

distributional shift problem caused by it can be 066
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(a) Asynchronous update (b) Co-Evolutional update (c) Online evaluation

Figure 2: (a) Asynchronous update usually iteratively update US first and then update DS, while (b) Co-Evolutional
update use the same batch of data to synchronously update US and DS. The online evaluation results (c) show that
our update method is superior to asynchronously update regarding dialogue success rate and inform rate.

inferred (Dataset VS. SL), it also can be mathe-067

matically calculated the KL divergence between068

their distributions in Table 1. Unfortunately, this069

asynchronous update paradigm feels challenging070

to continually adapt to changes in distribution shift,071

the gap between data distribution is still wide (SL072

VS. asynchronous update), and it ameliorates the073

problem by sacrificing sample efficiency and might074

lead to sub-optimal policy, a lot of manual opera-075

tions are also introduced.076

In order to take a step further for tackling the077

distributional shift problem (SL VS. co-evolutional078

update), we propose a co-evolutional framework,079

which enables bias-aware synchronous update for080

RL-based fine-tuning with hierarchical reward and081

policy optimization combinations through the same082

batch of online data (Fig. 2(b)) whilst takes advan-083

tages from GPT-2 based end-to-end modeling on084

US and DS. We also propose bias estimator to deal085

with the non-stationary problem, which performs086

on both US and DS by taking uncertainty of transi-087

tions (Yu et al., 2020) into consideration to address088

the problem of distribution shift by trading off the089

risk of making mistakes and the benefit of diverse090

exploration. With such a complete mechanism, we091

build high-quality loops for policy learning and092

online data collection as shown in Fig. 2(b). Our093

contributions can be summarized as follows:094

• We propose a novel bias-aware co-evolutional095

update framework for US and DS policy fine- 096

tuning while ameliorating the distributional 097

shift problem with the rewards that been ex- 098

plored from both hierarchical granularity and 099

dialogue sub-task optimization combinations. 100

• CETOD provides end-to-end modeling on US 101

and DS based on GPT-2 with the full ability 102

to understand, make decisions, generate lan- 103

guage, and enable naturally joint update with 104

engaging the components of bias estimator. 105

• Extensive experiments demonstrate that CE- 106

TOD outperforms SOTA methods on Multi- 107

WOZ2.1 and has achieved 79.0 success rate, 108

87.5 inform rate and 101.5 combined score. 109

2 Related Work 110

Pretrained language model for US and DS. The 111

approaches of solving TOD have been transformed 112

from traditional pipeline methods (Zhong et al., 113

2018; Zhang et al., 2019a; Chen et al., 2019) to 114

end-to-end manner (Madotto et al., 2018; Lei et al., 115

2018; Zhang et al., 2020b; Zhao et al., 2022). With 116

the development of pretrained language models 117

such as GPT-2, GPT-based methods become domi- 118

nant in TOD, e.g., SimpleTOD (Hosseini-Asl et al., 119

2020), SOLOIST (Peng et al., 2020), AuGPT (Kul- 120

hánek et al., 2021), UBAR (Yang et al., 2021). The 121

literature of US modeling can be roughly sum- 122
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marized into two types: one is rule-based simu-123

lation such as the agenda-based user simulator (Li124

et al., 2016; Shah et al., 2018a), easy to apply but125

very limited under complex scenarios; the other is126

data-driven US modeling, (Eshky et al., 2012; Asri127

et al., 2016; Kreyssig et al., 2018; Shi et al., 2019;128

Shah et al., 2018a; Zhang et al., 2019b), which is129

more robust but requires large amounts of manual130

annotations and system-corresponding data. The131

most widely used benchmark dataset MultiWOZ132

(Budzianowski et al., 2018b) have about 8000 di-133

alogues. Smaller datasets such as DSTC2 (Hen-134

derson et al., 2014) and M2M (Shah et al., 2018b)135

contain 1600 and 1500 dialogues respectively. In136

this work, CETOD leverages GPT-2 for end-to-137

end modeling of US and DS with MultiWOZ2.1138

dataset.139

Reinforcement Learning methods in TOD. Re-140

inforcement learning aims to learn optimal policy141

to maximize long-term cumulative rewards. With142

different data collecting paradigm for policy update,143

(Sutton and Barto, 1998) divides RL into online RL144

and offline RL. Apply offline RL in TOD can avoid145

explicit construction of US and directly learn from146

offline dataset (Zhou et al., 2017; Lin et al., 2021;147

Jeon and Lee, 2022). However, offline RL struggles148

with a major challenge (Kumar et al., 2020) that149

it may fail due to overestimation of values caused150

by distribution shift between dataset and learning151

policies. Online RL (Gur et al., 2018; Tseng et al.,152

2021) needs to design a US to interact with DS (act-153

ing as their opponent’s environment) and generate154

dialogues data which can be further used for policy155

optimization. To improve the sample efficiency156

of deep RL, (Wu et al., 2020) apply model-based157

RL which incorporates a model-based critic for the158

TOD system. CETOD builds the framework of US159

and DS through offline supervised learning (SL) to160

online RL. The offline stage focuses on building161

US and DS that communicate using natural lan-162

guage, whereas the online stage optimizes dialogue163

policy using the generated high-quality data.164

Joint update of US and DS. The joint optimiza-165

tion scheme for end-to-end US and DS is the most166

relevant research direction of our work. (Takanobu167

et al., 2020) follows the idea of multi-agent rein-168

forcement learning, which treats DS and US as169

two dialogue agents and utilizes role-aware reward170

decomposition in joint optimization. (Papangelis171

et al., 2019) learn both US and DS, but only applied172

in the single-domain dataset (DSTC2). In addition,173

most of them are based on traditional network archi- 174

tectures LSTM (Liu and Lane, 2017; Tseng et al., 175

2021), (Anonymous, 2022) firstly build a GPT-2 176

based trainable US. And in the way of joint up- 177

date implementation, they (Liu and Lane, 2017; 178

Anonymous, 2022) employ asynchronous update 179

to weaken non-stationarity problem, which chooses 180

to fix the system and update user first, and update 181

system after obtaining a better user (Fig. 2(a)). 182

CETOD is a co-evolutional fine-tuning framework 183

(Fig. 2(b)) to tackle the distributional shift problem, 184

which ameliorates the compounding exposure bias 185

while ensuring stationarity. 186

3 Offline Supervised Learning for User 187

Simulator and Dialogue System 188

To enable our online co-evolutional update frame- 189

work, we first build DS and US via SL on the Mul- 190

tiWOZ2.1 dataset to establish communications via 191

natural language between them. 192

3.1 Architecture Design 193

To simulate the entire dialogue process and infor- 194

mation flow in real world, the end-to-end architec- 195

ture of US and DS is designed as shown in Fig. 3(b). 196

During the training phase, a pretrained language 197

model such as GPT-2 is tuned to produce a condi- 198

tional generative model. The whole input sequence 199

ct as described below: for US, the natural language 200

sequential pairs {sr, uu}1:t−1 of system response 201

srt and user utterance uut is concatenated with the 202

user’s understanding unt of dialogue history, dy- 203

namic goal state gt, user act uat, and current user 204

utterance uut, i.e., 205

cUS
t = {sr, uu}1:t−1 ⊕ unt ⊕ gt ⊕ uat ⊕ uut (1) 206

where ⊕ serves as the operation of concatenation, 207

specific details are shown in Fig. 3(b). The natural 208

language sequential pairs {uu, sr}1:t−1 is highly 209

symmetric for DS and is concatenated with the 210

belief state bst, database query result dbt, system 211

act sat and current system response srt, i.e., 212

cDS
t = {uu, sr}1:t−1 ⊕ bst ⊕ dbt ⊕ sat ⊕ srt (2) 213

3.2 Offline Supervised Learning 214

The training objective of offline supervised learning 215

is the language modeling conditional likelihood 216

objective (Bengio et al., 2000) as shown in Eq. 3: 217

L#

SL =

|C|∑
i

logP (c#i |c
#

<i) (3) 218
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(a) Overall view of framework: CETOD. (b) Architecture of US and DS.

Figure 3: (a) The overall view of our framework CETOD. We first obtain US and DS through offline SL and then use
online RL and co-evolutional update with bias estimator to further optimize dialogue policies. (b) The architecture
of our end-to-end (NLU or DST, POL, and NLG) US and DS.

where # denote US or DS, and | · | is the length219

of sequence, which maximizes the probability of220

the next word prediction, and it is the same for US221

and DS. In the online interactive phase, the US222

generates under the condition of a completed goal223

and history, while the DS is conditioned on the224

external database and history. First, they generate225

an understanding unt or bst of the content based226

on previous context history. Then the goal state gt227

and dbt are added to form a new sequence, lastly228

producing their corresponding actions uat or sat229

and delexicalized responses srt or uut.230

4 Online Reinforcement Learning for231

User Simulator and Dialogue System232

With US and DS obtained from offline learning as233

policy initialization, co-evolutional update is per-234

formed with hierarchical reward, policy optimiza-235

tion combinations and bias estimator. We present236

how online RL works in the following section.237

4.1 Co-Evolutional Update238

In TOD tasks, US tries to fully express the entire239

goal and responds to DS, while DS searches for240

entities that meet the requirements and replies in241

accordance with the request of US, finally they242

complete the dialogue goal successfully; it is essen-243

tial to joint update which improves coordination244

and synchronization between US and DS.245

In our framework CETOD shown in Fig. 3(a),246

it is crucial to accelerate online RL using offline247

learned policies of US πUS
θ and DS πDS

θ . However, 248

DS and US tend to express their own perspectives 249

and generate poor quality dialogue data under the 250

existing asynchronous update paradigm due to dis- 251

tribution shift; detailed examples are illustrated in 252

Appendix B. CETOD improves their dialogue poli- 253

cies by synchronous update, which uses the same 254

batch of data generated by the interaction between 255

US and DS every epoch to concurrently optimize 256

dialogue policy. 257

We apply PPO2 (Schulman et al., 2017) in our 258

online RL framework, which has the advantage of 259

trust region policy optimization (TRPO (Schulman 260

et al., 2015)), and it is easier to implement, more 261

generic, and empirically has better sample com- 262

plexity. The objective proposed is the following: 263

Lπ(θ
#) =Êt[

πθ#(at|st)
π
θ
#
old

(at|st)
Ât,

clip(
πθ#(at|st)
π
θ
#
old

(at|st)
, 1− ϵ, 1− ϵ)Ât)]

(4) 264

where # denote US or DS, θ is the parameter of 265

the policy network, st, at is the state and action 266

in the markov decision process (MDP), which are 267

token by token for GPT’s input and output of our 268

CETOD, the state is represented by the context of 269

previous dialogue turns, the action is the response 270

generated by the model each turn, and their space 271

is composed of the generated tokens in an orderly 272

manner, ϵ is a hyper-parameter, Ât is advantage 273
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function, the specific calculation formula can refer274

to PPO2 (Schulman et al., 2017). In order to fully275

exploit the performance of GPT-2 without generat-276

ing redundant parameter models, we treat GPT-2277

itself as the actor network for policy learning. To278

approximate the value function, we connect a small279

linear network to the hidden layers of GPT-2 as the280

critic network, which is aimed at minimizing:281

LV (ϕ#) = (Vϕ#(st)− V target
# )2 (5)282

# denote US or DS, where Vϕ# is the value func-283

tion, and ϕ is the parameter of the value network.284

According to the visualization (Fig. 1) of data dis-285

tribution results, co-evolutional update can effec-286

tively ameliorate the compounding exposure bias287

between US and DS, thus preventing policy from288

falling into the sub-optimal range. Online interac-289

tion evaluation in Sec. 5 also demonstrates that it290

improves the sample efficiency compared to asyn-291

chronous update.292

4.2 Reward Assignment293

Reinforcement learning methods help to solve the294

inconsistency between train/test measurements in295

pretrained language models. However, it becomes296

difficult for policy learning when RL algorithms297

take place in an environment where rewards are298

sparse, so we explore the hierarchical dense reward299

with different levels of granularity and divide the300

reward into different levels:301

Task Reward Rtask: the success of the online302

dialogue is used as the Task Reward Rtask, which303

can only be observed at the end of the conversa-304

tion, and are shared for US and DS. Rtask serves as305

the most important motivational signal to facilitate306

policy learning and performance improvement.307

Domain Reward Rd: the success for a domain308

is defined as Domain Reward Rd, which is also309

shared for US and DS. In the dialogue of multiple310

domains, Rd assists in smoothing the process of311

policy learning at the node of domain conversion.312

Turn Reward R#
turn: is designed separately for313

US and DS, and it can be observed at every turn.314

1) US Turn Reward RUS
turn concludes: it pro-315

vides a new inform about the slot; it asks about316

a new attribute about an entity; and it correctly317

replies to the request from the DS side.318

2) DS Turn Reward RDS
turn involves: it re-319

quests a new slot; it successfully provides the en-320

tity; and it correctly answers all attributes from the321

US side.322

4.3 Policy Combinations 323

Previous studies learned to reinforced DS mainly 324

focused on optimizing dialogue policy modules, 325

using system acts for performing actions. An ac- 326

cepted idea is that dialog policy, which decides the 327

next action that the dialog agent should take, plays 328

a vital role in a TOD system. In our co-evolutional 329

update framework, we explore different policy op- 330

timization combinations, which include executing 331

action At, understanding context Ut, and generat- 332

ing natural language Gt. 333

4.4 Bias Estimator 334

We also propose a penalty reward based on the 335

uncertainty of our learned transitions. Referring 336

to the penalty reward of uncertainty in MOPO (Yu 337

et al., 2020), r#
pen is related to the probability of the 338

generated output token in GPT-2: 339

r#
pen = λ(1−

∑
Num(prob > prob⋆)∑

Num
) (6) 340

λ and prob⋆ are two hyperparameters, prob⋆ is 341

the artificially set threshold, Num represents the 342

number of eligible tokens. In general, the bias 343

estimator is used for dealing with untrusted data. 344

We use the penalty reward mechanisms to guide 345

policy learning and ensure that the data it produces 346

does not end up in untrusted regions. Experimental 347

results in Table 4 indicate that bias estimator are 348

important to state-of-the-art performance. 349

Intuitively, with the co-evolutional update, 350

greater dialogue success rates can be achieved 351

while improving sample efficiency. As a result, 352

co-evolutional update forms high-quality cycles for 353

policy learning and data collection. 354

The experimental results show that all the dif- 355

ferent types of rewards plays an essential role in 356

performance improvement. In summary, the com- 357

position of our global reward R# is as follows: 358

R# = Rtask +Rd +R#
turn + r#

pen (7) 359

During the start stage of online fine-tuning, dis- 360

tribution shift may result in severe bootstrap errors. 361

To ensure the purity of our dialogue date in online 362

buffer and continued training during the RL phase, 363

we apply a structural bias estimator to pick out fatal 364

dialogues that impact the optimization process. 365

5 Experiments 366

Dataset. We perform all experiments using Mul- 367

tiWOZ2.1 (Eric et al., 2020), which is currently 368
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Model Pretrained Model RL-based Inform Rate Success Rate BLEU Combined Score

SimpleTOD(Hosseini-Asl et al., 2020) DistilGPT2 w/o 84.4 70.1 15.0 92.3
AuGPT(Kulhánek et al., 2021) variantGPT-2 w/o 76.6 60.5 16.8 85.4
SOLOIST(Peng et al., 2020) GPT-2 w/o 82.3 72.4 13.6 90.9
UBAR(Yang et al., 2021) DistilGPT2 w/o 83.4 70.3 17.6 94.4
PPTOD(Su et al., 2022) T5models w/o 83.1 72.7 18.2 96.1
BORT(Sun et al., 2022) T5-small w/o 85.5 77.4 17.9 99.4
MTTOD(Lee, 2021) T5-base w/o 85.9 76.5 19.0 100.2
GALAXY(He et al., 2021) UniLM w/o 85.4 75.7 19.64 100.2
MTTOD(Lee, 2021) T5-base w/o 85.9 76.5 19.0 100.2
JOUST(Tseng et al., 2021) LSTM w 83.2 73.5 17.6 96.0
SGA-JRUD(Anonymous, 2022) DistilGPT-2 w 85.0 74.0 19.11 98.61

CETOD-DS(Ours) DistilGPT2 w 87.5 79.0 18.25 101.5

Table 2: Empirical comparison of End-to-End TOD systems models in the official leaderboard. CETOD achieve the
state-of-the-art results of success rate, inform rate and the combined score.

still widely being used in TOD, and the results pub-369

lished on the official leaderboard are all using Mul-370

tiWOZ2.0/2.1. It is a large-scale multi-domain Wiz-371

ard of Oz dataset for TOD. There are 3406 single-372

domain conversations that include booking if the373

domain allows for that and 7032 multi-domain con-374

versations consisting of at least 2 to 5 domains.375

Each dialogue consists of a goal, multiple user ut-376

terances, and system responses. Also, each turn377

contains a belief state and a set of dialogue actions378

with slots for each turn. TOD system is usually379

defined by an ontology, which defines all entity380

properties called slots and all possible slot values.381

Details can be found in the appendix E. The user’s382

understanding works as a reception of DS’s output383

messages, and it’s not available in MultiWOZ, we384

use labeled file according to JOUST, which is open385

sourced.386

Evaluation Metrics. Three automatic metrics387

are included to ensure better interpretation of the388

results. Among them, the first two metrics eval-389

uate the completion of dialogue tasks: whether390

the system has provided an appropriate entity (In-391

form rate) and then answered all the requested at-392

tributes (Success rate); while fluency is measured393

via BLEU score (Papineni et al., 2002). Following394

(Mehri et al., 2019) ,the Combined Score perfor-395

mance (Combined) is also reported, calculated as396

(0.5*(Inform + Success) + BLEU). The overall397

goal in TOD domain is getting a strong DS, which398

is achieved by fair offline evaluation compared to399

other methods(such as JOUST, SGA-JRUD etc. on400

the leaderboard). Online evaluation is used to mea-401

sure the respective method’s performance in the402

joint update process.403

Training Procedure. First, we train US and DS404

with offline supervision on the MultiWOZ2.1 (Eric405

Diversity SL-US CETOD-US SL-DS CETOD-DS
distinct-1(‰)↑ 5.961 6.249 4.872 5.125
distinct-2(‰)↑ 31.848 32.098 26.549 27.617

Self-BLEU(%)↓ 24.722 21.025 27.008 22.161

Table 3: Results of diversity matrix distinct.

et al., 2020) dataset, defined as SL-US and SL-DS. 406

We implement our framework with HuggingFace’s 407

Transformers (Wolf et al., 2019) of DistilGPT2 408

(Sanh et al., 2019), a distilled version of GPT-2. 409

Then we collect online interactive data through the 410

communication between SL-US and SL-DS for 411

later RL experiments with the objective Eq. 4 and 412

Eq. 5, and the constructed goal is sampled from the 413

train or dev dataset. Thus we get two co-evolutional 414

update models defined as CETOD-US and CETOD- 415

DS. More details about the experiments and hyper- 416

parameters can be found in Appendix A. 417

Offline Benchmark Evaluation. We first 418

show the offline benchmark results of different 419

supervised-trained DS in an end-to-end manner 420

in Table 2. All the contents we use are ground truth 421

from the US side; it mainly evaluates the ability of 422

DS. The scripts 1 we strictly followed are released 423

by Paweł Budzianowski from Cambridge Dialogue 424

Systems Group (Budzianowski et al., 2018a; Ra- 425

madan et al., 2018; Eric et al., 2020; Zang et al., 426

2020). Those end-to-end pretrained model-based 427

methods use the dialogue history as input to gen- 428

erate the belief states, actions, and responses si- 429

multaneously. Regardless of the type of pretrained 430

model and whether the RL methods are used, the 431

overall goal in TOD domain is getting a strong DS, 432

CETOD achieves state-of-the-art results: success 433

rate of 79.0, inform rate of 87.5, and combined 434

1The evaluation code is released at https://github.
com/budzianowski/multiwoz.
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Figure 4: Comparative analysis of different combinations of rewards settings, policy schemes and update patterns.

Model Online Evaluation Offline Evaluation

Inform Success Inform Success BLEU Combined

JOUST(Tseng et al., 2021) 84.6 73.0 83.2 73.5 17.6 96.0

CETOD-w/o Rtask 79.9 75.1 82 74.9 18.23 96.68
CETOD-w/o Rd 82.4 76.7 86.6 77.4 17.55 99.55
CETOD-w/o R

#
turn 83.2 79.8 86.5 77.2 17.64 99.49

CETOD-[POL = Ut ⊕ At ⊕ Gt] 77.5 72.3 83.9 76.5 16.67 98.87
CETOD-[POL = Ut ⊕ At] 80 75.4 84.6 76.5 18.71 99.26

CETOD-[SL-US + SL-DS] 75.7 70.5 70.5 69.8 18.1 91.95
CETOD-[CETOD-US + SL-DS] 78.8 73.4 70.5 69.8 18.1 91.95
CETOD-[SL-US + CETOD-DS] 81.7 78.2 85.2 77.4 17.98 99.28
CETOD-[Asynchronous Update] 82 78.6 85.9 77.2 17.51 99.06

CETOD-w/o Rpen 84 80.6 85.5 78 17.8 99.55

CETOD
[POL = At], w Rpen

w Rtask Rd R
#
turn (Ours)

84.6 82.6 87.5 79.0 18.25 101.5

Table 4: Empirical comparison of interaction quality of
generated dialogues using the 1k test corpus user goals.

score of 101.5 points.435

Online Interactive Evaluation. In order to ver-436

ify the effectiveness of our online RL optimization,437

we let US and DS interact with each other. In this438

process, the US can only receive the information439

from the goal and system response, and DS feeds440

back the entities through the database according441

to user utterance; there is no ground truth in the442

process of online interactive dialogues. In addition443

to DS, this evaluation also indicates the capabilities444

of the US. Note that we do not show the BLEU445

score since there is no reference available in online446

interactions. Some existing methods are not com-447

pared here because of the inconsistent evaluation448

methods (the reason why SGA-JRUD has better449

performance under online evaluation is that they450

used different and uncommonly used evaluation451

scripts (Shi et al., 2019)). The experimental results452

are shown in Table 4 and Fig. 4.453

Under the same test method, the success rate454

of CETOD is significantly better than JOUST455

(Tseng et al., 2021), which verifies that our CE-456

TOD achieves the purpose of an efficient loop of457

Percentage(%) SL-US + SL-DS CETOD-US + CETOD-DS
Success 36.0 64.0

US Humanoid 40.0 60.0
DS Quality 43.0 57.0

Fluency 38.0 62.0

Table 5: Results of human evaluation.

data collection and policy learning. Table 3 shows 458

the results of distinct-k, which measures the degree 459

of diversity by calculating the number of distinct 460

uni-grams and bi-grams in generated responses. It 461

can be seen that the text generated with our RL 462

optimization is of higher diversity, and A lower 463

Self-BLEU (Zhu et al., 2018) score also implies 464

more diversity of the document. 465

Human Evaluation. Human evaluation of dia- 466

logue quality is performed on the Amazon Mechan- 467

ical Turk platform to confirm the improvement of 468

our proposed method CETOD. It is to verify that 469

method has improved from SL to RL. We randomly 470

sample 100 dialogues by US and DS, and each dia- 471

logue is evaluated by five turkers. Four evaluation 472

indicators involve: 1) Success: Which interactive 473

dialogue completes the goal of the task more suc- 474

cessfully? 2) US Humanoid: Which US behaves 475

more like a real human user and whether the US ex- 476

presses the constraints completely in an organized 477

way? 3) DS Quality: Which DS behaves more 478

intelligently and provides US with the required in- 479

formation? 4) Fluency: Which dialogue is more 480

natural, fluent, and efficient? 481

The results of the human evaluation shown in 482

Table 5 are consistent with the results of the online 483

evaluation. DS is more efficient at completing dia- 484

logues with our proposed online RL optimization. 485

Furthermore, joint optimization of US can produce 486

behavior more closely resembling that of a human. 487

Improvements under two agents produce a more 488

natural and efficient dialogue flow. 489
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6 Ablation Study490

Hierarchical Dense Rewards. A major challenge491

of putting RL into practice is the sparsity of reward492

feedback (Rengarajan et al., 2022). As described in493

Sec. 4.1, we specially design fine-grained dialogue494

turn reward R#
turn, domain reward Rd and overall495

task reward Rtask according to the characteristics496

of US and DS in TOD. The evaluation results are497

shown in the second row of Table 4. In Fig. 4(a),498

we plot the online interaction success rate curve,499

which is based on different reward settings during500

online RL optimization.501

As we can see from the result, the three types of502

designed dense rewards all have final positive ef-503

fects on the success of the task. It is worth noticing504

that Rtask plays a major role. The success rate will505

dramatically drop if there is no Rtask. Rd and R#
turn506

both improve the performance of online and offline507

evaluation, which indicates the importance of our508

dense reward for realizing optimal performance.509

Choice of RL Policy Scheme. In RL, the policy510

represents a probabilistic mapping from states to511

actions. CETOD’s framework contains not only512

reinforced end-to-end DS, but also reinforced the513

end-to-end US, and their policies include executing514

action At, understanding context Ut, and generat-515

ing natural language Gt.516

We conduct three experiments and their RL poli-517

cies are Ut⊕At⊕Gt, Ut⊕At and At respectively.518

Based on different policy schemes during online519

RL optimization, the success rate curves are shown520

in Fig. 4(b). The best performance results are ob-521

tained when only the dialogue policy is optimized,522

while adding the optimization of the component of523

understanding and generation does not enhance the524

success rate. It can be seen from Table 4 that using525

At for policy achieves the highest online evaluation526

results with large margins. In offline evaluation, us-527

ing At also achieves the best results. The reason is528

that the quality of the policy directly influences the529

quality of the dialogue, and the generation module530

generally has an excellent performance in SL. In531

the case of three modules being optimized simul-532

taneously, the training of the online RL process533

becomes more trembling and the guidance of re-534

ward becomes oblique and falls into sub-optimal.535

Validity of Co-Evolutional update. The third536

row of Table 4 demonstrates the effectiveness of537

co-evolutional update. When we use RL to opti-538

mize only US or DS, the performance drops signifi-539

cantly compared with the co-evolutional update. In540

particular, when we only update the US, the perfor- 541

mance improvement is even smaller. We also com- 542

pare the performance between synchronous and 543

asynchronous update in our CETOD framework, 544

asynchronous update is lower than ONCE but com- 545

parable to SGA-JRUD, especially the success rate 546

and inform rate, which shows that co-evolutional 547

update is efficient and better. The main reason is 548

that it helps US and DS coordinate with each other 549

and effectively solve the problem of distribution 550

shift. As shown in Fig. 4(c), the online interaction 551

success rate curve based on different reinforced 552

agents during online RL optimization also verifies 553

the conclusion. 554

Validity of Bias Estimator. The fourth row 555

of Table 4 demonstrates the effectiveness of our 556

bias estimator. Concretely, the penalty reward help 557

CETOD maximizes a lower bound of the return in 558

the true MDP, careful use of the model in regions 559

outside of the data support, and find the optimal 560

trade-off between the return and the risk (Yu et al., 561

2020). 562

7 Conclusion and Discussion 563

Our contribution is that we propose a bias-aware 564

concurrent joint update framework compared to ex- 565

isting RL-based TOD systems, bias estimator are 566

modules that make the online RL process more sta- 567

ble and improve the final performance. Compared 568

with the asynchronous update, synchronous joint 569

update greatly reduces the proportion of manual op- 570

erations, and optimizes it as an automated process, 571

when terminating the optimization of US or DS is 572

not easy and difficult to balance in asynchronous 573

update. It performs offline SL on dataset to learn 574

GPT-2-based end-to-end US and DS, both of which 575

possess features of natural language understanding, 576

dialogue policy management, and natural language 577

generation. Finally, we achieved the current state- 578

of-the-art results. 579

As for future work, CETOD will be applied to 580

more complex dialogues tasks and other scenarios. 581

Although CETOD currently achieves state-of-the- 582

art results, its performance may still be limited by 583

the pretrained language model and online reinforce- 584

ment learning algorithms, so it will be interesting 585

to explore stronger neural network models or ro- 586

bust RL algorithms. Last but not least, another 587

research direction is to create the US with a variety 588

of personalities to support DS policy learning. 589
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Limitations590

Throughout the perspective of distributional visual-591

izations, the problem of distribution shift caused by592

compounding exposure bias and non-stationarity593

still persists. However, we have made claims about594

our desire to take a step further to address it, which595

can be proved from our experimental results and596

the gap of distribution between ours and the origi-597

nal dataset is shrunk. Thus we can focus on more598

effective methods in the future and provide a theo-599

retical basis for solving this problem.600

Meanwhile, due to a large amount of param-601

eters of the GPT model, it is difficult and time-602

consuming to train the two GPT-based US and DS603

in the online RL process. At the same time, ac-604

cording to the conclusion of optimizing the GPT605

with different granularity of policy schemes. In606

future work, we can consider optimizing only parts607

of parameters of GPT itself to achieve better perfor-608

mance and improve the efficiency of RL algorithms609

and computing resources.610

Ethics Statement611

Our method and implementation are based on612

the existing public dataset MultiWOZ (Eric et al.,613

2020), without any personal identity and subjec-614

tive feelings. While our approach has no negative615

effects on society, we also hope to contribute to616

the development of task-oriented dialogue. At the617

same time, we also pay attractive salaries to the618

turkers of Amazon Mechanical Turk; in addition to619

thanking them for their assistance in human evalu-620

ation, we also want to encourage more scholars to621

participate and offer part-time job opportunities.622
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A Training Details990

We implement US and DS models with Hugging-991

face Transformers repository of version 4.2.2. We992

initialize it with DistilGPT-2, a distilled version993

of GPT-2. During offline supervised learning, the994

minibatch base size is set to be 2 with gradient ac-995

cumulation steps of 16, we use AdamW optimizer996

and a linear scheduler with 20 warm up steps and997

maximum learning rate 1× 10−4, and the gradient998

clip is set to be 5. The total epochs are 30 (it takes999

about 20 hours on NVIDIA Tesla 2V100-SXM2-1000

32GB) and we select the best model on the test1001

set.1002

In the stage of online RL, we connect three lin-1003

ear layers ( 768*512 → ReLU → 512*512 →1004

ReLU→512*1 ) as our value network. The learning1005

rate of policy and value are 1× 10−6 and 5× 10−61006

respectively. The batch size for RL optimization is1007

4, and the hyper-parameters is PPO2: γ is 0.99, ϵ is1008

0.1 and τ is 0.95. Two important hyper-parameters1009

in policy constraint λ we set to be 0.75 and the1010

probability threshold is 0.9. The replay buffer size1011

of our algorithm is 200. The whole RL optimized1012

epoch is 20 (it takes about 4 hours on a single1013

NVIDIA Tesla V100-SXM2-32GB), we will evalu-1014

ate the online interaction quality after every epoch1015

(about 1 hour) and choose the excellent model for1016

offline evaluation (about 40 min).1017

The reward setting of our framework: Task Re-1018

ward Rtask, Domain Reward Rd and Turn Reward1019

R#
turn are listed in Table 6:1020

Reward Type Success Failure
Rtask 20 -10
Rd 5 -5
User R#

turn 0 0 0 -1 -1 -1
System R#

turn 0 0 0 -2.5 -1 -2.5

Table 6: Reward setting of our online RL experiment.

B Examples of Bad Case1021

After offline supervised learning to obtain US and1022

DS with dialogue ability, when we let them interact1023

online, we will find that there are some problems1024

in the dialogue, we regard it as low-quality data,1025

: 1) A large number of repetitions of meaningless1026

words appear in the sentence; 2) The key special1027

token representing the start or end of the sequence1028

does not appear; etc. These two types of data are1029

shown in the Table 8:1030

C Examples of Improvement from RL 1031

In order to demonstrate the effectiveness of the 1032

RL method, we show in Table 7 the DS obtained 1033

based on supervised learning and the DS after RL 1034

optimization with different feed backs for the input 1035

of the same goal and US. We enumerate the original 1036

failed dialogues and the successful dialogues after 1037

policy optimization. 1038

MUL0072.json

Utter
yes, i also need a hotel room with free wifi also
in [hotel_area], [hotel_stars] star, and
[hotel_pricerange] please.

Act
act_inform hotel_name
act_offerbook hotel_none

Resp
the [hotel_name] meets your requirement -s.
would you like me to book this for you?

ActSL act_inform hotel_choice act_request hotel_area

RespSL

there are [value_count] hotel -s that meet your
criteria. is there a certain area you would like to
stay in?

ActRL

act_inform hotel_choice hotel_internet
hotel_name hotel_name hotel_name
hotel_pricerange hotel_stars hotel_type
act_offerbook hotel_none

RespRL

there are [value_count] hotel -s that meet your
criteria [hotel_name], [hotel_name],
[hotel_name], [hotel_name],
and [hotel_name]. would you like to
book [value_count] of these?

MUL0116.json

Utter
yes, i am looking for a
[restaurant_pricerange] -ly priced restaurant
with [restaurant_food] food.

Act
act_offerbook restaurant_none act_recommend
restaurant_name

Resp
i can recommend [restaurant_name]. would
you like to book a table with them?

ActSL

act_inform restaurant_area restaurant_choice
restaurant_food restaurant_pricerange
act_request restaurant_food

RespSL

i have [value_count]
[restaurant_pricerange] [restaurant_food]
restaurant -s in the [restaurant_area].
do you have a preferred area of town?

ActRL
act_inform restaurant_name act_offerbook
restaurant_none

RespRL
[restaurant_name] fits your criteria. would
you like me to book a table for you?

Table 7: Example of RL improvement.

D Examples of Diversity 1039

Through the observation of online interactive di- 1040

alogue, we can find that RL helps our model has 1041

the ability to generate richer dialog action. At the 1042

same time, our natural language generation is also 1043

richer and more diverse. We enumerate examples 1044

of which are shown in the Table 9, which also 1045

13



Bad Type Examples

Redundant
sequence

• < sos_sa > [act_inform] [attraction_type] [attraction_type] [attraction_type] [act_request]
[attraction_type] < eos_sa > < sos_sr > what type of attraction are you looking for? in the south, we have
[attraction_type], [attraction_type], [attraction_type],[attraction_type],[attraction_type],
,[attraction_type] [attraction_type],[attraction_type],[attraction_type], [attraction_type],
[attraction_type],[attraction_type],[attraction_type],and [attraction_type]. [attraction_type],
if you tell me what you are looking for, we can narrow it
• <sos_sa> [act_inform] [hotel_area] [hotel_area] [hotel_area] [hotel_choice] [hotel_choice]
[hotel_choice] [hotel_choice] [hotel_choice] [hotel_choice] [hotel_stars] [hotel_stars] [hotel_stars]
[hotel_stars] [hotel_stars] [hotel_stars] [hotel_stars] [hotel_stars] [hotel_stars] [hotel_stars]
[hotel_stars][hotel_stars] [hotel_stars] [hotel_stars] [hotel_stars]
[hotel_stars][hotel_stars] [hotel_stars] [hotel_stars]

No
key

special
token

• < sos_ua > [act_inform] [hotel_area] [hotel_stars] star hotel -s in the [hotel_area]. <eos_uu>
• < sos_ua > [act_inform] [hotel_area] [hotel_stars] star hotel -s in the [hotel_area]. <eos_uu>
• < sos_ua > with free parking and wifi? <eos_uu>
• < sos_ua > [act_inform] [attraction_address] [attraction_area] [attraction_fee] [value_price]
pounds to enter. <eos_sr>

Table 8: Low quality data in our online generation.

SNG01290.json

UtterGT i am interesting in info about [hotel_stars] star hotel -s and such that offer free wifi.

RespGT
i have [value_count] hotel -s that match the description of [hotel_stars] star rating -s. are you looking for a hotel
in the centre or south area?

Utter1 i am looking for a [hotel_pricerange] hotel with free wifi.
Resp1 i have [value_count] [hotel_pricerange] hotel -s with free wifi. is there a specific area you would like to stay in?
Utter2 i am looking for a [hotel_pricerange] place to stay with free wifi.
Resp2 i have [value_count] [hotel_pricerange] hotel -s with free wifi. is there a particular area you would like to stay in?

UtterGT the location does not matter so long as it has free wifi
RespGT [hotel_name] is supposed to be great and it offers free wifi. would you like me to book you a room?
Utter1 i would like to stay in the centre of town, and i am open to place -s that have a [hotel_stars] star rating.
Resp1 [hotel_name] meets your criteria. would you like to book a room?
Utter2 i would like to stay in a hotel with a [hotel_stars] star rating please.
Resp2 i have [value_count] options for you to choose from. do you prefer a certain area of town?

UtterGT book it for [hotel_people] people and [hotel_stay] nights starting from [hotel_day].
RespGT sorry, it looks like the hotel cannot accommodate you for that amount of time.
Utter1 yes, please. i need it for [hotel_stay] nights starting on [hotel_day]. there will be [hotel_people] people.
Resp1 booking was successful. reference number is [hotel_reference]. is there anything else i can help you with?
Utter2 no, i do not have a preference. i just need to book it for [value_count] people staying for [value_count] nights.

Resp2
i have booked you at the [hotel_name]. your reference number is [hotel_reference]. is there anything else
i can help you with?

UtterGT perhaps starting [hotel_day] instead?
RespGT great, your reference number is [hotel_reference]. is there anything else i can help with?
Utter1 no, that s all i need. thank you for your help.
Resp1 thank you for using our system!
Utter2 no, that s all i need. thank you!
Resp2 thank you for using our service. goodbye.!

UtterGT no that s it all. thanks for your help.
RespGT wonderful. glad to help.
Utter1
Resp1
Utter2
Resp2

Table 9: Example of diversity.

explains why the BLEU value drops in our experi-1046

ments.1047

E Ontology1048

The ontology defines all entity properties called1049

slots and all possible values for each slot, which1050

concludes goal slot, act slot and belief state slot, 1051

special token conclude the start and end token of 1052

sentences or actions, database query result and 1053

padding token. Special tokens and ontology are 1054

illustrated as shown in Table 10. 1055
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Type Representations

Goal
Slot

Tokens

’restaurant_info_area’, ’restaurant_info_food’, ’restaurant_info_name’,
’restaurant_info_pricerange’,’restaurant_book_day’, ’restaurant_book_people’,
’restaurant_book_time’, ’restaurant_reqt_address’, ’restaurant_reqt_area’,
’restaurant_reqt_food’, ’restaurant_reqt_phone’, ’restaurantreqtpostcode’,
’restaurant_reqt_pricerange’,
’hotel_info_area’, ’hotel_info_internet’, ’hotel_info_name’,
’hotel_info_parking’, ’hotel_info_pricerange’, ’hotel_info_stars’, ’hotel_info_type’,
’hotel_book_day’, ’hotel_book_people’, ’hotel_reqt_type’, ’hotel_book_stay’,
’hotel_reqt_address’, ’hotel_reqt_area’, ’hotel_reqt_internet’, ’hotel_reqt_parking’,
’hotel_reqt_phone’, ’hotel_reqt_postcode’, ’hotel_reqt_pricerange’, ’hotel_reqt_stars’,
’attraction_info_area’, ’attraction_info_name’, ’attraction_info_type’, ’attraction_reqt_address’,
’attraction_reqt_area’, ’attraction_reqt_fee’, ’attraction_reqt_phone’, ’attraction_reqt_postcode′,
’attraction_reqt_type’,
’train_info_arriveBy’, ’train_info_day’, ’train_info_departure’,
’train_info_destination’, ’train_info_leaveAt’, ’train_book_people’, ’train_reqt_arriveBy’,
’train_reqt_duration’, ’train_reqt_leaveAt’, ’train_reqt_price’, ’train_reqt_trainID’,
’taxi_info_arriveBy’, ’taxi_info_departure’, ’taxi_info_destination’,
’taxi_info_leaveAt’, ’taxi_reqt_type’, ’taxi_reqt_phone’,
’police_reqt_address’,’police_reqt_phone’, ’police_reqt_postcode’,
’hospital_info_department’, ’hospital_reqt_address’, ’hospital_reqt_phone’,’hospital_reqt_postcode’,

Special
Tokens

’<pad>’, ’<unk>’, ’<eos_g>’, ’<eos_ua>’, ’<eos_uu>’, ’<eos_b>’, ’<eos_d>’, ’<eos_sa>’, ’<eos_sr>’,
’<sos_g>’, ’<sos_ua>’,’<sos_uu>’, ’<sos_b>’, ’<eos_d>’, ’<sos_sa>’, ’<sos_sr>’, ’<sos_db>’, ’<eos_db>’,
’restaurant_db_0’, ’restaurant_db_1’,’restaurant_db_2’, ’hotel_db_0’, ’hotel_db_1’, ’hotel_db_2’,
’attraction_db_0’, ’attraction_db_1’, ’attraction_db_2’, ’train_db_0’, ’train_db_1’, ’train_db_2’

Action
Slot

Tokens

[’act_inform’, ’general_none’, ’act_request’, ’act_reqmore’, ’restaurant_food’, ’act_thank’,
’act_offerbook’, ’train_leaveAt’, ’restaurant_name’, ’restaurant_area’, ’restaurant_pricerange’,
’hotel_area’, ’act_offerbooked’, ’hotel_name’, ’train_destination’, ’hotel_type’, ’train_departure’,
’hotel_pricerange’, ’attraction_type’, ’train_arriveBy’, ’train_day’, ’attraction_area’, ’act_bye’,
’attraction_name’, ’hotel_stars’, ’act_welcome’, ’hotel_stay’,’restaurant_none’, ’act_recommend’,
’attraction_address’, ’hotel_none’, ’train_trainID’, ’restaurant_time’, ’hotel_parking’,
’hotel_internet’, ’hotel_day’, ’train_none’, ’train_price’, ’attraction_fee’, ’restaurant_day’,
’restaurant_address’, ’restaurant_choice’, ’attraction_phone’,’hotel_people’, ’train_people’,
’attraction_postcode’, ’restaurant_people’, ’restaurant_reference’, ’act_nooffer’, ’hotel_reference’,
’train_reference’, ’act_select’, ’restaurant_phone’, ’taxi_type’, ’attraction_choice’, ’act_greet’,
’train_choice’, ’restaurant_postcode’, ’taxi_phone’, ’taxi_departure’, ’taxi_leaveAt’, ’hotel_address’,
’train_duration’, ’taxi_destination’, ’act_nobook’, ’booking_none’, ’hotel_phone’, ’hotel_postcode’,
’taxi_arriveBy’, ’taxi_none’, ’booking_day’, ’attraction_none’, ’booking_time’, ’booking_people’,
’hospital_postcode’, ’hospital_phone’,’hospital_address’, ’police_address’, ’police_postcode’,
’police_phone’,’hospital_department’, ’hospital_none’, ’police_name’, ’attraction_pricerange’,
’booking_stay’, ’police_none’, ’train_leaveat’, ’booking_reference’, ’train_arriveby’, ’booking_name’,
’taxi_leaveat’,’hotel_time’, ’attraction_open’, ’restaurant_stay’, ’taxi_arriveby’,’hotel_choice’]

Table 10: Speicial tokens and ontology defined in our experiment.
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