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Abstract
We propose a novel approach for interpreting deep
embeddings in the context of patient clustering.
We evaluate our approach on a dataset of partici-
pants with type 2 diabetes from the UK Biobank,
and demonstrate clinically meaningful insights
into disease progression patterns.

1. Introduction
The advent of transformer-based models has revolutionised
the field of natural language processing (Vaswani et al.,
2017). These models have shown significant potential in
healthcare applications, where large volumes of structured
data (disease diagnoses, medication prescriptions, surgical
procedures, laboratory results, etc) are collected and stored
in the form of electronic health records (EHR) (Li et al.,
2020; Steinberg et al., 2021; Yang et al., 2022). This has
enabled researchers to extract insights into the underlying
mechanisms that drive disease progression, as well as to
cluster patients based on their particular disease profile and
comorbidities (Hassaine et al., 2020; Landi et al., 2020; Lee
& van der Schaar, 2020; Rasmy et al., 2021). In recent
years, there has been an increase in prioritising and estab-
lishing better benchmarks and developing more reliable and
trustworthy models (Meng et al., 2022). The interpretability
of such models is crucial to identify potential biases and
ensure fairness when applying such models in the health-
care context, which will also have to go through regulatory
approvals before using them on real patients (Kumar et al.,
2022; Ghaffar Nia et al., 2023; Lahav et al., 2019).

In this paper, we propose a new method for disease pro-
gression clustering, using transformer-based embeddings
derived from large-scale structured EHR data. We define
a framework to clinically interpret the learnt embeddings,
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which enables us to identify disease progression stages. Fi-
nally, we apply time-series clustering to stratify patients into
clinically-relevant subgroups with different aetiological and
prognostic profiles. We validate our approach by showing
that the embedding space is associated with disease-specific
clinical themes, with patients progressing across them.

The contributions of our paper are:

• (i) a method for interpreting the embedding space in
the clinical setting (Section 3.3)

• (ii) the presentation of a patient clustering method
based on disease trajectories learned from embeddings
(Section 3.4)

• (iii) an in-depth clinical evaluation for each disease
stage and cluster (Sections 4.3 and 4.4).

2. Related Work
2.1. Intepreting deep embeddings

Interpreting deep embeddings in language models has been
a subject of extensive research. Visualization techniques,
such as t-SNE (van der Maaten & Hinton, 2008) or UMAP
(McInnes et al., 2018), have been used to reveal seman-
tic relationships and analogies between words (Lal et al.,
2021). Most popular methods focus on learning about fea-
ture importance and feature interaction for each prediction
(Lundberg & Lee, 2017; Chen et al., 2018; Crabbé et al.,
2020; Tsang et al., 2018; Shrikumar et al., 2019; Ribeiro
et al., 2016).

In the clinical setting, Schulz et al. (2020) have proposed
an explanation space constructed from feature contributions
for inferring disease subtypes. Bai et al. (2018) were among
the first to account for different temporal progression of
medical conditions and add an interpretability aspect on
top of RNNs. Med-BERT touched on the interpretability
aspect as well by visualising attention patterns of the model
(Rasmy et al., 2021). Rao et al. (2021) used a transformer-
based architecture coupled with perturbation techniques to
identify clinically explainable risk factors for heart failure.
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2.2. Disease progression clustering

Giannoula et al. (2018) applied dynamic time warping di-
rectly on time sequences of ordered disease codes. Zhang
et al. (2019) used the hidden state of LSTM layers as time-
series for subtype identification, and dynamic time warping
for computing similarities, focusing on Parkinson’s disease.
More recently, Lee & van der Schaar (2020) applied tempo-
ral clustering based on future outcomes using an actor-critic
architecture with an RNN as an encoder, and multiple loss
functions to induce embedding separation and cluster purity.

3. Methods
3.1. Defining clinical histories through EHR

Medical ontologies are the basic building block of how
structured EHR data are recorded. They are hierarchical data
structures which contain healthcare concepts that enable
healthcare professionals to consistently record information.
Ontology concepts are composed of a unique identifier and
a corresponding human-friendly description (for example,
J45-Asthma is a code-description pair in the ICD10 ontology
used in hospitalization EHR). However, each healthcare
setting (e.g. primary care, secondary care) uses a different
ontology (NHS), which means a single patient might have
their records in multiple ontologies.

For each patient, we defined their entire clinical history as
the concatenation of sequences of ontology text descriptions
(ξθ1 , . . . , ξθt), ξθi ∈ ΞΘ, i = 1, . . . , t, ordered over time
(Munoz-Farre et al., 2022) across all EHR sources, with ΞΘ

being the set of descriptions for each ontology θ. To capture
temporal patterns and changes in disease progression, we
sliced each patient’s history into ”snapshots” around the
date of diagnosis (Figure 1). Snapshot length was chosen
based on the available dataset and the disease use-case. For
each snapshot, we processed the raw sequence of textual
descriptions into tokens (word and sub-word pieces), using
a tokenizer W as X = W (ξθ1 , . . . , ξθt) = (x1, . . . , xn),
with n as the tokenized sequence length.

Figure 1. Example of constructing snapshots from EHR data with
a ten year window.

3.2. Model design

We trained a model that classifies disease status based
on EHR sequences. Let X(p,s) = (x

(p,s)
1 , . . . , x

(p,s)
n ) de-

note the tokenized input sequence of an individual p and
a snapshot s. It forms the input to an encoding function
e
(p,s)
1 , . . . , e

(p,s)
n = Encoder(X(p,s)), where each ei is a

fixed-length vector representation of each input token xi.
Let y(p) ∈ {0, 1} be the disease label. To calculate dis-
ease probability P(y(p,s)|X(p,s)), the embeddings of the
CLS token are fed into a decoder z(p,s)1 , . . . , z

(p,s)
D = De-

coder(e(p,s)1 , . . . , e
(p,s)
n ), and the resulting logits are fed

into a softmax function σ P(y(p,s)|e(p,s)1 , . . . , e
(p,s)
n ) =

σ(z(p,s)) (Figure 2).

3.3. Embedding space interpretation framework

Patient snapshots fed into the model represent different
disease stages, so we expected the resulting embedding
space to reflect them. To demonstrate this, we reduced
the normalized embeddings generated by the transformer-
based encoder for each sequence to two-dimensional vectors
U (p,s) = (u

(p,s)
1 , u

(p,s)
2 ), using the Uniform Manifold Ap-

proximation and Projection (UMAP) algorithm (McInnes
et al., 2018) (Figure 2).

Figure 2. Model diagram flow. Snapshot sequences are tokenized
to generate the input, which is fed into the encoder. The embed-
dings of the CLS token are then fed into a linear decoder and
through a softmax function to get disease probability. After the
model is trained, the embeddings are reduced to two-dimensional
vectors, using UMAP.

To evaluate separation of disease stages in the embed-
ding space, we examined the correlation between the re-
duced embeddings U and other available clinical markers
F = (f1, . . . , fk). We included clinically-relevant markers
extracted from snapshots of EHR data, such as laboratory
tests, medication prescription, other co-occurring conditions
(comorbidities), etc. Specifically, we computed the point-
biserial correlation coefficient (Lev, 1949) between each
patient’s reduced embeddings U (p,s) and their comorbidi-
ties, and medication prescription. We calculated the L2
norm (Euclidean distance to the origin) for each clinical
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marker fk as dfk =
√
r2fk,u2

+ r2fk,u1
, 0 being no correla-

tion between fk and (u1, u2). We then evaluated whether
the most highly-correlated conditions and medications were
specific to the disease in question, and whether we could
identify different clinical themes (Figure 3).

Figure 3. Workflow to find the correlation between the reduced
embeddings and clinical markers for each snapshot st, using the
Point-biserial correlation coefficient rfk,ui , and calculating the L2
norm (distance to 0), dfk .

3.4. Patient clustering

For each patient, we have multiple snapshots in the form of
reduced two-dimensional embeddings (u1, u2), which can
be used as time series data to study patient trajectories in
the embedding space. We aligned patients using linear inter-
polation, excluding those with less than three snapshots. We
performed temporal clustering of patients using the k-means
algorithm with multivariate dynamic time warping (DTW)
(Müller, 2007) (Figure 4). Finally we used the embedding
interpretation framework proposed in the previous section
to clinically characterize each patient cluster.

4. Experiments and Results
4.1. Defining study population: Type 2 Diabetes cohort

This research has been conducted using the UK Biobank
(UKBB) Resource under Application Number 43138, a
large-scale research study of around 500k individuals (Sud-
low et al., 2015). It includes rich genotyping and pheno-
typing data, both taken at recruitment and during primary
care (general practice, GP) and secondary care (admitted
hospitalizations) visits. To avoid bias or stratification based
on data source, we restricted the dataset to individuals that
have both primary and secondary care data linked, which
are coded using the read and ICD ontologies, respectively
(NHS). The final cohort includes 154, 668 individuals.

Type 2 diabetes mellitus (T2D) is one of the most preva-
lent chronic diseases worldwide, and patients are primarily
diagnosed and managed in primary care. It presented an ex-
cellent use-case for our framework, because we have orthog-
onal data available to evaluate the embedding space (such as

Figure 4. Diagram of patient clustering on trajectories (with an
example 5 year time step). We first reduce the embeddings for
each snapshot using UMAP (left). We then perform time-series
clustering using the k-means algorithm with multivariate dynamic
time warping (DTW) on the reduced trajectories (right). Note that
patients shown in the left figure are simulated for data protection
purposes.

medication prescription and other co-occurring conditions).
Our attempt was to identify known T2D epidemiological
associations and clinical markers in the patients with T2D
(Zghebi et al., 2020; Pearson-Stuttard et al., 2022).

We selected a cohort of 20.5k patients with T2D (cases) and
a corresponding cohort of 20.5k control patients (matched
on biological sex and age). We cleaned inconsistent diabetes
mellitus codes from cases, and removed type 1 diabetes pa-
tients from controls A.1.2. Both ICD and Read ontologies
are structured in a hierarchy, so we took the parent T2D
code-descriptions for hospital and GP, and all of their chil-
dren. We removed them from all input sequences, to force
the model to learn disease relevant history representations
without seeing the actual diagnosis. We spliced each pa-
tient’s history into three time snapshots of 10 years around
diagnosis: [-10,0,10,20], where 0 is date of diagnosis (more
details in Appendix A.1, and Figure 8).

4.2. Model training

Using the full UKBB dataset, we first trained a BertWord-
PieceTokenizer, resulting in a vocabulary size of 2025 to-
kens. We then trained a transformer-based encoder with a
hidden dimension of 200 on the Masked Language Model-
ing (MLM) task (Devlin et al., 2019), to learn the semantics
of diagnoses. The proposed classifier uses the trained en-
coder and a fully connected linear layer as the decoder.
To be able to use the embeddings of all T2D patients, we
trained a total of five models in a cross-validation fashion
(more details in Appendix A.2). All results presented are
predictions and embeddings of each model on its respective
independent test set. We evaluated model performance on

3



Interpreting deep embeddings for disease progression clustering

(a)

(b)

Figure 5. Associations between two-dimensional reduced embed-
dings and clinical factors. 5a Association with diseases, where
colours indicate broad disease theme. 5b Association with medica-
tion, where colours indicate broad indication disease theme.

the test set of each fold using standard metrics for binary
classification, with an average recall of 0.92 and precision
of 0.82 across sequences.

4.3. Embedding space interpretation

We used the default UMAP hyperparameters to reduce the
embeddings to two-dimensional vectors, after experiment-
ing with different combinations (Appendix A.3.1). We then
examined the most strongly-correlated clinical markers by
extracting the highest-ranked comorbid-diseases (Table 1,
Figure 5a) and medications (Table 2, Figure 5b). To show
unique clinical markers, we mapped all conditions (from
GP or hospital) to the ICD10 ontology and medications to
the Anatomical Therapeutic Chemical (ATC) Classification
System (WHO).

We evaluated clinical themes, in terms of T2D management,
comorbidities and complications:

• T2D management: Metformin is associated with u1,
which is the preferred initial glucose-lowering medica-
tion for most people with T2D. We also find gliclazide,
which can be used instead of or in combination with
metformin, and diabetes lancets and glucose testing
strips, which are used to test blood glucose levels. Inter-
estingly, insulin is strongly associated with u2, which
is given to severe T2D patients (Medscape, b).

• Comorbidities. We find two main clinical themes.
Cardiovascular disease (CVD) is associated with u2.
T2D patients have a considerably higher risk of car-
diovascular morbidity and mortality, due to high blood
sugar levels causing blood vessel damage and increas-
ing the risk of atherosclerosis (Einarson et al., 2018).
Moreover, hypercholesterolemia and high LDL choles-
terol, which are strongly associated with T2D, are risk
factors for CVD. When looking at medication, we find
furosemide and bisoprolol, which are used to man-
age heart failure (HF) (Medscape, d), and antiplatelet
agents, such as clopidogrel or aspirin, given to patients
with coronary heart disease (CHD) (Medscape, a).

Erectile dysfunction (ED) is a prevalent comorbidity
in male T2D patients (MacDonald & Burnett, 2021),
and is managed with drugs such as tadalafil (Cialis)
and sildenafil (Viagra) (Medscape, c), which are all
associated with u1.

• T2D complications: Even though all T2D related on-
tology terms were excluded from the input data, the
model learned to separate T2D patients without compli-
cations to those with complications, which are associ-
ated with both u1 and u2, such as diabetic retinopathy,
nephropathy, or polyneuropathy (Cheung et al., 2010).
Moreover, T2D is a leading risk factor for chronic kid-
ney disease and renal failure, which is found in the
same area (McGill et al., 2022).

4.4. Patient clusters evaluation

We used linear interpolation with a five year step to align
patients’ snapshots, resulting in the following time points rel-
ative to the date of diagnosis: [-5,0,5,10,15]. We found four
patient clusters (experiments in Appendix A.3.3, with demo-
graphics and age of diagnosis in Table 3). When examining
patient progression across the embedding space (Figure 6),
we observed that patients start in the same space (with no
diagnosis of T2D), and move towards clinical themes, cor-
responding to what we saw in Figure 5a.

To look at comorbidity progression, we calculated preva-
lence of the most strongly correlated themes, looking at
how many patients had at least one diagnosis of the theme
for each group and time point (Figure 7). Starting from
the lowest u1, u2, we see that patients in cluster 3 remain
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Figure 6. UMAP visualization of 4 clusters (mean per cluster and
time window). Colour indicates different clusters, and size indi-
cates time windows (the smallest is 5 years before diagnosis, and
the largest is 15 years after diagnosis.)

in the initial area, indicating they might be in a controlled
disease state. Cluster 2 is a slightly older population, that
moves towards the cardiovascular and T2D without compli-
cations area. Following closely, cluster 0 represents a more
severe group, with a combination of high prevalence of car-
diovascular disease, renal failure and T2D complications.
Finally, cluster 1 represents mostly male patients with T2D
complications and erectile dysfunction.

Figure 7. Disease theme prevalence for each cluster and snapshot.
Prevalence increases over time (darker colour) for in each cluster.

5. Conclusions
Here, we proposed a framework for interpreting the em-
bedding space of transformer-based models in a clinically-
meaningful way. We showed that the model learnt to distin-
guish disease-specific clinical themes and we validated that
by replicating associations with known T2D comorbidities,
complications, and medications. We performed temporal
clustering of patients and identified distinct and clinically
interpretable disease progression patterns. Our framework
can be adapted to any disease use-case, and any available
clinical dataset. It can be used to identify disease-specific,
clinically and biologically relevant groups to personalize
treatment and interventions for patients.
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A. Appendix.
A.1. Data processing

A.1.1. UKBB

The UK Biobank (UKBB) (Sudlow et al., 2015) is a large-scale research study of around 500k individuals between the ages
of 40 and 54 at the time of recruitment. It includes rich genotyping and phenotyping data, both taken at recruitment and
during primary and secondary care visits (GP and hospital). We used patient records visits in the form of code ontologies
Read version2/ Clinical Terms Version 3 (GP), and ICD-9/10 (hospital) together with their textual descriptions. We restricted
the data set to individuals that had both hospital and GP records, reducing the cohort to 154, 668 individuals. Requiring
individuals to have entries in their GP records reduces bias towards acute events that usually present in hospitals, but we
note that removing individuals without any hospital records may still bias the data towards more severe cases.

A patient can be admitted to the hospital for multiple days. We treated an entire hospital admission as one point in time
using the admission date, and only kept unique ICD-10/ICD-9 codes for each visit. We aggregated visits that were less than
a week apart into one visit keeping only unique codes. This approach removed repeated codes, thus avoiding redundancy
and reducing sequence length.

A.1.2. TYPE 2 DIABETES COHORT EXTRACTION

When extracting the T2D cohort, we noticed that some patients had both a diagnosis for type 1 and type 2 diabetes, or had
an undefined diabetes mellitus diagnosis. This mistake might happen, for example, when admitting patients in the hospital
without looking at their entire clinical history. To properly label those patients, we looked at the medications that those
patients were taking, identifying the ones that are given to type 2 diabetes patients (Medscape, b). In those cases where it
was unclear, we dropped the patients from the cohort. Finally, we did not include type 1 diabetes patients in the control
cohort. Our final cohort included 20.5k patients with T2D and 20.5k control patients (matched on biological sex and age).

T2D is a chronic progressive condition, so that taking 10 years for each snapshot was enough to represent disease stage
without losing important information. There were some patients that had longer snapshots than the maximum sequence
length (64) after tokenization, so we split those sequences. The result was that a patient could have multiple snapshots for
each given 10 year window (Figure 8). For each input sequence, we calculated a mean time to T2D diagnosis by examining
the first and last date present in that sequence. This way we had each snapshot associated to a given time point (relative to
date of diagnosis), which could then be used for interpolation and patient clustering, as explained in Section 3.4.

Figure 8. Example of cutting a patient’s history into 10-year snapshots. Those sequences that were longer than the maximum sequence
length after tokenization were split into multiple sequences, resulting in the final used snapshots.
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A.2. Model training

To train on the classification task, we split our data set into five equally sampled folds f0,...f4, containing unique patients.
To be able to use the embeddings of all T2D patients, we trained a total of five classification models on three folds, holding
back folds fi for validation and f(i+1) mod 5 for testing for model i, i = 1, . . . , 5. This maintained a 60/20/20 training,
validation and testing split. Each model was trained for 30 epochs, batch size of 64, learning rate of 10−5, and a warm-up
proportion of 0.25, using gradient descent with AdamW optimizer, weight decay of 0.01 and early stopping. Performance
was monitored every 0.25 epochs on the validation fold for both recall and precision.

A.3. Dimensionality reduction and patient clustering

A.3.1. UMAP HYPERPARAMETERS

We used UMAP to reduce our embeddings to a two-dimensional vector. There are several hyperparameters that can be tuned
that might affect the results and final patient clusters. We experimented with the number of nearest neighbours (n neighbors
=[15, 30, 50, 100]) and minimum distance (min dist=[0.01, 0.1, 0.5, 1]) (McInnes et al., 2018). For the same number of
clusters k, we wanted to verify that the resulting patient clusters were maintained (robust to different hyperparameters). As a
metric, we used euclidean distance on the normalized embeddings. Our hypothesis was that clusters are maintained, so we
looked at the overlap of patient groups across combinations, and calculated the Jaccard similarity score. We saw that there
are 3 very clean clusters that are always found, and two others with a higher overlap, but highly separated from the first 3
(Figures 9a and 9b). After seeing that clusters were robust across combinations, we decided to use the recommended UMAP
hyperparameters in the original implementation (n neighbors = 15 and min dist = 0.1).

(a) (b)

Figure 9. Clustermap of metrics to compare patient clusters across different UMAP hyperparameters combinations. 9a Clustermap of the
patient overlap. 9b Clustermap of the Jaccard similarity score.
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A.3.2. EMBEDDING SPACE INTERPRETATION

For each patient snapshot, we looked at all diagnoses in primary and secondary care, and medication prescriptions given in
primary care in their clinical history. Note that type 2 diabetes associated diagnoses (including complications) were excluded
from the input data, but we included them in these analysis to see whether the model learnt certain characteristics from
the rest of the sequence. We looked at the most strongly correlated clinical markers by calculating the L2 norm (euclidean
distance to origin), and took the top 15. We dropped duplicated diagnoses that were essentially the same condition, keeping
the most correlated one (for example, Atrial fibrillation and flutter was dropped and Atrial fibrillation kept) (Table 1).
We mapped diseases to clinical themes, finding that the most strongly associated ones were either T2D complications or
known comorbidities (Zghebi et al., 2020; Pearson-Stuttard et al., 2022). We also looked at the most strongly correlated
medications, and found that the most strongly correlated ones have indications for severe T2D patients (Medscape, b), heart
failure (Medscape, d), erectile dysfunction (Medscape, c) or coronary heart disease (Medscape, a), which are part of the
clinical themes (Table 2). The clinical interpretation of these findings can be found in Section 4.3.

Clinical theme Disease r u1 r u2 L2 norm
Erectile dysfunction Erectile dysfunction 0.588 -0.284 0.653
Cardiovascular disease Atrial fibrillation -0.045 0.22 0.225

Coronary heart disease -0.0 0.211 0.211
Heart failure 0.032 0.187 0.19

Renal failure Chronic renal failure 0.099 0.216 0.238
Acute renal failure 0.003 0.206 0.206

T2D complications Diabetic retinopathy 0.329 0.219 0.395
T2D with neurological complications 0.187 0.152 0.241
Diabetic polyneuropathy 0.178 0.148 0.231
Diabetic nephropathy 0.154 0.129 0.2

T2D without complications T2D without complications -0.003 0.353 0.353

Table 1. Correlation between present comorbidities and u1, u2, in descending order based on L2 norm.

Indication Medication r u1 r u2 L2 norm
Cardiovascular Aspirin 0.125 0.026 0.127

Bisoprolol 0.062 0.111 0.127
Simvastatin 0.082 -0.043 0.093
Furosemide 0.052 0.075 0.092
Clopidogrel 0.056 0.069 0.088

Diabetes Glucose testing strips 0.151 0.043 0.157
Insulin 0.121 0.096 0.154
Metformin 0.141 -0.024 0.143
Diabetes lancets 0.123 0.015 0.124
Gliclazide 0.099 -0.003 0.1

Infection Amoxicillin 0.044 -0.081 0.092
Urological Sildenafil 0.177 -0.064 0.188

Tadalafil 0.122 -0.053 0.133

Table 2. Correlation between present medication prescriptions and u1, u2, in descending order based on L2 norm.
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A.3.3. NUMBER OF PATIENT CLUSTERS

We iterated across different number of clusters k using (u1, u2), and 20 different random seeds, and calculated the within-
cluster sum of squares (WCSS), which measures the total variation within each cluster. Both k=3 and k=4 were the most
stable and robust across seeds, so we used the elbow method (Thorndike, 1953) to choose k=4 (Figure 10).

Figure 10. Within-cluster sum of squares (WCSS) for each time point, across number of clusters k. The lower the better, as it implies less
variation within cluster.

In Table 3 we present the demographics for the final patient groups.

Cluster Size Age at
diagnosis

(years)

Biological sex (%) Ethnicity (%)

Female Male Asian Black E.Asian Mixed
background S.Asian Unknown White

0 5228 59.43 34.28 65.72 0.86 1.87 0.19 0.45 5.59 0.72 90.33
1 1672 56.17 9.57 90.43 1.22 2.32 0.31 0.55 5.13 0.43 90.04
2 5579 64.42 48.43 51.57 0.75 2.24 0.15 0.4 4.44 0.38 91.65
3 4917 56.43 50.17 49.83 0.73 2.07 0.33 0.85 5.7 0.48 89.84

Table 3. Demographic information for each group: size, age at diagnosis (years), and self reported biological sex and ethnicity (%) when
joining the UKBB.
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