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Abstract
We study finite episodic Markov decision pro-
cesses incorporating dynamic risk measures to
capture risk sensitivity. To this end, we present
two model-based algorithms applied to Lipschitz
dynamic risk measures, a wide range of risk mea-
sures that subsumes spectral risk measure, op-
timized certainty equivalent, and distortion risk
measures, among others. We establish both regret
upper bounds and lower bounds. Notably, our up-
per bounds demonstrate optimal dependencies on
the number of actions and episodes while reflect-
ing the inherent trade-off between risk sensitivity
and sample complexity. Additionally, we sub-
stantiate our theoretical results through numerical
experiments.

1. Introduction
Standard reinforcement learning (RL) aims to identify an
optimal policy that maximizes the expected return (Sutton
& Barto, 2018). This approach is commonly known as
risk-neutral RL since it prioritizes the mean value of the
uncertain return. However, in domains characterized by
high-stakes scenarios, such as finance (Davis & Lleo, 2008;
Bielecki et al., 2000), medical treatment (Ernst et al., 2006),
and operations research (Delage & Mannor, 2010), decision-
makers exhibit risk-sensitive behavior and strive to optimize
a risk measure associated with the return. For example, in
the field of finance, investors have different risk appetites,
and their investment decisions should consider risk factors
such as market volatility, potential losses, and downside
risks. Using risk-sensitive reinforcement learning, portfolio
managers can optimize their investment strategies by bal-
ancing risk and return to meet their clients’ risk preferences.

One classical framework that addresses risk sensitivity in
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Markov decision processes (MDPs) is the static risk mea-
sure. In this framework, the value of a policy is defined
as a risk measure applied to the cumulative reward across
all stages. Among the commonly used static risk measures
are the entropic risk measure (ERM)(Howard & Matheson,
1972; Föllmer & Knispel, 2011) and the conditional value
at risk (CVaR) (Rockafellar et al., 2000), along with sev-
eral others. However, except for the ERM, the static risk
measure generally does not satisfy the Bellman equation.
Consequently, obtaining the optimal policy becomes compu-
tationally challenging, even when the MDP model is known.

As an extension of the static risk measure, the dynamic risk
measure (DRM) (Ruszczyński, 2010) is constructed by re-
cursively applying the risk measure to the reward at each
stage. This recursive formulation naturally allows for the
derivation of a dynamic programming equation and thus
circumvents the computational burden. Furthermore, DRMs
have the advantage of yielding time-consistent optimal poli-
cies, a property that is particularly justified in financial
applications (Osogami, 2012). By ensuring time consis-
tency, DRMs provide a more robust framework for decision-
making in safety-critical applications, such as clinical treat-
ment, where risk sensitivity at all stages is of paramount
importance (Du et al., 2023).

Our work focuses on studying risk-sensitive reinforcement
learning (RSRL) with a general DRM in the tabular and
episodic MDP setting, in which the agent interacts with an
unknown MDP with finite states and actions in an episodic
manner. We make the mildest assumption that the risk mea-
sure used is Lipschitz continuous with respect to certain
metric, which we refer to as the Lipschitz DRM. The Lips-
chitz risk measure encompasses a wide range of classes of
risk measures in practical applications, including spectral
risk measure (SRM), distortion risk measure, and optimized
certainty equivalent (OCE), among others. Additionally,
the Lipschitz DRM is also a broader class of risk measures
compared to convex and coherent measures since any fi-
nite convex risk measure satisfies the Lipschitz property
(Föllmer & Knispel, 2013). As a result, our framework
encompasses various RL settings, such as risk-neutral RL,
RSRL with ERM, RSRL with dynamic CVaR, and RL with
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dynamic OCE 1.

The use of Lipschitz risk measures introduces additional
technical challenges that need to be addressed. One such
challenge arises in the algorithmic design phase when de-
signing exploration bonuses for generic nonlinear risk mea-
sures. The standard techniques commonly used in risk-
neutral settings, such as Hoeffding inequality or Bernstein-
type concentration bounds, are not directly applicable as
they only deal with the concentration of mean values. To
overcome this issue, previous works, such as (Du et al.,
2023) and (Xu et al., 2023), design the exploration bonus
based on specific properties of the risk measures they con-
sider. For instance, (Du et al., 2023) chooses the exploration
bonus for dynamic CVaR based on a classical concentration
bound specific to CVaR, while (Xu et al., 2023) exploits the
optimization representation of OCE and uses the concavity
of the utility function to construct the bonus for OCE. We ex-
ploit the Lipschitz property of the risk measure to relate the
value difference to the supremum distance and then apply
the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Mas-
sart, 1990) to bound the deviation between one distribution
and its empirical version.

Another challenge arises in deriving a recursion of the sub-
optimality gap across stages in the proof of regret upper
bounds. Standard analysis in the risk-neutral setting re-
lies on the linearity of the mean to obtain the recursion,
which cannot be directly adapted to the risk-sensitive set-
ting. To tackle this challenge, we leverage the Lipschitz
property to establish a relationship between the value differ-
ence and the Wasserstein distance between two probability
distributions. Specifically, we use a transport inequality
to bound the Wasserstein distance between two probability
mass functions (PMFs) with identical probability mass but
different support by the expected difference between their
supports. By incorporating the Lipschitz property, we obtain
a recursion of the suboptimality gap, where the Lipschitz
constant appears as a multiplicative factor. By addressing
these challenges, we are able to design efficient algorithms
and provide regret upper bounds.

We summarize our main contributions as follows:

1. We propose two model-based algorithms for RSRL with
Lipschitz DRM. These algorithms incorporate the principle
of optimism in the face of uncertainty (OFU) in different
ways to facilitate efficient learning. To the best of our knowl-
edge, this is the first work that investigates RSRL using
general DRM without making the simulator assumption.

2. We provide worst-case and gap-dependent regret upper
bounds for the proposed algorithms. Notably, the regret
bounds are optimal in terms of the number of actions (A),
and the number of episodes (K). They are dependent on

1Further details can be found in Section 1.1

the product of the Lipschitz constants of the risk measures
at all stages, capturing the inherent trade-off between risk
sensitivity and sample complexity.

3. We establish the minimax and gap-dependent lower
bounds for episodic MDPs with general DRM. These lower
bounds are tight in terms of A, K, and the number of states
(S). Moreover, they reveal a constant factor that depends on
the specific risk measure employed.

1.1. Related Work

RSRL without regret bounds. General DRM applied to
MDP is presented in (Ruszczyński, 2010; Shen et al., 2013;
Chu & Zhang, 2014; Asienkiewicz & Jaśkiewicz, 2017;
Bäuerle & Glauner, 2022). However, these works typically
assume that the model of the MDP is known, whereas our
paper focuses on studying regret guarantees for RSRL in
the presence of an unknown MDP. While there are studies
such as (Coache & Jaimungal, 2021; Coache et al., 2022)
that explore RSRL with dynamic convex risk measures and
dynamic spectral risk measures, respectively, their work
does not consider regret guarantees.

Regret bounds for RSRL with static risk measures. (Fei
et al., 2020) provide the first regret bound for risk-sensitive
tabular MDPs using the ERM. This result is further im-
proved upon by (Fei et al., 2021), where they remove the
exponential factor dependence on the episode length. (Fei
& Xu, 2022) present the first gap-dependent regret bounds
under this framework. (Liang & Luo, 2022) propose distri-
butional reinforcement learning algorithms for RSRL with
ERM, matching the results obtained in (Fei et al., 2021).
(Bastani et al., 2022) consider RSRL with the objective of
the spectral risk measure, where conditional value at risk
(CVaR) is a special case. Furthermore, (Wang et al., 2023)
improve upon the regret bound obtained in (Bastani et al.,
2022) in terms of the number of states and episode length.
Note that our work cannot be directly compared to these
works since static risk measures and DRMs are different
settings.

Regret bounds for RSRL with DRMs. (Du et al., 2023)
provides the first regret bound for RSRL using DRMs,
specifically focusing on dynamic conditional value at risk
(CVaR). A very recent work (Xu et al., 2023) that inves-
tigates RSRL using dynamic OCE. OCE is a class of risk
measures that encompasses several well-known measures,
including ERM, CVaR, and mean-variance. They propose
a value iteration algorithm based on the idea of upper con-
fidence bound and derive regret upper bounds for their al-
gorithm, as well as a minimax lower bound. (Lam et al.,
2023) focuses on dynamic coherent risk measures in the
context of non-linear function approximation. They propose
an algorithm that leverages UCB-based value functions with
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non-linear function approximation and prove a sub-linear
regret upper bound. However, their work relies on the as-
sumption of a weak simulator, which allows for generating
an arbitrary number of next states from any given state. It
remains unclear whether such assumptions can be removed
in the tabular setting.

Our work contributes to this branch of literature. In contrast
to (Lam et al., 2023), our work does not rely on specific
assumptions about the risk measure estimator or concentra-
tion bounds. Additionally, our approach considers a broader
class of DRMs by focusing on Lipschitz DRMs, which
encompasses a wider range of risk measures compared to
coherent ones.

Our paper is organized as follows. We first introduce some
background and problem formulations in Section 2. We then
propose our algorithms in Section 3, which is followed by
our main results in Section 4. The proof sketch of our main
theorem in given in Section 5. The numerical experiments
are shown in Section 6. Finally, we conclude our paper in
Section 7.

2. Preliminaries
Notations. We write [N ] := {1, 2, ..., N} for any positive
integers N . We use I{·} to denote the indicator function.
We denote by a ∨ b := max{a, b}. We use the notation
Õ(·) to representO(·) with logarithmic factors omitted. For
two real numbers a < b, the notation D([a, b]) refers to the
space of all probability distributions that are bounded over
the interval [a, b]. For a discrete set x = {x1, · · · , xn} and
a probability vector P = (P1, · · · , Pn), the notation (x, P )
represents the discrete distribution where P(X = xi) = Pi.

Static risk measure. A (static) risk measure is a mapping
ρ : X → R that assigns a real number to each random
variable in the set X , which satisfies certain properties of
the following. It quantifies the risk associated with a random
outcome.

• monotonicity: X ⪯ Y ⇒ ρ(X) ≤ ρ(Y ),

• translation-invariance: ρ(X + c) = ρ(X) + c, c ∈ R,

• super-additivity: ρ(X + Y ) ≥ ρ(X) + ρ(Y ),

• positive homogeneity: ρ(αX) = αρ(X) for α ≥ 0

• concavity: ρ(αX+(1−α)Y ) ≥ αρ(X)+(1−α)ρ(Y )

• law-invariance: FX = FY ⇒ ρ(X) = ρ(Y ).

Two intrinsic properties of risk measures are monotonicity
and translation-invariance. Coherent risk measures, intro-
duced by (Artzner et al., 1999), are a widely used class
of risk measures that satisfy super-additivity and positive

homogeneity in addition. Coherent risk measures capture
important concepts such as diversification and risk pooling.
Concave risk measures generalize coherent risk measures
by relaxing the requirements of super-additivity and positive
homogeneity to concavity. Concave risk measures are more
flexible and can capture a wider range of risk preferences.

Lipschitz risk measures, on the other hand, form an even
broader class of risk measures, which encompass both co-
herent and concave risk measures. They allow for more gen-
eral functional forms and provide a flexible framework for
capturing risk in various settings. Lipschitz risk measures
satisfy the law-invariance property, therefore we overload
notations and write ρ(FX) := ρ(X) for X ∼ FX .

Lipschitz continuity. For two cumulative distribution
functions (CDFs) F and G, their supremum distance is
defined as

∥F −G∥∞ ≜ sup
x∈R
|F (x)−G(x)| .

For two distributions F,G over the reals, the Wasserstein
distance between them coincides with their ℓ1 distance (Bhat
& LA, 2019)

W1(F,G) = ∥F −G∥1 ≜
∫ ∞

−∞
|F (x)−G(x)| dx.

A risk measure ρ is said to be Lipschitz continuous with
respect to a distance ∥·∥p (p = 1 or p =∞) over the set of
distributions D([a, b]) if

ρ(F )−ρ(G) ≤ Lp(ρ, [a, b]) ∥F −G∥p ,∀F,G ∈ D([a, b]).

Here, Lp(ρ, [a, b]) is the Lipschitz constant associated with
the risk measure ρ over the interval [a, b], and it represents
the maximum rate of change of the risk measure with respect
to the distance metric. The Lipschitz continuity property
provides a way to quantify the sensitivity of the risk measure
to changes in the underlying distributions. A larger Lips-
chitz constant indicates a greater sensitivity or variability
of the risk measure values with respect to changes in the
distributions.

To gain some intuition, we present the Lipschitz constant
values for several popular risk measures over the interval
[0,M ] in Table 1. For interested readers, please refer to
Appendix A for the formal definitions of the risk measures
and more detailed discussions about the Lipschitz constants.

Episodic MDP. An episodic MDP is defined by a tuple
M ≜ (S,A, (Ph)h∈[H], (rh)h∈[H], H), where S is the fi-
nite state space with cardinality S ≜ |S|, A the finite action
space with cardinality A ≜ |A|, Ph : S×A×S → [0, 1] the
probability transition kernel at step h, rh : S ×A → [0, 1]
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Table 1. Lipschitz constants of typical risk measures
Lipschitz constant CVaR distortion risk measure ERM OCE2

L1([0,M ]) 1
α max g′(x) exp(|β|M) u′(−M)

L∞([0,M ]) M
α M max g′(x) exp(|β|M)−1

|β| u(−M)

the reward functions at step h, and H the length of one
episode. The agent interacts with the environment for K
episodes. At the beginning of episode k, an initial state sk1
is arbitrarily selected. In step h, the agent takes action akh
based on the state skh, according to its policy. The policy
is represented by a (deterministic) sequence of functions
π = (πh)h∈[H], where each πh maps from S to A. The
agent observes the reward rh(s

k
h, a

k
h) and transitions to the

next state skh+1 ∼ Ph(·|skh, akh). The episode terminates at
H + 1, after which the agent proceeds to the next episode.

Dynamic programming with DRM. The dynamic risk
measure is defined via a recursive application of static
risk measures (ρh)h∈[H−1] (Ruszczyński, 2010). The (risk-
sensitive) value function of a policy π at step h is defined
recursively

Qπ
h(sh, ah) = rh(sh, ah) + ρh(V

π
h+1(sh+1))

V π
h (sh) = Qπ

h(sh, πh(sh)), V
π
H+1(sH+1) = 0.

(1)

where ρh is taken over the next-state value V π
h+1(sh+1), i.e.,

V π
h+1(sh+1) ∼

(
V π
h+1, Ph(s, a)

)
=⇒

ρh(V
π
h+1(sh+1)) = ρh

((
V π
h+1, Ph(s, a)

))
.

We refer to the distribution of V π
h+1(sh+1) as the (next-

state) value distribution
(
V π
h+1, Ph(s, a)

)
. For conve-

nience, we write ρ(x, P ) = ρ((x, P )), thus we write
ρh
(
V π
h+1, Ph(s, a)

)
. By incorporating the risk measure

ρh into the recursive formulation, the dynamic risk measure
framework provides a way to account for risk preferences
and evaluate the risk-sensitive value function of a policy at
each time step. When the risk measure ρh specializes in the
mean (i.e., taking the expectation), Equation 1 reduces to
the standard Bellman equation.

The (risk-sensitive) optimal policy is defined as the policy
that maximizes the value function, i.e., π∗ = argmaxπ V

π
1 .

Consequently, the optimal value function is defined as
V ∗
h (s) = V π∗

h (s) and Q∗
h(s, a) = Qπ∗

h (s, a). (Ruszczyński,
2010) shows that an optimal Markovian policy exists, and
the optimal value functions can be computed recursively.
The Bellman optimality equation is given by

Q∗
h(sh, ah) = rh(sh, ah) + ρh(V

∗
h+1, Ph(sh, ah))

V ∗
h (sh) = max

a∈A
Q∗

h(sh, ah), V
∗
H+1(sH+1) = 0.

(2)

The optimal policy is the greedy policy with respect

to the optimal action-value function, i.e., π∗
h(s) =

argmaxa∈A Q∗
h(s, a).

Regret. We define the regret of an algorithm alg inter-
acting with an MDPM for K episodes as

Regret(alg,M,K) ≜
K∑

k=1

V ∗
1 (s

k
1)− V πk

1 (sk1).

The regret quantifies the accumulated suboptimality gap
of an algorithm compared to the optimal policy. It is a
random variable due to the randomness introduced by πk.
We denote the expected regret by E[Regret(alg,M,K)].
We may omit the notation π andM when clear from the
context.

3. Algorithm
In this section, we present two model-based algorithms
that incorporate the OFU principle. They aim to strike a
balance between exploration and exploitation during the
learning process. Both algorithms belong to the model-
based algorithm class as they maintain an empirical model
of the environment during the learning process. We make the
following assumption on the DRM, which our algorithms
apply to:
Assumption 3.1. For each h ∈ [H], ρh is Lipschitz con-
tinuous with respect to the ∥·∥1 and ∥·∥∞, and satisfies
ρh : D([a, b])→ [a, b].
Remark 3.2. The second condition in Assumption 3.1 is
mild since it is satisfied by common risk measures. For
example, it is easy to check that CVaR and ERM satisfies
this condition.

For simplicity, we drop ρ from the notations and write
Lp,h ≜ Lp(ρh, [0, H − h]) for h ∈ [H − 1]. For two
probability mass functions (PMFs) P and Q with the same
support, we overload notations and denote by ∥P −Q∥1 :=∑

i |P1 −Qi| their ℓ1 distance.

3.1. UCBVI-DRM

UCBVI-DRM uses the bonus term to ensure optimism in
the estimation of the value function, considering the non-
linearity of the risk measure. In each step h of episode k,
the optimistic value function is obtained by adding a bonus
term bkh to the empirical value. The empirical value is con-
structed by approximating the Bellman optimality equation
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(Equation 2) with empirical model. The empirical model is
maintained and updated based on the visiting counts

Nk
h (s, a) ≜

k−1∑
τ=1

I {(sτh, aτh) = (s, a)} ,

Nk
h (s, a, s

′) ≜
k−1∑
τ=1

I
{
(sτh, a

τ
h, s

τ
h+1) = (s, a, s′)

}
.

The empirical model P̂ k
h for step h in episode k is set to be

the visiting frequency

P̂ k
h (s

′|s, a) = Nk
h (s, a, s

′)

Nk
h (s, a) ∨ 1

.

The bonus term bkh is composed of two factors: the esti-
mation error of the next-state value distribution and the
Lipschitz constant of the risk measure. The estimation error
can be bounded as∥∥∥(P̂ k

h , V
∗
h+1)− (Ph, V

∗
h+1)

∥∥∥
∞
≤
√

ι

2(Nk
h (·, ·) ∨ 1)

,

where ι is a confidence level to be specified later. This er-
ror term captures the uncertainty in the empirical model.
The Lipschitz constant L∞,h of the risk measure reflects its
sensitivity to changes in the underlying distributions. Mul-
tiplying these two factors together yields the exploration
bonus term, which is added to the empirical value func-
tion estimate. This bonus term encourages exploration in
situations where the model estimation error is large or the
risk measure is sensitive. By carefully designing the bonus
term, UCBVI-DRM achieves optimism in its value function
estimates, promoting exploration while considering the non-
linearity of the risk measure. This allows the algorithm to
balance exploration and exploitation, taking into account
the uncertainty in the model and the smoothness of the risk
measure.
Remark 3.3. Algorithm 1 provides a general framework
that subsumes other algorithms such as ICVaR-VI in (Du
et al., 2023) for dynamic CVaR and OCE-VI in (Xu et al.,
2023) for dynamic OCE. In particular, our bonus term
matches theirs by setting L∞,h = (H−h)/α for CVaR and
L∞,h = u(−(H − h)) for OCE. Therefore, Algorithm 1
generalizes these algorithms and provides a unified frame-
work for addressing different risk measures.

3.2. OVI-DRM

The OVI-DRM algorithm (see Algorithm 2) is a model-
based algorithm which injects the optimism in the estimated
model. It operates at a high level as follows. For each step
h in episode k, the algorithm constructs an optimistically
estimated transition model P̃ k

h based on a high probability
concentration bound on the empirical transition model P̂ k

h .

Algorithm 1 UCBVI-DRM
1: Input: (ρh)h∈[H−1], T and δ

2: Initialize Nk
h (·, ·) ← 0, P̂ k

h (·, ·) ← 1
S 1, ι ←

log(SAT )
3: for k = 1 : K do
4: V k

H(·)← maxa rH(·, a)
5: for h = H − 1 : 1 do
6: bkh(·, ·)← L∞,h

√
ι

2(Nk
h (·,·)∨1)

7: Qk
h(·, ·)← rh(·, ·) + ρh(V

k
h+1, P̂

k
h (·, ·)) + bkh(·, ·)

8: V k
h (·)← maxa∈A Qk

h(·, a)
9: end for

10: Receive sk1
11: for h = 1 : H do
12: Take action akh ← argmaxa∈A Qk

h(s
k
h, a) and

transition to skh+1

13: Update Nk
h (·, ·) and P̂ k

h (·, ·)
14: end for
15: end for

This optimistic model allows for exploration and promotes
optimism in the face of uncertainty. Using the optimistic
model P̃ k

h , the algorithm approximates the Bellman op-
timality equation (Equation 2) to obtain optimistic value
functions Qk

h.

The optimistic model P̃ k
h is obtained by applying a subrou-

tine called OM (Optimistic Model) that takes the empirical
model P̂ k

h (s, a), the value at the next step V k
h+1, and a con-

fidence radius ckh(s, a) as input. The subroutine constructs
an optimistic model within an ℓ1 norm ball around P̂ k

h (s, a)∥∥∥Ph(s, a)− P̂ k
h (s, a)

∥∥∥
1
≤ ckh(s, a).

ckh represents the confidence radius around the empirical
model within which the true model lies with high proba-
bility. Due to the space limit, we defer the details of the
subroutine OM (Algorithm 3) in Appendix B. Note that OM
is computationally efficient with complexity O(S logS).

The optimism of the model induces optimism in the value
estimates

(P̃ k
h (s, a), V

k
h+1) ⪰ (Ph(s, a), V

k
h+1) ⪰ (Ph(s, a), V

∗
h+1)

=⇒ Qk
h(s, a) ≥ Q∗

h(s, a).

By using an optimistically estimated model, the OVI-DRM
algorithm promotes exploration and encourages the agent
to take actions that have the potential for higher values.

4. Main Results
For convenience, we define L̃1,t ≜

∏t
i=1 L1,i for t ∈ [H].
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Algorithm 2 OVI-DRM
1: Input: (ρh)h∈[H−1], T and δ

2: Initialize Nk
h (·, ·)← 0, P̂ k

h (·, ·)← 1
S 1

3: for k = 1 : K do
4: V k

H(·)← maxa rH(·, a)
5: for h = H − 1 : 1 do
6: ckh(·, ·)←

√
2S

Nk
h (·,·)∨1

ι

7: P̃ k
h (·, ·)← OM

(
P̂ k
h (·, ·), V k

h , ckh(·, ·)
)

8: Qk
h(·, ·)← rh(·, ·) + ρh(V

k
h+1, P̃

k
h (·, ·))

9: V k
h (·)← maxa∈A Qk

h(·, a)
10: end for
11: Receive sk1
12: for h = 1 : H do
13: Take action akh ← argmaxa∈A Qk

h(s
k
h, a) and

transition to skh+1

14: Update Nk
h (·, ·) and P̂ k

h (·, ·)
15: end for
16: end for

4.1. Worst-case Regret Bounds

Theorem 4.1 (Worst-case regret upper bound). Fix δ ∈
(0, 1). Suppose Assumption 3.1 holds. Algorithm 1 and
Algorithm 2 satisfies for any MDPM

Regret(K) ≤ Õ

(
H−1∑
h=1

L∞,hL̃1,h−1 ·
√
S2AK

)

with probability at least 1− δ, where ι ≜ log(4SAT/δ).

The proof sketch of Theorem 4.1 is shown in Section 5.
Remark 4.2. In the risk-neutral setting, The Lipschitz con-
stants take L∞,h = H − h and L1,h = 1, which leads to

the bound of Õ
(
H2
√
S2AK

)
.

Theorem 4.3 (Minimax Lower Bound). For any algorithm
alg, there exists an MDPM such that for sufficiently large
K

E[Regret(alg,M,K)] ≥ Ω
(
cρH
√
SAT

)
,

where cρ is a constant dependent on the risk measure3.

The construction of proof is based on (Domingues et al.,
2021).

Comparisons and Discussions. We compare our regret
bounds with that of (Xu et al., 2023) in the dynamic OCE set-
ting. By instantiating the Lipschitz constants of OCE with
L∞,h = u(−H+h) and L1,h = u′

−(−H+h), their bound

3For more details, please refer to Appendix D.

can be translated into Õ
(∑H−1

h=1 L∞,h

√
L̃1,h−1S2AK

)
.

Our bound matches their result with additional factors√
L̃1,h−1. This is because they employ a change-of-

measure technique based on the concave optimization rep-
resentation of OCE to bound derive a tighter recursion of
value gaps, which cannot be easily extended to general risk
measures. The Algorithm 1, however, still enjoy the same
regret bound as that in (Xu et al., 2023) since our algorithm
reduces to OCE-VI for the dynamic OCE. Furthermore, nu-
merical experiments in Appendix D shows that Algorithm
2 empirically outperforms Algorithm 1 for dynamic CVaR
problem. Our lower bound also matches the lower bound in
(Xu et al., 2023), both of which are tight in S,A,K,H and
depend on some constant related to the risk measure.

In the dynamic CVaR setting, which is a special case
of dyamic OCE, our upper bound matches the bound
Õ
(
H2
√
S2AK/

√
αH
)

in (Du et al., 2023) up to a fac-

tor of 1/
√
αH . Algorithm 1 subsumes ICVaR-VI for the

dynamic CVaR problem. In contrast to (Du et al., 2023)
that provides a algorithm-dependent lower bound, we pro-
vide minimax and gap-dependent lower bound. Further-
more, (Lam et al., 2023) considers dynamic coherent risk
measures and non-linear function approximation, and their
regret bounds are derived under the assumption of a weak
simulator. As a result, the regret bounds provided in our
work are not directly comparable to theirs, even if their
results are specialized to the tabular MDP setting.

Theorem 4.1 and Theorem 4.3 imply that RSRL with Lip-
schitz DRM can achieve regret bound that is minimax-
optimal in terms of K and A. Specifically, the gap between
the upper and lower bounds is determined by two factors:√
S and a multiplicative Lipschitz constant L̃1,H . we pro-

vide more technical details behind this in the proof sketch.
Achieving further improvements in these factors can be chal-
lenging, especially for general risk measures, under the mild
Lipschitz assumption.

4.2. Gap-dependent Regret Bounds

Fix h ∈ [H], (s, a) ∈ S×A, the sub-optimality gap of (s, a)
at step h is defined as ∆h(s, a) ≜ V ∗

h (s, a)−Q∗
h(s, a). The

minimum sub-optimality gap is defined as the minimum non-
zero gap

∆min ≜ min
h,s,a
{∆h(s, a) : ∆h(s, a) > 0} .

Theorem 4.4 (Gap-dependent regret upper bound). Fix
δ ∈ (0, 1). With probability at least 1− δ, Algorithm 1 and

6



Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz Dynamic Risk Measures

Algorithm 2 satisfy

Regret(K)

≤ O

S2AH
(∑H−1

h=1 L̃1,h−1L∞,h

)2
∆min

log(SAT )

 .

We follow the standard convention in the literature for the
gap-dependent lower bound. The lower bound is stated for
algorithms that have sublinear worst-case regret. Specifi-
cally, we say that an algorithm alg is α-uniformly good if
for any MDPM, there exists a constant CM > 0 such that
Regret(alg,M,K) ≤ CMKα. The construction of proof
is based on (Simchowitz & Jamieson, 2019).

Theorem 4.5 (Gap-dependent regret lower bound). There
exists an MDP M such that any α-uniformly good algo-
rithm alg satisfies

lim
K→∞

Regret(alg,M,K)

logK
=

Ω

(1− α)
∑

(s,a):∆1(s,a)>0

(cρH)2

∆1(s, a)



To our knowledge, Theorem 4.4 provides the first result
showing that RSRL with DRMs can achieve log T -type re-
gret. The lower bound shows that for sufficiently large K,
the logarithmic dependence on K is unavoidable. Notably,
it implies that our algorithms have a tight dependency on
A and K. Furthermore, the presence of a constant factor
in both the upper and lower bounds suggests that the spe-
cific choice of risk measure can significantly impact their
performance.

5. Proof Sketch of Theorem 4.1
For simplicity, we only provide the proof sketch for
UCBVI-DRM. The proof structure builds upon the frame-
work established in (Azar et al., 2017), but we introduce
new techniques to address the specific challenges posed by
nonlinear risk measures: (i) the Lipschitz continuity w.r.t.
∥·∥∞ together with the DKW inequality to ensure the opti-
mism (step 1), and (ii) the Lipschitz continuity w.r.t. ∥·∥1
together with a transport inequality (see Lemma 5.1) to
obtain recursions of suboptimality gap.

Step 1: establish optimism. We first show that V k
1 (sk1) ≥

V ∗
1 (s

k
1),∀k ∈ [K] with high probability. Using the Lips-

chitz property of ρh w.r.t. ∥·∥∞ and the DKW inequality

(Fact 5)

ρh
(
V ∗
h+1, Ph(s, a)

)
− ρh

(
V ∗
h+1, P̂

k
h (s, a)

)
≤ L∞,H−h

∥∥∥(V ∗
h+1, Ph(s, a))−

(
V ∗
h+1, P̂

k
h (s, a)

)∥∥∥
∞

≤ L∞,H−h

√
ι

2(Nk
h (s, a) ∨ 1)

= bkh(s, a).

The results follows from the monotonicity of ρh and induc-
tion.

Step 2: regret decomposition. We define ∆k
h ≜ V k

h −
V πk

h ∈ RS and δkh ≜ ∆k
h(s

k
h). The optimism implies that

the regret can be bounded by the surrogate regret

Regret(K) =
K∑

k=1

V ∗
1 (s

k
1)− V πk

1 (sk1)

≤
K∑

k=1

V k
1 (sk1)− V πk

1 (sk1) =

K∑
k=1

δk1 .

We write rkh ≜ rh(s
k
h, a

k
h), bkh ≜ bkh(s

k
h, a

k
h), Nk

h ≜

Nk
h (s

k
h, a

k
h), P̂ k

h (s
k
h) ≜ P̂ k

h (s
k
h, a

k
h), and Pπk

h ≜
Ph(s

k
h, a

k
h). We decompose δkh as follows

δkh = bkh + ρh

(
V k
h+1, P̂

k
h

)
− ρh

(
V k
h+1, P

πk

h

)
︸ ︷︷ ︸

(a)

+ ρh

(
V k
h+1, P

πk

h

)
− ρh

(
V πk

h+1, P
πk

h

)
︸ ︷︷ ︸

(b)

.

Bounding term (a) and term (b) requires new techniques
compared with risk-neutral setting. To deal with the non-
linearity, we relate the two value difference terms to the
distances between value distribution via Lipschitzness of
the risk measure.To bound term (a), we use the Lipschitz
property w.r.t. ∥·∥∞ to get

(a) ≤ L∞,h

∥∥∥(V k
h+1, P̂

k
h

)
−
(
V k
h+1, P

πk

h

)∥∥∥
∞

≤ L∞,h

∥∥∥P̂ k
h − Pπk

h

∥∥∥
1
≤ L∞,h · ckh.

Due to the linearity of expectation, standard analysis bound
term (b) by the sum of the vale gap at next step δkh+1 and a
martingale noise, and then the recursion of the value gap is
obtained. The derivation of a recursion in the presence of
nonlinear ρh, however, leads to the main technical challenge.
Our key observation to overcome the difficulty is a simple
transport inequality in the following.

Lemma 5.1. ∥(x, P )− (y, P )∥1 ≤
∑n

i=1 Pi |xi − yi| .
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Together with the Lipschitz property w.r.t. ∥·∥1, we have

(b) ≤ L1,h

∥∥∥(V k
h+1, P

πk

h

)
−
(
V πk

h+1, P
πk

h

)∥∥∥
1

≤ L1,h

∑
s′∈S

Pπk

h (s′)
∣∣∣V k

h+1(s
′)− V πk

h+1(s
′)
∣∣∣

= L1,h

∑
s′∈S

Pπk

h (s′)
(
V k
h+1(s

′)− V πk

h+1(s
′)
)

= L1,h · Pπk

h ∆k
h+1 ≜ L1,h(ϵ

k
h + δkh+1),

where ϵkh ≜ Pπk

h ∆k
h+1 −∆k

h+1(s
k
h+1) is a martingale dif-

ference sequence, and the first equality is due to V k
h+1(s

′) ≥
V ∗
h+1(s

′) ≥ V πk

h+1(s
′) for all s′. We bound δkh recursively

δkh ≤ L∞,h · ckh + L1,h(ϵ
k
h + δkh+1) + bkh

≤ 2L∞,h · ckh + L1,h(ϵ
k
h + δkh+1) + ckh.

Step 3: putting together. Unrolling the recursion and
summing up over K episodes yields

Regret(K) ≤
∑

k∈[K]

δk1

≤ 2

H−1∑
h=1

L∞,hL̃1,h−1

K∑
k=1

ckh +

K∑
k=1

H−1∑
h=1

L̃1,hϵ
k
h.

We bound the first term via a pigeonhole argument and
bound the second term by the Azuma-Hoeffding inequality.
The finial result follows from a union bound.

6. Experiments
In this section, we provide some numerical results to validate
the empirical performance of our algorithms. We compare
our algorithms to the algorithms UCBVI (Azar et al., 2017)
for risk-neutral RL and RSVI2 (Fei et al., 2021) for RSRL
with ERM.

In our experiments, we focus on an MDP with S = 3
states, A actions, and horizon H , which is similar to the
construction in (Du et al., 2023). The major difference is
that we consider a non-stationary MDP. The MDP consists
of a fixed initial state denoted as state 0, and three additional
states denoted as states 1, 2, and 3. In step 2 ≤ h ≤ H ,
the three states generate reward 1,0 and 0.4, respectively.
The agent starts from state 0 in the first step, takes action
from [A], and then transitions to one of three states {1, 2, 3}
in the next step. Any action in [A − 1] leads to a uniform
transition to state 1 and state 2. The optimal action A leads
to a transition to state 2 and state 3 with probability 0.001
and 0.999.

We consider the dynamic CVaR with the homogeneous and
in-homogeneous setting. For the homogeneous CVaR, the
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Figure 1. Comparison of different algorithms for homogeneous
CVaR.
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Figure 2. Comparison of different algorithms for in-homogeneous
CVaR.

coefficients α at all steps are identical, while for the in-
homogeneous CVaR, the coefficients α at different steps
could be different. We set δ = 0.005, A = 5, H = 5
and K = 10000. We set α = (0.05, 0.05, 0.05, 0.05) and
α = (0.09, 0.08, 0.07, 0.05) for the homogeneous and in-
homogeneous CVaR, respectively. We perform 5 indepen-
dent runs for each algorithm.

As shown in Figure 1, OVI-DRM and UCBVI-DRM enjoy
sublinear regret while the risk-neutral algorithm UCBVI and
RSVI2 suffer linear regret. In particular, OVI-DRM outper-
forms UCBVI-DRM because it achieves a better balance
between exploration and exploitation. Figure 2 only plots
the results for our algorithms. It shows that UCBVI-DRM
can also learn the optimal policy in the in-homogeneous
CVaR setting.
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7. Conclusions
We propose two model-based algorithms for the broad class
of Lipschitz DRMs. To establish the efficacy of our algo-
rithms, we provide theoretical guarantees in the form of
worst-case and gap-dependent regret upper bounds. To com-
plement our upper bounds, we also establish regret lower
bounds. These lower bounds demonstrate the inherent diffi-
culty of the problem.

There are several promising future directions. It might be
possible to improve the regret upper bounds by designing
new algorithms or improving the analysis. Currently, our
algorithms and analysis are primarily focused on tabular
MDPs. However, extending the results to the setting of func-
tion approximation, such as linear function approximation,
is an important and challenging task. The nonlinearity of
risk measures poses a significant obstacle in this context.
One potential approach to address this issue is to leverage
techniques like value-targeted regression, as proposed in
(Ayoub et al., 2020; Jia et al., 2020), and integrate them into
our framework.
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A. Risk Measures
A.1. Definitions

Conditional Value at Risk (CVaR) The CVaR value (Rockafellar et al., 2000) at level α ∈ (0, 1) for a distribution F is
defined as

Cα(F ) ≜ sup
ν∈R

{
ν − 1

α
EX∼F [(ν −X)+]

}
.

(Acerbi & Tasche, 2002) showed that when F is a continuous distribution, Cα(F ) = EX∼F [X|X ≤ F−1(α)].

Spectral risk measure (SRM) SRM is class of risk measures that generalizes CVaR via adopting a non-constant weighting
function over the quantiles (Acerbi, 2002). The SRM value of F is defined as

Sϕ(F ) ≜
∫ 1

0

ϕ(y)F−1(y)dy,

where ϕ : [0, 1]→ [0,∞) is the weighting function. (Acerbi, 2002) showed that an SRM is coherent if ϕ is is decreasing
and satisfies that

∫ 1

0
ϕ(y)dy = 1. SRM can be viewed as a weighted average of the quantiles, with weight specified by ϕ(y).

In fact, Sϕ(F ) specializes in Cα(F ) for ϕ(y) = 1
α I{0 ≤ y ≤ α}.

Distortion risk measure For a distribution F ∈ D([0,∞)), the distortion risk measure (Balbás et al., 2009; Wirch &
Hardy, 2001) ρg(F ) is defined as

ρg(F ) ≜
∫ ∞

0

g(1− F (x))dx,

where g : [0, 1] → [0, 1] is a continuous increasing function with g(0) = 0 and g(1) = 1. We refer to g as the distortion
function. Distortion risk measure is coherent if and only if g is convex. Similar to SRM, distortion risk measure can also
recover CVaR by choosing proper g.

Entropic risk measure (ERM) ERM adjusts the risk attitude of the user through the exponential utility function. In
particular, the ERM value of F with coefficient β ̸= 0 is defined as

Uβ(F ) ≜
1

β
log(EX∼F [exp(βX)]) =

1

β
log

(∫
R
exp(βx)dF (x)

)
.

Notably, ERM is the prime example of a convex risk measure which is not coherent (Rudloff et al., 2008).

Optimized certainty equivalent (OCE) The OCE (Ben-Tal & Teboulle, 2007) value of F associated with a utility
function u is given by

Cu(F ) ≜ sup
λ
{λ+ EX∼F [u(X − λ)]} = sup

λ

{
λ+

∫
R
u(x− λ)dF (x)

}
,

where u is a non-decreasing, closed utility function that satisfies u(0) = 0 and 1 ∈ ∂u(0). THE OCE is risk-averse
(risk-seeking) if and only u is concave (convex). OCE subsumes important examples of popular risk measures, including the
ERM and CVaR.

A.2. Lipschitz Property

We summarizes the Lipschitz constants of common risk measures over a finite interval [a, b] in Table 2. (Prashanth & Bhat,
2022) provides the Lipschitz constants of SRM, OCE, and distortion risk measure w.r.t. the Wasserstein distance or ∥·∥1.
(Huang et al., 2021) provides the Lipschitz constants of distortion risk measure w.r.t. ∥·∥∞.

For completeness, we will derive the Lipschitz constants of SRM and OCE w.r.t. ∥·∥∞ in the following. Fact 1 offers
a simple way to derive the Lipschitz constant of a risk measure w.r.t. ∥·∥1 based on that w.r.t. the ∥·∥∞. Therefore, the
Lipschitz constants of SRM w.r.t. ∥·∥∞ can take L∞(Mϕ, [a, b]) = (b − a) · L1(Mϕ, [a, b]) = (b − a)max |ϕ(x)|. As a
special case, we have L∞(Cα, [0,M ]) = b−a

α .
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Fact 1. If a functional ρ has Lipschitz constant L1([a, b]) over D([a, b]), then it has Lipschitz constant L∞([a, b]) =
L1([a, b])(b− a).

Proof. Suppose ρ has Lipschitz constant L1([a, b]) over D([a, b]), then

|ρ(F )− ρ(G)| ≤ L1([a, b]) ∥F −G∥1 ≤ L1([a, b]) ∥F −G∥∞ (b− a),∀F,G ∈ D([a, b]).

This implies that L∞([a, b]) = L1([a, b])(b− a) is a valid choice.

Fact 2. The Lipschitz constants of OCE w.r.t. ∥·∥∞ is L∞(Cu, [a, b]) = −u(a − b) for concave utility function and
L∞(Cu, [a, b]) = u(b− a) for convex utility function.

Proof. Let λ1, λ2 ∈ [a, b] satisfy

Cu(F ) = λ1 +

∫ b

a

u(x− λ1)dF (x) = max
λ∈[a,b]

λ+

∫ b

a

u(x− λ)dF (x)

Cu(G) = λ2 +

∫ b

a

u(x− λ2)dG(x) = max
λ∈[a,b]

λ+

∫ b

a

u(x− λ)dG(x).

Without loss generality, we assume Cu(F ) > Cu(G). It holds that

Cu(F )− Cu(G) = λ1 +

∫ b

a

u(x− λ1)dF (x)− λ2 −
∫ b

a

u(x− λ2)dG(x)

≤ λ1 +

∫ b

a

u(x− λ1)dF (x)− λ1 −
∫ b

a

u(x− λ1)dG(x)

=

∫ b

a

u(x− λ1)dF (x)−
∫ b

a

u(x− λ1)dG(x)

= u(x− λ1)F (x)|ba −
∫ b

a

F (x)du(x− λ1)− u(x− λ1)G(x)|ba +
∫ b

a

G(x)du(x− λ1)

=

∫ b

a

(G(x)− F (x))du(x− λ1)

≤
∫ b

a

du(x− λ1) · ∥F −G∥∞

= (u(b− λ1)− u(a− λ1)) ∥F −G∥∞
≤ max

λ∈[a,b]
(u(b− λ)− u(a− λ)) ∥F −G∥∞ = L∞(Cu, [a, b]) ∥F −G∥∞ ,

where the second inequality is due to that u is non-decreasing. For concave utility function, we can bound the last term as

max
λ∈[a,b]

(u(b− λ)− u(a− λ)) = u(b− b)− u(a− b) = −u(a− b).

For convex utility function, we can bound the last term as

max
λ∈[a,b]

(u(b− λ)− u(a− λ)) = u(b− a)− u(a− a) = u(b− a).

Fact 3. The Lipschitz constants of OCE w.r.t. ∥·∥1 is L1(Cu, [a, b]) = u′(a − b) for concave utility function and
L1(Cu, [a, b]) = u′(b− a) for convex utility function.

Proof. Let λ1, λ2 ∈ [a, b] satisfy

Cu(F ) = λ1 +

∫ b

a

u(x− λ1)dF (x) = max
λ∈[a,b]

λ+

∫ b

a

u(x− λ)dF (x)

Cu(G) = λ2 +

∫ b

a

u(x− λ2)dG(x) = max
λ∈[a,b]

λ+

∫ b

a

u(x− λ)dG(x).

12
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Table 2. Lipschitz constants of common risk measures
Lipschitz constant CVaR SRM distortion risk measure OCE4

L1([a, b])
1
α maxϕ(x) max g′(x) u′(a− b)

L∞([a, b]) b−a
α (b− a)maxϕ(x) (b− a)max g′(x) −u(a− b)

Algorithm 3 OM
1: Input: P = (P (s1), . . . , P (sS)), V = (V (s1), . . . , V (sS)) and c > 0
2: Sorting: let V ′ = (V (s(1)), · · · , V (s(S))) such that V (s(1)) ≤ V (s(2)) ≤ · · · ≤ V (s(S))
3: Permutation: let P ′ = (P (s(1)), · · · , P (s(S)))
4: Transport: sequentially move probability mass c

2 ∧ 1 of the leftmost states to s(S)

Without loss generality, we assume Cu(F ) > Cu(G). It holds that

Cu(F )− Cu(G) = λ1 +

∫ b

a

u(x− λ1)dF (x)− λ2 −
∫ b

a

u(x− λ2)dG(x)

≤
∫ b

a

u(x− λ1)dF (x)−
∫ b

a

u(x− λ1)dG(x)

=

∫ b

a

(G(x)− F (x))du(x− λ1)

=

∫ b

a

(G(x)− F (x))u′(x− λ1)dx

≤ max
λ∈[a,b],x∈[a,b]

u′(x− λ)

∫ b

a

|G(x)− F (x)|dx

= L1(Cu, [a, b]) ∥F −G∥1 ,

where the second inequality is due to the non-negativity of u′. For concave utility function, we can bound the last term as

max
λ∈[a,b],x∈[a,b]

u′(x− λ) = u′(a− b).

For convex utility function, we can bound the last term as

max
λ∈[a,b],x∈[a,b]

u′(x− λ) = u′(b− a).

OCE subsumes ERM when u(x) = exp(βx)−1
β . In particular, L∞(Uβ , [a, b]) = −u(a − b) = − exp(β(a−b))−1

β =
exp(|β|(b−a))−1

|β| for concave utility (β < 0) and L∞(Uβ , [a, b]) = u(b− a) = exp(β(b−a))−1
β for convex utility (β > 0).

B. Subroutine
We present the subroutine OM used in Algorithm 2 in this section. Fix an (s, a, k, k), OM takes the empirical model P̂ k

h (s, a),
the value at the next step V k

h+1, and a confidence radius ckh(s, a) as input and outputs the optimistic model P̃ k
h (s, a). For a

PMF P and a real number c > 0, denote by B1(P, c) ≜ {P ′| ∥P ′ − P∥1 ≤ c} the ℓ1 norm ball centered at P with radius c.

Recall that we F ⪰ G denotes that F (x) ≤ G(x),∀x ∈ R. Lemma B.1 shows that OM can output an optimistic model P̃
whose value distribution dominates those generated by the model within the concentration ball.

Lemma B.1. Let P, V, c be the input of OM and P̃ be the output. It holds that

(P̃ , V ) ⪰ (Q,V ),∀Q ∈ B1(P, c).

13
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Proof. For simplicity, let P = (P1, · · · , Pn), V ∈ Rn satisfying V1 ≤ V2 · · · ≤ Vn. Observe that the CDF (P, V ) is a
piecewise constant function. Hence it suffices to show that

i∑
j=1

P̃j ≤
i∑

j=1

Qj ,∀i ∈ [n],∀Q ∈ B1(P, c).

Let l ≜ min
{
i|
∑i

j=1 Pj ≥ c
2

}
. There are two cases.

Case 1: Pn + c
2 ≤ 1. Since

∑l−1
j=1 Pj <

c
2 and

∑l
j=1 Pj ≥ c

2 , we have

P̃i =


0, i ∈ [l − 1]∑l

j=1 Pj − c
2 , i = l

Pi, l + 1 ≤ i ≤ n− 1

Pn + c
2 , i = n

and thus
i∑

j=1

P̃j =


0, i ∈ [l − 1]∑l

j=1 Pj − c
2 , l ≤ i ≤ n− 1

1, i = n

For any Q ∈ B1(P, c), it holds that
i∑

j=1

P̃j ≤
i∑

j=1

Qj ,∀i ∈ [n].

Otherwise
∑k

j=1 Qj <
∑k

j=1 Pj − c
2 for some l ≤ k ≤ n − 1, which implies

∑n
j=k+1 Qj = 1 −

∑k
j=1 Qj >

1 −
∑k

j=1 Pj + c
2 =

∑k
j=1 Pj + c

2 . This leads to a contradiction ∥P −Q∥1 =
∑

j∈[n] |Pj − Qj | ≥ |
∑k

j=1 Pj −∑k
j=1 Qj |+ |

∑n
j=k+1 Pj −

∑n
j=k+1 Qj | > c.

Case 2: Pn + c
2 > 1. In this case, P̃j = 0 for j ∈ [n− 1] and P̃n = 1. It is obvious that

i∑
j=1

P̃j ≤
i∑

j=1

Qj ,∀i ∈ [n],∀Q ∈ B1(P, c).

Therefore, we have
(P̃ , V ) ⪰ (Q,V ),∀Q ∈ B1(P, c).

Lemma B.1 together with the monotonicity of ρh implies that the output P̃ k
h (s, a) satisfies

ρh(P̃
k
h (s, a), V

k
h+1) ≥ ρh(P

′, V k
h+1), ∀P ′ ∈ B1(P̂

k
h (s, a), c

k
h(s, a)).

In Appendix C, we will show that Ph(s, a) ∈ B1(P̂
k
h (s, a), c

k
h(s, a)) with high probability. Suppose V k

h+1(s) ≥ V ∗
h+1(s),∀s.

It follows that

Qk
h(s, a) = rh(s, a) + ρh(P̃

k
h (s, a), V

k
h+1) ≥ rh(s, a) + ρh(Ph(s, a), V

k
h+1)

≥ rh(s, a) + ρh(Ph(s, a), V
∗
h+1) = Q∗

h(s, a),∀(s, a).

The second inequality is due to the monotonicity of ρh together with the fact that

V k
h+1 ≥ V ∗

h+1 =⇒ (Ph(s, a), V
k
h+1) ⪰ (Ph(s, a), V

∗
h+1).

Then we have V k
h (s) = maxQk

h(s, a) ≥ maxQ∗
h(s, a) = V ∗

h (s),∀s. By induction, we obtain

V k
h (s) ≥ V ∗

h (s),∀(k, h, s).

This implies that the value functions induced by the optimistic models are indeed optimistic compared to the optimal
value functions. The computational complexity of OM is O(S log(S)), since the computational complexity of each step is
O(S log(S)), O(S), and O(S).
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C. Proofs of Regret Upper Bounds
C.1. Worst-case Regret Upper Bound

We first prove the worst-case regret upper bound for Algorithm 1.

C.1.1. PROOF FOR ALGORITHM 1

Step 1: verify optimism. Fix an arbitrary δ ∈ (0, 1). Define the good event Gδ as

Gδ ≜

{∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
≤

√
2S

Nk
h (s, a) ∨ 1

ι, ∀(s, a, k, h) ∈ S ×A× [K]× [H]

}
,

under which the empirical model concentrates around the true model under ∥·∥1.

Lemma C.1 (High probability good event). The event Gδ holds with probability at least 1− δ.

Fact 4 (ℓ1 concentration bound, (Weissman et al., 2003)). Let P be a probability distribution over a finite discrete measurable
space (X ,Σ). Let P̂n be the empirical distribution of P estimated from n samples. Then with probability at least 1− δ,

∥∥∥P̂n − P
∥∥∥
1
≤
√

2|X |
n

log
1

δ
.

Lemma C.1 does not directly follow from a union bound together with Fact 4 since the case Nk
h (s, a) = 0 need to be

checked.

Proof. Fix some (s, a, k, h) ∈ S ×A× [K]× [H]. If Nk
h (s, a) = 0, then we have P̂ k

h (·|s, a) = 1
S 1. A simple calculation

yields that for any Ph(·|s, a) ∥∥∥∥ 1S 1− Ph(·|s, a)
∥∥∥∥
1

≤ 2 ≤
√

2S log(1/δ).

It follows that

P

(∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
≤

√
2S

Nk
h (s, a) ∨ 1

log(1/δ)

∣∣∣∣∣Nk
h (s, a) = 0

)
= 1 > 1− δ.

The event is true for the unseen state-action pairs. Now we consider the case that Nk
h (s, a) > 0. By Fact 4 , we have that for

any integer n ≥ 1

P

(∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
≤

√
2S

Nk
h (s, a)

log(1/δ)

∣∣∣∣∣Nk
h (s, a) = n

)
≥ 1− δ.

Thus we have

P

(∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
≤

√
2S log(1/δ)

Nk
h (s, a)

)

=
∑

n=0,1,···
P

(∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
≤

√
2S log(1/δ)

Nk
h (s, a) ∨ 1

∣∣∣∣∣Nk
h (s, a) = n

)
P(Nk

h (s, a) = n)

≥ (1− δ)
∑

n=0,1,···
P(Nk

h (s, a) = n) = 1− δ.

Applying a union bound over all (s, a, k, h) and rescaling δ leads to the result.

Lemma C.2 (Range of V ∗). For any MDP, it holds that V ∗
h (s) ∈ [0, H + 1− h] for all (s, h) ∈ S × [H + 1].
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Proof. The proof follows from induction and Assumption 3.1. Observe that V ∗
H+1 = 0. Suppose V ∗

h+1(s) ∈ [0, H − h] for
any s, then we have

0 ≤ Q∗
h(s, a) = rh(s, a) + ρh(V

∗
h+1, Ph(s, a)) ≤ 1 +H − h,

where the inequalities are due to the Assumption 3.1. Then we have V ∗
h (s) = maxa Q

∗
h(s, a) ∈ [0, H + 1 − h]. The

induction is completed.

Fact 5 (DKW inequality for discrete distribution). Let P̂n be the empirical PMF for (x, P ) with n samples, then w.p. at
least 1− δ ∥∥∥(x, P )− (x, P̂n)

∥∥∥
∞
≤
√

log(2/δ)

2n
.

We remark that we can also derive a bound by Fact 6: w.p. 1− δ

∥∥∥(x, P )− (x, P̂n)
∥∥∥
∞
≤
∥∥∥P − P̂n

∥∥∥
1
≤
√

2m log(2/δ)

n
.

However, this bound is looser than that from Fact 5 with a factor of
√
m.

Lemma C.3 (Optimistic value function). Conditioned on event Gδ , the sequence {V k
1 (sk1)}k∈[K] produced by Algorithm 1

satisfies V k
1 (sk1) ≥ V ∗

1 (s
k
1),∀k ∈ [K].

Proof. The proof follows from induction. Fix k ∈ [K]. It is evident that the inequality holds when h = H + 1. Suppose the
inequality holds for h+ 1. It follows that for any (s, a)

Qk
h(s, a) = rh(s, a) + ρh

(
V k
h+1, P̂

k
h (s, a)

)
+ bkh(s, a)

≥ rh(s, a) + ρh

(
V ∗
h+1, P̂

k
h (s, a)

)
+ bkh(s, a)

≥ rh(s, a) + ρh(V
∗
h+1, Ph(s, a)) = Q∗

h(s, a).

The first inequality is due to the monotonicity of ρh and the induction hypothesis, and the second one follows from that

ρh(V
∗
h+1, Ph(s, a))− ρh(V

∗
h+1, P̂

k
h (s, a)) ≤ L∞(ρh, H − h)

∥∥∥(V ∗
h+1, Ph(s, a))−

(
V ∗
h+1, P̂

k
h (s, a)

)∥∥∥
∞

≤ L∞(ρh, H − h)

√
ι

2(Nk
h (s, a) ∨ 1)

= bkh(s, a),

where the first inequality follows from the Lipschitz property of ρh and Lemma C.2, and the second one is due to the DKW
inequality (Fact 5).

Fact 6. Let (x, P ) and (x,Q) be two discrete distributions with the same support x = (x1, · · · , xm) and F,G be their
CDFs respectively. It holds that

∥F −G∥∞ ≤ ∥P −Q∥1 .

Proof. Without loss of generality, we assume that x1 ≤ x2 · · · ≤ xn. By definition,

∥F −G∥∞ = sup
x∈R
|F (x)−G(x)| = max

i∈[n]
|F (xi)−G(xi)| = max

i∈[n]

∣∣∣∣∣∣
∑
j∈[i]

Pj −
∑
j∈[i]

Qj

∣∣∣∣∣∣
≤ max

i∈[n]

∑
j∈[i]

|Pj −Qj | =
∑
j∈[n]

|Pj −Qj | = ∥P −Q∥1 .

The second equality is due to that F and G are piecewise constant functions that only differ at x1, · · · , xn. This would lead
a worse bonus term with a factor of

√
S.
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Remark C.4. Alternatively, we have

ρh(V
∗
h+1, Ph(s, a))− ρh(V

∗
h+1, P̂

k
h (s, a)) ≤ L∞(ρh, H − h)

∥∥∥(V ∗
h+1, Ph(s, a))−

(
V ∗
h+1, P̂

k
h (s, a)

)∥∥∥
∞

≤ L∞(ρh, H − h)
∥∥∥Ph(s, a)− P̂ k

h (s, a)
∥∥∥
1

≤ L∞(ρh, H − h)

√
2S

(Nk
h (s, a) ∨ 1)

ι,

where the second inequality is due to Fact 6, the third inequality is due to Lemma C.1.

Step 2: regret decomposition. We introduce the key technical lemma here.

Lemma C.5. Let (x, P ) and (y, P ) be two discrete distributions, where x = (x1, · · · , xn) and y = (y1, · · · , yn). It holds
that

∥(x, P )− (y, P )∥1 ≤
∑
i∈[n]

Pi |xi − yi| .

Proof. By the definition of Wasserstein distance between two discrete distributions, we have

∥F −G∥1 = inf∑
j λi,j=Pi,

∑
i λi,j=Pj

∑
i

∑
j

λi,j |xi − yj |

≤
∑
i

∑
j

δi,jPi |xi − yj |

=
∑
i

Pi

∑
j

δi,j |xi − yi|

=
∑
i

Pi |xi − yi| .

The inequality holds since {δi,jPi}i,j is a valid coupling∑
j

δi,jPi = Pi,
∑
i

δi,jPi = Pj .

We define ∆k
h ≜ V k

h − V πk

h ∈ [−(H + 1 − h), H + 1 − h]S and δkh ≜ ∆k
h(s

k
h). For any (s, h) and any π, we let

Pπ
h (·|s) ≜ Ph(·|s, πh(s)). The regret can be bounded as

Regret(K) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1) =

K∑
k=1

V ∗
1 (s

k
1)− V k

1 (sk1) + V k
1 (sk1)− V πk

1 (sk1)

≤
K∑

k=1

V k
1 (sk1)− V πk

1 (sk1) =

K∑
k=1

δk1 .

For simplicity, we write rkh ≜ rh(s
k
h, π

k
h(s

k
h)), b

k
h ≜ bkh(s

k
h, π

k
h(s

k
h)), N

k
h ≜ Nk

h (s
k
h, π

k
h(s

k
h)) and P̂ k

h (s
k
h) ≜ P̂ k

h (s
k
h, π

k
h(s

k
h)).

For any h ∈ [H − 1], we decompose δkh as follows

δkh = ρh

(
V k
h+1, P̂

k
h (s

k
h)
)
+ bkh − ρh

(
V πk

h+1, P
πk

h (skh)
)

= ρh

(
V k
h+1, P̂

k
h (s

k
h)
)
− ρh

(
V k
h+1, P

πk

h (skh)
)

︸ ︷︷ ︸
(a)

+ ρh

(
V k
h+1, P

πk

h (skh)
)
− ρh

(
V πk

h+1, P
πk

h (skh)
)

︸ ︷︷ ︸
(b)

+bkh.

17



Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz Dynamic Risk Measures

Using the Lipschitz property of ρh,

(a) ≤ L∞(ρh, H − h)
∥∥∥(V k

h+1, P̂
k
h (s

k
h)
)
−
(
V k
h+1, P

πk

h (skh)
)∥∥∥

∞

≤ L∞(ρh, H − h)
∥∥∥P̂ k

h (s
k
h)− Pπk

h (skh)
∥∥∥
1

≤ L∞(ρh, H − h)

√
2S

Nk
h ∨ 1

ι.

Applying Lemma C.5 yields that

(b) ≤ L1(ρh, H − h)
∥∥∥(V k

h+1, P
πk

h (skh)
)
−
(
V πk

h+1, P
πk

h (skh)
)∥∥∥

1

≤ L1(ρh, H − h)
∑
s′∈S

Pπk

h (s′|skh)
∣∣∣V k

h+1(s
′)− V πk

h+1(s
′)
∣∣∣

= L1(ρh, H − h)
∑
s′∈S

Pπk

h (s′|skh)
(
V k
h+1(s

′)− V πk

h+1(s
′)
)

= L1(ρh, H − h)
[
Pπk

h ∆k
h+1

]
(skh)

≜ L1(ρh, H − h)(ϵkh + δkh+1),

where ϵkh ≜ [Pπk

h ∆k
h+1](s

k
h)−∆k

h+1(s
k
h+1) is a martingale difference sequence with ϵkh ∈ [−2(H − h), 2(H − h)] a.s. for

all (k, h) ∈ [K]× [H]. The first equality is due to that V k
h+1(s

′) ≥ V ∗
h+1(s

′) ≥ V πk

h+1(s
′) for all s′.

Now we can bound δkh recursively

δkh ≤ L∞(ρh, H − h)

√
2S

Nk
h ∨ 1

ι+ L1(ρh, H − h)(ϵkh + δkh+1) + L∞(ρh, H − h)

√
ι

2(Nk
h ∨ 1)

≤ 2L∞(ρh, H − h)ekh + L1(ρh, H − h)(ϵkh + δkh+1),

where we define ekh ≜
√

2S
Nk

h∨1
ι in the last line. Repeating the procedure, we obtain

δk1 ≤ 2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)ekh +

H−1∑
h=1

h∏
i=1

L1(ρi, H − i)ϵkh +

H−1∏
h=1

L1(ρh, H − h)δkH

= 2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)ekh +

H−1∑
h=1

h∏
i=1

L1(ρi, H − i)ϵkh,

where the last step is because δkH = Qk
H −Q∗

H = rH − rH = 0.

Step 3: putting together. The total regret is bounded as

Regret(K) ≤
∑

k∈[K]

δk1 ≤ 2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)

K∑
k=1

ekh +

K∑
k=1

H−1∑
h=1

h∏
i=1

L1(ρi, H − i)ϵkh.
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The first term can be bounded as

2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)

K∑
k=1

ekh = 2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)

K∑
k=1

√
2S

Nk
h ∨ 1

ι

≤ 4

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)
√
S2AKι

≜ 4

H−1∑
h=1

L∞,h

h−1∏
i=1

L1,i

√
S2AKι

≜ 4

H−1∑
h=1

L∞,hL̃1,h−1

√
S2AKι,

where we denote by L∞,h = L∞(ρh, H − h) and L̃1,h−1 =
∏h−1

i=1 L1,i for simplicity. We can bound the second term by
Azuma-Hoeffding inequality: with probability at least 1− δ′, the following holds

K∑
k=1

H−1∑
h=1

h∏
i=1

L1(ρi, H − i)ϵkh =

K∑
k=1

H−1∑
h=1

L̃1,hϵ
k
h ≤

√√√√ K∑
k=1

H−1∑
h=1

(2(H − h)L̃1,h)2

2
log(1/δ′)

=

√√√√H−1∑
h=1

(H − h)2L̃2
1,h

√
2K log(1/δ′)

Using a union bound and let δ = δ′ = δ̃
2 , we have that with probability at least 1− δ,

Regret(K) ≤ 4

H−1∑
h=1

L∞,hL̃1,h−1

√
S2AKι+

√√√√H−1∑
h=1

(H − h)2L̃2
1,h

√
2K log(1/δ′)

= Õ

(
H−1∑
h=1

L∞,hL̃1,h−1

√
S2AK

)
.

The equality is due to that

H−1∑
h=1

L∞,hL̃1,h−1 ≥

√√√√H−1∑
h=1

L2
∞,hL̃

2
1,h−1 =

√√√√H−1∑
h=1

((H − h)L1,h)2L̃2
1,h−1

=

√√√√H−1∑
h=1

(H − h)2L̃2
1,h,

where the first inequality comes from the non-negativity of L∞,hL̃1,h−1, and the first equality is due to the choice
L∞,h = L1,h(H − h).
Remark C.6. The following statement is not true

∥(x, P )− (y, P )∥1 ≤

∣∣∣∣∣∣
∑
i∈[n]

Pi(xi − yi)

∣∣∣∣∣∣ .
Consider the case that (x, P ) = ((0, 1), ( 13 ,

2
3 ) and (y, P ) = (( 13 ,

5
6 ), (

1
3 ,

2
3 )). A simple calculation yields that∑

i∈[n] Pi(xi − yi) = 0.
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C.1.2. PROOF FOR ALGORITHM 2

Step 1: verify optimism.
Lemma C.7 (Optimistic value function). Conditioned on event Gδ , the sequence {V k

1 (sk1)}k∈[K] produced by Algorithm 2
satisfies V k

1 (sk1) ≥ V ∗
1 (s

k
1),∀k ∈ [K].

Proof. The proof follows from Appendix B.

Step 2: regret decomposition. The regret can be bounded as

Regret(K) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1) ≤
K∑

k=1

V k
1 (sk1)− V πk

1 (sk1) =

K∑
k=1

δk1 .

For any h ∈ [H − 1], we decompose δkh as follows

δkh = ρh

(
V k
h+1, P̃

k
h (s

k
h)
)
− ρh

(
V πk

h+1, P
πk

h (skh)
)

= ρh

(
V k
h+1, P̃

k
h (s

k
h)
)
− ρh

(
V k
h+1, P

πk

h (skh)
)

︸ ︷︷ ︸
(a)

+ ρh

(
V k
h+1, P

πk

h (skh)
)
− ρh

(
V πk

h+1, P
πk

h (skh)
)

︸ ︷︷ ︸
(b)

.

Using the Lipschitz property of ρh,

(a) ≤ L∞(ρh, H − h)
∥∥∥(V k

h+1, P̃
k
h (s

k
h)
)
−
(
V k
h+1, P

πk

h (skh)
)∥∥∥

∞

≤ L∞(ρh, H − h)
∥∥∥P̃ k

h (s
k
h)− Pπk

h (skh)
∥∥∥
1

≤ L∞(ρh, H − h)
(∥∥∥P̃ k

h (s
k
h)− P̂πk

h (skh)
∥∥∥
1
+
∥∥∥P̂ k

h (s
k
h)− Pπk

h (skh)
∥∥∥
1

)
≤ 2L∞(ρh, H − h)

√
2S

Nk
h ∨ 1

ι.

Using arguments similar to the proof for Algorithm 1

(b) ≤ L1(ρh, H − h)(ϵkh + δkh+1),

Now we can bound δkh recursively

δkh ≤ 2L∞(ρh, H − h)

√
2S

Nk
h ∨ 1

ι+ L1(ρh, H − h)(ϵkh + δkh+1)

= 2L∞(ρh, H − h)ekh + L1(ρh, H − h)(ϵkh + δkh+1).

Repeating the procedure, we obtain

δk1 ≤ 2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)ekh +

H−1∑
h=1

h∏
i=1

L1(ρi, H − i)ϵkh.

Step 3: putting together. The results follows from analogous arguments of the proof for Algorithm 1.

C.2. Gap-dependent Regret Upper Bound

Step 1: regret decomposition. The regret of each episode can be rewritten as the expected sum of sub-optimality gaps for
each action:

(V ∗
1 − V πk

1 )(sk1) = V ∗
1 (s

k
1)−Q∗

1(s
k
1 , a

k
1) + (Q∗

1 −Qπk

1 )(sk1 , a
k
1)

= ∆1(s
k
1 , a

k
1) + [P2(V

∗
2 − V πk

2 )](sk2 , a
k
2)

= · · · = E

[
H∑

h=1

∆h(s
k
h, a

k
h)

]
.
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Step 2: optimism.
Lemma C.8. With probability at least 1− δ, the following event holds

0 ≤ (Qk
h −Q∗

h)(s, a) ≤ 2bkh(s, a) + L1,h[Ph(V
k
h+1 − V ∗

h+1)](s, a).

Proof.

(Qk
h −Q∗

h)(s, a) = rh(s, a) + ρh

(
V k
h+1, P̂

k
h (s, a)

)
+ bkh(s, a)− rh(s, a)− ρh

(
V ∗
h+1, Ph(s, a)

)
= ρh

(
V k
h+1, P̂

k
h (s, a)

)
− ρh

(
V k
h+1, Ph(s, a)

)
︸ ︷︷ ︸

(a)

+ ρh
(
V k
h+1, Ph(s, a)

)
− ρh

(
V ∗
h+1, Ph(s, a)

)︸ ︷︷ ︸
(b)

+bkh(s, a)

≤ L∞,h

∥∥∥(V k
h+1, P̂

k
h (s, a))− (V k

h+1, Ph(s, a))
∥∥∥
∞

+ L1,h

∥∥(V k
h+1, Ph(s, a))− (V ∗

h+1, Ph(s, a))
∥∥
1
+ bkh(s, a)

≤ L∞,h

∥∥∥P̂ k
h (s, a)− V k

h+1, Ph(s, a)
∥∥∥
1
+ L1,h[Ph(V

k
h+1 − V ∗

h+1)](s, a) + bkh(s, a)

≤ 2bkh(s, a) + L1,h[Ph(V
k
h+1 − V ∗

h+1)](s, a)

Step 3: bound number of steps in each interval
Lemma C.9. For any n ∈ [N ],

Cn ≜
∣∣{(k, h) : (Qk

h −Q∗
h)(s

k
h, a

k
h) ∈ [2n−1∆min, 2

n∆min)
}∣∣ ≤ O

HS2Aι
(∑H−1

h′=h

∏h′−1
i=h L1,iL∞,h′

)2
4n∆2

min

 .

Proof. For every n ∈ [N ], h ∈ [H], define

w
(n,h)
k ≜ I

{
(Qk

h −Q∗
h)(s

k
h, a

k
h) ∈ [2n−1∆min, 2

n∆min)
}

C(n,h) ≜
K∑

k=1

w
(n,h)
k .

Observe that w(n,h)
k ≤ 1 and (w

(n,h)
k )2 = w

(n,h)
k . Now we bound

∑K
k=1 w

(n,h)
k (Qk

h −Q∗
h)(s

k
h, a

k
h) from both sides. On

the one hand, by Lemma ,

K∑
k=1

w
(n,h)
k (Qk

h −Q∗
h)(s

k
h, a

k
h) ≤ 4

√
S2AιC(n,h) ·

H−1∑
h′=h

h′−1∏
i=h

L1,iL∞,h′ +

√
2C(n,h) log

1

δ′
·
H−1∑
h′=h

h′−1∏
i=h

L1,iL1,h′(H − h′)

= O

√S2AιC(n,h) ·
H−1∑
h′=h

h′−1∏
i=h

L1,iL∞,h′

 .

On the other hand, by the definition of w(n,h)
k ,

K∑
k=1

w
(n,h)
k (Qk

h −Q∗
h)(s

k
h, a

k
h) ≥

K∑
k=1

w
(n,h)
k 2n−1∆min = 2n−1∆min · C(n,h).

Combining the two inequalities, we obtain

C(n,h) ≤ O

S2Aι
(∑H−1

h′=h

∏h′−1
i=h L1,iL∞,h′

)2
4n∆2

min


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Finally, we have

C(n) =

H∑
h=1

C(n,h) ≤ O

S2Aι
∑H

h=1

(∑H−1
h′=h

∏h′−1
i=h L1,iL∞,h′

)2
4n∆2

min

 ≤ O
S2AιH

(∑H−1
h′=1 L̃1,h′−1L∞,h′

)2
4n∆2

min



Lemma C.10. For any positive sequence {wk}k∈[K], it holds that for any h ∈ [H]

K∑
k=1

wk(Q
k
h−Q∗

h)(s
k
h, a

k
h) ≤ 4

√√√√wS2Aι

K∑
k=1

wk ·
H−1∑
h′=h

h′−1∏
i=h

L1,iL∞,h′ +

√√√√2

K∑
k=1

w2
k log

1

δ′
·
H−1∑
h′=h

h′−1∏
i=h

L1,iL1,h′(H − h′).

Proof. By Lemma 5,

K∑
k=1

wk(Q
k
h −Q∗

h)(s
k
h, a

k
h) ≤

K∑
k=1

wk

(
2L∞,h

√
2Sι

Nk
h

+ L1,h[Ph(V
k
h+1 − V ∗

h+1)](s
k
h, a

k
h)

)

= 2L∞,h

K∑
k=1

wk

√
2Sι

Nk
h ∨ 1︸ ︷︷ ︸

(a)

+L1,h

K∑
k=1

wkϵ
k
h︸ ︷︷ ︸

(b)

+L1,h

K∑
k=1

wk(V
k
h+1 − V ∗

h+1)(s
k
h+1)

≤ (a) + (b) + L1,h

K∑
k=1

wk(Q
k
h+1 −Q∗

h+1)(s
k
h+1, a

k
h+1),

where ϵkh ≜ [Ph(V
k
h+1 − V ∗

h+1)](s
k
h, a

k
h) − (V k

h+1 − V ∗
h+1)](s

k
h+1) ∈ [−2(H − h), 2(H − h)] is a martingale difference

sequence w.r.t. Fk
h for any h ∈ [H], i.e., E

[
ϵkh|Fk

h

]
= 0. Define k(s, a, t) ≜ min{k : Nk

h (s, a) ≥ t} the episode when
(s, a) is visited t times at step h. We can bound term (a) as

(a) = 2L∞,h

K∑
k=1

wk

√
2Sι

Nk
h

= 2L∞,h

√
2Sι

∑
s,a

K∑
k=1

I{(skh, akh) = (s, a)} wk√
Nk

h (s, a) ∨ 1

= 2L∞,h

√
2Sι

∑
s,a

NK
h (s,a)∑
t=1

wk(s,a,t)√
t

≤ 2L∞,h

√
2Sι

∑
s,a

Cs,a/w∑
t=1

w√
t

≤ 4L∞,h

√
Sι
∑
s,a

√
Cs,aw

≤ 4L∞,h

√√√√wS2Aι

K∑
k=1

wk,

where Cs,a ≜
∑NK

h (s,a)
t=1 wk(s,a,t) and wk ≤ w for any k, and the last inequality follows from that

∑
s,a Cs,a =∑

s,a

∑NK
h (s,a)

t=1 wk(s,a,t) =
∑K

k=1 wk.

Since {ϵkh}k∈[K] is a MDS with |ϵkh| ≤ 2(H − h), we can bound term (b) by Azuma-Hoeffding inequality: w.p. 1− δ′

(b) = L1,h

K∑
k=1

wkϵ
k
h ≤ L1,h(H − h)

√√√√2

K∑
k=1

w2
k log

1

δ′
.
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Thus we can get a recursive bound

K∑
k=1

wk(Q
k
h −Q∗

h)(s
k
h, a

k
h) ≤ 4L∞,h

√√√√wS2Aι

K∑
k=1

wk + L1,h(H − h)

√√√√2

K∑
k=1

w2
k log

1

δ′

+L1,h

K∑
k=1

wk(Q
k
h+1 −Q∗

h+1)(s
k
h+1, a

k
h+1).

Unrolling the inequality yields

K∑
k=1

wk(Q
k
h −Q∗

h)(s
k
h, a

k
h) ≤

H−1∑
h′=h

h′−1∏
i=h

L1,i

4L∞,h′

√√√√wS2Aι

K∑
k=1

wk + L1,h′(H − h′)

√√√√2

K∑
k=1

w2
k log

1

δ′


= 4

√√√√wS2Aι

K∑
k=1

wk ·
H−1∑
h′=h

h′−1∏
i=h

L1,iL∞,h′ +

√√√√2

K∑
k=1

w2
k log

1

δ′
·
H−1∑
h′=h

h′−1∏
i=h

L1,iL1,h′(H − h′)

Step 4: Bound the regret Denote by τ ≜ (skh, a
k
h)k,h the trajectory. Define clip[x|δ] ≜ xI{x ≥ δ}. Observe that

V ∗
h (s

k
h) = max

a
Q∗

h(s
k
h, a) ≤ max

a
Qk

h(s
k
h, a) = Qk

h(s
k
h, a

k
h),

thus we get
∆h(s

k
h, a

k
h) = clip[V ∗

h (s
k
h)−Q∗

h(s
k
h, a

k
h)|∆min] ≤ clip[(Qk

h −Q∗
h)(s

k
h, a

k
h)|∆min].

Regret(K) = E

[
K∑

k=1

H∑
h=1

∆h(s
k
h, a

k
h)

]
=
∑

P(τ)
K∑

k=1

H∑
h=1

∆h(s
k
h, a

k
h|τ)

≤
∑
τ∈E

P(τ)
K∑

k=1

H∑
h=1

clip[(Qk
h −Q∗

h)(s
k
h, a

k
h|τ)|∆min] +

∑
τ∈Ec

P(τ)KH2

≤ P(E)

N∑
n=1

2n∆minC
(n) + P(Ec)KH2

≤
N∑

n=1

O

HS2Aι
(∑H−1

h′=h

∏h′−1
i=h L1,iL∞,h′

)2
2n∆min

+H

= O

HS2Aι
(∑H−1

h′=h

∏h′−1
i=h L1,iL∞,h′

)2
∆min

 .

D. Proofs of Regret Lower Bounds
D.1. Minimax Lower Bound

We make the following assumption (Domingues et al., 2021).

Assumption D.1. Assume S ≥ 6, A ≥ 2, and there exists an integer d such that S = 3 + Ad−1
A−1 . We further assume that

H ≥ 3d and H̄ ≜ H
3 ≥ 1.

Theorem D.2. Assume Assumption D.1 holds. For any algorithm A , there exists an MDPMA such that for sufficiently
large K

E[Regret(A ,MA ,K)] ≥
√
p

27
√
6
cρ,1H

√
SAT .
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Step 1. Fix an arbitrary algorithm A . We introduce three types of special states for the hard MDP class: a waiting state
sw where the agent starts and may stay until stage H̄ , after that it has to leave; a good state sg , which is absorbing and is the
only rewarding state; a bad state sb that is absorbing and provides no reward. The rest of S − 3 states are part of a A-ary
tree of depth d− 1. The agent can only arrive sw from the root node sroot and can only reach sg and sb from the leaves of
the tree. Let H̄ ∈ [H − d] be the first parameter of the MDP class. We define H̃ := H̄ + d+ 1 and H ′ := H + 1− H̃ . We
denote by L := {s1, s2, ..., sL̄} the set of L̄ leaves of the tree. For each u∗ := (h∗, ℓ∗, a∗) ∈ [d+ 1 : H̄ + d]× L×A, we
define an MDPMu∗ as follows. The transitions in the tree are deterministic, hence taking action a in state s results in the
a-th child of node s. The transitions from sw are defined as

Ph (sw | sw, a) := I
{
a = aw, h ≤ H̄

}
and Ph (sroot | sw, a) := 1− Ph (sw | sw, a) .

The transitions from any leaf si ∈ L are specified as

Ph (sg | si, a) := p+∆u∗ (h, si, a) and Ph (sb | si, a) := 1− p−∆u∗ (h, si, a) ,

where ∆u∗ (h, si, a) := ϵI{(h, si, a) = (h∗, sℓ∗ , a
∗)} for some constants p ∈ [0, 1] and ϵ ∈ [0,min(1 − p, p)] to be

determined later. p and ϵ are the second and third parameters of the MDP class. Observe that sg and sb are absorbing,
therefore we have ∀a, Ph (sg | sg, a) := Ph (sb | sb, a) := 1. The reward is a deterministic function of the state

rh(s, a) := I{s = sg, h ≥ H̃}.

Finally, we define a reference MDPM0 which differs from the previous MDP instances only in that ∆0(h, si, a) := 0 for
all (h, si, a). For each ϵ, p and H̄ , we define the MDP class

CH̄,p,ϵ :=M0 ∪ {Mu∗}u∗∈[d+1:H̄+d]×L×A.

For an MDPMu∗ , the optimal policy π∗,Mu∗ starts to traverse the tree at step h∗ − d then chooses to reach the leaf sl∗ and
performs action a∗. The optimal value in any of these MDPs is the same

V ∗,Mu∗
1 = V ∗,Mu∗

h∗ (sl∗) = Q∗,Mu∗
h∗ (sl∗ , a

∗) = rh(sl∗ , a
∗) + ρh∗(V ∗,Mu∗

h∗+1 , Ph(sl∗ , a
∗))

= ρh∗((V ∗,Mu∗
h∗+1 (sg), V

∗,Mu∗
h∗+1 (sb)), (p+ ϵ, 1− p− ϵ)).

For simplicity, we may dropMu∗ from the notations. Notice that the agent must be in either of the absorbing states at
step h ≥ H̃ = H̄ + d+ 1. Observe that V ∗,Mu∗

H (sg) = rH(sg, a) = 1 since rh(sg, a) = 1 for any a and any h ≥ H̃ , and
V ∗,Mu∗
H (sb) = 0. Thus we have:

Q∗,Mu∗
H−1 (sg, a) = rH−1(sg, a) + ρH−1((V

∗,Mu∗
h∗+1 (sg), V

∗,Mu∗
h∗+1 (sb)), (1, 0)) = 1 + V ∗,Mu∗

h∗+1 (sg) = 2,∀a,

where the second equality follows from that ρh(c) = c for a deterministic constant c. Therefore V ∗,Mu∗
H−1 (sg) = 2. Similarly

we can get V ∗,Mu∗
H−1 (sb) = 0. It follows from inductions that V ∗,Mu∗

h (sg) = H + 1− h and V ∗,Mu∗
h (sb) = 0 for h ≥ H̃ .

Moreover, observe that

V ∗,Mu∗

H̃−1
(sg) = 0 + ρH̃−1((V

∗,Mu∗

H̃
(sg), V

∗,Mu∗

H̃
(sb)), (1, 0)) = V ∗,Mu∗

H̃
(sg) = H + 1− H̃ = H ′

and V ∗,Mu∗

H̃−1
(sb) = 0. Then V ∗,Mu∗

h∗+1 (sg) = · · · = V ∗,Mu∗

H̃−1
(sg) = H ′ and V ∗,Mu∗

h∗+1 (sb) = · · · = V ∗,Mu∗

H̃−1
(sb) = 0. Thus

the optimal value

V ∗,Mu∗
1 = ρh∗((V ∗,Mu∗

h∗+1 (sg), V
∗,Mu∗
h∗+1 (sb)), (p+ ϵ, 1− p− ϵ))

= ρh∗((V ∗,Mu∗

H̃
(sg), V

∗,Mu∗

H̃
(sb)), (p+ ϵ, 1− p− ϵ))

= ρh∗((H ′, 0), (p+ ϵ, 1− p− ϵ))

Consider the case that policy πk ̸= π∗. Then we have (skh∗ , akh∗) ̸= (sl∗ , a
∗). Analogously, we can get

V πk

h (sg) = H + 1− h, V ∗,Mu∗
h (sb) = 0
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for h ≥ H̃ . Suppose πk arrives at the leaf node sklk in step lk ∈ [1 + d, H̃ − 1], then V πk

lk+1(sg) = · · · = V πk

H̃
(sg) =

H + 1− H̃ = H ′ and V πk

lk+1(sb) = · · · = V πk

H̃
(sb) = 0. Since Plk(sg|sklk , a

k
h) = p,

V πk

1 = ρlk((V
πk

lk+1(sg), V
πk

lk+1(sb)), (p, 1− p)) = ρlk((H
′, 0), (p, 1− p))

Denote by xk
h := (skh, a

k
h) for each (k, h), x∗ := (sℓ∗ , a

∗) and NK(u∗) :=
∑K

k=1 I{xk
h∗ = x∗}. It follows that

V πk

1 = I{xk
h∗ = x∗}V ∗

1 + I{xk
h∗ ̸= x∗}ρlk((H ′, 0), (p, 1− p))

Define cρ as the constant that satisfies

ρ((H, 0), (p, 1− p))− ρ((H, 0), (q, 1− q)) ≥ cρ ∥((H, 0), (p, 1− p))− ((H, 0), (q, 1− q))∥1
= cρH|p− q|.

The expected regret of A inMu∗ can be bounded as

EA ,Mu∗ [Regret(A ,Mu∗ ,K)]

= EA ,Mu∗

[
K∑

k=1

V ∗
1 − V πk

1

]

= EA ,Mu∗

[
K∑

k=1

I{xk
h∗ ̸= x∗} (ρh∗((H ′, 0), (p+ ϵ, 1− p− ϵ))− ρlk((H

′, 0), (p, 1− p)))

]

≥ EA ,Mu∗

[
K∑

k=1

I{xk
h∗ ̸= x∗}cρ ∥((H ′, 0), (p+ ϵ, 1− p− ϵ))− ((H ′, 0), (p, 1− p))∥1

]

= EA ,Mu∗

[
K∑

k=1

I{xk
h∗ ̸= x∗}cρH ′ϵ

]
= cρϵH

′(K − EA ,Mu∗ [NK(u∗)]),

Step 2. The maximum of the regret can be bounded below by the mean over all instances as

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥ 1

H̄L̄A

∑
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K)

≥ cρ,1H
′Kϵ

1− 1

L̄AKH̄

∑
u∗∈[d+1:H̄+d]×L×A

Eu∗ [NK(u∗)]

 .

Observe that it can be further bounded if we can obtain an upper bound on
∑

u∗∈[d+1:H̄+d]×L×A Eu∗ [NK(u∗)], which can
be done by relating each expectation to the expectation under the reference MDPM0.

Fact 7 (Lemma 1,(Garivier et al., 2019)). Consider a measurable space (Ω,F) equipped with two distributions P1 and P2.
For any F-measurable function Z : Ω→ [0, 1], we have

KL (P1,P2) ≥ kl (E1[Z],E2[Z]) ,

where E1 and E2 are the expectations under P1 and P2 respectively.
Fact 8 (Lemma 5, (Domingues et al., 2021)). LetM andM′ be two MDPs that are identical except for their transition
probabilities, denoted by Ph and P ′

h, respectively. Assume that we have ∀(s, a), Ph(· | s, a)≪ P ′
h(· | s, a). Then, for any

stopping time τ with respect to (Ik)k≥1 that satisfies PM[τ <∞] = 1

KL (PM,PM′) =
∑

(s,a,h)∈S×A×[H−1]

EM [Nτ
h (s, a)] KL (Ph(· | s, a), P ′

h(· | s, a)) .
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Fact 9 (Lemma 28, (Liang & Luo, 2022)). If ϵ ≥ 0, p ≥ 0 and p+ ϵ ∈ [0, 1
2 ], then kl(p, p+ ϵ) ≤ ϵ2

2p(1−p) ≤
ϵ2

p .

By applying Fact 7 with Z = NK(u∗)
K ∈ [0, 1], we have

kl

(
1

K
E0 [NK(u∗)] ,

1

K
Eu∗ [NK(u∗)]

)
≤ KL (P0,Pu∗) .

By Pinsker’s inequality, it implies that

1

K
Eu∗ [NK(u∗)] ≤ 1

K
E0 [NK(u∗)] +

√
1

2
KL (P0,Pu∗).

SinceM0 andMu∗ only differs at stage h∗ when (s, a) = x∗, it follows from Fact 8 that

KL (P0,Pu∗) = E0 [NK(u∗)] kl(p, p+ ε).

By Fact 9, we have kl(p, p+ ϵ) ≤ ϵ2

p for ϵ ≥ 0 and p+ ϵ ∈ [0, 1
2 ]. Consequently,

1

K

∑
u∗∈[d+1:H̄+d]×L×A

Eu∗ [NK(u∗)]

≤ 1

K
E0

 ∑
u∗∈[d+1:H̄+d]×L×A

NK(u∗)

+
ϵ√
2p

∑
u∗∈[d+1:H̄+d]×L×A

√
E0 [NK(u∗)]

≤ 1 +
ϵ√
2p

√
L̄AKH̄,

where the second inequality is due to the Cauchy-Schwartz inequality and that
∑

u∗∈[d+1:H̄+d]×L×A NK(u∗) = K.
It follows that

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥ cρ,1H
′Kϵ

1− 1

L̄AH̄
−

ϵ√
2p

√
L̄AKH̄

L̄AH̄

 .

Step 3. Choosing ϵ =
√

p
2 (1−

1
LAH̄

)
√

LAH̄
K maximizes the lower bound

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥
√
p

2
√
2
cρ,1H

′
(
1− 1

L̄AH̄

)2√
L̄AKH̄.

Since S ≥ 6 and A ≥ 2, we have L̄ = (1 − 1
A )(S − 3) + 1

A ≥
S
4 and 1 − 1

L̄AH̄
≥ 1 − 1

6
4 ·2

= 2
3 . Choose H̄ = H

3

and use the assumption that d ≤ H
3 to obtain that H ′ = H − d − H̄ ≥ H

3 . Now we choose arbitrary p ≤ 1
4 and

ϵ =
√

p
2 (1−

1
L̄AH̄

)
√

LAH̄
K < 1

2
√
2

√
L̄AH̄
K ≤ 1

4 if K ≥ 2L̄AH̄ . Such choice of p and ϵ guarantees the assumption of Fact

9. Finally we use the fact that
√
L̄AKH̄ ≥ 1

2
√
3

√
SAKH to obtain

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥
√
p

27
√
6
cρH
√
SAKH.

D.2. Gap-dependent Lower Bound

Theorem D.3 (Gap-dependent regret lower bound). Let S ≥ 2 and A ≥ 2, and let {δs,a}s,a∈S×A ⊂ (0, H
8 ) denote a set of

gaps. For any h ≥ 1, there exists an MDPM with S = [S + 2] and A = [A] such that any α-uniformly good algorithm
alg satisfies

lim
K→∞

Regret(alg,M,K)

logK
= Ω

(1− α)
∑

(s,a):∆1(s,a)>0

(cρH)2

∆1(s, a)


We first fix an arbitrary α-uniformly good algorithm A . For simplicity, we may drop A from the notations, e.g., EM =
EM,A .
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Step 1: construction of the hard instance. Our construction mirrors the lower bounds in . However, their instance
is suited for homogeneous/stationary MDP. Define an MDPM with S = {0} ∪ [S + 2] and A = [A]. Without loss of
generality, we consider the case H ≥ 2. Otherwise, it reduces to a bandit setting. We first specify the transition kernels. For
the convenience of analysis, we introduce s0 = 0 at stage h = 0 with P0(s|0) = 1

S for any s ∈ [S]. In other words, the
initial state s1 is uniformly distributed over [S]. For (s, a) ∈ [S]× [A], let

P1(S + 1|s, a) = 3

4
− 2δs,a

H − 1
=:

3

4
− δ̃s,a, P1(S + 1|s, a) = 1− P1(S + 1|s, a).

Thus at stage 1, each state s ∈ [S] can only transit to either state S + 1 or S + 2. Furthermore, we set state S + 1 and S + 2
to be absorbing state, i.e.

Ph(S + 1|S + 1, a) = Ph(S + 2|S + 2, a) = 1, ∀h ∈ [2 : H − 1], a ∈ [A].

Finally, we set the reward functions as

R(x, a) :=


1 (x, a) = (S + 1, 1)
1
2 (x, a) = (S + 2, 1)

0 otherwise.

We assume that there exists a unique action π∗(s) for each s ∈ [S] such that δs,π∗(s) = 0. We will see that such action is the
optimal action. Note that S+1 and S+2 are absorbing states and the only two rewarding states, hence V ∗

h (S+1) = H+1−h
and V ∗

h (S + 2) = H+1−h
2 for h ∈ [2 : H]. It follows that for x ∈ [S],

V ∗
h (s) = 0 + ρh(V

∗
h+1, Ph(s, π

∗
h(s))) = ρh

((
H − h,

H − h

2

)
,

(
3

4
,
1

4

))
,

Q∗
h(s, a) = 0 + ρh(V

∗
h+1, Ph(s, a)) = ρh

((
H − h,

H − h

2

)
,

(
3

4
− δ̃s,a,

1

4
+ δ̃s,a

))
,

which implies that

∆h(s, a) = ρh

((
H − h,

H − h

2

)
,

(
3

4
,
1

4

))
− ρh

((
H − h,

H − h

2

)
,

(
3

4
− δ̃s,a,

1

4
+ δ̃s,a

))
≥ cρ

∥∥∥∥((H − h,
H − h

2

)
,

(
3

4
,
1

4

))
−
((

H − h,
H − h

2

)
,

(
3

4
− δ̃s,a,

1

4
+ δ̃s,a

))∥∥∥∥
1

= cρ
H − h

2
δ̃s,a.

In particular, we have ∆1(s, a) ≥ cρ
H−1
2 δ̃s,a = cρ,1δs,a. Note that ∆1(s, a) is only defined for s ∈ [S].
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Step 2: regret decomposition. The regret for algorithm A over MDPM can be decomposed as follows

Regret(A ,M,K) = E

[
K∑

k=1

V ∗
1 (s

k
1)− V πk

1 (sk1)

]

= E

[
K∑

k=1

H∑
h=1

∆h(s
k
h, a

k
h)

]

= E

[
K∑

k=1

H∑
h=1

∑
s,a

I
{
skh = s, akh = a

}
∆h(s

k
h, a

k
h)

]

=

H∑
h=1

∑
s,a

E

[
K∑

k=1

I
{
skh = s, akh = a

}]
∆h(s, a)

=

H∑
h=1

∑
s,a

E
[
NK

h (s, a)
]
∆h(s, a)

=

H∑
h=1

∑
s∈[S],a

E
[
NK

h (s, a)
]
∆h(s, a).

where the last equality is due to that ∆h(s, a) is only defined over [S]. For our hard instance, observe that I
{
skh = s

}
= 0

for s ∈ [S] and h ̸= 1. Therefore NK
h (s, a) = 0 for s ∈ [S] and h ̸= 1, which implies

Regret(A ,M,K) =
∑

s∈[S],a

E
[
NK

1 (s, a)
]
∆1(s, a).

We claim that for any (s, a) such that s ∈ [S] and ∆1(s, a) > 0, and any K ≥ K0(M), it holds that

EA ,M
(
NK

1 (s, a)
)
≥ Ω

(
1

δ̃2s,a
logK

)
= Ω

(
(cρ,1H)2

∆1(s, a)2
logK

)
.

It follows that

Regret(A ,M,K) ≥ Ω

 ∑
s∈[S],a:∆1(s,a)>0

(cρ,1H)2

∆1(s, a)
logK

 .

Step 3: bounding E
[
NK

h (s, a)
]
. Observe that δ̃s,a = 2

H−1δs,a ∈ (0, 1
2 ) due to the assumption that δs,a ∈ (0, H

8 ). By
Fact 7 and Fact 8, let Z be a FK-measurable random variable, then it holds that

kl (EM[Z],EM′ [Z]) ≤
∑

(s,a,h)∈S×A×[H−1]

EM
[
NK

h (s, a)
]
KL (Ph(s, a), P

′
h(s, a)) .

Now fix an arbitrary (s, a) ∈ [S]× [A]. Define an MDPM′
s,a which differs from M only in that P1(S + 1|s, a) = 3

4 + η,
where η = min{ 18 , δ̃s,a}. For simplicity, we writeM′ =M′

s,a. The following holds

kl (EM[Z],EM′ [Z]) ≤ EM
[
NK

1 (s, a)
]
KL (P1(s, a), P

′
1(s, a)) = EM

[
NK

1 (s, a)
]
kl

(
3

4
− δ̃s,a,

3

4
+ η

)
.

Observe that 1
4 < 3

4 − δ̃s,a < 3
4 + η < 7

8 and η + δ̃s,a ≤ 2δ̃s,a, it follows from Fact 9 that

kl

(
3

4
− δ̃s,a,

3

4
+ η

)
≤ (η + δ̃s,a)

2

2( 34 − δ̃s,a)(1− 3
4 − η)

< 64δ̃2s,a.

Now we have

EM
[
NK

1 (s, a)
]
≥ 1

64δ̃2s,a
kl (EM[Z],EM′ [Z]) ≥ (cρ,1(H − 1))2

256∆2
1(s, a)

kl (EM[Z],EM′ [Z]) .
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We set Z =
∑K

k=1
I{πk

1 (s)=a}
K ∈ [0, 1]. Note that Z is indeed FK -measurable random variable since πk is FK -measurable

and (s, a) is fixed. Denote by ∆′ the gap for MDPM′. Observe that for a′ ̸= a,

∆′
1(s, a

′) = ρh

((
H − 1,

H − 1

2

)
,

(
3

4
+ η,

1

4
− η

))
− ρh

((
H − 1,

H − 1

2

)
,

(
3

4
− δ̃s,a′ ,

1

4
+ δ̃s,a′

))
≥ cρ

H − 1

2
(η + δ̃s,a′) ≥ cρ

H − 1

2
η.

Under MDPM′, action a is the unique optimal action for s, thus

Regret(A ,M′,K) ≥
∑
a′ ̸=a

EM′
[
NK

1 (s, a′)
]
∆′

1(s, a
′)

≥ cρ
H − 1

2
η
∑
a′ ̸=a

EM′
[
NK

1 (s, a′)
]

= cρ
H − 1

2
ηEM′

 K∑
k=1

∑
a′ ̸=a

I
(
sk1 = s, πk

1 (s
k
1) = a

)
= cρ

H − 1

2
ηEM′

[
K∑

k=1

(
I
(
sk1 = s

)
− I
(
sk1 = s, πk

1 (s
k
1) = a

))]

= cρ
H − 1

2
η

(
K

S
− EM′

[
K∑

k=1

I
(
sk1 = s

)
I
(
πk
1 (s) = a

)])

= cρ
H − 1

2
η

(
K

S
−

K∑
k=1

EM′
[
I
(
sk1 = s

)]
EM′

[
I
(
πk
1 (s) = a

)])

= cρ
H − 1

2

K

S
(1− EM′ [Z]) ,

where the second to the last equality is due to the dependence between sk1 and πk
1 . Since A is α-uniformly good algorithm,

there exists CM′ > 0 such that

cρ
H − 1

2

K

S
(1− EM′ [Z]) ≤ Regret(A ,M′,K) ≤ CM′Kα,

implying

1− EM′ [Z] ≤ 2CM′S

cρ,1(H − 1)K1−α
.

We can also get

CMKα ≥ Regret(A ,M,K) ≥ EM
[
NK

1 (s, a)
]
∆1(s, a) ≥

K∆1(s, a)

S
EM [Z] ,

which implies that EM [Z] ≤ CMS
∆1(s,a)K1−α . Observe that

kl(x, y) ≥ (1− x) log
1

1− y
− log 2.

It follows that

kl (EM [Z] ,EM′ [Z]) ≥
(
1− CMS

∆1(s, a)K1−α

)(
(1− α) logK − log

2CM′S

cρ,1(H − 1)

)
− log 2.

Step 4. We can also prove for the case h ̸= 1 by modifying the transition kernels for state 0. For h ̸= 1, we set the
transition kernels as

Pl(0|0, a) = 1,∀l ∈ [0 : h− 2],∀a ∈ [A], Ph−1(s|0, a) =
1

S
,∀s ∈ [S],∀a ∈ [A].
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In other words, the MDP is randomly initialized over [S] at stage h rather than stage 1. For (s, a) ∈ [S]× [A], let

Ph(S + 1|s, a) = 3

4
− 2δs,a

H − 1
=:

3

4
− δ̃s,a, Ph(S + 1|s, a) = 1− Ph(S + 1|s, a).

Finally, we still set S + 1, S + 2 to be absorbing states. Using similar arguments concludes the proof.
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