
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

AQuasi-Wasserstein Loss for Learning Graph Neural Networks
Anonymous Author(s)

ABSTRACT
When learning graph neural networks (GNNs) in node-level pre-

diction tasks, most existing loss functions are applied for each

node independently, even if node embeddings and their labels are

non-i.i.d. because of their graph structures. To eliminate such in-

consistency, in this study we propose a novel Quasi-Wasserstein

(QW) loss with the help of the optimal transport defined on graphs,

leading to new learning and prediction paradigms of GNNs. In

particular, we design a “Quasi-Wasserstein” distance between the

observed multi-dimensional node labels and their estimations, opti-

mizing the label transport defined on graph edges. The estimations

are parameterized by a GNN in which the optimal label transport

may determine the graph edge weights optionally. By reformulating

the strict constraint of the label transport to a Bregman divergence-

based regularizer, we obtain the proposed Quasi-Wasserstein loss

associated with two efficient solvers learning the GNN together

with optimal label transport. When predicting node labels, our

model combines the output of the GNN with the residual com-

ponent provided by the optimal label transport, leading to a new

transductive prediction paradigm. Experiments show that the pro-

posed QW loss applies to various GNNs and helps to improve their

performance in node-level classification and regression tasks.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Comput-
ing methodologies→ Supervised learning; Neural networks.

KEYWORDS
Graph neural networks, optimal transport on graphs, Bregman

divergence, transductive learning, node-level prediction

ACM Reference Format:
Anonymous Author(s). 2018. A Quasi-Wasserstein Loss for Learning Graph

Neural Networks. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation emai (Conference acronym ’XX). ACM,

New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph neural network (GNN) plays a central role in many graph

learning tasks, such as social network analysis [14, 35, 57], molecu-

lar modeling [24, 38, 49], transportation forecasting [29, 48], and

so on. Given a graph with node features, a GNN embeds the graph

nodes by exchanging and aggregating the node features, whose im-

plementation is based on message-passing operators in the spatial

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

GNN Optional Edge
Weight Predictor

Graph

Quasi-Wasserstein Loss

Partially-
Observed

Node Labels Node-level
Predictions

Estimated
Node Labels

Optimal Label
Transport

Figure 1: The scheme of our QW-loss and the corresponding
learning paradigm. Given a graph whose node features are
denoted as blue circles and partially-observed node labels
are denoted as blue stems, a GNN embeds the graph nodes
and outputs estimated labels (denoted as orange stems). By
minimizing the QW loss, we obtain the optimal label trans-
port (denoted as the dotted red arrows on the graph edges)
between the real and estimated node labels. Optionally, the
optimal label transport can be used to determine the weights
of graph edges (through an edge weight predictor). The final
predictions are the combinations of the optimal label trans-
port and the estimated node labels.

domain [26, 32, 42] or graph filters in the spectral domain [4, 6, 8, 22].

When some node labels are available, we can learn the GNN in a

node-level semi-supervised learning [26, 51, 56], optimizing the

node embeddings to predict the observed labels. This learning

framework has achieved encouraging performance in many node-

level prediction tasks, e.g., node classification [31, 39].

When applying the above node-level GNN learning framework,

existing work often leverages a loss function (e.g., the cross-entropy

loss) to penalize the discrepancy between each node’s label and

the corresponding estimation. Here, some inconsistency between

the objective design and the intrinsic data structure arises — the

objective of learning a GNN is implemented as the summation of

all the nodes’ loss functions, which is often applied for i.i.d. data,

but the node embeddings and their labels are non-i.i.d. in general

because of the underlying graph structure and the information

aggregation achieved by the GNN. As a result, the current objective

treats the losses of individual nodes independently and evenly,

even if the nodes in the graph are correlated and have different

significance for learning the GNN. Such inconsistency may lead

to sub-optimal GNNs in practice, but to our knowledge none of

existing work considers this issue in-depth.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

To eliminate the inconsistency, we leverage computational op-

timal transport techniques [34], proposing a new objective called

Quasi-Wasserstein (QW) loss for learning GNNs. As illustrated in

Figure 1, given partially-observed node labels and their estima-

tions parametrized by a GNN, we consider the optimal transport

between them and formulate the problem as the aggregation of the

Wasserstein distances [15] corresponding to all label dimensions.

This problem can be equivalently formulated as a label transport

minimization problem [12, 13] defined on the graph, leading to

the proposed QW loss. By minimizing this loss, we can jointly

learn the optimal label transport and the GNN parametrizing the

label estimations. This optimization problem can be solved effi-

ciently by Bregman divergence-based algorithms, e.g., Bregman

ADMM[45, 52]. Optionally, through amulti-layer perceptron (MLP),

we can determine the edge weights of the graph based on optimal

label transport, leading to a GNN with learnable edge weights.

The contributions of this study include the following two points:

• A theoretically-solid loss without the inconsistency
issue. The QW loss provides a new optimal transport-based

loss for learning GNNs, which considers the labels and esti-

mations of graph nodes jointly. Without the questionable

i.i.d. assumption, it eliminates the inconsistency issue men-

tioned above. In theory, we demonstrate that the QW loss

is a valid metric for the node labels defined on graphs. Ad-

ditionally, the traditional objective function for learning

GNNs can be treated as a special case of our QW loss. We

further demonstrate that applying our QW loss reduces

data fitting errors in the training phase.

• New learning and prediction paradigms.Different from
the existing methods that combine GNNs with label prop-

agation mechanisms [9, 23, 46], the QW loss provides a

new way to combine node embeddings with label infor-

mation in both training and testing phases. In particular,

Bregman divergence-based algorithms are applied to learn

the model, and the final model consists of the GNN and a

residual component provided by the optimal label trans-

port. When predicting node labels, the model combines the

estimations provided by the GNN with the complementary

information from the optimal label transport, leading to a

new transductive prediction paradigm.

Experiments demonstrate that our QW loss applies to various GNNs

and helps to improve their performance in various node-level clas-

sification and regression tasks.

2 RELATEDWORK
2.1 Graph Neural Networks
Graph neural networks can be coarsely categorized into two classes.

The GNNs in the first class apply spatial convolutions to graphs [32].

The representative work includes the graph convolutional network

(GCN) in [26], the graph attention network (GAT) in [42], and their

variants [16, 47, 60]. The GNNs in the second class achieve graph

spectral filtering [19]. They are often designed based on a polyno-

mial basis, such as ChebNet [8] and its variants [21], GPR-GNN [6],

and BernNet [22]. Besides approximated by the polynomial basis,

the spectral GNNs can be learned by other strategies, e.g., Per-

sonalized PageRank in APPNP [17], graph optimization functions

in GNN-LF/HF [58], ARMA filters [4], and diffusion kernel-based

filters [11, 27, 51].

The above spatial and spectral GNNs are correlated because a

spatial convolution always corresponds to a graph spectral filter [2].

For example, GCN [26] can be explained as a low-pass filter achieved

by a first-order Chebyshev polynomial. Given a graph with some

labeled nodes, we often learn the above GNNs in a semi-supervised

node-level learning framework [26, 56], in which the GNNs embed

all the nodes and are trained under the supervision of the labeled

nodes. However, as aforementioned, the objective functions used

in the framework treat the graph nodes independently and thus

mismatch with the non-i.i.d. nature of the data.

2.2 Computational Optimal Transport
As a powerful mathematical tool, optimal transport (OT) distance

(or called Wasserstein distance under some specific settings) pro-

vides a valid metric for probability measures [43], which has been

widely used for various machine learning problems, e.g., distribu-

tion comparison [15, 28], point cloud registration [18], graph parti-

tioning [10, 54], generative modeling [1, 41], and so on. Typically,

the OT distance corresponds to a constrained linear programming

problem. To approximate the OT distance with low complexity,

many algorithms have been proposed, e.g., Sinkhorn-scaling [7],

Bregman ADMM [45], Conditional Gradient [40], and Inexact Prox-

imal Point [50]. Recently, two iterative optimization methods have

been proposed to solve the optimal transport problems defined on

graphs [12, 13].

These efficient algorithms make the OT distance a feasible loss

for machine learning problems, e.g., the Wasserstein loss in [15].

Focusing on the learning of GNNs, the work in [5] proposes a

Wasserstein distance-based contrastive learning method. The Gro-

movized Wasserstein loss is applied to learn cross-graph node em-

beddings [54], graph factorization models [44, 52], and GNN-based

graph autoencoders [53]. The above work is designed for graph-

level learning tasks, e.g., graph matching, representation, classifi-

cation, and clustering. Our QW loss, on the contrary, is designed

for node-level prediction tasks, resulting in significantly different

learning and prediction paradigms.

3 PROPOSED METHOD
3.1 Motivation and Principle
Denote a graph as 𝐺 (V, E), whereV represents the set of nodes

and E represents the set of edges, respectively. The graph 𝐺 is

associated with an adjacency matrix 𝑨 ∈ R |V |× |V | and a edge

weight vector 𝒘 = [𝑤𝑒] ∈ R | E | . The weights in 𝒘 correspond to

the non-zero elements in𝑨. For an unweighted graph,𝑨 is a binary

matrix, and 𝒘 is an all-one vector. Additionally, the nodes of the

graph may have 𝐷-dimensional features, which are formulated as

a matrix 𝑿 ∈ R |V |×𝐷 . Suppose that a subset of nodes, denoted

as V𝐿 ⊂ V , are annotated with 𝐶-dimensional labels, i.e., {𝒚𝑣 ∈
R𝐶 }𝑣∈V𝐿

. We would like to learn a GNN to predict the labels of

the remaining nodes, i.e., {𝒚𝑣}𝑣∈V\V𝐿
.

The motivation for applying GNNs is based on the non-i.i.d. prop-

erty of the node features and labels. Suppose that we have two nodes

connected by an edge, i.e., (𝑣, 𝑣 ′) ∈ E, where (𝒙𝑣,𝒚𝑣) and (𝒙𝑣′ ,𝒚𝑣′)
are their node features and labels. For each node, its neighbors’

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

AQuasi-Wasserstein Loss for Learning Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

features or labels can provide valuable information to its prediction

task, i.e., the conditional probability 𝑝 (𝒚𝑣 |𝒙𝑣) ≠ 𝑝 (𝒚𝑣 |𝒙𝑣, 𝒙𝑣′) and
𝑝 (𝒚𝑣 |𝒙𝑣) ≠ 𝑝 (𝒚𝑣 |𝒙𝑣,𝒚𝑣′) in general. Similarly, for node pairs, their

labels are often conditionally-dependent, i.e., 𝑝 (𝒚𝑣,𝒚𝑣′ |𝒙𝑣, 𝒙𝑣′) =
𝑝 (𝒚𝑣 |𝒙𝑣, 𝒙𝑣′ ,𝒚𝑣′)𝑝 (𝒚𝑣′ |𝒙𝑣, 𝒙𝑣′) ≠ 𝑝 (𝒚𝑣 |𝒙𝑣, 𝒙𝑣′)𝑝 (𝒚𝑣′ |𝒙𝑣, 𝒙𝑣′). More

generally, for all node labels, we have

𝑝 ({𝒚𝑣}𝑣∈V |𝑿 ,𝑨) ≠
∏

𝑣∈V 𝑝 (𝒚𝑣 |𝑿 ,𝑨), (1)

Ideally, we shall learn a GNN to maximize the conditional proba-

bility of all labeled nodes, i.e., max𝑝 ({𝒚𝑣}𝑣∈V𝐿
|𝑿 ,𝑨). In practice,

however, most existing methods formulate the node-level learning

paradigm of the GNN as

max

\

∏
𝑣∈V𝐿

𝑝 (𝒚𝑣 |𝑿 ,𝑨;\) ⇔ min

\

∑︁
𝑣∈V𝐿

𝜓 (𝑔𝑣 (𝑿 ,𝑨;\), 𝒚𝑣) . (2)

Here, 𝑔 is a graph neural network whose parameters are denoted as

\ . Taking the adjacency matrix 𝑨 and the node feature matrix 𝑿 as

input, the GNN𝑔 predicts the node labels.𝑔𝑣 (𝑿 ,𝑨;\) represents the
estimation of the node 𝑣 ’s label achieved by the GNN, which is also

denoted as �̂�𝑣 . Similarly, we denote 𝑔V (𝑿 ,𝑨;\) as the estimated

labels for the node setV in the following content. The loss function

𝜓 : R𝐶 × R𝐶 ↦→ R is defined in the node level. In node-level

classification tasks, it is often implemented as the cross-entropy loss

or the KL-divergence (i.e., 𝑝 (𝒚𝑣 |𝑿 ,𝑨;\) is modeled by the softmax

function). In node-level regression tasks, it is often implemented

as the least-square loss (i.e., 𝑝 (𝒚𝑣 |𝑿 ,𝑨;\) is assumed to be the

Gaussian distribution).

The loss in (2) assumes the node labels to be conditionally-
independent with each other, which may be too strong in
practice and inconsistentwith the non-i.i.d. property of graph-
structured data shown in (1). To eliminate such inconsistency,

we should treat node labels as a set rather than independent in-

dividuals, developing a set-level loss to penalize the discrepancy

between the observed labels and their estimations globally, i.e.,

min\ Loss(𝑔V𝐿
(𝑿 ,𝑨;\), {𝒚𝑣}𝑣∈V𝐿

). (3)

In the following content, we will design such a loss with theoretical

supports, based on the optimal transport on graphs.

3.2 Optimal Transport on Graphs
Suppose that we have two measures on a graph 𝐺 (V, E), denoted
as 𝝁 ∈ [0,∞) |V | and 𝜸 ∈ [0,∞) |V | , respectively. The element

of each measure indicates the “mass” of a node. Assume the two

measures to be balanced, i.e., ⟨𝜸 − 𝝁, 1 |V | ⟩ = 0, where ⟨·, ·⟩ is
the inner product operator. The optimal transport, or called the

1-Wasserstein distance [43], between them is defined as

𝑊1 (𝝁,𝜸) := min

𝑻 ∈Π (𝝁,𝜸)
⟨𝑫, 𝑻 ⟩ = min

𝑻 ∈Π (𝝁,𝜸)

∑︁
𝑣,𝑣′∈V×V

𝑡𝑣𝑣′𝑑𝑣𝑣′ , (4)

where 𝑫 = [𝑑𝑣𝑣′] ∈ R |V |× |V | represents the shortest path dis-

tance matrix, and Π(𝝁,𝜸) = {𝑻 ≥ 0|𝑻1 |V | = 𝝁, 𝑻⊤1 |V | = 𝜸 }
represents the set of all valid doubly stochastic matrices. Each

𝑻 = [𝑡𝑣𝑣′] ∈ Π(𝝁,𝜸) is a transport plan matrix. The optimization

problem in (4) corresponds to finding the optimal transport plan

𝑻 ∗ = [𝑡∗
𝑣𝑣′] to minimize the “cost” of changing 𝝁 to 𝜸 , in which the

cost is measured as the sum of “mass” 𝑡𝑣𝑣′ moved from node 𝑣 to

node 𝑣 ′ times distance 𝑑𝑣𝑣′ .

3.2.1 Wasserstein Distance for Vectors on A Graph. For the optimal

transport problem defined on graphs, we can simplify the problem

in (4) by leveraging the underlying graph structures. As shown

in [12, 37], given a graph 𝐺 (V, E), we can define a sparse matrix

𝑺V = [𝑠𝑣𝑒] ∈ {0,±1} |V |× | E | to indicating the graph topology. For

node 𝑣 and edge 𝑒 , the corresponding element in 𝑺V is

𝑠𝑣𝑒 =

1 if 𝑣 is “head” of edge 𝑒

−1 if 𝑣 is “tail” of edge 𝑒

0 otherwise.

(5)

When𝐺 is directed, the “head” and “tail” of each edge are predefined.

When 𝐺 is undirected, we can randomly define each edge’s “head”

and “tail”. Accordingly, the 1-Wasserstein distance in (4) can be

equivalently formulated as a minimum-cost flow problem:

𝑊1 (𝝁,𝜸) = min𝒇 ∈Ω (𝑺V ,𝝁,𝜸) ∥diag(𝒘)𝒇 ∥1, (6)

where diag(𝒘) is a diagonal matrix constructed by the edge weights

of the graph. The vector 𝒇 = [𝑓𝑒] ∈ Ω(𝑺V , 𝝁,𝜸) is the flow indi-

cating the mass passing through each edge. Accordingly, the cost

corresponding to edge 𝑒 is represented as the distance𝑤𝑒 times the

mass 𝑓𝑒 , and the sum of all the costs leads to the objective function

in (6). The feasible domain of the flow vector is defined as

Ω(𝑺V , 𝝁,𝜸) = U | E | ∩ {𝒇 | 𝑺V𝒇 = 𝜸 − 𝝁},

whereU =

{
[0,∞), Directed 𝐺,

R, Undirected 𝐺.

(7)

The constraint 𝑺V𝒇 = 𝜸 − 𝝁 ensures that the flow on all the edges

leads to the change from 𝝁 to 𝜸 . The flow in the directed graph is

nonnegative, which can only pass through each edge from “head”

to “tail”. On the contrary, the undirected graph allows the mass to

transport from “tail” to “head”. By solving (6), we find the optimal

flow 𝒇 ∗ (or the so-called optimal transport on edges) that minimizes

the overall cost ∥diag(𝒘)𝒇 ∥1.

3.2.2 Partial Wasserstein Distance for Vectors on a Graph. When

only a subset of nodes (i.e.,V𝐿 ⊂ V) have observable signals, we

can define a partial Wasserstein distance on the graph by preserving

the constraints relevant toV𝐿 : for 𝝁,𝜸 ∈ R |V𝐿 |
, we have

𝑊
(𝑃)
1
(𝝁,𝜸) = min𝒇 ∈Ω (𝑺V𝐿 ,𝝁,𝜸) ∥diag(𝒘)𝒇 ∥1, (8)

where 𝑺V𝐿
∈ {0,±1} |V𝐿 |× | E |

is a submatrix of 𝑺V , storing the

rows corresponding to the nodes with observable signals.

Different from the classic Wasserstein distance, the Wasserstein

distance defined on graphs is not limited for nonnegative vectors

because the minimum-cost flow formulation in (6) is shift-invariant,
i.e.,∀𝜹 ∈ R |V | ,𝑊1 (𝝁,𝜸) =𝑊1 (𝝁−𝜹,𝜸−𝜹). The partialWasserstein

distance in (8) can be viewed as a generalization of (6), and thus it

holds the shift-invariance as well. Moreover, given an undirected

graph, we can prove that both the𝑊1 in (6) and the𝑊
(𝑃)
1

in (8) can

be valid metrics in the spaces determined by the topology of an

undirected graph (See Appendix A for a complete proof).

Theorem 1 (The Validness as A Metric). Given an undirected
graph𝐺 (V, E), with edge weights𝒘 ∈ [0,∞) | E | and a matrix 𝑺V ∈
{0,±1} |V |×E defined in (5), the𝑊1 in (6) is a metric in 𝑅𝑎𝑛𝑔𝑒 (𝑺V),
and the𝑊 (𝑃)

1
in (8) is a metric in 𝑅𝑎𝑛𝑔𝑒 (𝑺V𝐿

), ∀V𝐿 ∈ V .
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

The flow vector 𝒇 in (8) has fewer constraints than that in (6), so

the relation between𝑊1 and𝑊
(𝑃)
1

obeys the following theorem.

Theorem 2 (The Monotonicity). Given an undirected graph
𝐺 (V, E), with edge weights 𝒘 ∈ [0,∞) | E | and a matrix 𝑺V ∈
{0,±1} |V |×E defined in (5), we have

𝑊1 (𝝁,𝜸) ≥𝑊 (𝑃)
1
(𝝁V′ ,𝜸V′) ≥𝑊 (𝑃)1

(𝝁V′′ ,𝜸V′′) ≥ 0,

∀𝝁,𝜸 ∈ 𝑅𝑎𝑛𝑔𝑒 (𝑺V), V′′ ⊂ V′ ⊂ V,
(9)

where 𝝁V′ denotes the subvector of 𝝁 corresponding to the setV′.

3.3 Learning GNNs with Quasi-Wasserstein Loss
Inspired by the optimal transport on graphs, we propose a Quasi-

Wasserstein loss for learning GNNs. Given a partially-labeled graph

𝐺 , we formulate observed labels as a matrix 𝒀V𝐿
= [𝒚 (𝑐)V𝐿

] ∈
R |V𝐿 |×𝐶

, where 𝒚 (𝑐)V𝐿
∈ R |V𝐿 |

represents the labels in 𝑐-th dimen-

sion. The estimated labels generated by a GNN 𝑔 are represented

as �̂�V𝐿
= [�̂� (𝑐)V𝐿

] := 𝑔V𝐿
(𝑿 ,𝑨;\). Our QW loss is defined as

𝑄𝑊 (�̂�V𝐿
, 𝒀V𝐿

) =
∑︁𝐶

𝑐=1
𝑊
(𝑃)
1
(�̂� (𝑐)V𝐿

,𝒚 (𝑐)V𝐿
)

=
∑︁𝐶

𝑐=1
min

𝒇 (𝑐) ∈Ω (𝑺V𝐿 , �̂�
(𝑐)
V𝐿

, 𝒚 (𝑐)V𝐿
) ∥diag(𝒘)𝒇

(𝑐) ∥1

= min𝑭 ∈Ω𝐶 (𝑺V𝐿 , 𝑔V𝐿 (𝑿 ,𝑨;\), 𝒀V𝐿) ∥diag(𝒘)𝑭 ∥1,

(10)

where 𝑭 = [𝒇 (𝑐)] is the flow matrix, and its feasible domain

Ω𝐶 = U | E |×𝐶∩{𝑭 |𝑺V𝐿
𝑭 = 𝒀V𝐿

−𝑔V𝐿
(𝑿 ,𝑨;\)}.𝑊 (𝑃)

1
(�̂� (𝑐)V𝐿

,𝒚 (𝑐)V𝐿
)

is the partial Wasserstein distance between the observed and esti-

mated labels in the 𝑐-th dimension. The QW loss is the summation

of the 𝐶 partial Wasserstein distances, and it can be rewritten as

the summation of𝐶 minimum-cost flow problems. As shown in the

third row of (10), these 𝐶 problems can be formulated as a single

optimization problem, and the variables of the problems are aggre-

gated as the flow matrix 𝑭 . Based on Theorem 1, our QW loss is a

metric for the matrices whose columns are in 𝑅𝑎𝑛𝑔𝑒 (𝑺V𝐿
).

The optimal flow matrix 𝑭 ∗ = [𝒇 (𝑐)∗] is called optimal label
transport in this study, in which the column 𝒇 (𝑐)∗ indicating the
optimal transport on graph edges between the observed labels

and their estimations in the 𝑐-th dimension. Note that, we call

the proposed loss “Quasi-Wasserstein” because 𝑖) it is not equal
to the classic 1-Wasserstein distance between the label sets �̂�V𝐿

and 𝒀V𝐿
[34], and 𝑖𝑖) the optimal label transport 𝑭 ∗ cannot be

reformulated as the optimal transport 𝑻 ∗ obtained by (4). When

𝑭 ∗ = 0, we have 𝑄𝑊 (�̂�V𝐿
, 𝒀V𝐿

) = 0 and accordingly, �̂�V𝐿
= 𝒀V𝐿

,

which means that the GNN𝑔 perfectly estimates the observed labels.

Therefore, the QW loss provides a new alternative for the training

loss of GNN. Different from the traditional loss function in (2), the

QW loss treats observed node labels and their estimations as two

sets and measures their discrepancy accordingly, which provides

an effective implementation of the loss in (3).

Applying the QW loss to learn a GNN 𝑔 results in the following

constrained optimization problem:

min\ 𝑄𝑊 (𝑔V𝐿
(𝑿 ,𝑨;\), 𝒀V𝐿

)
=min\ min𝑭 ∈Ω𝐶 (𝑺V𝐿 , 𝑔V𝐿 (𝑿 ,𝑨;\), 𝒀V𝐿) ∥diag(𝒘)𝑭 ∥1 .

(11)

To solve it effectively, we consider the following two algorithms.

Algorithm 1 Learning a GNN by solving (12)

Require: A graph𝐺 , its adjacency matrix 𝑨 (edge weights 𝒘), node fea-

tures 𝑿 , and observed labels 𝒀V𝐿 .

1: Initialize \ (0) and 𝑭 (0) randomly.

2: while Not converge do
3: Compute Loss = ∥diag(𝑤)𝑭 ∥1 + _𝐵𝜙 (𝑔V𝐿 (𝑿 ,𝑨;\) + 𝑺V𝐿 𝑭 ,𝒀V𝐿)
4: Update {𝑭 , \ } by Adam [25].

5: if 𝐺 is a directed graph then 𝑭 ← Proj≥0 (𝑭) end if.
6: end while
7: return Optimal label transport 𝑭 ∗ and model parameters \∗.

3.3.1 Bregman Divergence-based Approximate Solver. By relaxing

the constraint {𝑭 |𝑺V𝐿
𝑭 = 𝒀V𝐿

− 𝑔V𝐿
(𝑿 ,𝑨;\)} to a Bregman

divergence-based regularizer [3], we can reformulate (11) to the

following problem:

min

\, 𝑭 ∈U |E |×𝐶
∥diag(𝒘)𝑭 ∥1 + _ 𝐵𝜙 (𝑔V𝐿

(𝑿 ,𝑨;\) + 𝑺V𝐿
𝑭 , 𝒀V𝐿

)︸ ︷︷ ︸∑
𝑣∈V𝐿 𝜓 (𝑔𝑣 (𝑿 ,𝑨;\)+𝑺𝑣𝑭 , 𝒚𝑣)

.

(12)

Here, 𝐵𝜙 (𝑥,𝑦) = 𝜙 (𝑥) − 𝜙 (𝑦) − ⟨∇𝜙 (𝑦), 𝑥 − 𝑦⟩ is the Bregman di-

vergence defined based on the strictly convex function 𝜙 , and the

hyperparameter _ > 0 controls its significance. In node classifica-

tion tasks, we can set 𝜙 as an entropic function, and the Bregman

divergence becomes the KL-divergence. In node regression tasks,

we can set 𝜙 as a least-square loss, and the Bregman divergence

becomes the least-square loss. Therefore, as shown in (12), the Breg-

man divergence 𝐵𝜙 can be implemented based on commonly-used

loss functions, e.g., the𝜓 in (2).

Algorithm 1 shows the algorithmic scheme in details. For undi-

rected graphs, the U in (12) is R, and accordingly, (12) becomes

a unconstrained optimization problem. We can solve it efficiently

by gradient descent. For directed graphs, we just need to add a

projection step when updating the flow matrix 𝑭 , leading to the

projected gradient descent algorithm.

3.3.2 Bregman ADMM-based Exact Solver. Algorithm 1 solves (11)

approximately — because of relaxing the strict equality constraint

to a regularizer, the solution of (12) often cannot satisfy the original

equality constraint. To solve (11) exactly, we further develop a learn-

ing method based on the Bregman ADMM (Bremgan Alternating

Direction Method of Multipliers) algorithm [45]. In particular, we

can rewrite (11) in the following augmented Lagrangian form:

min
\, 𝑭 ∈U |E |×𝐶 , 𝒁 ∈R|V𝐿 |×𝐶 ∥diag(𝒘)𝑭 ∥1
+ ⟨𝒁 , 𝑔V𝐿

(𝑿 ,𝑨;\) + 𝑺V𝐿
𝑭 − 𝒀V𝐿

⟩
+ _𝐵𝜙 (𝑔V𝐿

(𝑿 ,𝑨;\) + 𝑺V𝐿
𝑭 , 𝒀V𝐿

),
(13)

where 𝒁 ∈ R |V𝐿 |×𝐶
is the dual variable, the second term in (13) is

the Lagrangian term corresponding to the equality constraint, and

the third term in (13) is the augmented term implemented as the

Bregman divergence.

Denote the objective function in (13) as 𝐿(\, 𝑭 ,𝒁). In the Breg-

man ADMM framework, we can optimize \ , 𝑭 , and 𝒁 iteratively

through alternating optimization. In the 𝑘-th iteration, we update

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

AQuasi-Wasserstein Loss for Learning Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 2 Learning a GNN by solving (13)

Require: A graph𝐺 , its adjacency matrix 𝑨 (edge weights 𝒘), node fea-

tures 𝑿 , observed labels 𝒀V𝐿 , the number of inner iterations 𝐽 .

1: Initialize \ (0) and 𝑭 (0) randomly and set 𝒁 (0) = 0|V𝐿 |×𝐶 .

2: while Not converge do
3: Solve (14) by Adam [25] with 𝐽 steps and obtain \ (𝑘+1) .
4: Solve (15) by Adam [25] with 𝐽 steps and obtain 𝑭 (𝑘+1) .
5: if 𝐺 is a directed graph then 𝑭 (𝑘+1) ← Proj≥0 (𝑭 (𝑘+1)) end if.
6: Obtain 𝒁 (𝑘+1) by (16).

7: end while
8: return Optimal label transport 𝑭 ∗ and model parameters \∗.

the three variables via solving the following three subproblems:

\ (𝑘+1) = arg min\ 𝐿(\, 𝑭 (𝑘) ,𝒁 (𝑘))

= arg min\ ⟨𝒁 (𝑘) , 𝑔V𝐿
(𝑿 ,𝑨;\)⟩

+ _𝐵𝜙 (𝑔V𝐿
(𝑿 ,𝑨;\) + 𝑺V𝐿

𝑭 (𝑘) , 𝒀V𝐿
).

(14)

𝑭 (𝑘+1) = arg min𝑭 ∈U |E |×𝐶 𝐿(\
(𝑘+1) , 𝑭 ,𝒁 (𝑘))

= arg min𝑭 ∈U |E |×𝐶 ⟨𝒁
(𝑘) , 𝑺V𝐿

𝑭 ⟩

+ _𝐵𝜙 (𝑔V𝐿
(𝑿 ,𝑨;\ (𝑘+1)) + 𝑺V𝐿

𝑭 , 𝒀V𝐿
) .

(15)

𝒁 (𝑘+1) = 𝒁 (𝑘) + _(𝑔V𝐿
(𝑿 ,𝑨;\ (𝑘+1)) + 𝑺V𝐿

𝑭 (𝑘+1) − 𝒀V𝐿
). (16)

We can find that (14) is a unconstrained optimization problem, so

we can update the model parameter \ by gradient descent. Similarly,

we can solve (15) and update the flow matrix 𝑭 by gradient descent

or projected gradient descent, depending on whether the graph is

undirected or not. Finally, the update of the dual variable 𝒁 can be

achieved in a closed form, as shown in (16). The Bregman ADMM

algorithm solves the original problem in (12) rather than a relaxed

version. In theory, with the increase of iterations, we can obtain the

optimal variables that satisfy the equality constraint. Algorithm 2

shows the scheme of the Bregman ADMM-based solver.

3.3.3 Optional Edge Weight Prediction. Some GNNs, e.g., GCN-

LPA [46] and GAT [42], model the adjacency matrix of graph as

learnable parameters. Inspired by these models, we can optionally

introduce an edge weight predictor and parameterize the adjacency

matrix based on the flow matrix, as shown in Figure 1. In particular,

given 𝑭 , we can apply a multi-layer perceptron (MLP) to embed

it to an edge weight vector and then obtain a weighted adjacency

matrix. Accordingly, the learning problem becomes

min\,b min𝑭 ∈Ω𝐶 (𝑺V𝐿 ,𝑔V𝐿 (𝑿 ,𝑨(𝑭 ;b) ;\),𝒀V𝐿) ∥diag(𝒘)𝑭 ∥1, (17)

where 𝑨(𝑭 ; b) represents the adjacency matrix determined by the

label transportation 𝑭 , and b represents the parameters of the MLP.

Taking the learning of b into account, we can modify the above two

solvers slightly and make them applicable for solving (17).

3.4 Connections to Traditional Methods
As discussed in Section 3.3.1 and shown in (12), the Bregman diver-

gence 𝐵𝜙 can be implemented as the commonly-used loss function

𝜓 in (2) (e.g., the KL divergence or the least-square loss). Table 1

compares the typical setting of traditional learning methods and

that of our QW loss-based method in different node-level tasks.

Table 1: Comparison between traditional methods and ours

Method Setting Node Classification Node Regression

Apply the 𝜓 Cross-entropy or KL Least-square

loss in (2) Predicted 𝒚𝑣 𝑔𝑣 (𝑿 ,𝑨;\) , ∀𝑣 ∈ V \ V𝐿

Apply the

𝜙 Entropy
1

2
∥ · ∥2

2

QW loss

𝐵𝜙 (= 𝜓) KL Least-square

Predicted 𝒚𝑣 𝑔𝑣 (𝑿 ,𝑨;\) + 𝑺𝑣𝑭 , ∀𝑣 ∈ V \ V𝐿

Essentially, the traditional learning method in (2) can be viewed as

a special case of our QW loss-based learning method. In particular,

when setting 𝑭 = 0 | E |×𝐶 and 𝐵𝜙 = 𝜓 , the objective function in (12)

degrades to the objective function in (2), which treats each node

independently. Similarly, when further setting the dual variable

𝒁 = 0 |V𝐿 |×𝐶 , the objective function in (13) degrades to the objec-

tive function in (2) as well. In theory, we demonstrate that our QW

loss-based learning method can fit training data better than the

traditional method does, as shown in the following theorem.

Theorem 3. Let {\★, 𝑭★,𝒁★} be the global optimal solution of (13),
{\†, 𝑭 †} be the global optimal solution of (12), and \‡ be the global
optimal solution of min\ 𝐵𝜙 (𝑔V𝐿

(𝑿 ,𝑨;\), 𝒀V𝐿
), we have

𝐵𝜙 (𝑔V𝐿
(𝑿 ,𝑨;\★) + 𝑺V𝐿

𝑭★, 𝒀V𝐿
)

≤ 𝐵𝜙 (𝑔V𝐿
(𝑿 ,𝑨;\†) + 𝑺V𝐿

𝑭 †, 𝒀V𝐿
) ≤ 𝐵𝜙 (𝑔V𝐿

(𝑿 ,𝑨;\‡), 𝒀V𝐿
)

Proof. The proof is straightforward — {\‡, 0 | E |×𝐶 } is a feasible
solution of (12), so the corresponding objective is equal to or larger

than that obtained by {\†, 𝑭 †}. Similarly, {\†, 𝑭 †, 0 |V𝐿 |×𝐶 } is a
feasible solution of (13), so the corresponding objective is equal to

or larger than that obtained by {\★, 𝑭★,𝒁★}. □

Remark. It should be noted that although the Bregman ADMM-

based solver can fit training data better in theory, in the cases with

distribution shifting or out-of-distribution issues, it has a higher

risk of over-fitting. Therefore, in practice, we can select one of the

above two solvers to optimize the GW loss, depending on their

performance. In the following experimental section, we will further

compare these two solvers in details.

3.5 A New Transductive Prediction Paradigm
As shown in Table 1, given the learned model \∗ and the optimal

label transport 𝑭 ∗, we predict node labels in a new transductive

prediction paradigm. For 𝑣 ∈ V \ V𝐿 , we predict its label as

�̃�𝑣 := 𝑔𝑣 (𝑿 ,𝑨;\∗) + 𝑺𝑣𝑭 ∗, (18)

which combines the estimated label from the learned GNN and the

residual component from the optimal label transport.

Note that some attempts have been made to incorporate label

propagation algorithms (LPAs) [59] into GNNs, e.g., the GCN-LPA

in [46] and the FDiff-Scale in [23]. The PTA in [9] demonstrates

that learning a decoupled GNN is equivalent to implementing a

label propagation algorithm. These methods leverage LPAs to regu-

larize the learning of GNNs. However, in the prediction phase, they

abandon the training labels and rely only on the GNNs to predict

node labels, as shown in Table 1. Unlike these methods, our QW

loss-based method achieves a new kind of label propagation with

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Basic information of the graphs and the comparisons on node classification accuracy (%).

Model Method

Homophilic graphs Heterophilic graphs

Overall

Cora Citeseer Pubmed Computers Photo Squirrel Chameleon Actor Texas Cornell

Improve

#Nodes (|V |) 2,708 3,327 19,717 13,752 5,201 7,650 2,277 7,600 183 183

#Features (𝐷) 1,433 3,703 500 767 754 2,089 2,325 932 1,703 1,703

#Edges (| E |) 5,278 4,552 44,324 245,861 119,081 198,358 31,371 26,659 279 277

Intra-edge rate 81.0% 73.6% 80.2% 77.7% 82.7% 22.2% 23.0% 21.8% 6.1% 12.3%

#Classes (𝐶) 7 6 5 10 8 5 5 5 5 5

GCN

(2) 87.44±0.96 79.98±0.84 86.93±0.29 88.42±0.45 93.24±0.43 46.55±1.15 63.57±1.16 34.00±1.28 77.21±3.28 61.91±5.11 —

(2)+LPA 86.34±1.45 78.51±1.22 84.72±0.70 82.48±0.69 88.10±1.31 44.81±1.81 60.90±1.63 32.43±1.59 78.69±6.47 68.72±5.95 -1.36

QW 87.88±0.79 81.36±0.41 87.89±0.40 89.20±0.41 93.81±0.36 52.62±0.49 68.10±1.01 38.09±0.50 84.10±2.95 84.26±2.98 +4.81

GAT

(2) 89.20±0.79 80.75±0.78 87.42±0.33 90.08±0.36 94.38±0.25 48.20±1.67 64.31±2.01 35.68±0.60 80.00±3.11 68.09±2.13 —

QW 89.11±0.66 80.19±0.64 88.38±0.23 90.41±0.28 94.65±0.24 55.03±1.35 67.35±1.42 33.86±2.13 80.33±1.80 70.21±2.13 +1.14

GIN

(2) 86.22±0.95 76.18±0.78 87.87±0.23 80.87±1.43 89.83±0.72 39.11±2.23 64.29±1.51 32.37±1.56 72.79±4.92 62.55±4.80 —

QW 86.24±0.90 76.13±1.09 87.53±0.34 89.28±0.45 92.60±0.44 65.29±0.68 73.26±1.12 32.32±1.93 77.54±2.60 64.04±3.62 +5.22

GraphSAGE

(2) 88.24±0.95 79.81±0.80 88.14±0.25 89.71±0.38 95.08±0.26 43.79±0.59 63.26±1.09 38.99±0.85 90.00±2.30 84.26±2.98 —

QW 87.59±0.77 80.52±0.68 88.61±0.32 90.17±0.24 95.25±0.25 54.37±0.89 68.32±0.68 37.82±0.45 90.33±1.97 86.38±2.13 +1.18

APPNP

(2) 88.14±0.73 80.47±0.74 88.12±0.31 85.32±0.37 88.51±0.31 36.15±0.75 52.93±1.71 40.46±0.64 91.31±1.97 87.66±2.13 —

QW 88.74±0.84 80.94±0.61 89.48±0.28 86.95 ±0.82 94.43±0.24 38.73±1.06 53.76±1.25 40.78±0.74 91.48±2.30 87.87±2.34 +1.41

BernNet

(2) 88.28±1.00 79.81±0.79 88.87±0.38 87.61±0.46 93.68±0.28 51.15±1.09 67.96±1.05 40.72±0.80 93.28±1.48 90.21±2.35 —

QW 89.03±0.76 81.35±0.71 89.03±0.38 89.58±0.47 94.55±0.39 55.22±0.64 71.66±1.18 40.91±0.71 93.44±1.80 90.85±2.34 +1.41

ChebNetII

(2) 88.26±0.89 80.00±0.74 88.57±0.36 86.58±0.71 93.50±0.34 57.78±0.84 71.71±1.40 40.70±0.77 92.79±1.48 88.94±2.78 —

QW 88.54±0.76 79.47±0.70 89.47±0.36 90.43±0.22 94.84±0.37 60.55±0.64 74.05±0.68 41.37±0.67 93.93±0.98 87.23±3.62 +1.11

the help of computational optimal transport, saving the training

label information in the optimal label transport and applying it

explicitly in the prediction phase.

4 EXPERIMENTS
To demonstrate the effectiveness of our QW loss-based learning

method, we apply it to learn GNNs with various architectures and

test the learned GNNs in different node-level prediction tasks. We

compare our learning method with the traditional one in (2) on

their model performance and computational efficiency. For our

method, we conduct a series of analytic experiments to show its

robustness to hyperparameter settings and label insufficiency. All

the experiments are conducted on a machine with three NVIDIA

A40 GPUs, and the code is implemented based on PyTorch.

4.1 Implementation Details
4.1.1 Datasets. The datasets we considered consist of five ho-

mophilic graphs (i.e., Cora, Citeseer, Pubmed [39, 56], Comput-
ers, and Photo [31]) and five heterophilic graphs (i.e., Chameleon,
Squirrel [36], Actor, Texas, and Cornell [33]), respectively. Fol-
lowing the work in [46], we categorize the graphs according to the

percentage of the edges connecting the nodes of the same class

(i.e., the intra-edge rate). The basic information of these graphs is

shown in Table 2. Additionally, a large arXiv-year graph [30] is

applied to demonstrate the efficiency of our method. The adjacency

matrix of each graph is binary, so the edge weights𝒘 = 1 | E | .

4.1.2 GNN Architectures. In the following experiments, the mod-

els we considered include 𝑖) the representative spatial GNNs, i.e.,
GCN [26], GAT [42], GIN [55], GraphSAGE [20], and GCN-
LPA [46] that combines the GCN with the label propagation al-

gorithm; and 𝑖𝑖) state-of-the-art spectral GNNs, i.e., APPNP [17],

BernNet [22], and ChebNetII [21]. For a fair comparison, we set

the architectures of the GNNs based on the code provided by [21]

and configure the algorithmic hyperparameters by grid search.

More details of the hyperparameter settings are in Appendix.

4.1.3 Learning Tasks and EvaluationMeasurements. For each graph,
their nodes belong to different classes. Therefore, we first learn

different GNNs to solve the node-level classification tasks defined

on the above graphs. By default, the split ratio of each graph’s

nodes is 60% for training, 20% for validation, and 20% for testing,

respectively. The GNNs are learned by 𝑖) the traditional learning
method in (2)

1
and 𝑖𝑖) minimizing the proposed QW loss in (11),

respectively. When implementing the QW loss, we apply either

Algorithm 1 or 2, depending on their performance. Additionally, to

demonstrate the usefulness of our QW loss in node-level regression

tasks, we treat the node labels as one-hot vectors and fit them by

minimizing the mean squared error (MSE), in which the𝜓 in (2) and

the corresponding Bregman divergence 𝐵𝜙 are set to be the least-

square loss. For each method, we perform 10 runs with different

seeds and record the learning results’ mean and standard deviation.

4.2 Numerical Comparison and Visualization
4.2.1 Node Classification and Regression. Table 2 shows the node
classification results on the ten graphs,

2
whose last column records

the overall improvements caused by our QW loss compared to

other learning methods. The experimental results demonstrate the

usefulness of our QW loss-based learning method — for each model,

applying our QW loss helps to improve learning results in most sit-

uations and leads to consistent overall improvements. In particular,

1
For GCN-LPA [46], it learns a GCN model by imposing a label propagation-based

regularizer on (2) and adjusting edge weights by the propagation result.

2
In Table 2, we bold the best learning result for each graph. Learning GCN by “(2)+LPA”

means implementing GCN-LPA [46].

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

AQuasi-Wasserstein Loss for Learning Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Comparisons on node regression error (MSE).

Model Method

Homophilic graphs Heterophilic graphs

Computers Photo Actor Cornell

GIN

(2) 0.0605±0.0018 0.0459±0.0044 0.1570±0.0014 0.1609±0.0359
QW 0.0244±0.0028 0.0203±0.0012 0.1564±0.0012 0.1524±0.0043

BernNet

(2) 0.0871±0.0002 0.0488±0.0009 0.1661±0.0020 0.0989±0.0076
QW 0.0364±0.0038 0.0297±0.0014 0.1671±0.0008 0.0753±0.0024

for the state-of-the-art spectral GNNs like BernNet [22] and Cheb-

NetII [21], learning with our QW loss can improve their overall

performance on both homophilic and heterophilic graphs consis-

tently, resulting in the best performance in this experiment. For the

simple GCN model [26], learning with our QW loss improves its

performance significantly and reduces the gap between its classifi-

cation accuracy and that of the state-of-the-art models [17, 21, 22],

especially heterophilic graphs. Note that, when learning GCN, our

QW loss works better than the traditional method regularized by

the label propagation (i.e., GCN-LPA [46]) because our learning

method can leverage the training label information in both learning

and prediction phases. GCN-LPA improves GCN when learning on

heterophilic graphs, but surprisingly, leads to performance degra-

dation on homophilic graphs. Additionally, we also fit the one-hot

labels by minimizing the MSE. As shown in Table 3, minimizing

the QW loss leads to lower MSE results, which demonstrates the

usefulness of the QW loss in node-level regression tasks.

4.2.2 Computational Efficiency and Scalability. In theory, the com-

putational complexity of our QW loss is linear with the number

of edges. When implementing the loss as (13) and solving ti by

Algorithm 2, its complexity is also linear with the number of inner

iterations 𝐽 . Figure 2 shows the runtime comparisons for the QW

loss-based learning methods and the traditional method on two

datasets. We can find that minimizing the QW loss by Algorithm 1

or Algorithm 2with 𝐽 = 1merely increases the training time slightly

compared to the traditional method. Empirically, setting 𝐽 ≤ 5 can

leads to promising learning results, as shown in Tables 2 and 3. In

other words, the computational cost of applying the QW loss is

tolerable considering the significant performance improvements it

achieved. Additionally, we apply our QW loss to large-scale graphs

and test its scalability. As shown in Table 4, we implement the QW

loss based on Algorithm 1 (i.e., solving (12)) and apply it to the node

classification task in the large-scale arXiv-year graph. The result

shows that our QW loss is applicable to the graphs with millions

of edges on a single GPU and improves the model performance.

4.2.3 Distribution of Optimal Label Transport. Figure 3 visualizes
the histograms of the optimal label transport 𝑭 ∗ learned for two

representative GNNs (i.e., GCN [26] and ChebNetII [21]) on four

graphs (i.e., the homophilic graphs “Computers” and “Photo” and

the heterophilic graphs “Squirrel” and “Chameleon”). We can find

that when learning on homophilic graphs, the elements of the op-

timal label transport obey the zero-mean Laplacian distribution.

It is reasonable from the perspective of optimization — the term

∥diag(𝒘)𝑭 ∥1 can be explained as a Laplacian prior imposed on

𝑭 ’s element. Additionally, we can find that the distribution corre-

sponding to GCN has larger variance than that corresponding to

GC
N

GA
T

Be
rn

Ne
t

Ch
eb

Ne
tII

0
50

100
150
200
250
300
350
400

Av
er

ag
e

Ru
nt

im
e

(m
s/

ep
oc

h) (2)
QW (12)
QW (13) with J=1
QW (13) with J=3
QW (13) with J=5

Figure 2: The runtime of
different learning methods
on the graph Photo.

Graph arXiv-year

#Nodes (|V |) 169,343

#Features (𝐷) 128

#Edges (| E |) 1,166,243

Intra-edge rate 22.0%

#Classes (𝐶) 5

ChebNetII

(2) 48.18±0.18
QW 48.30±0.25

Table 4: The node classifica-
tion accuracy (%) on a large
graph.

−0.001 0.000 0.001
0

50000

100000

150000

200000

250000

300000

350000

C
ou

nt
s

ChebNetII

GCN

(a) Computers

−0.001 0.000 0.001
0

20000

40000

60000

80000

100000

120000

140000

C
ou

nt
s

ChebNetII

GCN

(b) Photo

−0.001 0.000 0.001
0

20000

40000

60000

80000

100000

120000

C
ou

nt
s

ChebNetII

GCN

(c) Squirrel

−0.001 0.000 0.001
0

2000

4000

6000

8000

10000

12000

C
ou

nt
s

ChebNetII

GCN

(d) Chameleon

Figure 3: The histogram of 𝑭 ’s values for different GNNs.

ChebNetII, which implies that the 𝑭 ∗ of GCN has more non-zero

elements and thus has more significant impacts on label prediction.

The numerical results in Table 2 can also verify this claim — in

most situations, the performance improvements caused by the opti-

mal label transport is significant for GCN but slight for ChebNetII.

For heterophilic graphs, learning GCN still leads to Laplacian dis-

tributed label transport. However, the distributions corresponding

to ChebNetII are diverse — the distribution for Squirrel is long-tailed

while that for Chameleon is still Laplacian.

4.3 Analytic Experiments
4.3.1 Robustness to Label Insufficiency Issue. Our QW loss-based

learning method considers the label transport on graphs, whose

feasible domain is determined by the observed training labels. The

more labels we observed, the smaller the feasible domain is. To

demonstrate the robustness of our method to the label insufficiency

issue, we evaluate the performance of our method given different

amounts of training labels. We train ChebNetII [21] on four graphs

by traditional method and our method, respectively. For each graph,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

 1 5 10 20 30 40 50 60
Ratio of Training Labels (%)

78

80

82

84

86

88

90

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Traditional Loss
QW (12)
QW (13)

(a) Computers

 1 5 10 20 30 40 50 60
Ratio of Training Labels (%)

86

88

90

92

94

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Traditional Loss
QW (12)
QW (13)

(b) Photo

 1 5 10 20 30 40 50 60
Ratio of Training Labels (%)

20

30

40

50

60

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Traditional Loss
QW (12)
QW (13)

(c) Squirrel

 1 5 10 20 30 40 50 60
Ratio of Training Labels (%)

30

40

50

60

70

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Traditional Loss
QW (12)
QW (13)

(d) Chameleon

Figure 4: Illustrations of the learning methods’ performance
given different amounts of labeled nodes.

Table 5: Impacts of adjusting edge weights on node classifica-
tion accuracy (%) when applying the QW loss.

Model

Homophilic Heterophilic

Computers Photo Actor Cornell

GCN

𝑨 88.39±0.55 93.80±0.37 30.14±0.80 60.64±4.26
𝑨(𝑭 ; b) 84.35±0.46 91.79±0.21 38.09±0.50 84.26±2.98

ChebNetII

𝑨 89.52±0.54 94.84±0.37 41.37±0.67 86.38±3.19
𝑨(𝑭 ; b) 89.41±0.41 94.79±0.45 40.74±0.80 86.60±2.98

we use 𝐾% nodes’ labels to train the ChebNetII, where 𝐾 ∈ [1, 60],
and apply 20% nodes for validation and 20% nodes for testing, re-

spectively, as the above default setting does. Figure 4 shows that our

QW loss-based learning method can achieve encouraging perfor-

mance even when only 20% nodes or fewer are labeled. Additionally,

the methods are robust to the selection of solver — we can minimize

the QW loss based on (12) or (13), leading to comparable results

and outperforming the traditional loss consistently.

4.3.2 Impacts of Adjusting Edge Weights. As shown in (17), we can

train an MLP to predict edge weights based on the optimal label

transport. The ablation study in Table 5 quantitatively show the

impacts of adjusting edge weights on the learning results. We can

find that for ChebNetII, the two settings provide us with compara-

ble learning results. For GCN, however, learning the model with

adjusted edge weights suffers from performance degradation on

homophilic graphs while leads to significant improvements on het-

erophilic graphs. Empirically, it seems that adjusting edge weights

based on label transportation helps to improve the learning of sim-

ple GNN models on heterophilic graphs.

10 2 10 1 100 101 102 103
55

60

65

70

75

80

85

90

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

QW (12)
QW (13)

(a) Computers

10 2 10 1 100 101 102 103
30

40

50

60

70

80

90

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

QW (12)
QW (13)

(b) Photo

10 2 10 1 100 101 102 103

57

58

59

60

61

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

QW (12)
QW (13)

(c) Squirrel

10 2 10 1 100 101 102 103
72.0

72.5

73.0

73.5

74.0

74.5

75.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

QW (12)
QW (13)

(d) Chameleon

Figure 5: Illustrations of the learning results achieved under
different _’s.

4.3.3 Robustness to Hyperparameters. The weight of the Bregman

divergence term, i.e., _, is the key hyperparameter impacting the

performance of our learning method. Empirically, when _ is too

small, the Bregman divergence between the observed labels and

their predictions becomes ignorable. Accordingly, the regularizer

may be too weak to supervise GNNs’ learning properly. On the con-

trary, when _ is too large, the regularizer becomes dominant in the

learning objective, and the impact of the label transport becomes

weak in both the learning and prediction phases. As a result, it may

perform similarly to the traditional method when using a large _.

We test the robustness of our method to _ and show representa-

tive results in Figure 5. In particular, our QW loss-based method

trains ChebNetII [21] on four graphs. Both Algorithm 1 for (12)

and Algorithm 2 for (13) are tested. The _ is set in the range from

10
−2

to 10
3
. For homophilic graphs, our learning method achieves

stable performance when _ ≥ 10. When _ < 10, the learning results

degrade significantly because of inadequate supervision. Our learn-

ing method often obtains the best learning result for heterophilic

graphs when _ ∈ [1, 10]. These experimental results show that our

method is robust to the setting of _, and we can set _ in a wide

range to obtain relatively stable performance.

5 CONCLUSION
We have proposed the Quasi-Wasserstein loss for learning graph

neural networks. This loss matches well with the non-i.i.d. property

of graph-structured data, providing a new strategy to leverage

observed node labels in both training and testing phases. Applying

the QW loss to learn GNNs improves their performance in various

node-level prediction tasks. In the future, we would like to explore

the impacts of the optimal label transport on the generalization

power of GNNs in theory. Moreover, we plan to modify the QW

loss further, developing a new optimization strategy to accelerate

its computation.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

AQuasi-Wasserstein Loss for Learning Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein genera-

tive adversarial networks. In International conference on machine learning. PMLR,

214–223.

[2] Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien

Adam, and Paul Honeine. 2021. Analyzing the expressive power of graph neural

networks in a spectral perspective. In Proceedings of the International Conference
on Learning Representations (ICLR).

[3] Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel

Peyré. 2015. Iterative Bregman projections for regularized transportation prob-

lems. SIAM Journal on Scientific Computing 37, 2 (2015), A1111–A1138.

[4] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. 2021.

Graph neural networks with convolutional arma filters. IEEE transactions on
pattern analysis and machine intelligence 44, 7 (2021), 3496–3507.

[5] Benson Chen, Gary Bécigneul, Octavian-Eugen Ganea, Regina Barzilay, and

Tommi Jaakkola. 2020. Optimal transport graph neural networks. arXiv preprint
arXiv:2006.04804 (2020).

[6] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal

Generalized PageRank Graph Neural Network. In International Conference on
Learning Representations.

[7] Marco Cuturi. 2013. Sinkhorn distances: lightspeed computation of optimal trans-

port. In Proceedings of the 26th International Conference on Neural Information
Processing Systems-Volume 2. 2292–2300.

[8] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems 29 (2016).

[9] Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding,

and Peng Cui. 2021. On the equivalence of decoupled graph convolution network

and label propagation. In Proceedings of the Web Conference 2021. 3651–3662.
[10] Yihe Dong and Will Sawin. 2020. Copt: Coordinated optimal transport on graphs.

Advances in Neural Information Processing Systems 33 (2020), 19327–19338.
[11] Lun Du, Xiaozhou Shi, Qiang Fu, XiaojunMa, Hengyu Liu, Shi Han, and Dongmei

Zhang. 2022. Gbk-gnn: Gated bi-kernel graph neural networks for modeling

both homophily and heterophily. In Proceedings of the ACMWeb Conference 2022.
1550–1558.

[12] Montacer Essid and Justin Solomon. 2018. Quadratically regularized optimal

transport on graphs. SIAM Journal on Scientific Computing 40, 4 (2018), A1961–

A1986.

[13] Enrico Facca and Michele Benzi. 2021. Fast iterative solution of the optimal

transport problem on graphs. SIAM Journal on Scientific Computing 43, 3 (2021),

A2295–A2319.

[14] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[15] Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya-Polo, and

Tomaso Poggio. 2015. Learning with a Wasserstein loss. In Proceedings of the
28th International Conference on Neural Information Processing Systems-Volume 2.
2053–2061.

[16] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. Magnn: Metap-

ath aggregated graph neural network for heterogeneous graph embedding. In

Proceedings of The Web Conference 2020. 2331–2341.
[17] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2019.

Predict then Propagate: Graph Neural Networks meet Personalized PageRank.

In International Conference on Learning Representations.
[18] Edouard Grave, Armand Joulin, and Quentin Berthet. 2019. Unsupervised align-

ment of embeddings with wasserstein procrustes. In The 22nd International
Conference on Artificial Intelligence and Statistics. PMLR, 1880–1890.

[19] Jingwei Guo, Kaizhu Huang, Xinping Yi, and Rui Zhang. 2023. Graph Neural Net-

works with Diverse Spectral Filtering. In Proceedings of the ACM Web Conference
2023. 306–316.

[20] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[21] Mingguo He, Zhewei Wei, and Ji-Rong Wen. 2022. Convolutional Neural Net-

works on Graphs with Chebyshev Approximation, Revisited. In Advances in
Neural Information Processing Systems.

[22] Mingguo He, Zhewei Wei, Hongteng Xu, et al. 2021. Bernnet: Learning arbi-

trary graph spectral filters via bernstein approximation. Advances in Neural
Information Processing Systems 34 (2021), 14239–14251.

[23] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin Benson. 2021.

Combining Label Propagation and Simple Models out-performs Graph Neural

Networks. In International Conference on Learning Representations.
[24] Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe

Wang, Chao Shen, Dongsheng Cao, Jian Wu, and Tingjun Hou. 2021. Could

graph neural networks learn better molecular representation for drug discovery?

A comparison study of descriptor-based and graph-based models. Journal of
cheminformatics 13, 1 (2021), 1–23.

[25] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[26] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[27] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffu-

sion improves graph learning. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems. 13366–13378.

[28] John Lee, Max Dabagia, Eva L Dyer, and Christopher J Rozell. 2019. Hierarchical

optimal transport for multimodal distribution alignment. In Proceedings of the
33rd International Conference on Neural Information Processing Systems. 13475–
13485.

[29] Mengzhang Li and Zhanxing Zhu. 2021. Spatial-temporal fusion graph neural

networks for traffic flow forecasting. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 35. 4189–4196.

[30] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta,

Omkar Bhalerao, and Ser Nam Lim. 2021. Large Scale Learning on Non-

Homophilous Graphs: New Benchmarks and Strong Simple Methods. In Ad-
vances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,

Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Asso-

ciates, Inc., 20887–20902. https://proceedings.neurips.cc/paper_files/paper/2021/

file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf

[31] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.

2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[32] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning

convolutional neural networks for graphs. In International conference on machine
learning. PMLR, 2014–2023.

[33] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang.

2020. Geom-GCN: Geometric Graph Convolutional Networks. In International
Conference on Learning Representations.

[34] Gabriel Peyré and Marco Cuturi. 2019. Computational Optimal Transport. Foun-
dations and Trends ® in Machine Learning 11, 5-6 (2019), 355–607.

[35] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang.

2018. Deepinf: Social influence prediction with deep learning. In Proceedings of
the 24th ACM SIGKDD international conference on knowledge discovery & data
mining. 2110–2119.

[36] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed

node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.
[37] Filippo Santambrogio. 2015. Optimal Transport for Applied Mathematicians:

Calculus of Variations, PDEs, and Modeling. Vol. 87. Birkhäuser.
[38] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. 2021. E (n) equi-

variant graph neural networks. In International conference on machine learning.
PMLR, 9323–9332.

[39] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[40] Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. 2019. Opti-

mal transport for structured data with application on graphs. In International
Conference on Machine Learning. PMLR, 6275–6284.

[41] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. 2018.

Wasserstein Auto-Encoders. In International Conference on Learning Representa-
tions.

[42] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International
Conference on Learning Representations.

[43] Cédric Villani. 2008. Optimal transport: old and new. Vol. 338. Springer Science
& Business Media.

[44] Cédric Vincent-Cuaz, Titouan Vayer, Rémi Flamary, Marco Corneli, and Nicolas

Courty. 2021. Online graph dictionary learning. In International Conference on
Machine Learning. PMLR, 10564–10574.

[45] Huahua Wang and Arindam Banerjee. 2014. Bregman alternating direction

method of multipliers. In Proceedings of the 27th International Conference on
Neural Information Processing Systems-Volume 2. 2816–2824.

[46] Hongwei Wang and Jure Leskovec. 2021. Combining graph convolutional neural

networks and label propagation. ACM Transactions on Information Systems (TOIS)
40, 4 (2021), 1–27.

[47] XiaoWang, Houye Ji, Chuan Shi, BaiWang, Yanfang Ye, Peng Cui, and Philip S Yu.

2019. Heterogeneous graph attention network. In The world wide web conference.
2022–2032.

[48] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan

Jia, and Jian Yu. 2020. Traffic flow prediction via spatial temporal graph neural

network. In Proceedings of the web conference 2020. 1082–1092.
[49] Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. 2022.

Molecular contrastive learning of representations via graph neural networks.

Nature Machine Intelligence 4, 3 (2022), 279–287.

9

https://proceedings.neurips.cc/paper_files/paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[50] Yujia Xie, Xiangfeng Wang, Ruijia Wang, and Hongyuan Zha. 2020. A fast

proximal point method for computing exact wasserstein distance. In Uncertainty
in artificial intelligence. PMLR, 433–453.

[51] Bingbing Xu, Huawei Shen, Qi Cao, Keting Cen, and Xueqi Cheng. 2019. Graph

convolutional networks using heat kernel for semi-supervised learning. In Pro-
ceedings of the 28th International Joint Conference on Artificial Intelligence. 1928–
1934.

[52] Hongteng Xu. 2020. Gromov-Wasserstein factorization models for graph clus-

tering. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34.
6478–6485.

[53] Hongteng Xu, Jiachang Liu, Dixin Luo, and Lawrence Carin. 2022. Representing

graphs via Gromov-Wasserstein factorization. IEEE Transactions on Pattern
Analysis and Machine Intelligence 45, 1 (2022), 999–1016.

[54] Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin. 2019. Gromov-

wasserstein learning for graph matching and node embedding. In International
conference on machine learning. PMLR, 6932–6941.

[55] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[56] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[57] Zeyu Zhang, Jiamou Liu, Xianda Zheng, Yifei Wang, Pengqian Han, YupanWang,

Kaiqi Zhao, and Zijian Zhang. 2023. RSGNN: A Model-agnostic Approach for

Enhancing the Robustness of Signed Graph Neural Networks. In Proceedings of
the ACM Web Conference 2023. 60–70.

[58] Meiqi Zhu, XiaoWang, Chuan Shi, Houye Ji, and Peng Cui. 2021. Interpreting and

unifying graph neural networks with an optimization framework. In Proceedings
of the Web Conference 2021. 1215–1226.

[59] Xiaojin Zhu and Andrew B Goldberg. 2022. Introduction to Semi-Supervised
Learning. Springer Nature.

[60] Chenyi Zhuang and Qiang Ma. 2018. Dual graph convolutional networks for

graph-based semi-supervised classification. In Proceedings of the 2018 world wide
web conference. 499–508.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

AQuasi-Wasserstein Loss for Learning Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A THE PROOFS OF THEOREMS
A.1 Proof of Theorem 1

Proof. The proof includes four parts:

• Feasibility. For 𝝁,𝜸 ∈ Range(𝑺V), we have
𝑊1 (𝝁,𝜸) = min𝒇 ∈Ω (𝑺V ,𝝁,𝜸) ∥diag(𝒘)𝒇 ∥1 . (19)

Because 𝝁,𝜸 ∈ Range(𝑺V), the feasible domainΩ(𝑺V , 𝝁,𝜸)
is always non-empty and the optimization problem in (19)

is always valid.

• Positivity. Obviously, the objective in (19) is nonnegative,

so that𝑊1 (𝝁,𝜸) ≥ 0, ∀𝝁,𝜸 ∈ Range(𝑺V). Moreover, let

𝒇 ∗ = arg min𝒇 ∈Ω (𝑺V ,𝝁,𝜸) ∥diag(𝒘)𝒇 ∥1 .
𝑊1 (𝝁,𝜸) = 0 when 𝒇 ∗ = 0 | E | , which means 𝝁 = 𝜸 . There-
fore, ∀𝝁,𝜸 ∈ Range(𝑺V),𝑊1 (𝝁,𝜸) ≥ 0 and the equality

holds iff 𝝁 = 𝜸 .
• Symmetry. Obviously, if 𝒇 ∗ is the optimal solution cor-

responding to𝑊1 (𝝁,𝜸), −𝒇 ∗ will be the optimal solution

of𝑊1 (𝜸 , 𝝁). Because the edge weight vector is nonnega-
tive, we have ∥diag(𝒘)𝒇 ∗∥1 = ∥ − diag(𝒘)𝒇 ∗∥1. As a result,
𝑊1 (𝝁,𝜸) =𝑊1 (𝜸 , 𝝁).
• Triangle Inequality. For 𝝁,𝜸 , 𝜻 ∈ Range(𝑺V), let

𝑊1 (𝝁,𝜸) = min𝒇1∈Ω (𝑺V ,𝝁,𝜸) ∥diag(𝒘)𝒇1∥1,
𝑊1 (𝜸 , 𝜻) = min𝒇2∈Ω (𝑺V ,𝜸 ,𝜻) ∥diag(𝒘)𝒇2∥1 .
Then, we have

𝑊1 (𝝁,𝜸) +𝑊1 (𝜸 , 𝜻)
=min𝒇1, 𝒇2 ∥diag(𝒘)𝒇1∥1 + ∥diag(𝒘)𝒇2∥1
𝑠 .𝑡 . 𝒇1 ∈∈ Ω(𝑺V , 𝝁,𝜸), 𝒇2 ∈∈ Ω(𝑺V ,𝜸 , 𝜻)
≥min𝒇1, 𝒇2∈R|E | ∥diag(𝒘)𝒇1∥1 + ∥diag(𝒘)𝒇2∥1
𝑠 .𝑡 . 𝑺V (𝒇1 + 𝒇2) = 𝜻 − 𝝁

=min𝝉 , 𝜹∈R|E | ∥diag(𝒘)𝝉 + 𝜹 ∥1
+ ∥diag(𝒘)𝝉 − 𝜹 ∥1

𝑠 .𝑡 . 2𝑺V𝝉 = 𝜻 − 𝝁

=∥diag(𝒘)𝝉 + ˆ𝜹 ∥1 + ∥diag(𝒘)𝝉 − ˆ𝜹 ∥1
≥∥2diag(𝒘)𝝉 ∥1
≥min𝒇 ∈Ω (𝑺V ,𝝁,𝜻) ∥diag(𝒘)𝒇 ∥1
=𝑊1 (𝝁, 𝜻) .

(20)

Here, 𝜹 := 0.5diag(𝒘) (𝒇1 − 𝒇2), 𝝉 := 0.5(𝒇1 + 𝒇2), and
𝝉 , ˆ𝜹 = arg min𝝉 ,𝜹∈R|E | ∥diag(𝒘)𝝉 + 𝜹 ∥1

+ ∥diag(𝒘)𝝉 − 𝜹 ∥1
𝑠 .𝑡 . 2𝑺V𝝉 = 𝜻 − 𝝁 .

In (20), the first inequality is because the number of con-

straints is reduced and the feasible domain becomes larger.

The second inequality leverages the triangular inequality

of ℓ1-norm. The third inequality is because 2𝝉 is a feasible

solution (rather than the optimal solution) corresponding

to𝑊1 (𝝁, 𝜻).
Replacing V to a subset of nodes V′ ⊂ V , we obtain a partial

Wasserstein distance𝑊
(𝑃)
1

defined on the graph. Based on the same

steps, we can prove that𝑊
(𝑃)
1

is a valid metric in Range(𝑺V′). □

A.2 The Proof of Theorem 2
Proof. Denote V𝑈 = V \ V′. Based on the shrinkage of the

feasible domain, we have

𝑊1 (𝝁,𝜸) = min𝒇 ∈Ω (𝑺V ,𝝁,𝜸) ∥diag(𝒘)𝒇 ∥1
= min𝒇 ∈Ω (𝑺V′ ,𝝁V′ ,𝜸V′)∩Ω (𝑺V𝑈 ,𝝁V𝑈 ,𝜸V𝑈) ∥diag(𝒘)𝒇 ∥1

≥ min𝒇 ∈Ω (𝑺V′ ,𝝁V′ ,𝜸V′) ∥diag(𝒘)𝒇 ∥1 =𝑊
(𝑃)
1
(𝝁V′ ,𝜸V′) .

The second inequality in (9) can be proven in the same way. The

nonnegativeness is based on the metricity. □

B EXPERIMENTAL DETAILS
B.1 Baseline Implementations and

Experimental Settings
All baseline models are implemented using the code released by

the respective authors, as provided below.

• GCN,GAT,APPNP, andBernNet: https://github.com/ivam-

he/BernNet

• ChebNetII: https://github.com/ivam-he/ChebNetII

• GCN-LPA: https://github.com/hwwang55/GCN-LPA

For GCN, GAT, GIN, GraphSAGE, and APPNP, we search the learn-

ing rate over the range of {0.001, 0.002, 0.01, 0.05} and the weight

decay over the range of {0.0, 0.0005}. For APPNP, we search its key

hyperparameter 𝛼 over {0.1, 0.2, 0.5, 0.9}. For BernNet and Cheb-

NetII, we used the hyperparameters provided by the original pa-

pers [21, 22]. For GCN-LPA, we apply a two-layer GCN associated

with five LPA iteration layers, which follows the settings in [46].

We utilize the same datasets and data partitioning as BernNet [22]

and ChebNetII [21] in our experiments.

B.2 Hyperparameter Settings
For all GNNmethods, wemodify their architectures according to Al-

gorithms 1 and 2 and learn themodels through the QW loss. The key

hyperparameters and their search spaces are shown below:𝐴𝐹 indi-

cates whether the optimal label transport is involved in the adjust-

ment of edge weights, which is set to True or False. _ is the weights

of Bergman divergence, whose search space is {10−2, 10−1, ..., 103}.
𝑙𝑟𝐹 and 𝐿𝐹 denote the learning rate and weight decay for the la-

bel transport 𝑭 and MLP-based edge weight predictor. We search

for parameter 𝑙𝑟𝐹 over the range of {0.001, 0.002, 0.01, 0.05} and
parameter 𝐿𝐹 over the range of {0.0, 0.0005}.

11

	Abstract
	1 Introduction
	2 Related work
	2.1 Graph Neural Networks
	2.2 Computational Optimal Transport

	3 Proposed Method
	3.1 Motivation and Principle
	3.2 Optimal Transport on Graphs
	3.3 Learning GNNs with Quasi-Wasserstein Loss
	3.4 Connections to Traditional Methods
	3.5 A New Transductive Prediction Paradigm

	4 Experiments
	4.1 Implementation Details
	4.2 Numerical Comparison and Visualization
	4.3 Analytic Experiments

	5 Conclusion
	References
	A The Proofs of Theorems
	A.1 Proof of Theorem 1
	A.2 The Proof of Theorem 2

	B Experimental Details
	B.1 Baseline Implementations and Experimental Settings
	B.2 Hyperparameter Settings

