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AQuasi-Wasserstein Loss for Learning Graph Neural Networks
Anonymous Author(s)

ABSTRACT
When learning graph neural networks (GNNs) in node-level pre-

diction tasks, most existing loss functions are applied for each

node independently, even if node embeddings and their labels are

non-i.i.d. because of their graph structures. To eliminate such in-

consistency, in this study we propose a novel Quasi-Wasserstein

(QW) loss with the help of the optimal transport defined on graphs,

leading to new learning and prediction paradigms of GNNs. In

particular, we design a “Quasi-Wasserstein” distance between the

observed multi-dimensional node labels and their estimations, opti-

mizing the label transport defined on graph edges. The estimations

are parameterized by a GNN in which the optimal label transport

may determine the graph edge weights optionally. By reformulating

the strict constraint of the label transport to a Bregman divergence-

based regularizer, we obtain the proposed Quasi-Wasserstein loss

associated with two efficient solvers learning the GNN together

with optimal label transport. When predicting node labels, our

model combines the output of the GNN with the residual com-

ponent provided by the optimal label transport, leading to a new

transductive prediction paradigm. Experiments show that the pro-

posed QW loss applies to various GNNs and helps to improve their

performance in node-level classification and regression tasks.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Comput-
ing methodologies→ Supervised learning; Neural networks.

KEYWORDS
Graph neural networks, optimal transport on graphs, Bregman
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1 INTRODUCTION
Graph neural network (GNN) plays a central role in many graph

learning tasks, such as social network analysis [14, 35, 57], molecu-

lar modeling [24, 38, 49], transportation forecasting [29, 48], and

so on. Given a graph with node features, a GNN embeds the graph

nodes by exchanging and aggregating the node features, whose im-

plementation is based on message-passing operators in the spatial
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Figure 1: The scheme of our QW-loss and the corresponding
learning paradigm. Given a graph whose node features are
denoted as blue circles and partially-observed node labels
are denoted as blue stems, a GNN embeds the graph nodes
and outputs estimated labels (denoted as orange stems). By
minimizing the QW loss, we obtain the optimal label trans-
port (denoted as the dotted red arrows on the graph edges)
between the real and estimated node labels. Optionally, the
optimal label transport can be used to determine the weights
of graph edges (through an edge weight predictor). The final
predictions are the combinations of the optimal label trans-
port and the estimated node labels.

domain [26, 32, 42] or graph filters in the spectral domain [4, 6, 8, 22].

When some node labels are available, we can learn the GNN in a

node-level semi-supervised learning [26, 51, 56], optimizing the

node embeddings to predict the observed labels. This learning

framework has achieved encouraging performance in many node-

level prediction tasks, e.g., node classification [31, 39].

When applying the above node-level GNN learning framework,

existing work often leverages a loss function (e.g., the cross-entropy

loss) to penalize the discrepancy between each node’s label and

the corresponding estimation. Here, some inconsistency between

the objective design and the intrinsic data structure arises — the

objective of learning a GNN is implemented as the summation of

all the nodes’ loss functions, which is often applied for i.i.d. data,

but the node embeddings and their labels are non-i.i.d. in general

because of the underlying graph structure and the information

aggregation achieved by the GNN. As a result, the current objective

treats the losses of individual nodes independently and evenly,

even if the nodes in the graph are correlated and have different

significance for learning the GNN. Such inconsistency may lead

to sub-optimal GNNs in practice, but to our knowledge none of

existing work considers this issue in-depth.
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To eliminate the inconsistency, we leverage computational op-

timal transport techniques [34], proposing a new objective called

Quasi-Wasserstein (QW) loss for learning GNNs. As illustrated in

Figure 1, given partially-observed node labels and their estima-

tions parametrized by a GNN, we consider the optimal transport

between them and formulate the problem as the aggregation of the

Wasserstein distances [15] corresponding to all label dimensions.

This problem can be equivalently formulated as a label transport

minimization problem [12, 13] defined on the graph, leading to

the proposed QW loss. By minimizing this loss, we can jointly

learn the optimal label transport and the GNN parametrizing the

label estimations. This optimization problem can be solved effi-

ciently by Bregman divergence-based algorithms, e.g., Bregman

ADMM[45, 52]. Optionally, through amulti-layer perceptron (MLP),

we can determine the edge weights of the graph based on optimal

label transport, leading to a GNN with learnable edge weights.

The contributions of this study include the following two points:

• A theoretically-solid loss without the inconsistency
issue. The QW loss provides a new optimal transport-based

loss for learning GNNs, which considers the labels and esti-

mations of graph nodes jointly. Without the questionable

i.i.d. assumption, it eliminates the inconsistency issue men-

tioned above. In theory, we demonstrate that the QW loss

is a valid metric for the node labels defined on graphs. Ad-

ditionally, the traditional objective function for learning

GNNs can be treated as a special case of our QW loss. We

further demonstrate that applying our QW loss reduces

data fitting errors in the training phase.

• New learning and prediction paradigms.Different from
the existing methods that combine GNNs with label prop-

agation mechanisms [9, 23, 46], the QW loss provides a

new way to combine node embeddings with label infor-

mation in both training and testing phases. In particular,

Bregman divergence-based algorithms are applied to learn

the model, and the final model consists of the GNN and a

residual component provided by the optimal label trans-

port. When predicting node labels, the model combines the

estimations provided by the GNN with the complementary

information from the optimal label transport, leading to a

new transductive prediction paradigm.

Experiments demonstrate that our QW loss applies to various GNNs

and helps to improve their performance in various node-level clas-

sification and regression tasks.

2 RELATEDWORK
2.1 Graph Neural Networks
Graph neural networks can be coarsely categorized into two classes.

The GNNs in the first class apply spatial convolutions to graphs [32].

The representative work includes the graph convolutional network

(GCN) in [26], the graph attention network (GAT) in [42], and their

variants [16, 47, 60]. The GNNs in the second class achieve graph

spectral filtering [19]. They are often designed based on a polyno-

mial basis, such as ChebNet [8] and its variants [21], GPR-GNN [6],

and BernNet [22]. Besides approximated by the polynomial basis,

the spectral GNNs can be learned by other strategies, e.g., Per-

sonalized PageRank in APPNP [17], graph optimization functions

in GNN-LF/HF [58], ARMA filters [4], and diffusion kernel-based

filters [11, 27, 51].

The above spatial and spectral GNNs are correlated because a

spatial convolution always corresponds to a graph spectral filter [2].

For example, GCN [26] can be explained as a low-pass filter achieved

by a first-order Chebyshev polynomial. Given a graph with some

labeled nodes, we often learn the above GNNs in a semi-supervised

node-level learning framework [26, 56], in which the GNNs embed

all the nodes and are trained under the supervision of the labeled

nodes. However, as aforementioned, the objective functions used

in the framework treat the graph nodes independently and thus

mismatch with the non-i.i.d. nature of the data.

2.2 Computational Optimal Transport
As a powerful mathematical tool, optimal transport (OT) distance

(or called Wasserstein distance under some specific settings) pro-

vides a valid metric for probability measures [43], which has been

widely used for various machine learning problems, e.g., distribu-

tion comparison [15, 28], point cloud registration [18], graph parti-

tioning [10, 54], generative modeling [1, 41], and so on. Typically,

the OT distance corresponds to a constrained linear programming

problem. To approximate the OT distance with low complexity,

many algorithms have been proposed, e.g., Sinkhorn-scaling [7],

Bregman ADMM [45], Conditional Gradient [40], and Inexact Prox-

imal Point [50]. Recently, two iterative optimization methods have

been proposed to solve the optimal transport problems defined on

graphs [12, 13].

These efficient algorithms make the OT distance a feasible loss

for machine learning problems, e.g., the Wasserstein loss in [15].

Focusing on the learning of GNNs, the work in [5] proposes a

Wasserstein distance-based contrastive learning method. The Gro-

movized Wasserstein loss is applied to learn cross-graph node em-

beddings [54], graph factorization models [44, 52], and GNN-based

graph autoencoders [53]. The above work is designed for graph-

level learning tasks, e.g., graph matching, representation, classifi-

cation, and clustering. Our QW loss, on the contrary, is designed

for node-level prediction tasks, resulting in significantly different

learning and prediction paradigms.

3 PROPOSED METHOD
3.1 Motivation and Principle
Denote a graph as 𝐺 (V, E), whereV represents the set of nodes

and E represents the set of edges, respectively. The graph 𝐺 is

associated with an adjacency matrix 𝑨 ∈ R |V |× |V | and a edge

weight vector 𝒘 = [𝑤𝑒 ] ∈ R | E | . The weights in 𝒘 correspond to

the non-zero elements in𝑨. For an unweighted graph,𝑨 is a binary

matrix, and 𝒘 is an all-one vector. Additionally, the nodes of the

graph may have 𝐷-dimensional features, which are formulated as

a matrix 𝑿 ∈ R |V |×𝐷 . Suppose that a subset of nodes, denoted

as V𝐿 ⊂ V , are annotated with 𝐶-dimensional labels, i.e., {𝒚𝑣 ∈
R𝐶 }𝑣∈V𝐿

. We would like to learn a GNN to predict the labels of

the remaining nodes, i.e., {𝒚𝑣}𝑣∈V\V𝐿
.

The motivation for applying GNNs is based on the non-i.i.d. prop-

erty of the node features and labels. Suppose that we have two nodes

connected by an edge, i.e., (𝑣, 𝑣 ′) ∈ E, where (𝒙𝑣,𝒚𝑣) and (𝒙𝑣′ ,𝒚𝑣′ )
are their node features and labels. For each node, its neighbors’

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

AQuasi-Wasserstein Loss for Learning Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

features or labels can provide valuable information to its prediction

task, i.e., the conditional probability 𝑝 (𝒚𝑣 |𝒙𝑣) ≠ 𝑝 (𝒚𝑣 |𝒙𝑣, 𝒙𝑣′ ) and
𝑝 (𝒚𝑣 |𝒙𝑣) ≠ 𝑝 (𝒚𝑣 |𝒙𝑣,𝒚𝑣′ ) in general. Similarly, for node pairs, their

labels are often conditionally-dependent, i.e., 𝑝 (𝒚𝑣,𝒚𝑣′ |𝒙𝑣, 𝒙𝑣′ ) =
𝑝 (𝒚𝑣 |𝒙𝑣, 𝒙𝑣′ ,𝒚𝑣′ )𝑝 (𝒚𝑣′ |𝒙𝑣, 𝒙𝑣′ ) ≠ 𝑝 (𝒚𝑣 |𝒙𝑣, 𝒙𝑣′ )𝑝 (𝒚𝑣′ |𝒙𝑣, 𝒙𝑣′ ). More

generally, for all node labels, we have

𝑝 ({𝒚𝑣}𝑣∈V |𝑿 ,𝑨) ≠
∏

𝑣∈V 𝑝 (𝒚𝑣 |𝑿 ,𝑨), (1)

Ideally, we shall learn a GNN to maximize the conditional proba-

bility of all labeled nodes, i.e., max𝑝 ({𝒚𝑣}𝑣∈V𝐿
|𝑿 ,𝑨). In practice,

however, most existing methods formulate the node-level learning

paradigm of the GNN as

max

\

∏
𝑣∈V𝐿

𝑝 (𝒚𝑣 |𝑿 ,𝑨;\ ) ⇔ min

\

∑︁
𝑣∈V𝐿

𝜓 (𝑔𝑣 (𝑿 ,𝑨;\ ), 𝒚𝑣) . (2)

Here, 𝑔 is a graph neural network whose parameters are denoted as

\ . Taking the adjacency matrix 𝑨 and the node feature matrix 𝑿 as

input, the GNN𝑔 predicts the node labels.𝑔𝑣 (𝑿 ,𝑨;\ ) represents the
estimation of the node 𝑣 ’s label achieved by the GNN, which is also

denoted as �̂�𝑣 . Similarly, we denote 𝑔V (𝑿 ,𝑨;\ ) as the estimated

labels for the node setV in the following content. The loss function

𝜓 : R𝐶 × R𝐶 ↦→ R is defined in the node level. In node-level

classification tasks, it is often implemented as the cross-entropy loss

or the KL-divergence (i.e., 𝑝 (𝒚𝑣 |𝑿 ,𝑨;\ ) is modeled by the softmax

function). In node-level regression tasks, it is often implemented

as the least-square loss (i.e., 𝑝 (𝒚𝑣 |𝑿 ,𝑨;\ ) is assumed to be the

Gaussian distribution).

The loss in (2) assumes the node labels to be conditionally-
independent with each other, which may be too strong in
practice and inconsistentwith the non-i.i.d. property of graph-
structured data shown in (1). To eliminate such inconsistency,

we should treat node labels as a set rather than independent in-

dividuals, developing a set-level loss to penalize the discrepancy

between the observed labels and their estimations globally, i.e.,

min\ Loss(𝑔V𝐿
(𝑿 ,𝑨;\ ), {𝒚𝑣}𝑣∈V𝐿

). (3)

In the following content, we will design such a loss with theoretical

supports, based on the optimal transport on graphs.

3.2 Optimal Transport on Graphs
Suppose that we have two measures on a graph 𝐺 (V, E), denoted
as 𝝁 ∈ [0,∞) |V | and 𝜸 ∈ [0,∞) |V | , respectively. The element

of each measure indicates the “mass” of a node. Assume the two

measures to be balanced, i.e., ⟨𝜸 − 𝝁, 1 |V | ⟩ = 0, where ⟨·, ·⟩ is
the inner product operator. The optimal transport, or called the

1-Wasserstein distance [43], between them is defined as

𝑊1 (𝝁,𝜸 ) := min

𝑻 ∈Π (𝝁,𝜸 )
⟨𝑫, 𝑻 ⟩ = min

𝑻 ∈Π (𝝁,𝜸 )

∑︁
𝑣,𝑣′∈V×V

𝑡𝑣𝑣′𝑑𝑣𝑣′ , (4)

where 𝑫 = [𝑑𝑣𝑣′ ] ∈ R |V |× |V | represents the shortest path dis-

tance matrix, and Π(𝝁,𝜸 ) = {𝑻 ≥ 0|𝑻1 |V | = 𝝁, 𝑻⊤1 |V | = 𝜸 }
represents the set of all valid doubly stochastic matrices. Each

𝑻 = [𝑡𝑣𝑣′ ] ∈ Π(𝝁,𝜸 ) is a transport plan matrix. The optimization

problem in (4) corresponds to finding the optimal transport plan

𝑻 ∗ = [𝑡∗
𝑣𝑣′ ] to minimize the “cost” of changing 𝝁 to 𝜸 , in which the

cost is measured as the sum of “mass” 𝑡𝑣𝑣′ moved from node 𝑣 to

node 𝑣 ′ times distance 𝑑𝑣𝑣′ .

3.2.1 Wasserstein Distance for Vectors on A Graph. For the optimal

transport problem defined on graphs, we can simplify the problem

in (4) by leveraging the underlying graph structures. As shown

in [12, 37], given a graph 𝐺 (V, E), we can define a sparse matrix

𝑺V = [𝑠𝑣𝑒 ] ∈ {0,±1} |V |× | E | to indicating the graph topology. For

node 𝑣 and edge 𝑒 , the corresponding element in 𝑺V is

𝑠𝑣𝑒 =


1 if 𝑣 is “head” of edge 𝑒

−1 if 𝑣 is “tail” of edge 𝑒

0 otherwise.

(5)

When𝐺 is directed, the “head” and “tail” of each edge are predefined.

When 𝐺 is undirected, we can randomly define each edge’s “head”

and “tail”. Accordingly, the 1-Wasserstein distance in (4) can be

equivalently formulated as a minimum-cost flow problem:

𝑊1 (𝝁,𝜸 ) = min𝒇 ∈Ω (𝑺V ,𝝁,𝜸 ) ∥diag(𝒘)𝒇 ∥1, (6)

where diag(𝒘) is a diagonal matrix constructed by the edge weights

of the graph. The vector 𝒇 = [𝑓𝑒 ] ∈ Ω(𝑺V , 𝝁,𝜸 ) is the flow indi-

cating the mass passing through each edge. Accordingly, the cost

corresponding to edge 𝑒 is represented as the distance𝑤𝑒 times the

mass 𝑓𝑒 , and the sum of all the costs leads to the objective function

in (6). The feasible domain of the flow vector is defined as

Ω(𝑺V , 𝝁,𝜸 ) = U | E | ∩ {𝒇 | 𝑺V𝒇 = 𝜸 − 𝝁},

whereU =

{
[0,∞), Directed 𝐺,

R, Undirected 𝐺.

(7)

The constraint 𝑺V𝒇 = 𝜸 − 𝝁 ensures that the flow on all the edges

leads to the change from 𝝁 to 𝜸 . The flow in the directed graph is

nonnegative, which can only pass through each edge from “head”

to “tail”. On the contrary, the undirected graph allows the mass to

transport from “tail” to “head”. By solving (6), we find the optimal

flow 𝒇 ∗ (or the so-called optimal transport on edges) that minimizes

the overall cost ∥diag(𝒘)𝒇 ∥1.

3.2.2 Partial Wasserstein Distance for Vectors on a Graph. When

only a subset of nodes (i.e.,V𝐿 ⊂ V) have observable signals, we

can define a partial Wasserstein distance on the graph by preserving

the constraints relevant toV𝐿 : for 𝝁,𝜸 ∈ R |V𝐿 |
, we have

𝑊
(𝑃 )
1
(𝝁,𝜸 ) = min𝒇 ∈Ω (𝑺V𝐿 ,𝝁,𝜸 ) ∥diag(𝒘)𝒇 ∥1, (8)

where 𝑺V𝐿
∈ {0,±1} |V𝐿 |× | E |

is a submatrix of 𝑺V , storing the

rows corresponding to the nodes with observable signals.

Different from the classic Wasserstein distance, the Wasserstein

distance defined on graphs is not limited for nonnegative vectors

because the minimum-cost flow formulation in (6) is shift-invariant,
i.e.,∀𝜹 ∈ R |V | ,𝑊1 (𝝁,𝜸 ) =𝑊1 (𝝁−𝜹,𝜸−𝜹). The partialWasserstein

distance in (8) can be viewed as a generalization of (6), and thus it

holds the shift-invariance as well. Moreover, given an undirected

graph, we can prove that both the𝑊1 in (6) and the𝑊
(𝑃 )
1

in (8) can

be valid metrics in the spaces determined by the topology of an

undirected graph (See Appendix A for a complete proof).

Theorem 1 (The Validness as A Metric). Given an undirected
graph𝐺 (V, E), with edge weights𝒘 ∈ [0,∞) | E | and a matrix 𝑺V ∈
{0,±1} |V |×E defined in (5), the𝑊1 in (6) is a metric in 𝑅𝑎𝑛𝑔𝑒 (𝑺V ),
and the𝑊 (𝑃 )

1
in (8) is a metric in 𝑅𝑎𝑛𝑔𝑒 (𝑺V𝐿

), ∀V𝐿 ∈ V .
3
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The flow vector 𝒇 in (8) has fewer constraints than that in (6), so

the relation between𝑊1 and𝑊
(𝑃 )
1

obeys the following theorem.

Theorem 2 (The Monotonicity). Given an undirected graph
𝐺 (V, E), with edge weights 𝒘 ∈ [0,∞) | E | and a matrix 𝑺V ∈
{0,±1} |V |×E defined in (5), we have

𝑊1 (𝝁,𝜸 ) ≥𝑊 (𝑃 )
1
(𝝁V′ ,𝜸V′ ) ≥𝑊 (𝑃 )1

(𝝁V′′ ,𝜸V′′ ) ≥ 0,

∀𝝁,𝜸 ∈ 𝑅𝑎𝑛𝑔𝑒 (𝑺V ), V′′ ⊂ V′ ⊂ V,
(9)

where 𝝁V′ denotes the subvector of 𝝁 corresponding to the setV′.

3.3 Learning GNNs with Quasi-Wasserstein Loss
Inspired by the optimal transport on graphs, we propose a Quasi-

Wasserstein loss for learning GNNs. Given a partially-labeled graph

𝐺 , we formulate observed labels as a matrix 𝒀V𝐿
= [𝒚 (𝑐 )V𝐿

] ∈
R |V𝐿 |×𝐶

, where 𝒚 (𝑐 )V𝐿
∈ R |V𝐿 |

represents the labels in 𝑐-th dimen-

sion. The estimated labels generated by a GNN 𝑔 are represented

as �̂�V𝐿
= [�̂� (𝑐 )V𝐿

] := 𝑔V𝐿
(𝑿 ,𝑨;\ ). Our QW loss is defined as

𝑄𝑊 (�̂�V𝐿
, 𝒀V𝐿

) =
∑︁𝐶

𝑐=1
𝑊
(𝑃 )
1
(�̂� (𝑐 )V𝐿

,𝒚 (𝑐 )V𝐿
)

=
∑︁𝐶

𝑐=1
min

𝒇 (𝑐 ) ∈Ω (𝑺V𝐿 , �̂�
(𝑐 )
V𝐿

, 𝒚 (𝑐 )V𝐿
) ∥diag(𝒘)𝒇

(𝑐 ) ∥1

= min𝑭 ∈Ω𝐶 (𝑺V𝐿 , 𝑔V𝐿 (𝑿 ,𝑨;\ ), 𝒀V𝐿 ) ∥diag(𝒘)𝑭 ∥1,

(10)

where 𝑭 = [𝒇 (𝑐 ) ] is the flow matrix, and its feasible domain

Ω𝐶 = U | E |×𝐶∩{𝑭 |𝑺V𝐿
𝑭 = 𝒀V𝐿

−𝑔V𝐿
(𝑿 ,𝑨;\ )}.𝑊 (𝑃 )

1
(�̂� (𝑐 )V𝐿

,𝒚 (𝑐 )V𝐿
)

is the partial Wasserstein distance between the observed and esti-

mated labels in the 𝑐-th dimension. The QW loss is the summation

of the 𝐶 partial Wasserstein distances, and it can be rewritten as

the summation of𝐶 minimum-cost flow problems. As shown in the

third row of (10), these 𝐶 problems can be formulated as a single

optimization problem, and the variables of the problems are aggre-

gated as the flow matrix 𝑭 . Based on Theorem 1, our QW loss is a

metric for the matrices whose columns are in 𝑅𝑎𝑛𝑔𝑒 (𝑺V𝐿
).

The optimal flow matrix 𝑭 ∗ = [𝒇 (𝑐 )∗] is called optimal label
transport in this study, in which the column 𝒇 (𝑐 )∗ indicating the
optimal transport on graph edges between the observed labels

and their estimations in the 𝑐-th dimension. Note that, we call

the proposed loss “Quasi-Wasserstein” because 𝑖) it is not equal
to the classic 1-Wasserstein distance between the label sets �̂�V𝐿

and 𝒀V𝐿
[34], and 𝑖𝑖) the optimal label transport 𝑭 ∗ cannot be

reformulated as the optimal transport 𝑻 ∗ obtained by (4). When

𝑭 ∗ = 0, we have 𝑄𝑊 (�̂�V𝐿
, 𝒀V𝐿

) = 0 and accordingly, �̂�V𝐿
= 𝒀V𝐿

,

which means that the GNN𝑔 perfectly estimates the observed labels.

Therefore, the QW loss provides a new alternative for the training

loss of GNN. Different from the traditional loss function in (2), the

QW loss treats observed node labels and their estimations as two

sets and measures their discrepancy accordingly, which provides

an effective implementation of the loss in (3).

Applying the QW loss to learn a GNN 𝑔 results in the following

constrained optimization problem:

min\ 𝑄𝑊 (𝑔V𝐿
(𝑿 ,𝑨;\ ), 𝒀V𝐿

)
=min\ min𝑭 ∈Ω𝐶 (𝑺V𝐿 , 𝑔V𝐿 (𝑿 ,𝑨;\ ), 𝒀V𝐿 ) ∥diag(𝒘)𝑭 ∥1 .

(11)

To solve it effectively, we consider the following two algorithms.

Algorithm 1 Learning a GNN by solving (12)

Require: A graph𝐺 , its adjacency matrix 𝑨 (edge weights 𝒘), node fea-

tures 𝑿 , and observed labels 𝒀V𝐿 .

1: Initialize \ (0) and 𝑭 (0) randomly.

2: while Not converge do
3: Compute Loss = ∥diag(𝑤 )𝑭 ∥1 + _𝐵𝜙 (𝑔V𝐿 (𝑿 ,𝑨;\ ) + 𝑺V𝐿 𝑭 ,𝒀V𝐿 )
4: Update {𝑭 , \ } by Adam [25].

5: if 𝐺 is a directed graph then 𝑭 ← Proj≥0 (𝑭 ) end if.
6: end while
7: return Optimal label transport 𝑭 ∗ and model parameters \∗.

3.3.1 Bregman Divergence-based Approximate Solver. By relaxing

the constraint {𝑭 |𝑺V𝐿
𝑭 = 𝒀V𝐿

− 𝑔V𝐿
(𝑿 ,𝑨;\ )} to a Bregman

divergence-based regularizer [3], we can reformulate (11) to the

following problem:

min

\, 𝑭 ∈U |E |×𝐶
∥diag(𝒘)𝑭 ∥1 + _ 𝐵𝜙 (𝑔V𝐿

(𝑿 ,𝑨;\ ) + 𝑺V𝐿
𝑭 , 𝒀V𝐿

)︸                                    ︷︷                                    ︸∑
𝑣∈V𝐿 𝜓 (𝑔𝑣 (𝑿 ,𝑨;\ )+𝑺𝑣𝑭 , 𝒚𝑣 )

.

(12)

Here, 𝐵𝜙 (𝑥,𝑦) = 𝜙 (𝑥) − 𝜙 (𝑦) − ⟨∇𝜙 (𝑦), 𝑥 − 𝑦⟩ is the Bregman di-

vergence defined based on the strictly convex function 𝜙 , and the

hyperparameter _ > 0 controls its significance. In node classifica-

tion tasks, we can set 𝜙 as an entropic function, and the Bregman

divergence becomes the KL-divergence. In node regression tasks,

we can set 𝜙 as a least-square loss, and the Bregman divergence

becomes the least-square loss. Therefore, as shown in (12), the Breg-

man divergence 𝐵𝜙 can be implemented based on commonly-used

loss functions, e.g., the𝜓 in (2).

Algorithm 1 shows the algorithmic scheme in details. For undi-

rected graphs, the U in (12) is R, and accordingly, (12) becomes

a unconstrained optimization problem. We can solve it efficiently

by gradient descent. For directed graphs, we just need to add a

projection step when updating the flow matrix 𝑭 , leading to the

projected gradient descent algorithm.

3.3.2 Bregman ADMM-based Exact Solver. Algorithm 1 solves (11)

approximately — because of relaxing the strict equality constraint

to a regularizer, the solution of (12) often cannot satisfy the original

equality constraint. To solve (11) exactly, we further develop a learn-

ing method based on the Bregman ADMM (Bremgan Alternating

Direction Method of Multipliers) algorithm [45]. In particular, we

can rewrite (11) in the following augmented Lagrangian form:

min
\, 𝑭 ∈U |E |×𝐶 , 𝒁 ∈R|V𝐿 |×𝐶 ∥diag(𝒘)𝑭 ∥1
+ ⟨𝒁 , 𝑔V𝐿

(𝑿 ,𝑨;\ ) + 𝑺V𝐿
𝑭 − 𝒀V𝐿

⟩
+ _𝐵𝜙 (𝑔V𝐿

(𝑿 ,𝑨;\ ) + 𝑺V𝐿
𝑭 , 𝒀V𝐿

),
(13)

where 𝒁 ∈ R |V𝐿 |×𝐶
is the dual variable, the second term in (13) is

the Lagrangian term corresponding to the equality constraint, and

the third term in (13) is the augmented term implemented as the

Bregman divergence.

Denote the objective function in (13) as 𝐿(\, 𝑭 ,𝒁 ). In the Breg-

man ADMM framework, we can optimize \ , 𝑭 , and 𝒁 iteratively

through alternating optimization. In the 𝑘-th iteration, we update
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Algorithm 2 Learning a GNN by solving (13)

Require: A graph𝐺 , its adjacency matrix 𝑨 (edge weights 𝒘), node fea-

tures 𝑿 , observed labels 𝒀V𝐿 , the number of inner iterations 𝐽 .

1: Initialize \ (0) and 𝑭 (0) randomly and set 𝒁 (0) = 0|V𝐿 |×𝐶 .

2: while Not converge do
3: Solve (14) by Adam [25] with 𝐽 steps and obtain \ (𝑘+1) .
4: Solve (15) by Adam [25] with 𝐽 steps and obtain 𝑭 (𝑘+1) .
5: if 𝐺 is a directed graph then 𝑭 (𝑘+1) ← Proj≥0 (𝑭 (𝑘+1) ) end if.
6: Obtain 𝒁 (𝑘+1) by (16).

7: end while
8: return Optimal label transport 𝑭 ∗ and model parameters \∗.

the three variables via solving the following three subproblems:

\ (𝑘+1) = arg min\ 𝐿(\, 𝑭 (𝑘 ) ,𝒁 (𝑘 ) )

= arg min\ ⟨𝒁 (𝑘 ) , 𝑔V𝐿
(𝑿 ,𝑨;\ )⟩

+ _𝐵𝜙 (𝑔V𝐿
(𝑿 ,𝑨;\ ) + 𝑺V𝐿

𝑭 (𝑘 ) , 𝒀V𝐿
).

(14)

𝑭 (𝑘+1) = arg min𝑭 ∈U |E |×𝐶 𝐿(\
(𝑘+1) , 𝑭 ,𝒁 (𝑘 ) )

= arg min𝑭 ∈U |E |×𝐶 ⟨𝒁
(𝑘 ) , 𝑺V𝐿

𝑭 ⟩

+ _𝐵𝜙 (𝑔V𝐿
(𝑿 ,𝑨;\ (𝑘+1) ) + 𝑺V𝐿

𝑭 , 𝒀V𝐿
) .

(15)

𝒁 (𝑘+1) = 𝒁 (𝑘 ) + _(𝑔V𝐿
(𝑿 ,𝑨;\ (𝑘+1) ) + 𝑺V𝐿

𝑭 (𝑘+1) − 𝒀V𝐿
). (16)

We can find that (14) is a unconstrained optimization problem, so

we can update the model parameter \ by gradient descent. Similarly,

we can solve (15) and update the flow matrix 𝑭 by gradient descent

or projected gradient descent, depending on whether the graph is

undirected or not. Finally, the update of the dual variable 𝒁 can be

achieved in a closed form, as shown in (16). The Bregman ADMM

algorithm solves the original problem in (12) rather than a relaxed

version. In theory, with the increase of iterations, we can obtain the

optimal variables that satisfy the equality constraint. Algorithm 2

shows the scheme of the Bregman ADMM-based solver.

3.3.3 Optional Edge Weight Prediction. Some GNNs, e.g., GCN-

LPA [46] and GAT [42], model the adjacency matrix of graph as

learnable parameters. Inspired by these models, we can optionally

introduce an edge weight predictor and parameterize the adjacency

matrix based on the flow matrix, as shown in Figure 1. In particular,

given 𝑭 , we can apply a multi-layer perceptron (MLP) to embed

it to an edge weight vector and then obtain a weighted adjacency

matrix. Accordingly, the learning problem becomes

min\,b min𝑭 ∈Ω𝐶 (𝑺V𝐿 ,𝑔V𝐿 (𝑿 ,𝑨(𝑭 ;b ) ;\ ),𝒀V𝐿 ) ∥diag(𝒘)𝑭 ∥1, (17)

where 𝑨(𝑭 ; b) represents the adjacency matrix determined by the

label transportation 𝑭 , and b represents the parameters of the MLP.

Taking the learning of b into account, we can modify the above two

solvers slightly and make them applicable for solving (17).

3.4 Connections to Traditional Methods
As discussed in Section 3.3.1 and shown in (12), the Bregman diver-

gence 𝐵𝜙 can be implemented as the commonly-used loss function

𝜓 in (2) (e.g., the KL divergence or the least-square loss). Table 1

compares the typical setting of traditional learning methods and

that of our QW loss-based method in different node-level tasks.

Table 1: Comparison between traditional methods and ours

Method Setting Node Classification Node Regression

Apply the 𝜓 Cross-entropy or KL Least-square

loss in (2) Predicted 𝒚𝑣 𝑔𝑣 (𝑿 ,𝑨;\ ) , ∀𝑣 ∈ V \ V𝐿

Apply the

𝜙 Entropy
1

2
∥ · ∥2

2

QW loss

𝐵𝜙 (= 𝜓 ) KL Least-square

Predicted 𝒚𝑣 𝑔𝑣 (𝑿 ,𝑨;\ ) + 𝑺𝑣𝑭 , ∀𝑣 ∈ V \ V𝐿

Essentially, the traditional learning method in (2) can be viewed as

a special case of our QW loss-based learning method. In particular,

when setting 𝑭 = 0 | E |×𝐶 and 𝐵𝜙 = 𝜓 , the objective function in (12)

degrades to the objective function in (2), which treats each node

independently. Similarly, when further setting the dual variable

𝒁 = 0 |V𝐿 |×𝐶 , the objective function in (13) degrades to the objec-

tive function in (2) as well. In theory, we demonstrate that our QW

loss-based learning method can fit training data better than the

traditional method does, as shown in the following theorem.

Theorem 3. Let {\★, 𝑭★,𝒁★} be the global optimal solution of (13),
{\†, 𝑭 †} be the global optimal solution of (12), and \‡ be the global
optimal solution of min\ 𝐵𝜙 (𝑔V𝐿

(𝑿 ,𝑨;\ ), 𝒀V𝐿
), we have

𝐵𝜙 (𝑔V𝐿
(𝑿 ,𝑨;\★) + 𝑺V𝐿

𝑭★, 𝒀V𝐿
)

≤ 𝐵𝜙 (𝑔V𝐿
(𝑿 ,𝑨;\†) + 𝑺V𝐿

𝑭 †, 𝒀V𝐿
) ≤ 𝐵𝜙 (𝑔V𝐿

(𝑿 ,𝑨;\‡), 𝒀V𝐿
)

Proof. The proof is straightforward — {\‡, 0 | E |×𝐶 } is a feasible
solution of (12), so the corresponding objective is equal to or larger

than that obtained by {\†, 𝑭 †}. Similarly, {\†, 𝑭 †, 0 |V𝐿 |×𝐶 } is a
feasible solution of (13), so the corresponding objective is equal to

or larger than that obtained by {\★, 𝑭★,𝒁★}. □

Remark. It should be noted that although the Bregman ADMM-

based solver can fit training data better in theory, in the cases with

distribution shifting or out-of-distribution issues, it has a higher

risk of over-fitting. Therefore, in practice, we can select one of the

above two solvers to optimize the GW loss, depending on their

performance. In the following experimental section, we will further

compare these two solvers in details.

3.5 A New Transductive Prediction Paradigm
As shown in Table 1, given the learned model \∗ and the optimal

label transport 𝑭 ∗, we predict node labels in a new transductive

prediction paradigm. For 𝑣 ∈ V \ V𝐿 , we predict its label as

�̃�𝑣 := 𝑔𝑣 (𝑿 ,𝑨;\∗) + 𝑺𝑣𝑭 ∗, (18)

which combines the estimated label from the learned GNN and the

residual component from the optimal label transport.

Note that some attempts have been made to incorporate label

propagation algorithms (LPAs) [59] into GNNs, e.g., the GCN-LPA

in [46] and the FDiff-Scale in [23]. The PTA in [9] demonstrates

that learning a decoupled GNN is equivalent to implementing a

label propagation algorithm. These methods leverage LPAs to regu-

larize the learning of GNNs. However, in the prediction phase, they

abandon the training labels and rely only on the GNNs to predict

node labels, as shown in Table 1. Unlike these methods, our QW

loss-based method achieves a new kind of label propagation with
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Table 2: Basic information of the graphs and the comparisons on node classification accuracy (%).

Model Method

Homophilic graphs Heterophilic graphs

Overall

Cora Citeseer Pubmed Computers Photo Squirrel Chameleon Actor Texas Cornell

Improve

#Nodes ( |V |) 2,708 3,327 19,717 13,752 5,201 7,650 2,277 7,600 183 183

#Features (𝐷) 1,433 3,703 500 767 754 2,089 2,325 932 1,703 1,703

#Edges ( | E |) 5,278 4,552 44,324 245,861 119,081 198,358 31,371 26,659 279 277

Intra-edge rate 81.0% 73.6% 80.2% 77.7% 82.7% 22.2% 23.0% 21.8% 6.1% 12.3%

#Classes (𝐶) 7 6 5 10 8 5 5 5 5 5

GCN

(2) 87.44±0.96 79.98±0.84 86.93±0.29 88.42±0.45 93.24±0.43 46.55±1.15 63.57±1.16 34.00±1.28 77.21±3.28 61.91±5.11 —

(2)+LPA 86.34±1.45 78.51±1.22 84.72±0.70 82.48±0.69 88.10±1.31 44.81±1.81 60.90±1.63 32.43±1.59 78.69±6.47 68.72±5.95 -1.36

QW 87.88±0.79 81.36±0.41 87.89±0.40 89.20±0.41 93.81±0.36 52.62±0.49 68.10±1.01 38.09±0.50 84.10±2.95 84.26±2.98 +4.81

GAT

(2) 89.20±0.79 80.75±0.78 87.42±0.33 90.08±0.36 94.38±0.25 48.20±1.67 64.31±2.01 35.68±0.60 80.00±3.11 68.09±2.13 —

QW 89.11±0.66 80.19±0.64 88.38±0.23 90.41±0.28 94.65±0.24 55.03±1.35 67.35±1.42 33.86±2.13 80.33±1.80 70.21±2.13 +1.14

GIN

(2) 86.22±0.95 76.18±0.78 87.87±0.23 80.87±1.43 89.83±0.72 39.11±2.23 64.29±1.51 32.37±1.56 72.79±4.92 62.55±4.80 —

QW 86.24±0.90 76.13±1.09 87.53±0.34 89.28±0.45 92.60±0.44 65.29±0.68 73.26±1.12 32.32±1.93 77.54±2.60 64.04±3.62 +5.22

GraphSAGE

(2) 88.24±0.95 79.81±0.80 88.14±0.25 89.71±0.38 95.08±0.26 43.79±0.59 63.26±1.09 38.99±0.85 90.00±2.30 84.26±2.98 —

QW 87.59±0.77 80.52±0.68 88.61±0.32 90.17±0.24 95.25±0.25 54.37±0.89 68.32±0.68 37.82±0.45 90.33±1.97 86.38±2.13 +1.18

APPNP

(2) 88.14±0.73 80.47±0.74 88.12±0.31 85.32±0.37 88.51±0.31 36.15±0.75 52.93±1.71 40.46±0.64 91.31±1.97 87.66±2.13 —

QW 88.74±0.84 80.94±0.61 89.48±0.28 86.95 ±0.82 94.43±0.24 38.73±1.06 53.76±1.25 40.78±0.74 91.48±2.30 87.87±2.34 +1.41

BernNet

(2) 88.28±1.00 79.81±0.79 88.87±0.38 87.61±0.46 93.68±0.28 51.15±1.09 67.96±1.05 40.72±0.80 93.28±1.48 90.21±2.35 —

QW 89.03±0.76 81.35±0.71 89.03±0.38 89.58±0.47 94.55±0.39 55.22±0.64 71.66±1.18 40.91±0.71 93.44±1.80 90.85±2.34 +1.41

ChebNetII

(2) 88.26±0.89 80.00±0.74 88.57±0.36 86.58±0.71 93.50±0.34 57.78±0.84 71.71±1.40 40.70±0.77 92.79±1.48 88.94±2.78 —

QW 88.54±0.76 79.47±0.70 89.47±0.36 90.43±0.22 94.84±0.37 60.55±0.64 74.05±0.68 41.37±0.67 93.93±0.98 87.23±3.62 +1.11

the help of computational optimal transport, saving the training

label information in the optimal label transport and applying it

explicitly in the prediction phase.

4 EXPERIMENTS
To demonstrate the effectiveness of our QW loss-based learning

method, we apply it to learn GNNs with various architectures and

test the learned GNNs in different node-level prediction tasks. We

compare our learning method with the traditional one in (2) on

their model performance and computational efficiency. For our

method, we conduct a series of analytic experiments to show its

robustness to hyperparameter settings and label insufficiency. All

the experiments are conducted on a machine with three NVIDIA

A40 GPUs, and the code is implemented based on PyTorch.

4.1 Implementation Details
4.1.1 Datasets. The datasets we considered consist of five ho-

mophilic graphs (i.e., Cora, Citeseer, Pubmed [39, 56], Comput-
ers, and Photo [31]) and five heterophilic graphs (i.e., Chameleon,
Squirrel [36], Actor, Texas, and Cornell [33]), respectively. Fol-
lowing the work in [46], we categorize the graphs according to the

percentage of the edges connecting the nodes of the same class

(i.e., the intra-edge rate). The basic information of these graphs is

shown in Table 2. Additionally, a large arXiv-year graph [30] is

applied to demonstrate the efficiency of our method. The adjacency

matrix of each graph is binary, so the edge weights𝒘 = 1 | E | .

4.1.2 GNN Architectures. In the following experiments, the mod-

els we considered include 𝑖) the representative spatial GNNs, i.e.,
GCN [26], GAT [42], GIN [55], GraphSAGE [20], and GCN-
LPA [46] that combines the GCN with the label propagation al-

gorithm; and 𝑖𝑖) state-of-the-art spectral GNNs, i.e., APPNP [17],

BernNet [22], and ChebNetII [21]. For a fair comparison, we set

the architectures of the GNNs based on the code provided by [21]

and configure the algorithmic hyperparameters by grid search.

More details of the hyperparameter settings are in Appendix.

4.1.3 Learning Tasks and EvaluationMeasurements. For each graph,
their nodes belong to different classes. Therefore, we first learn

different GNNs to solve the node-level classification tasks defined

on the above graphs. By default, the split ratio of each graph’s

nodes is 60% for training, 20% for validation, and 20% for testing,

respectively. The GNNs are learned by 𝑖) the traditional learning
method in (2)

1
and 𝑖𝑖) minimizing the proposed QW loss in (11),

respectively. When implementing the QW loss, we apply either

Algorithm 1 or 2, depending on their performance. Additionally, to

demonstrate the usefulness of our QW loss in node-level regression

tasks, we treat the node labels as one-hot vectors and fit them by

minimizing the mean squared error (MSE), in which the𝜓 in (2) and

the corresponding Bregman divergence 𝐵𝜙 are set to be the least-

square loss. For each method, we perform 10 runs with different

seeds and record the learning results’ mean and standard deviation.

4.2 Numerical Comparison and Visualization
4.2.1 Node Classification and Regression. Table 2 shows the node
classification results on the ten graphs,

2
whose last column records

the overall improvements caused by our QW loss compared to

other learning methods. The experimental results demonstrate the

usefulness of our QW loss-based learning method — for each model,

applying our QW loss helps to improve learning results in most sit-

uations and leads to consistent overall improvements. In particular,

1
For GCN-LPA [46], it learns a GCN model by imposing a label propagation-based

regularizer on (2) and adjusting edge weights by the propagation result.

2
In Table 2, we bold the best learning result for each graph. Learning GCN by “(2)+LPA”

means implementing GCN-LPA [46].
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Table 3: Comparisons on node regression error (MSE).

Model Method

Homophilic graphs Heterophilic graphs

Computers Photo Actor Cornell

GIN

(2) 0.0605±0.0018 0.0459±0.0044 0.1570±0.0014 0.1609±0.0359
QW 0.0244±0.0028 0.0203±0.0012 0.1564±0.0012 0.1524±0.0043

BernNet

(2) 0.0871±0.0002 0.0488±0.0009 0.1661±0.0020 0.0989±0.0076
QW 0.0364±0.0038 0.0297±0.0014 0.1671±0.0008 0.0753±0.0024

for the state-of-the-art spectral GNNs like BernNet [22] and Cheb-

NetII [21], learning with our QW loss can improve their overall

performance on both homophilic and heterophilic graphs consis-

tently, resulting in the best performance in this experiment. For the

simple GCN model [26], learning with our QW loss improves its

performance significantly and reduces the gap between its classifi-

cation accuracy and that of the state-of-the-art models [17, 21, 22],

especially heterophilic graphs. Note that, when learning GCN, our

QW loss works better than the traditional method regularized by

the label propagation (i.e., GCN-LPA [46]) because our learning

method can leverage the training label information in both learning

and prediction phases. GCN-LPA improves GCN when learning on

heterophilic graphs, but surprisingly, leads to performance degra-

dation on homophilic graphs. Additionally, we also fit the one-hot

labels by minimizing the MSE. As shown in Table 3, minimizing

the QW loss leads to lower MSE results, which demonstrates the

usefulness of the QW loss in node-level regression tasks.

4.2.2 Computational Efficiency and Scalability. In theory, the com-

putational complexity of our QW loss is linear with the number

of edges. When implementing the loss as (13) and solving ti by

Algorithm 2, its complexity is also linear with the number of inner

iterations 𝐽 . Figure 2 shows the runtime comparisons for the QW

loss-based learning methods and the traditional method on two

datasets. We can find that minimizing the QW loss by Algorithm 1

or Algorithm 2with 𝐽 = 1merely increases the training time slightly

compared to the traditional method. Empirically, setting 𝐽 ≤ 5 can

leads to promising learning results, as shown in Tables 2 and 3. In

other words, the computational cost of applying the QW loss is

tolerable considering the significant performance improvements it

achieved. Additionally, we apply our QW loss to large-scale graphs

and test its scalability. As shown in Table 4, we implement the QW

loss based on Algorithm 1 (i.e., solving (12)) and apply it to the node

classification task in the large-scale arXiv-year graph. The result

shows that our QW loss is applicable to the graphs with millions

of edges on a single GPU and improves the model performance.

4.2.3 Distribution of Optimal Label Transport. Figure 3 visualizes
the histograms of the optimal label transport 𝑭 ∗ learned for two

representative GNNs (i.e., GCN [26] and ChebNetII [21]) on four

graphs (i.e., the homophilic graphs “Computers” and “Photo” and

the heterophilic graphs “Squirrel” and “Chameleon”). We can find

that when learning on homophilic graphs, the elements of the op-

timal label transport obey the zero-mean Laplacian distribution.

It is reasonable from the perspective of optimization — the term

∥diag(𝒘)𝑭 ∥1 can be explained as a Laplacian prior imposed on

𝑭 ’s element. Additionally, we can find that the distribution corre-

sponding to GCN has larger variance than that corresponding to
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Figure 2: The runtime of
different learning methods
on the graph Photo.

Graph arXiv-year

#Nodes ( |V |) 169,343

#Features (𝐷) 128

#Edges ( | E |) 1,166,243

Intra-edge rate 22.0%

#Classes (𝐶) 5

ChebNetII

(2) 48.18±0.18
QW 48.30±0.25

Table 4: The node classifica-
tion accuracy (%) on a large
graph.
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Figure 3: The histogram of 𝑭 ’s values for different GNNs.

ChebNetII, which implies that the 𝑭 ∗ of GCN has more non-zero

elements and thus has more significant impacts on label prediction.

The numerical results in Table 2 can also verify this claim — in

most situations, the performance improvements caused by the opti-

mal label transport is significant for GCN but slight for ChebNetII.

For heterophilic graphs, learning GCN still leads to Laplacian dis-

tributed label transport. However, the distributions corresponding

to ChebNetII are diverse — the distribution for Squirrel is long-tailed

while that for Chameleon is still Laplacian.

4.3 Analytic Experiments
4.3.1 Robustness to Label Insufficiency Issue. Our QW loss-based

learning method considers the label transport on graphs, whose

feasible domain is determined by the observed training labels. The

more labels we observed, the smaller the feasible domain is. To

demonstrate the robustness of our method to the label insufficiency

issue, we evaluate the performance of our method given different

amounts of training labels. We train ChebNetII [21] on four graphs

by traditional method and our method, respectively. For each graph,
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Figure 4: Illustrations of the learning methods’ performance
given different amounts of labeled nodes.

Table 5: Impacts of adjusting edge weights on node classifica-
tion accuracy (%) when applying the QW loss.

Model

Homophilic Heterophilic

Computers Photo Actor Cornell

GCN

𝑨 88.39±0.55 93.80±0.37 30.14±0.80 60.64±4.26
𝑨(𝑭 ; b ) 84.35±0.46 91.79±0.21 38.09±0.50 84.26±2.98

ChebNetII

𝑨 89.52±0.54 94.84±0.37 41.37±0.67 86.38±3.19
𝑨(𝑭 ; b ) 89.41±0.41 94.79±0.45 40.74±0.80 86.60±2.98

we use 𝐾% nodes’ labels to train the ChebNetII, where 𝐾 ∈ [1, 60],
and apply 20% nodes for validation and 20% nodes for testing, re-

spectively, as the above default setting does. Figure 4 shows that our

QW loss-based learning method can achieve encouraging perfor-

mance even when only 20% nodes or fewer are labeled. Additionally,

the methods are robust to the selection of solver — we can minimize

the QW loss based on (12) or (13), leading to comparable results

and outperforming the traditional loss consistently.

4.3.2 Impacts of Adjusting Edge Weights. As shown in (17), we can

train an MLP to predict edge weights based on the optimal label

transport. The ablation study in Table 5 quantitatively show the

impacts of adjusting edge weights on the learning results. We can

find that for ChebNetII, the two settings provide us with compara-

ble learning results. For GCN, however, learning the model with

adjusted edge weights suffers from performance degradation on

homophilic graphs while leads to significant improvements on het-

erophilic graphs. Empirically, it seems that adjusting edge weights

based on label transportation helps to improve the learning of sim-

ple GNN models on heterophilic graphs.
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Figure 5: Illustrations of the learning results achieved under
different _’s.

4.3.3 Robustness to Hyperparameters. The weight of the Bregman

divergence term, i.e., _, is the key hyperparameter impacting the

performance of our learning method. Empirically, when _ is too

small, the Bregman divergence between the observed labels and

their predictions becomes ignorable. Accordingly, the regularizer

may be too weak to supervise GNNs’ learning properly. On the con-

trary, when _ is too large, the regularizer becomes dominant in the

learning objective, and the impact of the label transport becomes

weak in both the learning and prediction phases. As a result, it may

perform similarly to the traditional method when using a large _.

We test the robustness of our method to _ and show representa-

tive results in Figure 5. In particular, our QW loss-based method

trains ChebNetII [21] on four graphs. Both Algorithm 1 for (12)

and Algorithm 2 for (13) are tested. The _ is set in the range from

10
−2

to 10
3
. For homophilic graphs, our learning method achieves

stable performance when _ ≥ 10. When _ < 10, the learning results

degrade significantly because of inadequate supervision. Our learn-

ing method often obtains the best learning result for heterophilic

graphs when _ ∈ [1, 10]. These experimental results show that our

method is robust to the setting of _, and we can set _ in a wide

range to obtain relatively stable performance.

5 CONCLUSION
We have proposed the Quasi-Wasserstein loss for learning graph

neural networks. This loss matches well with the non-i.i.d. property

of graph-structured data, providing a new strategy to leverage

observed node labels in both training and testing phases. Applying

the QW loss to learn GNNs improves their performance in various

node-level prediction tasks. In the future, we would like to explore

the impacts of the optimal label transport on the generalization

power of GNNs in theory. Moreover, we plan to modify the QW

loss further, developing a new optimization strategy to accelerate

its computation.
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A THE PROOFS OF THEOREMS
A.1 Proof of Theorem 1

Proof. The proof includes four parts:

• Feasibility. For 𝝁,𝜸 ∈ Range(𝑺V ), we have
𝑊1 (𝝁,𝜸 ) = min𝒇 ∈Ω (𝑺V ,𝝁,𝜸 ) ∥diag(𝒘)𝒇 ∥1 . (19)

Because 𝝁,𝜸 ∈ Range(𝑺V ), the feasible domainΩ(𝑺V , 𝝁,𝜸 )
is always non-empty and the optimization problem in (19)

is always valid.

• Positivity. Obviously, the objective in (19) is nonnegative,

so that𝑊1 (𝝁,𝜸 ) ≥ 0, ∀𝝁,𝜸 ∈ Range(𝑺V ). Moreover, let

𝒇 ∗ = arg min𝒇 ∈Ω (𝑺V ,𝝁,𝜸 ) ∥diag(𝒘)𝒇 ∥1 .
𝑊1 (𝝁,𝜸 ) = 0 when 𝒇 ∗ = 0 | E | , which means 𝝁 = 𝜸 . There-
fore, ∀𝝁,𝜸 ∈ Range(𝑺V ),𝑊1 (𝝁,𝜸 ) ≥ 0 and the equality

holds iff 𝝁 = 𝜸 .
• Symmetry. Obviously, if 𝒇 ∗ is the optimal solution cor-

responding to𝑊1 (𝝁,𝜸 ), −𝒇 ∗ will be the optimal solution

of𝑊1 (𝜸 , 𝝁). Because the edge weight vector is nonnega-
tive, we have ∥diag(𝒘)𝒇 ∗∥1 = ∥ − diag(𝒘)𝒇 ∗∥1. As a result,
𝑊1 (𝝁,𝜸 ) =𝑊1 (𝜸 , 𝝁).
• Triangle Inequality. For 𝝁,𝜸 , 𝜻 ∈ Range(𝑺V ), let

𝑊1 (𝝁,𝜸 ) = min𝒇1∈Ω (𝑺V ,𝝁,𝜸 ) ∥diag(𝒘)𝒇1∥1,
𝑊1 (𝜸 , 𝜻 ) = min𝒇2∈Ω (𝑺V ,𝜸 ,𝜻 ) ∥diag(𝒘)𝒇2∥1 .
Then, we have

𝑊1 (𝝁,𝜸 ) +𝑊1 (𝜸 , 𝜻 )
=min𝒇1, 𝒇2 ∥diag(𝒘)𝒇1∥1 + ∥diag(𝒘)𝒇2∥1
𝑠 .𝑡 . 𝒇1 ∈∈ Ω(𝑺V , 𝝁,𝜸 ), 𝒇2 ∈∈ Ω(𝑺V ,𝜸 , 𝜻 )
≥min𝒇1, 𝒇2∈R|E | ∥diag(𝒘)𝒇1∥1 + ∥diag(𝒘)𝒇2∥1
𝑠 .𝑡 . 𝑺V (𝒇1 + 𝒇2) = 𝜻 − 𝝁

=min𝝉 , 𝜹∈R|E | ∥diag(𝒘)𝝉 + 𝜹 ∥1
+ ∥diag(𝒘)𝝉 − 𝜹 ∥1

𝑠 .𝑡 . 2𝑺V𝝉 = 𝜻 − 𝝁

=∥diag(𝒘)𝝉 + ˆ𝜹 ∥1 + ∥diag(𝒘)𝝉 − ˆ𝜹 ∥1
≥∥2diag(𝒘)𝝉 ∥1
≥min𝒇 ∈Ω (𝑺V ,𝝁,𝜻 ) ∥diag(𝒘)𝒇 ∥1
=𝑊1 (𝝁, 𝜻 ) .

(20)

Here, 𝜹 := 0.5diag(𝒘) (𝒇1 − 𝒇2), 𝝉 := 0.5(𝒇1 + 𝒇2), and
𝝉 , ˆ𝜹 = arg min𝝉 ,𝜹∈R|E | ∥diag(𝒘)𝝉 + 𝜹 ∥1

+ ∥diag(𝒘)𝝉 − 𝜹 ∥1
𝑠 .𝑡 . 2𝑺V𝝉 = 𝜻 − 𝝁 .

In (20), the first inequality is because the number of con-

straints is reduced and the feasible domain becomes larger.

The second inequality leverages the triangular inequality

of ℓ1-norm. The third inequality is because 2𝝉 is a feasible

solution (rather than the optimal solution) corresponding

to𝑊1 (𝝁, 𝜻 ).
Replacing V to a subset of nodes V′ ⊂ V , we obtain a partial

Wasserstein distance𝑊
(𝑃 )
1

defined on the graph. Based on the same

steps, we can prove that𝑊
(𝑃 )
1

is a valid metric in Range(𝑺V′ ). □

A.2 The Proof of Theorem 2
Proof. Denote V𝑈 = V \ V′. Based on the shrinkage of the

feasible domain, we have

𝑊1 (𝝁,𝜸 ) = min𝒇 ∈Ω (𝑺V ,𝝁,𝜸 ) ∥diag(𝒘)𝒇 ∥1
= min𝒇 ∈Ω (𝑺V′ ,𝝁V′ ,𝜸V′ )∩Ω (𝑺V𝑈 ,𝝁V𝑈 ,𝜸V𝑈 ) ∥diag(𝒘)𝒇 ∥1

≥ min𝒇 ∈Ω (𝑺V′ ,𝝁V′ ,𝜸V′ ) ∥diag(𝒘)𝒇 ∥1 =𝑊
(𝑃 )
1
(𝝁V′ ,𝜸V′ ) .

The second inequality in (9) can be proven in the same way. The

nonnegativeness is based on the metricity. □

B EXPERIMENTAL DETAILS
B.1 Baseline Implementations and

Experimental Settings
All baseline models are implemented using the code released by

the respective authors, as provided below.

• GCN,GAT,APPNP, andBernNet: https://github.com/ivam-

he/BernNet

• ChebNetII: https://github.com/ivam-he/ChebNetII

• GCN-LPA: https://github.com/hwwang55/GCN-LPA

For GCN, GAT, GIN, GraphSAGE, and APPNP, we search the learn-

ing rate over the range of {0.001, 0.002, 0.01, 0.05} and the weight

decay over the range of {0.0, 0.0005}. For APPNP, we search its key

hyperparameter 𝛼 over {0.1, 0.2, 0.5, 0.9}. For BernNet and Cheb-

NetII, we used the hyperparameters provided by the original pa-

pers [21, 22]. For GCN-LPA, we apply a two-layer GCN associated

with five LPA iteration layers, which follows the settings in [46].

We utilize the same datasets and data partitioning as BernNet [22]

and ChebNetII [21] in our experiments.

B.2 Hyperparameter Settings
For all GNNmethods, wemodify their architectures according to Al-

gorithms 1 and 2 and learn themodels through the QW loss. The key

hyperparameters and their search spaces are shown below:𝐴𝐹 indi-

cates whether the optimal label transport is involved in the adjust-

ment of edge weights, which is set to True or False. _ is the weights

of Bergman divergence, whose search space is {10−2, 10−1, ..., 103}.
𝑙𝑟𝐹 and 𝐿𝐹 denote the learning rate and weight decay for the la-

bel transport 𝑭 and MLP-based edge weight predictor. We search

for parameter 𝑙𝑟𝐹 over the range of {0.001, 0.002, 0.01, 0.05} and
parameter 𝐿𝐹 over the range of {0.0, 0.0005}.

11


	Abstract
	1 Introduction
	2 Related work
	2.1 Graph Neural Networks
	2.2 Computational Optimal Transport

	3 Proposed Method
	3.1 Motivation and Principle
	3.2 Optimal Transport on Graphs
	3.3 Learning GNNs with Quasi-Wasserstein Loss
	3.4 Connections to Traditional Methods
	3.5 A New Transductive Prediction Paradigm

	4 Experiments
	4.1 Implementation Details
	4.2 Numerical Comparison and Visualization
	4.3 Analytic Experiments

	5 Conclusion
	References
	A The Proofs of Theorems
	A.1 Proof of Theorem 1
	A.2 The Proof of Theorem 2

	B Experimental Details
	B.1 Baseline Implementations and Experimental Settings
	B.2 Hyperparameter Settings


