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Abstract

A widespread strategy to obtain a language model
that performs well on a target domain is to fine-
tune a pretrained model to perform unsupervised
next-token prediction on data from that target do-
main. Finetuning presents two challenges: (i) if
the amount of target data is limited, as in most
practical applications, the model will quickly over-
fit, and (ii) the model will drift away from the orig-
inal model, forgetting the pretraining data and the
generic knowledge that comes with it. Our goal
is to derive scaling laws that quantify these two
phenomena for various target domains, amounts
of available target data, and model scales. We
measure the efficiency of injecting pretraining
data into the finetuning data mixture to avoid for-
getting and mitigate overfitting. A key practical
takeaway from our study is that injecting as little
as 1% of pretraining data in the finetuning data
mixture prevents the model from forgetting the
pretraining set.

1. Introduction
Large Language Models (LLMs) are generalist models that
are trained on a large and diverse corpus of data, called
the pretraining set. The diversity of the pretraining set is
widely credited with giving LLMs general knowledge and
versatile applicability (Yu et al., 2024). However, not every
user requires a gigantic generalist LLM to answer simple
tasks, and one might instead favor more specialized models
that are able to work better on a specific subset of tasks. For
such scenarios, finetuning is the go-to method to obtain a
custom LLM that performs well on a comparatively smaller
target domain. More precisely, we refer to finetuning in this
work as the optimization of the next-token-prediction loss on
target domain data, where the starting point of optimization
is a pretrained reference model. This definition of finetuning
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encompasses the popular supervised finetuning framework
(Ouyang et al., 2022), where the target domain data consists
of high-quality examples that the LLM should imitate.

Challenges in Finetuning Finetuning runs into two inter-
twined issues. Because the target domain data is often avail-
able in limited quantity, notably when compared to the large
capacity of an LLM, the model will overfit the target do-
main during optimization of the training loss. Furthermore,
the parameters can move far away from the base models’
parameters, which may lead to forgetting: the models’ per-
formance on generic tasks decreases during finetuning.

Pretraining data injection A customary approach to miti-
gate forgetting during finetuning consists of injecting some
pretraining data into the finetuning data mixture (Liu et al.,
2022; Kang et al., 2024; Ibrahim et al., 2024). The idea is
that this data serves as a regularizer that helps the model
stay good on generic tasks. However, it is unclear how to
pick the right amount of pretraining data to inject and what
precise impact it has on both forgetting and overfitting.

Our findings We consider the target loss, i.e., the loss on
a validation version of the target dataset, as a measure of
performance (relative to the target domain) and the pretrain-
ing loss as a measure of forgetting. The main takeaway of
our work is that for each target domain considered in this
paper, the pretraining loss after finetuning can be pre-
dicted accurately from (i) the model scale, (ii) the amount
of target data available and (iii) the fraction of pretraining
data injected in the finetuning data mixture. We demonstrate
that the following scaling law well predicts the pretraining
loss after finetuning

Lpt = L0
pt +A

Dft
β

((1 + B p )N)α
, (1)

Unique Finetune TokensPretraining Loss Before Finetuning

Parameter Relative Efficiency Pretraining Mixture

where A, B, α and β are domain-dependent constants, N
is the model size, Dft is the number of available finetun-
ing tokens, and p ∈ [0, 1] is the proportion of pretraining
data injected in the finetuning data mixture. In particular,
we report that, as a rule of thumb, as little as p = 1% of
pretraining data injection is enough to mitigate forgetting.

We also study the impact of these three quantities on the
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Figure 1. As little as p = 1% of pretraining data injection shields the model from forgetting on the pretrain dataset. The finetuning
validation follows a conventional U-curve. In this paper, we always consider the models obtained at the bottom of the U-curve, that is,
models with the best validation loss on the finetuning set, indicated here by a black dot. Github dataset with small model. The minimum
validation loss is barely impacted by the amount of injected pretraining data p, and it takes more iterations to reach the minimum as
p increases. The loss on the training finetuning set converges to zero as training progresses since the network memorizes the dataset.
The pretraining loss increases monotonically during finetuning. Injecting pretraining data has a regularizing effect that reduces
overfitting and forgetting.

target loss, and report that the data mixture coefficient p has
little effect on it. In the case where p is small, we recover
the multiplicative scaling laws of Zhang et al. (2024):

Lft = A
1

N α

1

Dft
β
+ E, (2)

Parameter Count Unique Finetune Tokens

Paper organization In section 2, we describe the models
used in this study, the different phases of model training
and the pretraining data injection method. In section 3, we
describe the models and datasets used in this study, as well
as the experimental setup. Finally, section 4 describes our
findings and the estimated scaling laws.

1.1. Related works

Auto-regressive pretraining and fine tuning. Auto-
regressive pretraining is a paradigm in which a generative
model is trained on sequences to predict the next token given
a sequence prefix (Sutskever, 2014). This is typically formu-
lated as a classification task over a given vocabulary built
from a tokenizer. Finetuning consists of pursuing the auto-
regressive pretraining on a specific finetuning dataset, orders
of magnitude smaller than the pretraining dataset. This fine-
tuning dataset typically encompasses data from a single
domain, exhibiting a significant distribution shift compared
to the base dataset. Transferring the model knowledge to
the new distributions can lead to significant capability loss
on the previous dataset, a phenomenon known as forgetting
(Luo et al., 2023; Kalajdzievski, 2024).

Continual pretraining. In the context of continual pre-
training, it has been observed by Ibrahim et al. (2024) that
mixing a small percentage of pretraining data mitigates for-
getting (see Hiratani, 2024, for an analytical framework to
explore how task similarity can affect knowledge transfer).
Unlike finetuning, continual pre-training assumes an infinite
data stream for the new task, which plays nicely with learn-
ing rate schedulers. The scarcity of data in fine-tuning forces
repetitions of multiple epochs, which can cause overfitting.
Therefore, practitioners typically perform early stopping
with a small constant learning rate. Our study focuses on
this last scenario.

Alternative approaches in the context of parameter-efficient
finetuning (PEFT) have tried to address these challenges by
introducing lightweight modules, such as adapters, that are
updated with knowledge about the new task (Houlsby et al.,
2019; He et al., 2022). In this context, Low-Rank Adapta-
tion methods, or LoRA (Hu et al., 2021; Zhang et al., 2024),
inject trainable low-rank matrices into the model layers, by
adding them to the untouched original model weights, thus
reducing the parameter overhead needed to train for new
downstream tasks (see Zhu et al., 2024, for a discussion
on the different roles of LoRA decomposition matrices).
Zhang et al. (2024) question the use of PEFT methods for
fine-tuning, reporting that it usually underperforms in terms
of fine-tuning loss compared to full-parameter tuning. This
is why in this work, we focus on full parameter tuning, and
defer the study of PEFT on forgetting for future work.

Neural scaling laws were first introduced by the semi-
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nal work of Hestness et al. (2017) to predict the final loss
achieved by a model, as a function of its number of parame-
ters N and the amount of data D seen. Later, this empirical
study was scaled to GPT-2 scale models trained on billions
of tokens by Kaplan et al. (2020). In their most simple
forms, these “additive” laws are typically written as:

L = E +
A

Nα
+

B

Dβ
, (3)

where E,A,B, α, β are parameters estimated from measure-
ments. Scaling laws allow us to find the best performance at
IsoFLOPS, i.e., the lowest loss achievable when the number
of FLOPS is fixed. For transformer-like architectures, train-
ing FLOPS is approximated as 6ND while inference cost
is estimated as 2ND. When α ≈ β, as found in the setup
of Hoffmann et al. (2022b), every parameter is worth a con-
stant amount of tokens. In their study, it is a factor ×20 but
can go as high as ×192 for training procedures tailored for
small models (Hu et al., 2024). This exact value varies from
study to study and typically depends on optimizer hyper-
parameters (Porian et al., 2024; Besiroglu et al., 2024) or
the quality of data (DeepSeek-AI, 2024). When accounting
for the cost of inference (Sardana et al., 2024), smaller mod-
els trained for longer should be preferred over bigger ones.
Other scaling laws can be baked in, accounting for mixing
different modalities (Aghajanyan et al., 2023), encompass-
ing learning rate scheduling (Tissue et al., 2024) or taking
inspiration from statistical physics (An et al., 2024).

Scaling laws for finetuning. Conventional training laws
focus on datasets too big for overfitting, sometimes even
too big to repeat any data. In this context, validation and
training loss tend to be equal. This setting cannot be ap-
plied in the context of finetuning, where the smaller datasets
are subject to overfitting, and where the discrepancy be-
tween tasks might induce a significant performance gap.
This setup of repeating training data has been first studied
by Hernandez et al. (2021) and extended by Muennighoff
et al. (2023): they apply an exponential “decay” factor
1− exp (−RD/R∗

D) to tokens D to account for the lack of
information provided by further repetitions RD over multi-
ple epochs. In Zhang et al. (2024), scaling laws are derived
for the finetuning loss with full parameter, LORA adaptation,
and prompt finetuning. Other studies focus on the diversity
of domains or different measures than the loss (Barnett,
2024; Isik et al., 2024). Close to our work, Kalajdzievski
(2024) characterizes forgetting during finetuning. The key
differences with our work are that Kalajdzievski (2024) uses
an instructed pretrained LLama2 model. In contrast, we
use several model scales to characterize the behavior of
finetuning at different scales. Also, they measure the forget-
ting between a pair of datasets, finetuning on one domain
and computing the loss on another domain. In contrast, we
measure forgetting by looking at the pretraining loss and
considering 6 different domains. They also do not mention
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Figure 2. Generalization-memorization tradeoff. Arxiv domain.
Each point corresponds to the bottom of the U-curve for a model
trained on datasets of sizes 300K, 900K, 3,000K, 9,000K and
30,000K tokens with mixture parameter p = 1%. Forgetting is
more severe when the model is small and when the finetuning
dataset is big. As shown in Equation 6, this can be attributed to
the lack of capacity of the model. More parameters are assigned to
training set memorization, and fewer parameters are assigned to
the pretraining set performance.

pretraining data injection, which is a key contribution to this
work. Finally, they consider parameter-efficient finetuning,
while we consider full-parameter finetuning, which is more
costly but also more efficient (Zhang et al., 2024).

2. Methods
We describe the training phases a model undergoes in our
study: pretraining and finetuning. We also describe pretrain-
ing data injection for finetuning.

2.1. Pretraining phase

The model is trained on a significant amount of tokens from
a pretraining dataset Dpretrain using the next-token prediction
loss, until satisfying performance is achieved. The model
minimizes the pretraining loss

Lpt = Ex∼Dpretrain [ℓ(x, θ)]. (4)

The model is typically pretrained using Adam and de-
caying learning rate, for example, following a cosine
scheduling (Loshchilov & Hutter, 2017) or a square root
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one (Hägele et al., 2024). This pretraining loss is low when
the model is able to correctly do next-token-prediction on
the pretraining set, which, if it is diverse enough, means that
the model has general knowledge. In the rest of the paper,
we use this pretraining loss as a proxy of general knowledge
of a model, and in particular, we measure the forgetting of a
model through the increase of pretraining loss.

2.2. Finetuning phase

In the second phase of training, the model is finetuned on a
smaller task-specific dataset Dfinetune, by resuming training
from the pretrained model. The parameters are updated by
minimizing the loss on Dfinetune

Lft = Ex∼Dfinetune [ℓ(x, θ)], (5)

Since the finetuning set is small, the optimization of this loss
quickly leads to overfitting, where the loss on a validation
finetuning set increases - this yields a U-curve as displayed
in Figure 1. Furthermore, since the model is now only
trained by seeing data from the finetuning set, it drifts away
from the base model and forgets some of the pretraining
set. The optimization of the finetuning loss is typically
carried out until the validation loss starts increasing, and
this checkpoint gives the so-called finetuned model.

2.3. Pretraining data injection

A simple method to mitigate overfitting and model forget-
ting consists of mixing data from the pretraining set and
finetuning the set during finetuning.

Formally, give a mixture parameter p ∈ [0, 1], we define the
mixture of domains mix(p) = (1− p)Dfinetune + pDpretrain.
In other words, the probability of selecting a datapoint from
mix(p) is

P (x|mix(p)) = (1− p)P (x|Dfinetune) + pP (x|Dpretrain).

We can sample efficiently from mix(p) by first sampling a
random binary variable i ∈ {0, 1} with probability p that
i = 1, and then sampling from Dpretrain if i = 1 and from
Dfinetune otherwise. We can then perform finetuning of the
model by minimizing the loss over mix(p):

Lmix = Ex∼mix(p)[ℓ(x, θ)] = (1− p)Lft + pLpt.

This formulation makes it clear that pretraining data injec-
tion can be interpreted as adding the pretraining loss as a
regularizer to the finetuning loss (Hastie et al., 2017). This
way, the model still sees some samples from the pretraining
set, which acts as a way to mitigate forgetting and overfit-
ting.

3. Experiments
3.1. Experimental setup

Models. We train GPT2 style transformers (Radford et al.,
2019) of different scales. Table 1 reports the model architec-
tures used here. The parameter count follows an exponential
progression to cover different magnitudes. For every model,
we fix the vocabulary size to 32, 000 and the sequence length
to 1, 024. We use the SentencePiece tokenizer (Kudo, 2018).
Every computation is performed in bfloat16 precision, ex-
cept for normalization layers and softmax in self-attention,
which are computed in float32 precision, following standard
practices (Rabe & Staats, 2021; Wang et al., 2024). The
biggest model fits on a single A100− 80GB GPU without
sharding, with parameter replication across GPUs to handle
large batch sizes. 1 GPU is used for Tiny and Small, 4 for
Medium, 8 for Large and XL.

Datasets. We use RedpajamaV2 (Weber et al., 2024) as the
pretraining set. We use several domains from The Pile (Gao
et al., 2020) as finetuning sets, covering all 5 categories
(“academic”, “internet”, “prose”, “dialogue” and “misc”).
We artificially keep a limited number of tokens to imitate
data scarcity, following a log scale between 300 K and
30,000 K tokens - which typically represents between 300
and 60,000 pages from a book, respectively. We believe this
accurately reflects realistic use cases where finetuning is
performed on specific internal documentation on a specific
topic. Data-scarcity means that repetitions of training data
will be necessary (multiple epochs), which ensures that
overfitting can be observed.

Pretraining. We pretrain each model on RedpajamaV2
using standard hyperparameters and a total count of 100
tokens per parameter. The learning rate follows a linear
warmup for 0.5% of the total iterations and then follows a
cosine scheduling until the end of the training, with a ter-
minal value that is one-hundredth of the maximum value.
We use AdamW with a weight decay of 0.1, which yielded
better results than without weight decay (Figure 17). A gra-
dient clipping of 5 was found sufficient to stabilize training
across all model scales.

Finetuning. We then finetune the model on several domains
from the Pile, using a varying amount of target data and
different fractions of injected pretraining data. We perform
finetuning for 12K steps, which is sufficient to observe a
U-curve on the validation loss in every configuration tested.
The learning rate is equal to 1/30 times the peak pretraining
LR, which was reached at about 90% of the pretraining
stage. Empirically, we observe in the ablations of Figure 5
that this rule of thumb is sufficient to ensure both overfitting
well within 12K steps and stable training at all model scales
and all mixtures p. This corresponds to anywhere between
13 and 5200 epochs, depending on model and data scale.
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Figure 3. Losses as a function of the fraction of injected pretraining data p on Enron emails with 900K finetuning tokens. Data
mixing improves generalization when finetuning data is scarce. The diversity of the pretraining dataset biases learning toward features
that exhibit higher generalization. The optimal value of p depends on the domain, the dataset size, and the model size. The finetuning loss
as a function of p also follows a U-curve: when p is too small, the model overfits too quickly and does not benefit from the regularizing
effect of pretraining data injection. When p is too large, the model does not see enough finetuning data to allocate it enough capacity,
there is too much tension with learning from the pretraining set. As expected, increasing p monotonically decreases the pretraining loss.

Model Size Parameters (N) Dim Heads Layers Batch Size Initial LR Tokens (D) FLOPs
Tiny 41M 512 8 8 32 1e-3 5.1B 1.25× 1018

Small 109M 768 12 12 32 1e-3 12.B 7.84× 1018

Medium 334M 1024 16 24 64 1e-3 33B 6.61× 1019

Large 665M 1536 16 24 128 3e-4 66B 2.63× 1020

XL 1.27B 2048 16 24 112 3e-4 100B 7.62× 1020

Table 1. Pretrained model configurations for different sizes of GPT models. All models use the same tokenizer with a vocabulary
size of 32, 000, and the MLP hidden dimension is 4 times the dimension of the model. The output embedding layer is included in the
parameter count, as per Porian et al. (2024). Training FLOPS are reported as 6ND, following standard practices (Kaplan et al., 2020).

We use Adam without weight decay. The parameter p is
chosen from the set {0%, 0.1%, 0.5%, 1%, 5%}.

In total, we, therefore, have 5 model sizes × 5 number of
finetuning tokens × 5 injection fractions × 12 domains,
which gives 1500 finetuning runs to study.

We report validation losses on the pretraining and target
domains, and train losses on the target domains. We use
these losses as a proxy for the model’s performance on the
finetuning domains.

4. Results
Unless specified otherwise, we report these values at the
checkpoint corresponding to the lower validation domain
target loss, i.e., the bottom of the “U-curve”.

4.1. Mundane observations: overfitting

The loss profile of a typical finetuning run is shown in Fig-
ure 1. Unsurprisingly, every validation curve for the finetun-

ing dataset follows a U-shape since the small number of to-
kens allows for memorization on the train set. The loss over
the train set decreases monotonically, with a steeper slope
for smaller train sets. The pretraining loss typically follows
a forgetting pattern, which is mitigated by taking p > 0.

4.2. Speed of forgetting

Empirically, we observe in Figure 1 that as little as p = 1%
of pretraining data shields the model from forgetting at
no cost for performance on the finetuning dataset. The
pretraining data plays an “anchoring” role that helps retain
useful features.

On the contrary, in the absence of pretraining data injection,
performance can plummet drastically, especially for smaller
models. We hypothesize that smaller models must balance
their capacity between tasks, whereas bigger ones can “learn
a new task” while preserving most existing knowledge.
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Figure 4. Overfitting and forgetting profiles for two domains. On one hand, Dm mathematics (left) is a dataset that differs a lot from
the pretraining set, benefits little from more parameters, and a lot from more data. On the other hand, Wikipedia En (right) is more
similar to the pretraining set, and more parameters are more beneficial than more training data. Datasets that are far from the pretraining
distribution are more prone to forgetting and benefit the most from injecting pre-training data p > 0.

Domain Finetuning Scaling Laws Forgetting Scaling Laws

α β A E
Bootstrapped

MRE (↓) α β A B
Bootstrapped

MRE (↓)

Arxiv 0.17 0.10 95.18 1.30 0.91% 0.74 0.34 526 392 0.36%
Dm mathematics 0.06 0.19 16.03 0.88 0.50% 0.58 0.27 202 9847 0.91%

Enron emails 0.07 0.05 20.21 0.00 1.13% 0.53 0.21 127 1754 0.49%
Github 0.14 0.12 84.55 0.79 1.40% 0.76 0.43 217 647 0.43%
Pg19 0.14 0.02 34.55 1.25 0.65% 0.78 0.60 14 259 0.39%

Wikipedia en 0.13 0.02 30.11 0.62 0.53% 0.52 0.11 145 829 0.21%
Euro parl 0.12 0.17 160.24 1.10 1.86% 0.81 0.39 2511 1107 0.79%
Free law 0.19 0.05 94.06 1.11 0.91% 0.75 0.45 74 236 0.30%

Openwebtext 2 0.14 0.01 31.54 0.96 0.35% 0.38 0.23 2 6504 0.25%
Pubmed abstracts 0.17 0.01 46.89 0.94 0.83% 0.76 0.57 8 948 0.17%
Pubmed central 0.18 0.05 74.37 1.09 0.56% 0.65 0.34 81 574 0.26%
Stackexchange 0.16 0.08 78.23 1.27 1.03% 0.62 0.34 63 1179 0.27%

Table 2. Comparison of Scaling Law Coefficients for Finetuning and Forgetting. The Bootstrapped Estimate of Mean Relative Error
|ŷ−y|/y across domains for finetuning is 0.89%, and for forgetting is 0.40%. These estimates are obtained by resampling each example
independently with equal probability to construct a new set of 125 points per domain. The final results are averaged over 128 independent
bootstrap repetitions.

4.3. Pretraining data injection improves generalization

At p > 0, the bottom of the U-curve can reach lower values
than p = 0, which suggests that pretraining data injection
serves are a regularization and helps generalization on the
finetuning dataset. This effect can be observed in Figure 3.
As a function of p, the finetuning validation loss also follows
a U-curve - albeit less pronounced. This effect is more
striking for small models.

4.4. Repeating pretraining tokens during finetuning

In all our experiments, we inject pretraining data that is
streamed from the pretraining set without repetition. As
reported, injecting only p = 1% of pretraining data in the
training mix is enough to mitigate forgetting significantly.
Since p is quite small, it means that we use a small number
of pre-training tokens. For instance, in Figure 1, we see that
the bottom of the U-curve is reached around 1800 iterations
for the run with p = 1% of injected pre-training data. Since
we use a batch-size of 32 and a context length of 1024, it
means that, at the bottom of the U-curve, we have only seen
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10−2 10−1 100 101 102 103

Unique pretrain tokens per unique finetune token

3.25

3.50

3.75

4.00

4.25

Pr
et

ra
in

lo
ss

Unique finetune tokens
300 KT 900 KT 3,000 KT 9,000 KT

Figure 6. Influence of the number of available pretraining to-
kens on the pretraining loss after fine-tuning with p = 1% of
pretraining data injected to the mix. We use the Arxiv domain and
a model of size “tiny”. With little finetuning data, finetuning is
short and hence we can use very few pre-training tokens to reach
the optimal forgetting. When there is a lot of finetuning tokens, the
optimization takes a long time to reach the bottom of the U-curve.
Hence, when the number of pretraining tokens available is also
limited, these tokens are repeated many times, which leads to over-
fitting on the pretraining set as well, and increases the pre-training
loss. Remarkably, only 0.3 unique pretraining tokens per unique
finetuning token are sufficient to avoid forgetting.

1%× 1800× 32× 1024 = 600K pretraining tokens.

We now turn to a study of how limiting the amount of avail-
able pretraining tokens that are used for pretraining data
injection impacts finetuning and forgetting. To do so, we

consider one domain (arxiv), one model size (tiny), and a
fixed fraction of pretraining data injection (p = 1%). We
then artificially limit the number of available pretraining
tokens in 32KT, 96KT, 320KT, 920KT, and 3,200KT. We
report the results in Figure 6. We observe that as the number
of available pretraining tokens increases, the pretraining
loss after finetuning decreases. However, in this regime,
the pretraining dataset itself becomes susceptible to overfit-
ting. This underlines the pivotal role of pretraining dataset
diversity in mitigating forgetting.

4.5. Scaling laws

We display the loss as a function of model size and dataset
size for two domains in Figure 4. We observe a highly
predictable behavior that is amenable to the fitting of a
scaling law.

We consider different model sizes, which in turn impact the
number of pretraining tokens used to train the model, using
100 tokens per parameter. Hence, we do not explore the
full pretraining (N, D) space, restricting ourselves to the
isocurve D = 100N . We have two main reasons for this
approach. First, while analyzing the behavior of losses in
relation to both N and the total number of pretraining tokens
is insightful, using an isocurve aligns with the most com-
mon practice, which is to train only one model per model
size. Second, pretraining a large grid of models would be
computationally expensive, and we prefer to allocate our
computing budget toward a more detailed understanding of
finetuning mechanisms.

We fit a different scaling law for the finetuning and forget-
ting loss for every domain. Per domain, we have 5 model
sizes × 5 dataset sizes × 5 mixture values = 125 points
in total. This is large in front of the number of degrees of
freedom of the scaling law (4 or 5 in our case).

Method. To fit the coefficients, we follow a conventional
approach (Muennighoff et al., 2023), i.e., we rely on the
Huber loss and we perform optimization in log space for
improved numerical stability. See Appendix C for a detailed
discussion.

Scaling law for finetuning loss For every domain D of
the Pile, we fit the multiplicative law proposed by Zhang
et al. (2024) for finetuning:

Lft = A
1

Nα

1

Dft
β
+ E, (6)

which yields a Bootstrapped (n = 128) Mean Relative
Error (MRE) of 0.89% across domains. As depicted in
Figure 3, the fine-tuning loss is barely impacted by the
fraction of injected pre-training data p, which is why we
chose to treat the loss as a constant of p. We report scaling
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Figure 7. Scaling laws for finetuning loss. Wikipedia domain. We extend the multiplicative laws of Zhang et al. (2024) to take into
account the fraction of injected pretraining data. At first order, this scaling law is independent of the mixture p. Left Agreement between
the observed behavior and the behavior predicted by the scaling law. Right Evaluated and predicted loss as a function of p.

laws coefficients in Table 2. The results for fixed dataset size
or for a fixed mixture p are given in Figure 7. We also tried
to fit an additive law of the form Lft =

A
Nα + B

Dft
β +E, but

despite the additional degree of freedom through coefficient
B, it yields an higher MRE of 1.36%. The superiority of
the multiplicative scaling law compared to the additive is
consistent with the findings of Zhang et al. (2024).

Analysis. The value of E ≈ 0 for Enron emails stands
out in the table. This pattern suggests that memorization of
the corpus is possible, firstly thanks to its modest size, and
secondly because it has been made available online more
than 20 years ago and used in several NLP publications
ever since then1. Besides that, the value of α oscillates
between 0.12 and 0.19, which is consistent with previous
studies (Hoffmann et al., 2022a). The value of β seems to
capture the difficulty of the dataset, with the high-entropy
ones like Wikipedia or Openwebtext standing out.

Scaling law for forgetting For every domain of the Pile,
we want to predict Lpt, the value of the pretraining loss
after finetuning, as a measure of forgetting. We propose the
(modified) multiplicative law:

Lpt = L0
pt +A

Dft
β

((1 +Bp)N)α
, (7)

where L0
pt is the pretraining loss before fine-tuning, i.e. the

pretraining loss of the pretrained model, Dft is the number
of available fine-tuning tokens, N is the model size. The
variables of the scaling law are A,B, β and α, and they are
all positive numbers. Note that the value L0

pt is exactly what
the original scaling law papers try to estimate (Kaplan et al.,

1See http://www.enron-mail.com for example.

2020; Hoffmann et al., 2022a). We propose a multiplica-
tive law where Dβ is on the numerator with β > 0, since
increasing the finetuning dataset size leads to more itera-
tions to reach the bottom of the U-curve, which results in a
model that drifts further from the base model and a higher
pretraining loss. We use a factor (1 +Bp) in front of the N
parameter. It accounts for the fact that a fraction p of the pa-
rameters are allocated to the pretraining task rather than the
finetuning one, and they are B times more efficient in this
context. Typically, we observe B ≫ 1 since the features of
the pretrained model are already aligned with the pretraining
task, which translates into more efficient parameter alloca-
tion. Coefficients are given in Table 2. Since fine-tuning is
performed with a learning rate slightly higher than the ter-
minal LR of pretraining, the value of L0

pt corresponds to the
rewarmed pretrained model, i.e, the model pretrained with
the LR used for fine-tuning, and not the terminal LR of the
cosine scheduling. Differences are highlighted in Table 3.
The average Bootstrapped MRE across domains is 0.40%.

Other laws. An additive law to predict the difference
Lpt − L0

pt has an error greater than 0.82% despite having
one more degree of freedom. We also note that it is critical
to add the base pretraining loss L0

pt to the scaling law, as

fitting a scaling law of the form Lpt = A Dft
β

((1+Bp)N)α + E

leads to a MRE of 1.05%. Finally, we observe that the
“cost of rewarming” the model must be accounted for when
computing L0

pt, as observed in Table 3. Otherwise, we find
that an additive corrective factor of E ≈ 0.05 is necessary
to account for forgetting induced by optimization, which
yields a higher MRE of 0.49%. Indeed, even in the setting
p = 1, further pretraining with a constant LR (which is
typically higher than the terminal LR as shown in Figure 5)
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Figure 8. Scaling laws for forgetting. Github domain. We propose to model the increase in pretraining loss as a multiplicative scaling law
(Equation 1), that takes into account model size, number of finetuning tokens available, and fraction of pretraining data injected in the data
mixture p. Left Agreement between evaluated and predicted loss on one domain. Right Evaluated and predicted loss as a function of p.

Pretraining loss L0
pt with

Model Size pretrained model
1/100 peak LR

rewarmed model
1/30 peak LR

Tiny 3.13 3.19
Small 2.84 2.92

Medium 2.55 2.60
Large 2.34 2.39

XL 2.22 2.27

Forgetting
MRE (↓) 0.49% 0.40%

Table 3. Effect of rewarming the model on the pretraining loss.
Finetuning is performed with a learning rate (LR) which is 1/30 of
the peak LR, slightly higher than the terminal LR of the pretraining
stage. This “rewarms” the model, incurring a loss increase that we
measure and must be accounted for.

cancels some of the benefits of the cosine cooldown used
during pretraining.

Analysis. The value of B indicates how much pretraining
data injection helps mitigate forgetting. For Dm mathemat-
ics, which was observed in Figure 4 to be highly subject to
forgetting, B ≈ 104. On the contrary, for Wikipedia, on
which pre-training data injection was less useful, we only
have B ≈ 829.

An interesting consequence of our functional form is that
forgetting is primarily attributed to network capacity. This
is confirmed by the fact that smaller models suffer the most:
they lose up to 95% (!) of the pretraining progress when
forgetting (i.e, the pretraining validation loss reverts to a
point reached at 5% of pretraining), while bigger models
only lose 20% of the progress. However, bigger models

require more compute, so forgetting is more expensive for
them. Results are summarized in Figure 14.

Extrapolation. Scaling laws are mainly useful when they
enable performance predictions based on small-scale exper-
iments, to assess if bigger models and datasets are worth
the cost. To test this, we design a synthetic experiment
where scaling law coefficients are fitted using only a subset
of model sizes and fine-tuning dataset sizes. The results,
presented in Table 4, demonstrate that models trained on no
more than Medium (334M parameters) and 3,000K tokens
can accurately predict the performance of Large and XL
models trained on 9,000K and 30,000K tokens. Averaged
over all domains, the prediction error remains within 2.01%
on the finetuning set and 0.83% on the pretraining set. On
4 GPUs, the Medium model fine-tuned on 3,000K tokens
reaches the bottom of the U-curve in under 30 minutes,
whereas the XL model requires up to 7 hours on 8 GPUs.
The cost of acquiring additional data to scale from 3,000K to
30,000K tokens varies depending on the context, but can be
significant in certain environments. In this context, scaling
laws can lead to substantial computational savings.

Conclusion
We showed that one can accurately predict the finetuning
performance and the forgetting of the pretraining set of
large language models, as a function of the model size, the
number of available tokens, and the fraction of pretraining
data injected into the data mixture. This behavior is very
consistent across datasets and can be explained by simple
scaling laws. A key takeaway of our work is that injecting
even 1% of training data during fine-tuning helps mitigate
pretraining set forgetting.
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A. Ablations
Learning rate. The learning rate (Figure 5) is a critical parameter. If it is too low, we might fail to reach the bottom of the
U-curve within a reasonable time. If it is too high, it causes the model to diverge away from the pretraining validation loss.
Warmup and cosine scheduling cause modelization issues in this context. In particular, they require to know in advance the
number of steps necessary for convergence, which is tricky when targeting the bottom of a U-curve. Therefore, we focus on
a constant learning rate.

Anchored AdamW. We propose another approach to reduce forgetting, coined Anchored AdamW, which performs the
same updates as AdamW with the difference that the regularization ties the parameters θt to the pre-trained model θ0, instead
of 0.

regularization =
λ

2
∥θt − θ0∥22. (8)

This contrasts with the default weight decay which is simply λ
2 ∥θt∥22. The pre-trained parameters θ0 hence play the role of

anchoring. The difference between Adam, AdamW, and Anchored Adamw is illustrated in Figure 9. The results on the
Github domain are given in Figure 10. In this scenario, we see that adding only p = 1% of pre-training data outperforms
fine-tuning with weight decay by a large margin. We see that the higher performance of finetuning with pre-training data
can not be attributed to closeness with θ0 only. Anchored AdamW fails to prevent forgetting on RedPajama, but at the same
time, the regularization is strong enough to hurt performance on Github noticeably. This suggests that having more data
diversity is more powerful than simple parameter-space regularization.
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starting point θ0 = (4, 4). 100 steps, learning rate 0.1.
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Figure 10. Comparison of Adam and Anchored AdamW on Github
domain. Mixing p = 1% of pre-training data with Adam optimizers
clearly outperforms Anchored AdamW, both on pre-trained data
and fine-tuning data.

Forgetting law. Other laws can be tested, such as ADβ(1−p)κ

Nα + E which has the appealing property of going to zero
when p = 1. However, the MRE reaches 0.67% for this law, despite having the same degrees of freedom with the new
parameter κ. Purely additive laws had an MRE superior to 1%.

Additional isocurves. Most experiments of the paper rely on the isocurve D = 100N for the checkpoint of the pre-trained
model. We also re-train full models from scratch with cosine decay for the isocurve D = 10N , and evaluate them on the
Freelaw domain. Results are given in Figure 11 and demonstrate that our scaling laws still hold for these checkpoints.

Extrapolation. In Table 4 we evaluate the extrapolation capabilities of the scaling law, by fitting only on a subset of all
available tokens and models. Overall, the MRE remains below 2% for the law of (Zhang et al., 2024), and even below 1%
for the forgetting law we propose. This demonstrates the feasibility of estimating coefficients at a small scale and evaluating
their impact at a larger scale.

13



Scaling Laws for Finetuning and Forgetting in LLMs

Tiny Small Medium Large XL
Model Size

2.00

2.25

2.50

2.75

3.00

L
os

s
on

th
e

fin
et

un
e

va
lid

at
io

n
se

t

Unique finetune tokens
300K 900K 3,000K 9,000K 30,000K

Scaling law prediction Empirical measurement

Tiny Small Medium Large XL
Model Size

2.50

2.75

3.00

3.25

3.50

Pr
et

ra
in

in
g

lo
ss

Unique finetune tokens
300K 900K 3,000K 9,000K 30,000K

Scaling law prediction Empirical measurement

Figure 11. Scaling laws for finetuning and forgetting in models pre-trained at the D = 10N isocurve. Freelaw domain. The law
remains robust to the choice of checkpoint, with a bootstrapped MRE of 0.57% for forgetting and 1.14% for finetuning.

Setup Predict on Finetuning
MRE

Forgetting
MRE

A XL 1.69% 0.73%30,000K

B Large, XL 2.01% 0.83%9,000K, 30,000K

Table 4. Mean Relative Error across all 12 domains in the extrapolation setting. In setup A, scaling law coefficients are estimated on
all model sizes except XL, and on all finetuning set sizes except 30, 000K tokens. In setup B, the largest model used for fitting is Medium
(334M) and the maximum finetuning dataset size is limited to 3, 000K tokens.

Instruction finetuning (IFT). Our work focused mainly on the next token prediction task in finetuning, directly on the
raw text sequence, but a variant exists: instruction finetuning (Wei et al., 2022; Sanh et al., 2022; Min et al., 2022). In this
setup, the ”instruction” tokens (sometimes referred to as “prompt” or “input”) are masked from the loss, and the model is
trained to solve a specific task conditioned by the prompt. Implementation-wise, we leverage that our vocabulary is capped
to 32k tokens (ids can be stored on 15 bits), and we store the mask in the (unused) 16th bit of the uint16 types we use to
store token ids. At train time, bitwise operations are used to efficiently extract the mask from the ids, and apply the next
token prediction loss only on the unmasked tokens. We rely on the OpenHermes dataset (Teknium, 2023), with special
“[INST]” and “[/INST]” tokens to delimit the instruction part from the prediction part. Results are given in Figure 12. We fit
the scaling law coefficients, and we see that the bootstrap estimate of MAE is 0.59% for finetuning, and 0.29% for forgetting.
Coefficients are given in Table below.

Domain Finetuning Scaling Law Forgetting Scaling Law
α β A E MRE α β A B MRE

OpenHermes 0.17 0.03 64.28 0.46 0.59% 0.80 0.27 5513 8584 0.29%

B. Practical consequences on finetuning
The hidden cost of forgetting. The Figure 14 shows that small models suffer the most from forgetting, losing up to 95%
of the pre-training stage. This makes them unsuitable for sequential adaptation, and they benefit less from pre-training on
diverse data when fine-tuning specific data. Overall, this balances some findings of Sardana et al. (2024), which suggested
that smaller models should be preferred due to their lower inference cost. While being more expensive, bigger models retain
more information from the pre-training stage.
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Figure 12. Scaling laws for finetuning and forgetting with Instruction Finetuning (IFT) on OpenHermes dataset. The dataset is
much smaller than the domain of The Pile considered here, so different values of unique tokens are considered. Finally, this dataset is very
diverse and challenging by design, which flattens the contribution of the number of tokens, and makes the model size the driving factor
behind scaling.

Downstream task performance. It has been documented that training loss correlates with downstream task perfor-
mance (Hoffmann et al., 2022a; Mayilvahanan et al., 2025). Therefore, we evaluate the quality of the 1.3B model, before and
after finetuning, with and without pre-training data injection, on ARC-easy (Clark et al., 2018) and MMLU tasks (Hendrycks
et al., 2021). Results are given in Figure 13. We see that the performance on ARC-easy degrades after fine-tuning, but
injection of pre-training data mitigates this phenomenon. On MMLU the trend is less obvious, as the model does not perform
better than a random classifier. However, the monotonic improvement across all model scales suggests that dm-mathematics
contains an inductive bias that helps on some tasks of MMLU.

Furthermore, for ARC-easy in the 0-shot setting, we compare the performance with pretraining data injection (p > 0%)
against the baseline at p = 0%, and we report the difference in accuracy when it’s significant at the 99% threshold, based on
the z-score. Otherwise, we report the difference as ”Not Significant” (n.s). We see that injecting pre-training data yields a
consistent improvement across all model scales and data abundance.

Percentage of pre-training data injection p
Model size Number of tokens D 0.1% 0.5% 1% 5%

Medium 300 KT ns ns ns ns
Medium 900 KT ns ns ns ns
Medium 3,000 KT 3.9 4.5 4.0 4.0
Medium 9,000 KT 4.1 4.1 4.0 ns
Medium 30,000 KT 4.8 6.6 4.8 5.4

Large 300 KT ns ns ns ns
Large 900 KT ns ns ns ns
Large 3,000 KT ns 3.9 4.6 5.1
Large 9,000 KT 3.8 5.0 5.3 4.6
Large 30,000 KT 6.9 7.7 7.2 8.4

XL 300 KT ns ns ns ns
XL 900 KT ns ns ns ns
XL 3,000 KT ns ns ns ns
XL 9,000 KT ns ns 4.0 ns
XL 30,000 KT 4.8 5.0 5.5 5.3
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Figure 13. Downstream tasks performance for pretrained checkpoint before finetuning, after finetuning, and with data injection.
All checkpoints have been fine-tuned on dm-mathematics. Forgetting penalizes the model on ARC Easy, but finetuning improves
(marginally) the model on MMLU.

C. Scaling law coefficient estimation
We follow the procedure outlined in (Hoffmann et al., 2022a; Muennighoff et al., 2023; Besiroglu et al., 2024), to identify
the coefficients in our scaling laws. Restating the supervised law for convenience

L(N,D) = E +
A

Nα
+

B

Dβ
. (9)

To aid numerical stability, we write this expression in log space. First note that for a, b > 0

log(a+ b) = log (exp log a+ exp log b) = LSE(log a, log b), (10)

where LSE is the log-sum-exp operator. We can now proceed to write the supervised scaling law in log form

logL(N,D;A,B,E, α, β) = log

[
E +

A

Nα
+

B

Dβ

]
(11)

= LSE [logE, logA− αN, logB − βD] . (12)

We make no assumptions about the relationships between the values (i.e. no parameter tying) and optimize

(A∗, B∗, E∗, α∗, β∗) = argmin
{A,B,E,α,β}

∑
i

Huberδ

(
logL(N (i), D(i);A,B,E, α, β)− L(i)

)
(13)

with a Huber δ = 10−4, where N (i), D(i) and L(i) are the model size, number of training tokens and loss achieved
by the i-th run. We fit on 125 samples over a grid of L-BFGS-B initializations given by: logA ∈ {0, 3, 6, 9, 12},
logB ∈ {0, 3, 6, 9, 12}, logE ∈ {−2,−1.5,−1, 0, 0.5, 1, 1.5, 2, 2.5, 3}, α ∈ {0, 0.5, 1}, β ∈ {0, 0.5, 1}. We use a similar
procedure to fit the different forms of the scaling laws.
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Figure 14. Cost of forgetting. Points are reported at the bottom of the U-curve for the Arxiv domain. Same setup as Figure 2. Smaller
models lose a significant portion of the progress achieved during pretraining—up to 80%—effectively negating much of the initial effort.
In contrast, larger models retain more knowledge due to their greater capacity, allowing them to accommodate both tasks simultaneously.
However, these models are also the most expensive to train, not only because of their size but also due to the increased number of
pretraining tokens required for compute-optimality (Hoffmann et al., 2022a). Consequently, the GPU-hour cost induced by forgetting is
substantially higher for larger models.
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Figure 15. As little as p = 1% of pretraining data shields the model from forgetting on the pretrain dataset.
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Figure 16. Losses at the bottom of the U-curve for 6 domains of The Pile with 5 models and 5 dataset sizes, for all values of data
mixture γ.
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Figure 17. Ablation. Weight decay during pretraining improves checkpoint quality. Note that default implementations of Pytorch and
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optax/issues/292), unlike the seminal paper suggested (Loshchilov & Hutter, 2019), which implies that weight decay impact
diminishes during learning rate decay.
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Figure 18. Losses as a function of model size, dataset size, and data-mixing.
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Figure 19. Example of finetuning scaling laws for several domains.
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Figure 20. Example of forgetting scaling laws for several domains.
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