
Research Article
An Effective Task Offloading Method for Separable Complex
Mobile Terminal Tasks

ZeminLiu,1NaZhou,1,2YanWang ,1,2,3 Jian-TaoZhou,1,2,3HaotianZhang,1 andGangXu1

1Inner Mongolia Engineering Lab of Cloud Computing and Service Software, College of Computer Science,
Inner Mongolia University, Hohhot, China
2Ecological Big Data Engineering Research Center of the Ministry of Education, Hohhot, China
3National and Local Joint Engineering Research Center of Mongolian Intelligent Information Processing, Hohhot, China

Correspondence should be addressed to Yan Wang; 55234043@qq.com

Academic Editor: Ting Bi

Copyright © 2022 Zemin Liu et al.!is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to limited energy and computing power of IoT devices, they cannot handle complex tasks. Edge computing technology
e"ectively solves the requirements of computing power and response delay for complex tasks in devices by migrating computing
power to the vicinity of IoT devices. For a separable complex task on IoT terminal, we focus on the e"ects of data distribution,
dependencies, and o#oading sequence of subtasks on its total delay when it is o#oaded to edge servers.!rough comprehensively
considering these factors, we study the slicing and choreographingmethod during the o#oading process of a complex task. Firstly,
a task slicing method based on hierarchical clustering is presented and an improved hierarchical clustering algorithm is used to
obtain the optimal solution of task partitioning. Secondly, a task choreographing method based on overlapping the longest path is
presented. Finally, through the simulation experiments of complex tasks with di"erent structures and loads, the e"ectiveness of
our method is veri$ed.

1. Introduction

In recent years, as the mobile Internet industry matures, the
rapid explosion of the Internet of !ings (IoT) leads the
vigorous development of mobile intelligent terminal devices,
which are widely used in transportation, health, entertain-
ment, and other $elds. At the same time, the applications
deployed in IoT devices are becoming more and more
complex. For example, they need to deal with large amounts
of IoT data and complex processing processes. Limited by
their own processing capacity and battery capacity, IoT
devices have been unable to meet the needs of these tasks.
Cloud computing emerges as a computing mode with un-
limited supply of resources and becomes an e"ective sup-
plement to terminal processing capacity. Mobile devices
transfer data to remote terminals, use the resources of cloud
data centers to complete e%cient operations, and return the
$nal results to users, so as to achieve the goal of fast data
exchange. Compared with performing the task directly on

the user terminal, the task processing mode of transferring
data to the cloud is faster and more e%cient, which can
support mobile applications to achieve richer functions.
However, such mode also has some disadvantages. For
example, as users need to transfer amount of data to the
cloud center for processing, the data transfer time is too long
to exceed the e"ective delay requirement of the application.
In addition, the link distance between mobile devices and
cloud center is long, which is prone to interruption or in-
stability, leading to the failure of the feedback results.

!e appearance and application of edge computing solve
the above problems to a certain extent. Edge computing
provides cloud services and IT environment for IoT devices
through sinking the processing capacity of the cloud plat-
form to the network edge closer to IoTdevices, which makes
tasks on IoT devices be o#oaded and processed more
quickly. Compared with cloud computing, edge computing
enables mobile devices to have a shorter data transmission
path for o#oading tasks, thus reducing the feedback and

)JOEBXJ

8JSFMFTT�$PNNVOJDBUJPOT�BOE�.PCJMF�$PNQVUJOH

7PMVNF�����
�"SUJDMF�*%��������
����QBHFT

IUUQT���EPJ�PSH���������������������

mailto://(null)55234043@qq.com
https://orcid.org/0000-0002-2372-105X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3700135

transmission delay of data and results, meeting the needs of
delay-sensitive tasks on IoT devices. Meanwhile, processing
tasks at the edge is also helpful to relieve the tra%c pressure
on the network.

!ere are some drawbacks to o#oading tasks to edge
servers. Due to the limitation of edge server’s own processing
capacity, the processing time of o#oaded tasks will increase
when the computing requirement is relatively large. Such
processing delay cannot also satisfy a delay-sensitive task,
and some complex tasks even exceed the processing capacity
of a single edge service. For this, there are two solutions. One
way is to o#oad tasks to multiple edge servers through
distributed computing to shorten the time delay of task
execution.!e other way is to combine the edge computing
with the cloud computing to work together to complete the
tasks, which can improve the processing capacity and
shorten the transmission time. In both cases, we need to
divide complex tasks into smaller ones and choreograph
them to multiple edge servers or the cloud.

In this paper, we focus on the slicing and choreographing
method of a complex delay-sensitive task at edge servers.!e
main research work and contributions include the two
following aspects: (1) Aiming at the problem that the re-
sponse time of o#oading task is too long to meet the delay
requirements of IoT devices, the task slicing method based
on hierarchical clustering is improved to reduce the com-
munication cost of subtasks on di"erent servers and min-
imize the time consumption of task work&ow while
supporting the parallel and distributed execution of sub-
tasks. (2) On the basis of task slicing, a subtasks choreog-
raphy method combining static, dynamic, and the earliest
start time of the task work&ow is proposed, and a scheduling
algorithm of task work&ow on edge servers is designed.

2. Related Works

Mobile edge computing provides a promising solution for
mobile terminal devices with limited computing capacity to
complete complex, intensive, and sensitive computing tasks.
!erefore, in the MEC system, it is very important to op-
timize the assignment and scheduling of mobile terminal
tasks. In recent years, many strategies, methods, and algo-
rithms have been proposed. In this section, we make a
detailed introduction and analysis of representative work
related to this paper.

Mobile edge computing provides enhanced computing
power for mobile devices by deploying edge servers next to
the communication base stations. When a mobile terminal
receives a task request, the $rst issue to be decided is whether
to o#oad part or all of the task to an MEC server. Con-
sidering the computing needs of di"erent tasks on mobile
devices, the optimization method of task partition ratios was
proposed to minimize the maximum task latency. In [1], the
authors divided multiple parts into a single subtask with
prior knowledge and modeled the ordinal number relation
of parts to guide the segmentation process in a circular way.
In [2], each user could partition their computation task into
o#oading computing and locally computing parts in mul-
tiuser MEC networks. In [3], the o#oading location of the

task was further extended to the cloud server. Each task on
the mobile device can be decided to be processed locally at its
mobile device or o#oaded to one of the edge servers or a
cloud server. When the o#oaded task is complex and the
computing power of a single edge server is limited, an o#oad
strategy is proposed to divide a task into some subtasks and
deploy them in multiple servers. In [4], the authors assumed
that each user’s tasks were separable and proposed a dis-
tributed algorithm to obtain the hierarchical multilevel
o#oading decisions. In [5], a multiserver system with dy-
namic speed and power management was modeled as
queueing systems, and then the issue of the optimal task
dispatching on multiple heterogeneous server systems was
addressed. In [6], the authors allocated computing tasks to
suitable cores of mobile devices or the cloud in the MCC and
proposed an optimization framework to minimize the total
energy consumption and maximize the system reliability.
For the task o#oading problem of a heterogeneous multi-
layer MEC (HetMEC), the authors designed the latency
minimization algorithm by jointly coordinating the re-
sources among the end devices, multilayer MEC servers, and
the cloud center in [7]. In [8], the authors designed LL-MLS
algorithm to $nd an optimal partition of a given workload
through task scheduling and energy allocation strategies. In
[9], the authors proposed an energy-aware cooperative
routing (ECoR) scheme for optimal handling of task o"-
loading between source and target UAVs in a gridlocked
swarm.

O#oading the task to the edge computing system not
only provides the task with expanded processing capacity
but also brings with it the transmission delay caused by the
o#oading process. !erefore, the allocation of wireless re-
sources for o#oading task is also the focus of many research
works. In [10], the authors transformed the problem of joint
task assignment and wireless resource assignment into a
mixed-integer nonlinear program (MINLP) and proposed a
suboptimal solution algorithm based on relaxation convex
problem to reduce time delay for o#oading tasks. In [11],
the problem of task assignment in the MEC in the return
network was solved by a similar method. In [12], an online
adaptive task allocation and computing o#oad strategy was
proposed, which coordinated and optimized the wireless and
computing resource allocation by considering dynamic
wireless conditions and service delay constraints.

In order to e%ciently implement the allocation and
deployment of multiple tasks in the MEC, some researchers
regard the problem as a joint optimization problem con-
sidering various o#oading conditions. In [13], the authors
minimized energy consumption for all devices and their task
delay constraints by cooptimizing communication and
computing resource allocation on devices and mobile edge
servers. Considering the task completion time and the
mobile device energy consumption, the authors in [14]
proposed a heuristic o#oading decision algorithm (HODA),
which jointly optimized the o#oading decisions, commu-
nication, and computing resources to maximize the system
utility. In order to reduce the complexity of the joint op-
timization problem, the original problem was decomposed
into two subproblems in [15–21]. In [15], the authors

2 Wireless Communications and Mobile Computing

addressed the resource allocation problem using the convex
and quasi-convex optimization techniques and solved the
problem of task assignment by a heuristic algorithm. In [16],
the task partitioning subproblem was taken as a set of
univariate optimization problems, which can be easily
solved, and the task scheduling subproblem was solved
through a heuristic algorithm. In [17], the problem of re-
source allocation was further decomposed into two stages:
the computing resource optimization and the communi-
cation resource allocation. !e authors proposed a sub-
channel allocation scheme, and then the transmission power
allocation was considered as a convex optimization problem
based on the scheme and was solved by the Lagrange
multiplier method. For the resource allocation scheme, the
authors in [18] proposed a computing framework based on
the weighted sum of task completion time and energy
consumption in the MEC system, while the authors in [19]
proposed a task shunting and resource allocation algorithm
based on Deep-Q network. In [20], the authors considered
users’ risk-seeking or loss-avoidance behaviors in their $nal
decision. In [21], the authors proposed the energy-e%cient
multihop communication solution in smart city
environment.

In addition to $nding a better task o#oading strategy by
optimizing the allocation and consumption of communi-
cation resources and computing resources during task o"-
loading, some other factors, such as shared data among
tasks, o#oading sequence of tasks, and the mobility of
mobile devices, also have an important impact on the e%-
ciency of task o#oading. In [22], the authors studied the task
assignment algorithm in data shared mobile edge computing
systems and proposed three algorithms to deal with holistic
tasks and divisible tasks, respectively. In [23], an adaptive
slicing method for decentralized work&ow based on clus-
tering was proposed. !en a data-related task scheduling
algorithm based on the correlation task model was designed,
which gave an evaluation function to reduce the intercore
communication during the process of task execution by
assigning highly the correlated tasks to the same core. In
[24], the authors gave full consideration to the mobility of
user in the MEC and then proposed a device-to-device
(D2D) cooperation method to expedite the task execution of
mobile user by leveraging proximity-aware task o#oading.
In [25], the user mobility and network constraints were
considered, and a lightweight heuristic solution was pro-
posed for fast scheduling. In [26], a task allocation solution
for optimizing latency and service quality was proposed to
support the mobility of vehicles, in which the constraints on
service latency, quality loss, fog capacity, stationary task
allocation, and mobile fog nodes were taken into account. In
[27], the e"ective task o#oading scheme in the MEC was
designed, in which the tasks are o#oaded to the adjacent
servers at the next AP in the direction of vehicle driving. In
[28], the authors emphasized the importance of optimizing
operation sequence in multiuser MEC system and estab-
lished a computation o#oading model to optimize the task
operation sequences and starting times for uploading, ex-
ecuting and downloading, and duration times for uploading
and downloading. In [29], a spatiotemporal framework

based on stochastic geometry and continuous time Markov
chains was proposed.!e experimental results showed that
the framework can $nd the optimal number of edge servers
for parallel computing of the user task. In [30], the authors
studied the scheduling method of parallel tasks merging and
scheduling for parallel deep learning applications in the
MEC.

When the tasks of mobile terminals are o#oaded to the
edge computing system, particularly the tasks that can be
divided are o#oaded to di"erent edge servers, and the
execution sequence of tasks on edge servers is the key to
determine the actual execution e%ciency of tasks. For this,
the authors in [31] focused on the problem of providing QoS
and performance guarantees to divisible loads and then
proposed a linear algorithm for real-time divisible load
scheduling by eliminating the need to generate exact
schedules in the admission controller. In [32], the authors
adopted a Markov decision process to handle the problem of
computation task scheduling for MEC systems, where the
computation tasks were scheduled based on the queueing
state of the task bu"er, the execution state of the local
processing unit, and the state of the transmission unit. In
[33], a partitioned $xed-priority real-time scheduling based
on dependent tasks split on homogeneous multicore plat-
form was proposed, which converted dependent tasks into a
series of sequential jobs and obtained the interrelated
subtasks path as well as synthetic deadlines through the
B-tree task model. In [34], the authors creatively proposed a
deep learning architecture based on tightly connected net-
work and proposed a corresponding multitask parallel
scheduling algorithm. In [35], a peer-to-peer (P2P) en-
hanced task scheduling framework to minimize the average
task duration in device-to-device (D2D) network was pro-
posed. In the framework, an iterative algorithm based on
alternating optimization and sorting technology was used to
solve the approximate optimal scheduling solution.

To sum up, when a complex task is divided and o#oaded
to multiple edge servers or cloud, the e%ciency of task
o#oading is a"ected by many factors.!e above studies put
forward some e"ective task o#oading strategies from the
perspectives of processing capacity of mobile terminals and
servers, communication channel allocation in the process of
task o#oading, and optimization of multitask deployment in
multiple servers. However, these studies pay little attention
to the e"ect of data interaction between subtasks and the
o#oading sequence of subtasks on the execution delay of the
whole task after tasks are divided into subtasks. Obviously,
these factors also have a great impact on the e%ciency of
subsequent task scheduling. Although papers [31–35] focus
on these two factors to optimize the task o#oading process,
they are not considered as a whole. However, task slicing is
closely related to its o#oading sequence, and di"erent
slicing schemes should correspond to di"erent o#oading
sequence to optimize the execution delay of the task to the
maximum extent. So we focus on the two following prob-
lems in the o#oading process: (1) in the distributed de-
ployment of complex tasks on edge servers, the data
dependencies among the subtasks are fully considered to
minimize the communication delay caused by such data

Wireless Communications and Mobile Computing 3

dependencies during task execution. (2) In the process of
task scheduling, the e"ect of subtask o#oading sequence on
task execution is considered, and the execution delay of the
whole task is minimized by parallel subtask o#oading and
subtask execution.

3. Problem Definition and Formalization

Here, we consider a mobile task o#oading scenario with
multiuser, multiedge servers. Users’ mobile devices can
connect and communicate with base stations covering their
signals. Edge servers are uniformly deployed near these base
stations. At least one edge server is deployed near each base
station. Assume that there are m mobile terminal devices
and n edge devices in this scenario, U ! u1, u2, . . . , um{ }
represents the set of mobile terminal devices, and
S ! s1, s2, . . . , sn{ } represents the set of edge servers. !e
service request sent by each terminal device can be divided
into a series of subtasks. We use a directed acyclic graph
(DAG) to represent the tasks o#oaded by the mobile ter-
minal and the relationships among them, represented as
G(T, E, C(T), W(E)), where T ! t1, t2, . . . , tk{ } represents
all subtasks o#oaded by the mobile terminal and k is the
number of subtasks; E ! eij|{ if the output of subtask ti is an
input to subtasks tj} represents data dependencies between
subtasks; C(T) ! c1, c2, . . . , ck{ } represents the workload of
each subtask in setT; that is, ci is the CPU cycle of subtasks ti;
W(E) ! wij| if ∃eij, W(eij) ! wij{ } represents the size of the
input data from ti to tj. An example of a mobile terminal task
o#oaded on edge servers is shown in Figure 1.

Given G(T, E, C(T), W(E)), we need to o#oad multiple
subtasks with dependent relationships to the edge service
system. If all subtasks in T are deployed on the same edge
server, the computing capacity constraints of a single server
and the serial execution of tasks may lead to too long
feedback delay of the task to meet its needs. In order to take
advantage of edge service system to better meet the demands
of mobile terminal, we need to o#oad the task to multiple
edge servers, respectively, make some tasks in parallel ex-
ecution, and shorten the overall delay of the task. For ex-
ample, the subtasks t2, t3, and t4 can be executed in parallel

in Figure 1. A new challenge is that the data dependencies
between subtasks introduce new transmission delays. In
particular, when the subtasks with large data dependencies
are deployed on di"erent servers, the new latency introduced
may even outweigh the time savings in the process of ex-
ecuting the tasks in parallel. To solve this problem, the goal
of this paper is to $rst $nd a task partitioning scheme based
on the dependencies between subtasks; we call it task slicing,
which can reduce the introduction of new delay as much as
possible while deploying all subtasks in a distributed way. In
addition to the task slicing a"ecting the execution delay of
the task, the o#oading order of the subtasks also has a
certain impact on the feedback delay of the task. However,
most of the existing studies mainly ignore this problem. In
fact, due to the limited wireless communication resources in
the MEC environment, when multiple tasks are o#oaded at
the same time, each task will receive less wireless resources,
which will inevitably increase the transmission delay of
o#oaded subtasks. In G(T, E, C(T), W(E)) , the subtasks do
not need to be executed at the same time, so it is not
necessary to simultaneously o#oad subtasks to di"erent
edge server. We just need to make sure that a subtask is
o#oaded before it is executed, which can maximize o"-
loading bandwidth allocation of the subtasks so as to shorten
their transmission delay. !erefore, we will study the task
choreography method based on task slicing to optimize the
overall delay of the task. !e problem in this paper is for-
mally described as follows:

Min
G

total Time ! Tend
exec(MaxT(Ord(S))

− Tstart
offload(MinT(Ord(S)),

(1)
where

S ! TL1, TL2, . . . , TLk′{ }, k′ ≤ k(), (2)
Ord(S) ! 〈TLi, pri〉|, i ∈ 1, k′[], pri ∈ R, pri > 0{ },

(3)
s.t.

TLi⊆T, i ∈ 1, k′[](), (4)∪
i∈ 1,k′[]

TLi ! T and ∩
i∈ 1,k′[]

TLi ! Φ, (5)
Tstart
exec ti()≥Max Tend

exec tj()(), (i, j ∈ [1, k]) if tj ∈ PRE ti() and ti, tj ∈ TLp, (6)
Tstart
exec TLi()≥Max Tend

exec TLj() + Ttran TLj, TLi()(), i, j ∈ 1, k′[] andTLj ∈ PRE TLi()(), (7)
Tend
offload TLi()≤Tstart

exec TLi(), i ∈ 1, k′[](), (8)
Tend
offload TLi()≥ ∑

tj∈TLi

Tend
offload tj() − Tstart

offload tj(). (9)

4 Wireless Communications and Mobile Computing

Equation (1) is our optimization goal to $nd a slicing and
choreography scheme for task o#oading of mobile devices,
that is, S and Ord(S), which minimizes the response time of
the overall task. As shown in equation (2),S is a partition ofT.
Each task slicing corresponds to a priority, which represents
the order in which subtasks are o#oaded, as shown in
equation (3). Tstart

exec(t) and Tend
exec(t) represent the start and end

times for executing t, respectively. Tstart
offload(t) and Tend

offload(t)
represent the start and end times for o#oading t, respectively.
MinT andMaxT are used to obtain the last and $rst task slices
in the choreography scheme, respectively. Equations (4)–(9)
represent the constraint conditions that need to be satis$ed
when o#oading the task, where Ttran(TLj, TLi) represents
the data transmission time between TLj and TLi and
PRE(TLi) is used to obtain the preorder task slicing of TLi.
Equations (4) and (5) represent the basic requirements of task
slicing. Equation (6) indicates that if there is a dependency
relationship between the subtasks in a task slicing, the start
time of the subsequent subtasks must be later than the end
time of all the preordering subtasks. Equation (7) indicates
that if there is a dependency relationship between the subtasks
in di"erent task subsets, the subsequent subtask cannot be
executed until it has received the output data of all the
preordering subtasks to the server where it was deployed.
Equation (8) indicates that any task slicing must be o#oaded
to the corresponding edge server before it begins to execute.
Equation (9) indicates that when multiple subtasks need to be
o#oaded on the same edge server, they must be o#oaded in
sequence.

4. Task Slicing and Choreographing Model

For complex mobile terminal requests that can be divided
into multiple subtasks, we can distribute these tasks on
multiple edge servers to improve the processing capacity,

which is conducive to reducing the execution delay of
terminal tasks. In this section, we will establish a slicing and
choreographing model for complex tasks to minimize the
transmission and computation delay in the process of task
o#oading. Here, we name our method SSCS (Slicing
Similarity and Choreograph Sequence).

4.1. Task Slicing Method Based on Data Dependencies. !e
objective of task slicing model is to optimize the parallel
execution of subtasks on di"erent edge servers and min-
imize the delay caused by data transmission between
subtasks. We propose a slicing model based on task
work&ow, in which the concept of task similarity is de$ned
based on the dependency relationship between subtasks.
For two subtasks, if there is a large amount of data exchange
between them but less contact with other subtasks, they will
be divided into the same cluster.!e related de$nitions are
given below.

De!nition 1. Subtask (t). It ist!e basic unit of a task slice,
which refers to a task that cannot be divided again, corre-
sponding to an element in the task set T.

De!nition 2. Task slice (TL). It is the basic unit of task
deployment. After a task is split into multiple subtasks, the
similar subtasks will be grouped into the same subtask set,
called task slice.

De!nition 3. Task hierarchy association matrix (A). It is a
hierarchical logic relation of task execution for given
G(T, E, DS(T), W(E)), represented as A(r∗k), where k is the
number of subtasks in T and r is the number of logical levels
that the task work&ow needs to be executed at least, formally

1

2 43

5 6

7

W57

W35 W46W25

W12 W13 W14

W67

Figure 1: An example of complex task o#oading.

Wireless Communications and Mobile Computing 5

aij !
1, if λ tj() ! NULL at L tj() ! i,

0, otherwise.

 (10)
L(tj)! imeans tj is at the i-th layer. λ(tj) ! NULL means

that all the preceding subtasks of tj have been executed, and
task tj can start to execute.

De!nition 4. Direct correlation of subtasks (dirCorr). In G,
if eij ∈ E exists, then the direct correlation degree between
task ti and tj is represented by

dirCorrij ! wij. (11)
It represents the amount of direct communication data

between two subtasks, and the larger the value is, the greater
the probability that the two subtasks should be deployed to
the same edge server.

De!nition 5. Dependency between subtasks (D). In G, the
dependencies between subtasks can be divided into three
categories: single dependency (Dsingle), split dependency
(Dsplit), and joint dependency (Djoin). Dsingle

ij means that task
tj depends entirely on task ti; that is, ∀x, if x≠ j, then eix ∉ E,
and, ∀y, if y≠ i, then eyj ∉ E. Dsplit

ij means that task tj de-
pends partly on task ti, that is, ∃x; make exj ∈ E and x≠ j.
Djoin

ij means that a part of the input of task tj depends on task
ti, that is, ∃x; make exj ∈ E and x≠ i. If Dij ! false, then
there is no direct dependency between ti and tj.

De!nition 6. Subtask dependency correlation (depCorr).
Based on di"erent types of dependency relationships be-
tween subtasks, the dependency correlation degree between
ti and tj is represented by

depCorrij !

1, if Dsingle
ij ! true,

wij

∑k
i!1 wix

, if Dsplit
ij ! true,

wij

∑k
i!1 wxj

, if Djoin
ij ! true,

0, if D ! false,



(12)

where wij represents the amount of communication data
between ti and tj; if there is no dependency relationship
between them, then wij ! 0.

De!nition 7. Subtask distribution correlation (disCorr). It
re&ects the in&uence of data distribution between subtasks
on task partition results.!e larger the data tra%c between
subtasks, the greater the probability of the subtasks coupling
into the same slice. !e communication correlation degree
between ti and tj can be expressed by

disCorrij !
Corrinij + Corroutij()

2
, (i, j ∈ [1, k] and i≠ j).

(13)
From the above equation,

Corrinij !
∑k

x!1 w exi() + w exj()()
2

, (14)
Corroutij !

∑k
x!1 w eix() + w ejx()()

2
. (15)

In equation (13), Corrinij andCorroutij are the correlation
degrees calculated by the input and output data tra%c of ti
and tj, respectively. w(eij) represents the communication
data volume from ti to tj. If there is no dependency between
them, then w(eij) ! 0.

De!nition 8. Subtask computation time (exetime). Due to
the di"erent sizes of subtasks, their computation time will be
di"erent. Assume that the computing power of the CPU is
CEdge; exetimei can be expressed as follows:

exetimei !∑psi ∗Mpc

CEdge , (16)
where Mpc represents the CPU cycles required to process a
unit of data.

De!nition 9. Sequential execution time between subtasks
(exetimeij). If there is a sequential dependency between two
consecutive subtasks, their sequential execution time is the
sum of their respective execution times; otherwise, the value
is 0.

exetimeij !
exetimei + exetimej, if D ! true,
0, if D ! false.

{ (17)
De!nition 10. Similarity between subtasks (T D). It rep-
resents the degree of comprehensive correlation between
subtasks.!e similarity between ti and tj is represented by

TDij !
dirCorrij + exetimeij() × depCorrij × dirCorrij

disCorrij − dirCorrij() .

(18)
Task similarity comprehensively measures the correla-

tion between two subtasks in the whole work&ow system
from the direct data dependency between tasks and the
relative importance of such dependency in the whole task
&ow, which serves as the basis for further coupling subtasks.
First of all, dirCorrij is the main factor that determines
whether the subtasks can be aggregated into a task slice. In
addition, depCorrij re&ects the degree of association between
ti or tj and other tasks; the lower the degree of association
between ti or tj and other tasks, the higher the probability
that they are aggregated into a task slice. exetimeij represents

6 Wireless Communications and Mobile Computing

the computation time required to complete them. Dividing
more subtasks that need to be executed sequentially into a
task slice will help to avoid the delays caused by data transfer
between subtasks. disCorrij re&ects the degree of correlation
between ti and tj and their precedence and postorder
subtasks. !e smaller the degree of correlation, the higher
the probability that ti and tj are grouped into one task slice.

An example is given in Figure 2, where the weights
between nodes represent the reciprocal of similarity between
di"erent subtasks. Firstly, starting from the $rst node of the
task work&ow, we look for the subtasks that can be grouped
into one task slice from top to bottom.!e rule of merging is
that each subtask is merged with one of the subsequent
subtask which has the lowest weight with it until the last
node in the work&ow. Secondly, starting from the last node
of the task work&ow, we continue to look for the subtasks
that can be merged into one task slice from bottom to top.
!e rule of merging is that each task is merged with one of
the preceding tasks which has the lowest weight with it until
the $rst node in the work&ow. For example, in Figure 2,
nodes t1, t3, and t7 are merged into one task slice, and nodes
t2, t5, t10, and t11 are merged into one task slice. !en, the
minimum weight of the merged subtasks is set as the merge
threshold. For those subtasks that are not merged, they are
merged when the weight between continuous subtasks is less
than the threshold. !e threshold value is obtained by
comprehensively considering all the similarity of the whole
work&ow. According to the rule, nodes t4 and t9 are merged
into one task slice.

In the following, an improved horizontal clustering al-
gorithm is given to solve the slicing scheme based on the
similarity between subtasks, as shown in Algorithm 1.

Algorithm 1 provides a method to determine the optimal
slicing scheme of task work&ow under the premise of a given
number of edge servers. !e value of SM can be allocated
statically according to the resource situation in the MEC
system or solved dynamically by optimizing the overall
computation delay of the task work&ow. In Algorithm 1,
lines 6–9 are used to calculate the similarity between the
subtasks in T by using equations (10)–(18). Lines 10–18 are
used to solve the task slicing scheme based on the improved
hierarchical clustering process. Here, the concurrency of
task slices is mainly considered, and subtasks at the same
level cannot be divided into the same task slice, as shown in
line 15.

4.2. Task Slice Choreography Method Based on the Longest
Overlapping Path. Next, we need to choreograph these

subtasks for o#oading. Our goal is to accomplish sequential
o#oading of task work&ow and shorten the task wait delay
for executing while o#oading. In this paper, we propose a
subtask choreography method based on the longest over-
lapping path by analyzing the logical relationship and ex-
ecution constraints among subtasks. !e de$nitions are
given below.

De!nition 11. !e computation time of task slice
(Dcomp(TL)). It refers to the sum of execution delays of all
subtasks in the task slice.

Dcomp(TL) ! ∑
ti∈TL

exetimei. (19)
Each task slice must wait until all the subtasks on which

it depends have been completed before it begins to execute.
!e earliest start time of a task slice is determined by the
longest path from the initial task slice to the last task slice.
!erefore, we $rst carry out static sorting for all tasks slices.
Here, we give an example for the task slice hierarchical
relationship, as shown in Figure 3.

!e following is a brief description of static sorting rules.
!e node in the $rst layer is the $rst task slice of task
work&ow, its subsequent task slices are in the second layer,
and so on. In general, when the task slice at layer i completes,
the task slices at layer i +1 can start executing. But it is not
strict. For example, when TL3 is complete, TL5 and TL6 can
be executed regardless of TL2. If the computation delay of
TL5 or TL6 is signi$cantly higher than that of TL4, then
whether to o#oadTL2 orTL3 $rst will have an impact on the
overall delay of the task work&ow. Obviously, in this case,
TL3 should be preferred. In addition, TL5 and TL6, which
are deployed on di"erent edge servers, can be executed in
parallel. But, compared to TL6, TL5 has more subsequent
tasks. When the execution delay of TL5 is not greater than
that of TL6, we should o#oad TL5 $rst, so that it is executed
more earlier than TL6.!e o#oading order of task slices has
an important e"ect on the computation time of the task
slices on the edge servers. Here we de$ne the earliest exe-
cution start time for a task slice.

De!nition 12. !e earliest start time of the task slice
(Tstart

exec(TL)). Each task slice must wait until all the subtasks
on which it depends have been executed before it executes.
!e earliest start time of task slice TL is determined by the
longest path from the initial task slice to this task slice, and
the calculation formula is represented by

Tstart
exec TLi() !

0, if L TLi() ! 1,

max
TLx∈PRE TLi() and L TLx()!L TLi()−1

Tstart
exec TLx() + Dcomp TLx() + wxi

BStoS{ }, if L TLi()> 1,


(20)

Wireless Communications and Mobile Computing 7

where the longest path of task slice TLi is equal to the longest
path of all its presequence task slices, its own computation
time, and the transmission delay between it and other task
slices.

As shown in Figure 4, the subtasks are executed in the
order of TL1,TL3, TL2,TL5, TL6,TL4, TL7, TL8 according to
the static sort. However, since the size of each subtask is
di"erent, the computation time is also di"erent. Scheduling
tasks in a statically sorted manner can cause too much delay
in the execution of the overall task work&ow.!erefore, we
need to combine static sorting with task slice’s earliest start
time to produce a comprehensive sorting result.

Next, we use the concept of task priority to represent the
choreography schemeOrd(S) of task slice set S.!e priority
of each task slice is determined by its latest o#oading time.
Let the priority of the last task slice in the task work&ow be 0.
!e higher the priority of the task slice is, the earlier it should
be o#oaded. !e related de$nitions are as follows.

De!nition 13. Task slice priority (Prio(TL)). It represents
the time to o#oad the task, that is, the latest time for the task
slice to be o#oaded.!e calculation formula of TLi priority
is as follows:

(1) function [S]! Slice (G, SM, A)
(2) Input: G
(3) SM//Number of edge servers, 0<M<m
(4) A//Logical hierarchy matrix
(5) output: S
(6) InitNum(T)//Initializes the subtask
(7) taskNum!Count(T)//the number of T
(8) for i! 1: taskNum
(9) TD!TaskSim (G)//TD is sliceNum ∗ sliceNum matrix, and the similarity between sub-tasks is calculated
(10) sliceNum! taskNum
(11) while true
(12) if sliceNum≤ SM
(13) break;
(14) Stemp!MaxSim (TD);
(15) if Notlevel (Stemp, A)//Tasks at the same logical level cannot be divided into a task slice
(16) Cluster!Merge (Stemp)//Task clustering, forming a new task slice division
(17) sliceNum!Count (Cluster)
(18) S!Cluster

ALGORITHM 1: Task slicing algorithm based on similarity between subtasks.

0.02510.0121

0.0232

0.01210.0178
0.0060

0.0048

0.0419

0.0268

0.0066
0.01590.0355

0.00250.0597

t1

t2 t3

t4 t5 t6 t7 t8

t9 t10

t11

Figure 2: A task work&ow example.

8 Wireless Communications and Mobile Computing

Prio TLi() ! Doffload TLi() + Dcomp TLi() + max
TLx∈SUC TLi() and L TLx()!L TLi()+1

wix

BStoS + Prio TLx()(), (21)
where SUC(TLi) represents the set of subsequent task slices
of TLi, which have direct data dependence between TLx and
TLi, Prio(TLx) is the task priority of TLx, and BStoS represents
the channel bandwidth between edge servers.

pri in the optimal choreography Ord(S) is the optimal
start time of the transmission corresponding to TLi; in order
to ensure that each task slice has been o#oaded before it is
executed on the edge server, pri ≤ Prio(TLi). !e task
choreography method based on overlapping longest path
can solve the best o#oad time for each task slice in T, so as to
maximize the parallelization of the transmission and exe-
cution of subtasks, to realize the optimization goal in
equation (1).

As shown in Figure 5, the choreography of subtasks is as
follows: (1) Firstly, a static sort is done. For example, t1 is
executed in the $rst sequence, t2 and t3 are executed in the
second sequence, and subtasks t4, t5, t6, t7, and t8 are

executed in the third sequence. (2) After that, all the subtasks
are choreographed according to the earliest start time. It can
be seen that the earliest start time of t7 and t8 is earlier than
that of t4, t5, and t6, so, in the third execution sequence, t7
and t8 should be executed earlier than t4, t5, and t6. (3)
Finally, the above two sequences are dynamically sorted
according to the following rules: the nodes with more
children take precedence or the nodes whose child nodes
have high computation time take precedence. In Figure 5, t4
and t5 have more child nodes, and the computation delays of
their child nodes are longer, so t4 and t5 have priority over t6,
t7, and t8.

We design a heuristic algorithm to solve the subtask
choreography scheme (Algorithm 2).

!e input of Algorithm 2 is the output of Algorithm 1. It
uses dynamic iterative optimization to solve the optimal
choreography scheme Ord(S), namely, the o#oading

TL1

TL2 TL3

TL4 TL5 TL6

TL7

TL8

First Layer

Second Layer

!ird Layer

Fi"h Layer

Fourth Layer

Figure 3: Task slice hierarchical association relationship.

Time1

Time2

Time3

Time4

TL1

TL2

TL3

TL4

TL5

TL6

TL7

Figure 4: Diagram of the earliest start time of task slices.

Wireless Communications and Mobile Computing 9

sequence and timing of each task slice in S. In this algorithm,
lines 6–12 are used to calculate all kinds of time delays
during the o#oading, computation time of each task slice,
and the computation time constraints of each task slice
according to equations (19)–(21). In lines 13–21, a heuristic
optimization algorithm is used to $nd the task choreo-
graphing scheme that minimizes the overall computation
delay of the task work&ow under the execution constraints.
!e combination of Algorithms 1 and 2 can achieve the
optimal task slicing and choreographing scheme under the
condition of a speci$c number of edge servers. In the case of
su%cient resources of the MEC system, we can traverse from
1 to k (number of T subtasks) to $nd the optimal number of
task slices, that is, the optimal number of edge servers for
distributed deployment of the whole task work&ow.

!e computational complexity of an algorithm is de-
termined by the number of basic operations when the input
size is N. !e SSCS algorithm proposed in this paper is a
heuristic algorithm based on discrete optimization. !e
algorithm consists of generating the initial solutions, gen-
erating neighborhoods, judging the infeasible task sched-
uling list, and removing the infeasible task scheduling list.
Since the generation of the initial solutions is constrained by
the earliest start time of a task, the computational complexity
of the operation is determined by the horizontal clustering
result of the task work&ow, that is, O(NlogN). Similarly, the
computational complexity of generating neighborhoods is
determined by the maximum number of parallel tasks at
each level, and the size does not exceed O(C2

logN). !e
computational complexity of judging the infeasible task
scheduling list and removing the infeasible task scheduling
list is N∗ L, where L is the length of the infeasible task list. So,
the overall complexity of the SSCS algorithm is
O(Max_Gen∗NlogN), where Max_Gen is the maximum
number of iterations.

5. Experiment and Analysis

In order to verify the e"ectiveness of the task slicing and
choreographing method proposed in this paper, we set up
two groups of simulation experiments. In the experiment, we
$rst generated the complex task work&ow of mobile devices
covering the three data dependencies and assigned corre-
sponding parameters to each subtask and MEC environ-
ment. !e setting range of main parameters is shown in
Table 1.

5.1. Veri!cation Experiments of Task Slicing Method.
Firstly, in order to prove the advantages of task slicing
method, we use HPD (Hierarchical Process Decentraliza-
tion) algorithm and HIPD (Hierarchical Intelligent Process
Decentralization) in papers [36, 37] to generate subtask
slicing and then conduct comparative experiments with our
algorithm.!e HPD algorithm applies breadth-$rst search/
traversal algorithm to $nd the most relevant, closely related,
and parallel activities in the work&ow view and then en-
capsulates the closely related activities in the same broker to
reduce the need for interbroker messaging. !e HIPD al-
gorithm combines HPD and a frequent path mining algo-
rithm together. In this experiment, the task work&ow to be
o#oaded by the mobile device and the data dependency
relationship between subtasks are shown in Figure 5. We use
these two methods to generate task slices of di"erent
granularity and compare the results with the slicing results of
our algorithm. !e partitioning results of the three slicing
methods for the task work&ow are shown in Table 2.

When the task is o#oaded to the server, this group
compares the advantages and disadvantages of the results of
di"erent task slices from three aspects: the overall compu-
tation delay of the task work&ow, the load of the edge servers

(1) function [S]! choreography (G, S, En)
(2) Input: G//Task work&ow
(3) S//Task slice scheme
(4) En//Environmental parameters, including channel bandwidth, server processing capacity, etc
(5) output: Ord(S)
(6) CreTree(G, S)//Build the number of task slice levels
(7) Init(En)//Initialize the o#oad environment
(8) for i! 1:|S|
(9) T(i)!ExeTime(TLi)//Calculate the earliest start time of the task slices
(10) KP! LogicP(S, T)//Find the longest path for the task slices to execute
(11) NKP!DelP(S, KP)//Get the task slices not in the longest path
(12) Cons! priority(S, ExeTime)//Obtain scheme constraint
(13) Sord! rand (Popsize, Cons, S)//Program population size
(14) while (k≤maxnum)
(15) for i! 1: Popsize
(16) F(i)! $tness (G, Sord)//Set the optimization target of the heuristic algorithm
(17) [globlalMinT, ordi]!min(F)
(18) for i! 1: Popsize
(19) Sord! IteV (Cons, KP, NKP)//Optimize the population of the choreography scheme under the constraints
(20) [BestMinT, bestord]!min (global, ordi)
(21) Ord(S)!BestMinT

ALGORITHM 2: Task choreography based on the longest overlapping path.

10 Wireless Communications and Mobile Computing

during the execution process of the task, and the idle time of
the edge server. In order to better prove the stability and
applicability of our algorithm, in the experiments, we
assigned two load schemes under di"erent conditions to the
subtasks in Figure 5. In the $rst case, all the subtasks are
executed only once. !e experimental comparison results
are shown in Figures 6(a)–6(c). In the second case, all the
subtasks are executed many times, and some subtasks may
not be executed.!e results of experimental comparison are
shown in Figures 6(d)–6(f). Figures 6(a)–6(c) show the
overall work&ow computation delay corresponding to dif-
ferent slice results in Table 2, the average data transfer load
between di"erent edge servers, and the average idle time of
the server itself during the execution process. It can be seen
from these three $gures that, compared with other methods,

the SSCS method has the shortest total delay of task
work&ow, lower average data transmission between subtasks
introduced by task distribution deployment, and the highest
server utilization rate. Di"erent task slicing schemes ob-
tained by HPD and HIPD methods are e"ective and shorten
the overall delay of task work&ow, but they usually introduce
a large amount of task transmission. At the same time, they
are not superior to our method in terms of server utilization.

For example, the tra%c volume introduced by HPD1,
HIPD0, and HIPD1 methods is much more than that of our
method. For the HPD2 and HIDP2 algorithms, their goal is
to slice tasks more evenly across complex work&ows. Al-
though in the long run they can make the load distributed
among the di"erent server edges more balanced, in most
cases, the total delay of the tasks they generate is higher than
that of our method. Figures 6(d)–6(f) show that the SSCS
method is applicable to di"erent task loads of di"erent sizes.
In this case, the slice deployment using the SSCSmethod can
obtain the lowest task computation time delay. It also has
good load balance and server utilization. !is lays a good
foundation for the choreography of subtasks.

5.2. Veri!cation Experiments of Choreography Method. In
this group of experiments, we veri$ed the e"ect of our
choreography method from the overall feedback delay of the
task work&ow, as well as the number and time of comple-
tions of the subtasks on the edge servers at each time period.

5

6

7
9

7

1214

75
59

46

60

50

16

17

t2

t1

t3

t4 t5 t6 t7 t8

t9 t10

t11

Figure 5: An example of dynamic choreography of tasks.

Table 1: Setting of main experimental parameters.

Parameter name Parameter value range Parameter meaning
psi (i ∈ [1, k]) 1–100M !e size of the task load
wij (i, j ∈ [1, k]) 1–100M !e amount of data transferred between tasks
Mpc 102 cpu cycles · M−1 CPU cycles per M data to process
CEdge 103 cpu cycles · s−1 CPU cycles per second which the edge server can process
BStoS, BDtoS 10M · s− 1, 8M · s−1 Transfer bandwidth between edge servers and from mobile devices to edge services

Table 2: Slice results for the task work&ow by di"erent methods.

Task slicing method Task slice results
HPD0 {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11}
HPD1 {t1}{t2, t4, t5, t6, t9, t10, t11}{t3, t7, t8}
HPD2 {t1, t2, t5, t8, t10, t11}{t4, t7, t9}{t3, t6}
HPD3 {t1, t2, t5, t8, t11}{t4, t7, t10}{t3, t6, t9}
HIPD0 {t1, t2, t3, t5, t6, t7, t8, t10, t11}{t4}{t9}
HIPD1 {t1, t9}{t2, t3, t5, t6, t7, t8, t10, t11}{t4}
HIPD2 {t1, t4, t7}{t2, t5, t8, t10}{t3, t6, t9, t11}
HIPD3 {t1, t2, t5, t8, t11}{t4, t7, t10}{t3, t6, t9}
SSCS {t1, t3, t6, t7}{t2, t5, t8, t10, t11}{t4, t9}

Wireless Communications and Mobile Computing 11

200

300

400

500

600

700

Ex
ec

ut
io

n
tim

e

hpd1 hpd2 hpd3 hipd0 hipd1 hipd2 hpd3hpd0 SSCS
method

Execution time

(a)

0

100

200

300

400

500

600

lo
ad

hpd1 hpd2 hpd3 hipd0 hipd1 hipd2 hpd3hpd0 SSCS
method

load

(b)

200

400

600

800

1000

1200

Id
le

tim
e

hpd1 hpd2 hpd3 hipd0 hipd1 hipd2 hpd3hpd0 SSCS
method

Idle time
(c)

×106

0.8

1

1.2

1.4

1.6

1.8

2

2.2
Ex

ec
ut

io
n

tim
e

hpd1 hpd2 hpd3 hipd0 hipd1 hipd2 hpd3hpd0 SSCS
method

Execution time

(d)
Figure 6: Continued.

12 Wireless Communications and Mobile Computing

983 6 100 111 2 1254 7
subtask

0
1
2
3
4
5
6
7
8
9

10
11
12

o!
oa

di
ng

 o
rd

er
 o

f s
ub

ta
sk

s

RS-HIE
LP-HIE
SSCS

(a)

983 6 100 111 2 1254 7
subtask

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

co
m

pl
et

io
n

tim
e o

f e
ac

h
su

bt
as

k

RS-HIE
LP-HIE
SSCS

(b)
Figure 7: Continued.

×105

2

4

6

8

10

12

14

lo
ad

hpd1 hpd2 hpd3 hipd0 hipd1 hipd2 hpd3hpd0 SSCS
method

load

(e)

×106

0

0.5

1

1.5

2

2.5

3

Id
le

tim
e

hpd1 hpd2 hpd3 hipd0 hipd1 hipd2 hpd3hpd0 SSCS
method

Idle time

(f)

Figure 6: Comparison experiments based on the results of task slices in Table 1 under di"erent task loads. (a) Comparison of execution time
of edge server of each method. (b) Load balancing. (c) Edge server free time comparison. (d) Execution time of the task work&ow after 10000
executions. (e) Load balance (10000 executions). (f) Idle time on the edge server (10000 executions).

Wireless Communications and Mobile Computing 13

We choose two common task o#oading sorting methods.
One is according to the hierarchical structure tree of the task
work&ow; the lower levels of subtasks are $rst o#oaded and
the same levels of subtasks are randomly ordered, which is
called random sorting based on hierarchy (RS-HIE). !e
other is similar idea but for the same levels of subtasks which
are ordered according to the size of the load, called load
prioritization based on hierarchy (LP-HIE). !e three o"-
loading sequencing methods are completed based on the
task slice results of our method.!e experimental results are
shown in Figure 7. Figure 7(a) corresponds to the o#oading
order of subtasks solved by the three methods. It can be seen
that the o#oading order of subtasks generated by di"erent
methods is greatly di"erent. Figures 7(b) and 7(c) show the
impact of di"erent o#oading sequences on the completion
time of subtasks on the edge servers. Figure 7(b) shows the
completion time of each subtask in the task work&ow on the
edge servers, and Figure 7(c) shows the number of subtasks
that have been completed on the edge servers in each period.
As you can see, the SSCS method can o#oad the most
subtasks per unit time and has the shortest total compu-
tation time. It gives full consideration to various key time
points a"ecting the task work&ow when solving the cho-
reography scheme, reasonably arranges the o#oading time
of each subtask, and avoids the total delay caused by waiting
for the task to be o#oaded as much as possible. Some critical
tasks that a"ect the overall latency of the work&ow are
o#oaded $rst.

6. Conclusion

To resolve o#oading problem of complex tasks in the MEC
system, we study the distributed deployment strategy and
e%cient o#oading method of the task work&ow. Consid-
ering the characteristics of data distribution and logic

relationships between subtasks in the process of task o"-
loading and execution, a slicing method of task distribution
and deployment is proposed based on similarity between
subtasks, and a choreographing method of task o#oading
sequence is proposed based on the longest overlapping path.
Finally, aiming at minimizing the overall delay of task
work&ow, a heuristic algorithm is designed to solve the
approximate optimal solution of slicing and choreograph-
ing. Simulation experiments compare our method with
other commonly used slicing and choreography methods
and prove the e"ectiveness and advantages of our method in
solving task o#oading of complex tasks from various angles.

Data Availability

!e data involved in this paper include migration algorithm
code and simulation data (generated by the simulation al-
gorithm). For copyright protection purposes, data access
currently requires contact with institutional authors. If data
are needed, the authors should be e-mailed at 55234043@
qq.com.

Conflicts of Interest

!e authors declare that they have no con&icts of interest.

Acknowledgments

!is work was supported in part by the National Natural
Science Foundation of China under Grants 62162047 and
62162046; Natural Science Foundation of Inner Mongolia
under Grants 2019ZD15 and 2019MS06029; Inner Mongolia
Science and Technology Plan Project under Grants
2021GG0155 and 2019GG372; the Self-topic of Engineering
Research Center of Ecological Big Data, Ministry of

50 100 150 200 250 300 3500
time

0

2

4

6

8

10

12

nu
m

be
r o

f c
om

pl
et

ed
 su

bt
as

ks

RS-HIE
LP-HIE
SSCS

(c)

Figure 7: Comparison experiments based on di"erent task choreography methods.

14 Wireless Communications and Mobile Computing

mailto://(null)55234043@qq.com
mailto://(null)55234043@qq.com

Education; the Open-topic of Inner Mongolia Big Data
Laboratory for Discipline Inspection and Supervision
(IMDBD2020012 and IMDBD2021014); Inner Mongolia
Engineering Laboratory for Cloud Computing and Service
Software; Inner Mongolia Key Laboratory of Social Com-
puting and Data Processing; and Inner Mongolia Engi-
neering Lab of Big Data Analysis Technology.

References

[1] Y. Zhao, L. Jia, Y. Zhang, Y. Song, and Y. Tian, “Ordinal multi-
task part segmentation with recurrent prior generation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 43, no. 5, pp. 1636–1648, 2019.

[2] M. Fayyaz, B. Cao, W. Almughalles, Y. Li, and L. Ali, “Op-
timizing task execution for mobile edge computing,” in
Proceedings of the 2019 #e 8th International Conference on
Network, Communication and Computing, pp. 13065–13076,
Luoyang, China, December 2019.

[3] L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu, “Multi-
server multi-user multi-task computation o#oading for
mobile edge computing networks,” Sensors, vol. 19, no. 6,
p. 1446, 2019.

[4] T. Mahn, H. Al-Shatri, and A. Klein, “Distributed algorithm
for energy e%cient joint cloud and edge computing with
splittable tasks,” in Proceedings of the IEEE Conference on
Wireless Communications and Networking, pp. 167–182,
Marrakesh, Morocco, April 2019.

[5] K. Li, “Optimal task dispatching on multiple heterogeneous
multiserver systems with dynamic speed and power man-
agement,” IEEE Transactions on Sustainable Computing,
vol. 2, no. 2, pp. 167–182, 2017.

[6] H. Liu, J. Pu, L. T. Yang et al., “A holistic optimization
framework for mobile cloud task scheduling,” IEEE Transac-
tions on Sustainable Computing, vol. 4, no. 2, pp. 217–230, 2017.

[7] P. Wang, Z. Zheng, B. Di, and L. Song, “Joint task assignment
and resource allocation in the heterogeneous multi-layer
mobile edge computing networks,” in Proceedings of the 2019
IEEE Global Communications Conference (GLOBECOM),
vol. 69, no. 3, pp. 217–230, IEEE, Waikoloa, HI, USA, De-
cember 2019.

[8] K. Li, “Energy-e%cient task scheduling on multiple hetero-
geneous computers: algorithms, analysis, and performance
evaluation,” IEEE Transactions on Sustainable Computing,
vol. 1, no. 1, pp. 7–19, 2016.

[9] A. Mukherjee, S. Misra, V. S. P. Chandra, and
N. S. Raghuwanshi, “ECoR: energy-aware collaborative
routing for task o#oad in sustainable UAV swarms,” IEEE
Transactions On Sustainable Computing, vol. 5, no. 4,
pp. 514–525, 2020.

[10] H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task as-
signment and wireless resource allocation for cooperative
mobile-edge computing,” in Proceedings of the 2018 IEEE
International Conference on Communications, vol. 20, no. 1,
pp. 360–374, Kansas City, MO, USA, May 2018.

[11] K. A. Noghani, H. Ghazzai, and A. Kassler, “A generic
framework for task o#oading in mmWave MEC backhaul
networks,” in Proceedings of the 2018 IEEE Global Commu-
nications Conference (GLOBECOM), Abu Dhabi, UAE, De-
cember 2018.

[12] Y. Sun, T. Wei, H. Li, Y. Zhang, andW.Wu, “Energy-e%cient
multimedia task assignment and computing o#oading for

mobile edge computing networks,” IEEE Access, vol. 8,
pp. 36702–36713, 2020.

[13] M. Tajallifar, S. Ebrahimi, M. R. Javan, N. Mokari, and
L. Chiaraviglio, “Energy-e%cient task o#oading under E2E
latency constraints,” IEEE Transactions on Green Commu-
nications & Networking, 2021.

[14] X. Lyu, T. Hui, C. Sengul, and Z. Ping, “Multiuser joint task
o#oading and resource optimization in proximate clouds,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 4,
pp. 3435–3447, 2016.

[15] T. X. Tran and D. Pompili, “Joint task o#oading and resource
allocation for multi-server mobile-edge computing net-
works,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 1, pp. 856–868, 2018.

[16] T. Yang, R. Chai, and L. Zhang, “Latency optimization-based
joint task o#oading and scheduling for multi-user MEC
system,” in Proceedings of the 2020 29th Wireless and Optical
Communications Conference (WOCC), Newark, NJ, USA,
May 2020.

[17] J. Xue, Y. An, and Y. An, “Joint task o#oading and resource
allocation for multi-task multi-server NOMA-MEC net-
works,” IEEE Access, vol. 9, pp. 16152–16163, 2021.

[18] Y. Zeng, W. Chen, Z. Tang, and J. Wu, “Joint proportional
task o#oading and resource allocation for MEC in ultra-
dense networks with improved whale optimization algo-
rithm,” Journal of Physics: Conference Series, vol. 1646, no. 1,
2020.

[19] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep
reinforcement learning-based joint task o#oading and
bandwidth allocation for multi-user mobile edge computing,”
Digital Communications and Networks, vol. 5, no. 1, pp. 10–17,
2019.

[20] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou,
“Risk-aware data o#oading in multi-server multi-access edge
computing environment,” IEEE/ACM Transactions on Net-
working, vol. 28, no. 3, pp. 1405–1418, 2020.

[21] M. Anedda, C. Desogus, M. Murroni, D. D. Giusto, and
G. Muntean, “An energy-e%cient solution for multi-hop
communications in low power wide area networks,” in
Proceedings of the 2018 IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB),
pp. 1–5, Valencia, Spain, June 2018.

[22] S. Cheng, Z. Chen, J. Li, and H. Gao, “Task assignment al-
gorithms in data shared mobile edge computing systems,” in
Proceedings of the 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), Dallas, TX, USA,
July 2019.

[23] D. Nan, N. S. Hang, X. U. Li, and G. Z. Tan, “Data related task
scheduling for vehicular ad hoc networks,” Chinese Journal of
Computers, vol. 40, no. 7, pp. 1614–1625, 2017.

[24] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mo-
bility-aware joint task scheduling and resource allocation
for cooperative mobile edge computing,” IEEE Transac-
tions on Wireless Communications, vol. 20, no. 1,
pp. 360–374, 2021.

[25] Z. Wang, Z. Zhao, G. Min, X. Huang, Q. Ni, and R. Wang,
“User mobility aware task assignment for mobile edge
computing,” Future Generation Computer Systems, vol. 85,
pp. 1–8, 2018.

[26] C. Zhu, J. Tao, G. Pastor et al., “Folo: latency and quality
optimized task allocation in vehicular fog computing,” IEEE
Internet of #ings Journal, vol. 6, no. 3, pp. 4150–4161, 2019.

Wireless Communications and Mobile Computing 15

[27] C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, “E%cient
mobility-aware task o#oading for vehicular edge computing
networks,” IEEE Access, vol. 7, pp. 26652–26664, 2019.

[28] X.Wang, Y. Cui, Z. Liu, J. Guo, andM. Yang, “Optimal resource
allocation for multi-user MEC with arbitrary task arrival times
and deadlines,” in Proceedings of the ICC 2019-2019 IEEE
International Conference on Communications (ICC), Shanghai,
China, May 2019.

[29] M. Emara, H. ElSawy, M. C. Filippou, and G. Bauch, “Spatio-
temporal dependable task execution services in MEC-enabled
wireless systems,” IEEEWireless Communications Letters, vol. 10,
no. 2, pp. 211–215, 2021.

[30] X. Long, J. Wu, Y. Wu, and L. Chen, “Task merging and
scheduling for parallel deep learning applications in mobile
edge computing,” in Proceedings of the 2019 20th International
Conference on Parallel and Distributed Computing, Applica-
tions and Technologies (PDCAT), Gold Coast, Australia,
December 2019.

[31] A. Mamat, Y. Lu, J. Deogun, and S. Goddard, “E%cient real-
time divisible load scheduling,” Journal of Parallel and Dis-
tributed Computing, vol. 72, no. 12, pp. 1603–1616, 2012.

[32] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal
computation task scheduling for mobile-edge computing
systems,” 2016, https://arxiv.org/abs/1604.07525.

[33] G. Wu, Y. Li, J. Ren, and C. Lin, “Partitioned $xed-priority
real-time scheduling based on dependent task-split on mul-
ticore platform,” in Proceedings of the 2013 12th IEEE In-
ternational Conference on Trust, Security and Privacy in
Computing and Communications, Melbourne, Australia, May
2013.

[34] Z. Liu, X. Yang, and J. Shen, “Optimization of multitask
parallel mobile edge computing strategy based on deep
learning architecture,” Design Automation for Embedded
Systems, vol. 24, no. 3, pp. 129–143, 2020.

[35] Z. Xie, X. Song, and S. Xu, “Peer-to-peer enhanced task
scheduling for D2D enabled MEC network,” IEEE Access,
vol. 8, pp. 138236–138250, 2020.

[36] F. Sa$ Esfahani, M. A. A. Murad, M. N. Sulaiman, and
N. I. Udzir, “Using process mining to business process dis-
tribution,” in Proceedings of the 2009 ACM Symposium on
Applied Computing, pp. 2140–2145, Honolulu, HI, USA,
March 2009.

[37] F. Sa$ Esfahani, M. A. A. Murad, M. N. B. Sulaiman, and
N. I. Udzir, “Adaptable decentralized service oriented ar-
chitecture,” Journal of Systems and Software, vol. 84,
pp. 159l–1617, 2011.

16 Wireless Communications and Mobile Computing

https://arxiv.org/abs/1604.07525

