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Abstract

LLMs and other transformers learn relational composition mechanisms to solve
tasks such as tracking information about subjects (“Alice lives in France. Bob
lives in Thailand.”) to answer questions, or parallelising precomputing sub-paths
in graph-based path-finding problems. There is a deep theoretical literature on
vector composition methods, yet we lack empirical studies of what mechanisms
transformers learn in practice. In particular, different composition methods affect
sparse autoencoders (SAEs), a popular method for decomposing model activations,
in different ways. We present empirical evidence in a controlled attention-only
transformer that ordered relational information can be encoded via a relative
magnitude-based mechanism, i.e. by a weighted sum of vectors, rather than
predicted direction-based mechanisms such as additive matrix binding. While
absolute magnitude-based mechanisms have been reported for other architectures
(e.g. onion representations in RNNs), to our knowledge this is the first controlled
demonstration of a relative magnitude mechanism in attention-only transformers.
This result challenges the prevailing view in mechanistic interpretability research
that transformer features can be viewed as binary and independent, and motivates
a re-examination of these methods with respect to feature activation value and
interactions between features at different values. In future work, we will remove
the constraints placed on our toy setting, and attempt to find evidence of these
mechanisms in LLMs. Code is available here: github.com/Theosdoor/order-by-
scale.

1 Introduction

Transformers perform well on tasks that require composing information from different input positions.
For example, Brinkmann et al. [2024] found that a transformer trained on a path-finding problem
in binary trees learns to precompute subpaths and store these in special token positions, when the
depth of the tree exceeds the number of transformer layers; and [Feng and Steinhardt, 2023] found
an identity vector mechanism used in composing relation information in prompts such as “Alice
lives in France. Bob lives in Thailand.”. Solving these problems requires learning mechanisms for
relational composition, by which multiple vectors are composed into a single fixed-length vector.
Whilst there is a substantial body of theoretical research into this topic [Smolensky, 1990, Plate, 1995,
Kanerva, 2009, Csordás et al., 2024], we lack empirical studies into which of these are actually used
in LLMs. Wattenberg and Viégas [2024] propose additive matrix binding as a candidate mechanism,
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Figure 1: These graphs show the movement of information between token positions in our transform-
ers on specific example inputs. The three-layer model (right) appears to directly copy between token
positions, avoiding the composition task. We focus on a two-layer model (left) which has reduced
accuracy but performs the desired composition at the SEP token. Dotted lines represent the residual
stream and red arrows indicate attention moving information between positions, with the thickness
of the lines corresponding to the attention pattern value. As our value and output matrices are the
identity matrix, attention performs scaled copying in the residual stream. Edges are annotated with
the average impact on validation accuracy when ablated, edges with no impact on accuracy are not
displayed. The figure on the left shows the pattern for a two-layer transformer with 92% validation
set accuracy, whereas the figure on the right shows the pattern for a three-layer transformer with
100% validation set accuracy. The numbers next to each of the nodes in the graph correspond to the
logit lens [Nostalgebraist, 2020] of the activation value at that position and layer.

whilst Feng and Steinhardt [2023] find broad use of binding ID mechanisms across families of LLMs.
These mechanisms have different implications for sparse autoencoders (SAEs), a popular method to
recover interpretable features in the mechanistic interpretability literature: additive matrix binding
could result in a multiplicity of “echo features” - copies of the same feature when bound in different
subspaces; and ID vectors may result in abstract features that cannot easily be interpreted with respect
to the input.

To bridge this research gap, we present a study of a toy model exhibiting another relational composi-
tion mechanism. Toy models have been useful in the past for understanding phenomena that have
then generalised to LLMs. For example, results on modulo arithmetic in toy models [Nanda et al.,
2023] informed work on LLMs [Baeumel et al., 2025], and toy models of superposition [Elhage et al.,
2022] led to the application of SAEs to LLMs [Bricken et al., 2023].

Our paper is structured as follows. In Section 3, we present a two-layer attention-only transformer
to encode two input tokens, d1 and d2, into a single separator token, SEP, and then reconstruct
d1 and d2 as output. This is motivated by the path-finding model in Brinkmann et al. [2024]. In
Section 4, we find that the order of these tokens is defined by the relative magnitude of scalar
variables in the attention pattern, rather than through a direction-based mechanism like additive
matrix binding. This is problematic to the common perspective that SAE features can be interpreted
as binary [Quirke et al., 2025, Paulo et al., 2024]: in our model, the same features are active for both
⟨a, b⟩ and ⟨b, a⟩, but with different magnitudes. In Section 5, we discuss the implications of these
results on the mechanistic interpretability agenda, and SAEs in particular. Our paper is intended as a
foundational and exploratory work, and in future work we will attempt to validate our findings across
less-constrained toy models and on pretrained LLMs.

2 Related Work

Relational composition and binding. Classic work in distributed representations show how single
vectors can encode structured data. Tensor Product Representations (TRPs) and Vector Symbolic
Architectures (VSAs) bind and additively superpose vectors, enabling ordered structures in fixed
width vectors [Smolensky, 1990, Plate, 1995, Kanerva, 2009].
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Table 1: Comparison of relational composition mechanisms and their implications for interpretability.

Composition Description Example Implications
Direction-
based

Features are vectors;
sequence position de-
fined by different di-
rections

Matrix binding Watten-
berg and Viégas [2024]
- features projected to
distinct linear subspaces:
r = Ax+By

Feature multiplicity:
SAEs may learn echo
features (Ax, Ay, Bx,
By) representing the
same underlying concept

Fixed Magni-
tude

Multiple features
have same direction;
sequence position
defined by different
magnitudes

Onion-like represen-
tations Csordás et al.
[2024] - “unpeel” via
autoregression to retrieve
sequence positions

Counter-example to the
widely held assumption
that representations are
linear

Relative Mag-
nitude

Sequence position de-
fined by magnitude
relative to other posi-
tions in sequence

This work - sequence or-
der defined by a weighted
sum of input token and
positional embeddings

Counter-example to the
widely held assumptions
that representations are
linear and SAE latents
are binary

Wattenberg and Viégas [2024] highlight additive matrix binding, where vectors are written to slots
using role-specific linear maps so that bigrams (x, y), (y, x) remain separable, as a candidate mecha-
nism for relational composition in transformers. That is, given an ordered bigram (d1, d2) and two
n× n matrices A and B, define the representation of (x, y) by

r = Ax+By

In this way, (x, y) and (y, x) have different representations. Wattenberg and Viégas [2024] claim that
this causes feature multiplicity: a kind of false positive where multiple “echo features” are created
that represent the same concept in different contexts. Given two features x and y, matrix binding
results in Ax, Ay, Bx, and By features that represent the same concept as x and y.

Empirical evidence for composition and binding. Feng and Steinhardt [2023], Prakash et al.
[2024] identify binding-ID directions that bind entities and their attributes in LLMs in-context. For
example, a “green car”. A binding-ID vector k is attached to an entity and its attribute by addition in
their respective activation spaces. To answer a query for a given entity, the attribute with a matching
binding-ID is retrieved from the context activation space. Feng and Steinhardt [2023] also show
that these mechanisms are position-independent with respect to the attribute and entity, and that the
activations are factorisable.

Brinkmann et al. [2024] reverse-engineer an attention-only tree-search transformer that stores pre-
computed subpaths in special token positions and merges them later. This occurs when the tree depth,
N , is greater than L − 1 < N , where L is the number of transformer layers. This constraint is
also necessary in our work, where N is the size of the input N -gram. However, the authors do not
investigate the structure of these activations.

Csordás et al. [2024] demonstrate “onion representations” in small (hidden size ≤ 64) gated recurrent
neural networks (RNNs), where these slots are defined by different orders of magnitude rather than
distinct linear subspaces. The model represents ordered sequences by closing the gates gradually and
synchronously over the input phase, which exponentially decays the scaling factor of subsequent
sequence positions. This produces layered onion representations where earlier sequence positions
dominate the magnitude space. This contrasts larger models which indicate sequence position by
sharply closing their gates, which creates position-dependent subspaces for each input. The onion
representation allows autoregressive decoding to sequentially “peel” off tokens by subtracting the
current dominating token embedding. Multiple tokens can occupy the same directional subspace at
different magnitude scales; any linear direction will cross-cut multiple layers of the onion. While
the authors find that sequence order is represented by fixed magnitude scales, we find an alternative
mechanism where it is instead represented by relative magnitude between positions, which is input-
dependent and not fixed.
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Our toy model provides evidence for magnitude-based composition in attention-only transformers,
but with relative magnitudes rather than fixed ones as observed in Csordás et al. [2024]. See Table 1
for an overview of these composition methods.

Sparse Autoencoders. Models can store more sparse features than the dimension of their activations
naively allows through superposition, creating challenges for interpreting these models [Elhage et al.,
2022]. Sparse Autoencoders (SAEs) [Bricken et al., 2023, Cunningham et al., 2024] and their variants
[Gao et al., 2024, Bussmann et al., 2024, Rajamanoharan et al., 2024, Leask et al., 2025b, Costa et al.,
2025, Bussmann et al., 2025] have been proposed as a tool for recovering these sparse features from
dense activations. An SAE is an autoencoder with a single hidden layer that is trained to reconstruct
its input while enforcing sparsity in the activations of the neurons in this hidden layer. SAEs have
been successfully used on exploratory interpretability tasks like model auditing [Marks et al., 2025]
and hypothesis generation [Movva et al., 2025], but it is unclear whether they can be used to recover
the true features of models [Leask et al., 2025a, Chanin et al., 2024].

Wattenberg and Viégas [2024] argue that matrix binding will result in echo features in SAEs, where the
SAE learns latents corresponding to projections of the same feature into different binding subspaces.
The effects of ID vectors and onion representations on SAEs have so far not been studied.

SAE latents are generally treated as binary features in the literature [Paulo et al., 2024, Quirke
et al., 2025], where they are ’on’ if the feature is active and ’off’ otherwise. In contrast, our results
demonstrate graded latent activations in which relative activation magnitude encodes relational
information, such as sequence order. If these results generalise to LLMs, then they could undermine
this binary perspective. Additionally, graded latent activations may be ignored or misinterpreted by
any downstream interpretability tool that assumes all features are independently interpretable and
linear.

3 Methodology

Task. We train a modified auto-regressive transformer to map from [d1, d2, SEP, MASK, MASK] to
[d1, d2, SEP, o1, o2], where d1 and d2 are uniformly sampled from [0, 99], and (o1, o2) = (d1, d2).

Table 2: Our custom attention mask for input [d1, d2, SEP, o1, o2], where F means the attention weight
was set to −∞ before softmax, and T means it was computed normally. The di tokens attend only
to other di and SEP, while the oi tokens attend causally to the separator and previous output tokens.
This prevents direct copying of input embeddings from di into oi. Self-attention is enabled only for
d1 to prevent numerical instability.

d1 d2 SEP o1 o2

d1 T F F F F
d2 T F F F F
SEP T T F F F
o1 F F T F F
o2 F F T T F

The attention pattern is constrained so that the output positions cannot attend to the input positions -
that is, o1 can only attend to SEP and o2 can only attend to o1 and SEP (Table 2).

The loss is computed only on o1 and o2. We chose this narrow setting to isolate the problem solved
by the sub-path pre-computation in [Brinkmann et al., 2024], and simplified to an ordered bigram to
find a minimal list copying circuit.

We removed the attention bias and layer norm, and froze the attention value and output matrices to
the identity, as these ablations resulted in no decrease in task performance (Appendix A, Table 4).
This reduces attention outputs to weighted sums of the previous residual stream.

Model specification and training. Our training dataset consists of 80% of all possible inputs (i.e.
8000 of the total 100*100 (d1, d2) bigrams). The test set is the remaining 20% of unseen inputs. We
optimise cross-entropy on both o1 vs d1 and o2 vs d2.
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We trained two- and three-layer transformers on this task. The three-layer model consistently
achieves 100% accuracy, as the additional layer allows it to directly copy between token positions,
circumventing the composition task (Figure 1). Instead, we focus on two-layer models, which have a
maximum performance of 92.2% test accuracy.

After a grid-search of residual stream dimensions (see Appendix A, Table 4), we set dmodel = 64,
which was the lowest dimension that achieved joint-best validation accuracy. The trainable parameters
are the token and positional embedding matrices, the unembedding matrix, and the key and query
matrices from the attention layers. Whilst these are substantial constraints, it is normal for toy models
in the mechanistic interpretability literature to use similar constraints [Nanda et al., 2023, Elhage
et al., 2021].

Table 3: Model and training configuration.
Parameter Value
Number of layers 2 or 3
Number of heads 1
Residual stream dimension 64
Attention head dimension 64
LayerNorm None
Bias None
Value matrix (WV ) Identity (frozen)
Output matrix (WO) Identity (frozen)

Learning rate 1× 10−3

Optimiser AdamW
Batch size 128
Betas (0.9, 0.999)
Weight decay 0.01

Table 3 shows our final configurations. Overall, we have 92,288 trainable parameters for the two-layer
model, and 125,056 for the three-layer model.

4 Results

Our selected two-layer model achieves accuracy of 92.2% on the validation set, whereas the three-
layer model achieves 100% accuracy. Whilst the three-layer model is more accurate, we focus on
the two-layer transformer as this forces the model to learn to compose the representations in the
separator token after layer 1, similarly to Brinkmann et al. [2024]. The authors find the compression
mechanism in N-depth binary trees where the number of model layers is such that nlayers − 1 < N .
In our model, we meet the same constraint except N corresponds to the input N-gram, rather than tree
depth. For a bigram (d1, d2), we require a two-layer model.

4.1 Attention Ablations

For the two- and three-layer models, we independently set each attention pattern probability to zero
and observe the impact on performance. Figure 1 shows the minimum set of attention pattern weights
required for the model to achieve full accuracy; all other weights can be set to zero. Throughout this
section we refer to attention pattern weights as edges, in reference to the graphs in Figure 1.

For the three-layer model, we find two types of edge that reduce accuracy when ablated:

1. edges that copy di to the corresponding oi via SEP in sequential layers for each i,
2. and one edge between d1 and SEP in layer 1 that only had a small impact on the validation

accuracy when ablated.

Ablating the former roughly halves the validation performance, as removing any one of these means
the model cannot predict at least one of the outputs. This supports our conjecture that they are copying
each di to the oi via SEP. This three-layer model therefore does not display the composition in which
we are interested, and instead implements a sequential copy algorithm.
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For the two-layer model, we find three types of edge that reduce accuracy when ablated, which we
refer to as composition, decomposition and moderation edges:

1. The composition edges are those in layer 1 between each di and SEP - these copy the bigram
to SEP.

2. The decomposition edges are those in layer 2 between SEP and each oi - these copy the
information from SEP to each oi.

3. The additional moderation edge is between o1 and o2 in layer 2.

Ablating the moderation edge results in misclassification of o2 in 62% of cases. 54% of these errors
are caused by the model copying d1 to both output positions - that is, d1 = o1 = o2. For this
reason, we hypothesise that this edge is responsible for moderating the o1 logit in the o2 token
position. We additionally investigate how this edge contributes to the linear separability of the oi
before unembedding.

We detail further attention ablations in Appendix B.

4.2 Circuit Analysis

We annotate our five input tokens as [d1, d2, s, o1, o2]. In our input, the di tokens vary as described in
Section 3, the s token is always SEP, and the oi tokens are always MASK. E is our token embedding
matrix, P is our positional embedding matrix, and U is our unembedding matrix. Define αx→y as
the attention weight at query x and key y in the first layer’s attention pattern. Define βx→y similarly
for the second layer. Define ℓt ∈ RV as the logit vector predicted at the position of token t, where V
is the vocabulary size. We write Et as the token embedding of t ∈ {d1, d2, s,m}, where Em is the
embedding of the oi tokens, and P z as the positional embedding of token z ∈ {d1, d2, s, o1, o2}.

We derive the following expressions for the logits at positions 4 and 5, called ℓo1 and ℓo2 respectively,
leaving details for Appendix C. Let S = Es + P s, then:

ℓo1 =
[
Em + P o1 + αs→d1

(Ed1
+ P d1

)

+ αs→d2
(Ed2

+ P d2
) + S

]
U

(1)

ℓo2 =
[
(1 + βo2→o1)Em + βo2→o1P o1 + P o2

+ βo2→s

(
αs→d1(Ed1 + P d1)

+ αs→d2
(Ed2

+ P d2
) + S

)]
U

(2)

Scaling to reverse output. Suppose that the model is given d1 = a and d2 = b as input, where
a, b ∈ [0, 99] as outlined in Section 3. Substituting these into equation (1) gives us ℓo1(a, b): that is,
the final logit vector at position 4 on inputs a, b.

ℓo1(a, b) =
[
Em + P o1 + αs→a(Ea + P d1

)

+ αs→b(Eb + P d2
) + S

]
U

(3)

Moreover, consider when the inputs are swapped. Let α′ ̸= α be the new attention pattern for this
input. Therefore:

ℓo1(b, a) =
[
Em + P o1 + α′

s→b(Eb + P d1
)

+ α′
s→a(Ea + P d2

) + S
]
U

(4)

Now let us find the difference between these:
ℓo1(b, a)− ℓo1(a, b)

=
[
α′
s→b(Eb + P d1

) + α′
s→a(Ea + P d2

)

− αs→a(Ea + P d1)− αs→b(Eb + P d2)
]
U

=
[
(α′

s→a − αs→a)Ea + (α′
s→b − αs→b)Eb

+ (α′
s→b − αs→a)P d1

+ (α′
s→a − αs→b)P d2

]
U

(5)
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Figure 2: These bars show the individual contribution for each element in ∆ℓ towards ℓo2 in
ℓo1 + ∆ℓ = ℓo2 . The dotted line shows cumulative contribution for each element when added to
those preceding it in equation 6. Negative contributions increase the d1 logit relative to d2, and
positive contributions increase the d2 logit relative to d1. Note that the plotted bars account for the -/+
preceding some y-axis elements.

In this way, the order of the model’s output logits can be reversed by linearly scaling the input
token and positional embeddings via the first layer’s attention pattern. This suggests that the model
composes the bigram by scaling the same underlying directions (the input token and positional
embeddings) with different coefficients, rather than projecting onto role-specific directions as in
additive matrix binding. While the resulting residual vectors do point in different directions for
different inputs, the mechanism decomposes into weighted sums of a fixed set of basis vectors, with
the weights (attention scores) encoding the order information. This contrasts to existing research on
relational composition mechanisms Csordás et al. [2024], Wattenberg and Viégas [2024] which use
different activation directions.

Difference between o2 and o1 logits. Let: Di = Edi + P di , i ∈ {1, 2}.
When we take the difference between ℓo2 and ℓo1 , we get

∆ℓ = ℓo2 − ℓo1
= [βo2→o1Em + (βo2→o1 − 1)P o1 + P o2

+ (βo2→s − 1)(αs→d1
D1

+ αs→d2D2 + S)]U

= [βo2→o1Em + P o2 − βo2→sP o1

− βo2→o1(αs→d1
D1 + αs→d2

D2 + S)]U

= [P o2 − βo2→sP o1 − βo2→o1(αs→d1
D1

+ αs→d2
D2 + S −Em)]U

(6)

We reconstruct ˆℓo2 = ℓo1 + ∆ℓ to compare to the original ℓo2 . Figure 2 shows the empirical
contribution of each element of ∆ℓ. We found that using ˆℓo2 for predictions in place of ℓo2 provided
the same results, which verifies our derivation. We find that setting αs→d1

= 0 and αs→d2
= 1 in

∆ℓ and using ˆℓo2 to predict o2 causes the model’s o2 accuracy to jump to 99% from 84%. However,
in practice these changes to α also impact ℓo1 and significantly reduce the model’s o1 accuracy. We
hypothesise that the model learns to balance a reduction in o2 accuracy for a relatively larger increase
in o1 accuracy through αs→di

.
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4.3 Linearly Separable Output Projections

We hypothesise that the model uses the unembedding matrix U to linearly separate the position
embeddings of o1 and o2. To confirm this, we project the final activation vectors for o1 and o2 onto
the positional embedding matrix P , and reconstruct the activations from this projection, removing
the token embedding component. We verify the separability of these two groups by fitting a linear
support vector classifier (SVC) [Cortes and Vapnik, 1995] to separate these groups, which achieves
over 99% classification performance. This demonstrates the hypothesis that the model is “writing to
slots” in superposition through scaling rather than additive matrix binding [Wattenberg and Viégas,
2024].

5 Discussion

Our toy transformer solves ordered list copying by writing both inputs into the <SEP> position, and
then decoding order by the relative magnitudes of the contributions, rather than projecting content
into role-specific directions, as is the case in additive matrix binding [Wattenberg and Viégas, 2024].
Equation (5) shows that the logits at o1 and o2 can be written as combinations of (Ed1

+ P d1
) and

(Ed2
+ P d2

) with input-dependent coefficients αs→d1
, αs→d2

.

Consider training an L1-regularized SAE on the residual at SEP after layer 1,

rL1
s = αs→d1

(Ed1
+ P d1

) + αs→d2
(Ed2

+ P d2
) +Es + P s (7)

Then learning separate latents with identical decoder directions is an unstable solution, as this always
results in a higher average L1 penalty than maintaining a single latent for this direction. Compare this
with the ideal solution of learning latents corresponding to D1 = Ed1

+P d1
and D2 = Ed2

+P d2
,

with activations equal to the attention probabilities.

This results in graded latent activations. As such, the binary perspective of SAE latents [Quirke et al.,
2025, Paulo et al., 2024] is insufficient to explain the computation of this model, and the activation
values of the SAE latents must be incorporated into our understanding. This creates separate problems
to the echo-features caused by additive matrix binding [Wattenberg and Viégas, 2024], which are
different directions in the activation space to the base features; and the ID features in ID binding
[Feng and Steinhardt, 2023] which are also different directions but have an abstract interpretation. A
feature that identifies the order of the bigram is necessarily not linear, due to the relative interactions
between the input features. These contradict the linear representation hypothesis, a foundational
assumption of mechanistic interpretability that states that networks can be described in terms of
independently understandable features and linear features [Elhage et al., 2022]. Similarly to the
results of Csordás et al. [2024] on RNNs, we provide evidence that transformer interpretability should
not be confined by the linear representation hypothesis.

Recent work [Leask et al., 2025b, Chanin et al., 2024] has highlighted the practical challenges with
training SAEs that are useful for mechanistic interpretability. Our results in this paper potentially
cut across this debate: even if SAEs can recover the correct dictionary, without tools to understand
the effect of the relative magnitudes of latent activations, our interpretation of the model will be
incomplete.

6 Conclusions and Future Work

In this paper we identified a previously undescribed magnitude-based mechanism for relational
composition in transformers, and released a minimal toy model that has learned this mechanism.
We further described how this mechanism will affect latent learning in SAEs, and how it necessi-
tates a different perspective on transformer features than is currently prevalent in the mechanistic
interpretability literature.

In future work, we plan to determine whether pretrained LLMs implement similar mechanisms, and
find evidence of pretrained SAE latents where different activation values can result in dramatically
different model behaviour. We also intend to train SAEs on this toy model and see what they learn
in practice, however we expect these results to be difficult to interpret due to the challenges of SAE
hyperparameter selection [Leask et al., 2025a] and training instability [Fel et al., 2025].
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In addition, we will pursue validation of our findings on less constrained models. For example, we will
extend our investigation to larger N-grams to analyse how the minimum nlayers for high accuracy
scales with N. Furthermore, the positional encodings play a major role in the magnitude-based
mechanism, and it is unclear whether this mechanism would be possible for alternative positional
encoding methods such as absolute encodings [Radford et al., 2019] or RoPE [Su et al., 2024].

In summary, the findings in this paper are intended as a foundation for further research on magnitude-
based relational composition mechanisms in LLMs.
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A Parameter Grid Search

Table 4: Grid search results where nlayers = 2 and nheads = 1 are fixed. F = False, T = True. We
write LN for LayerNorm, and WV and WO are the value and output matrices respectively, where
False means it was frozen to the identity matrix during training. We additionally ablate the residual
stream dimension dmodel in the second part of the table. Accuracy is reported as the mean validation
accuracy over three independent training runs, though we note this is insufficient for statistical
significance testing.

dmodel LN Bias WV WO Accuracy

64 F F T T 0.6207
64 F T T T 0.4983
64 T F T T 0.7709
64 T T T T 0.7744
64 F F T F 0.7513
64 F T T F 0.7552
64 T F T F 0.9089
64 T T T F 0.9202
64 F F F T 0.7481
64 F T F T 0.7560
64 T F F T 0.9162
64 T T F T 0.7636
64 F F F F 0.9180
64 F T F F 0.7487
64 T F F F 0.9215
64 T T F F 0.8935

128 F F F F 0.9192
64 F F F F 0.9180
32 F F F F 0.6074
8 F F F F 0.3148

Our parameter grid search is shown in Table 4. We find that we can ablate the attention bias and LayerNorm and
freeze the attention value and output matrices to the identity without any significant drop in performance.
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B Further Attention Ablations

Figure 3: The attention patterns vary significantly depending on input. These histograms show the
variation in the attention weights for SEP in layer 1 (top row) and for o2 to SEP in layer 2 (bottom
row).

Figure 3 shows the distribution in the attention pattern from SEP to di in layer 1, and from o2 to SEP in layer 2.
We see that, despite the syntax of the input being fixed, the attention pattern varies significantly with the inputs.
In particular, fixing the attention pattern to the mean attention pattern over the test set reduces accuracy to 45%.

Figure 4: This graph shows the correlation between SEP’s attention to both d1 and d2 in layer 1, and
validation accuracy. The model fails when SEP attends to d1 and d2 by roughly the same amount
(near the diagonal).
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Figure 4 plots the attention scores for SEP to di in layer 1, and we find that similar attention patterns results in
misclassification. This corroborates the finding that using the mean attention pattern harms performance, as the
mean pattern lies within this error zone.

C Output Derivation

Let rLi
z be the residual at position of token z ∈ {d1, d2, s, o1, o2} after layer i.

Layer 1.

rL1
s = αs→d1(Ed1 + P d1) + αs→d2(Ed2 + P d2)

+Es + P s

(8)

rL1
oi = Em + P oi , i ∈ {1, 2}. (9)

Note that we use our custom mask (outlined in Section 3) to prevent positions 4 and 5 from attending to anything
in layer 1.

Layer 2.

rL2
o1 = rL1

o1 + βo1→s r
L1
s (10)

rL2
o2 = rL1

o2 + βo2→s r
L1
s + βo2→o1 r

L1
o1 (11)

Output logit at position 4 (o1).

ℓo1 = rL2
o1 U =

[
rL1
o1 + βo1→sr

L1
s

]
U (12)

ℓo1 =
[
Em + P o1 + βo1→s

(
αs→d1(Ed1 + P d1)

+ αs→d2(Ed2 + P d2) +Es + P s

)]
U

(13)

Output logit at position 5 (o2).

ℓo2 = rL2
o2 U =

[
rL1
o2 + βo2→s r

L1
s + βo2→o1 r

L1
o1

]
U (14)

ℓo2 =
[
Em + P o2

+ βo2→s

(
αs→d1(Ed1 + P d1)

+ αs→d2(Ed2 + P d2) +Es + P s

)
+ βo2→o1(Em + P o1)

]
U

(15)

Simplification. Let S = Es + P s. Furthermore, since o1 can only ever attend to s, we have βo1→s = 1.
Since o2 can only attend to s or o1, we have βo2→s + βo2→o1 = 1. Therefore, we can simplify the equations
(13) and (15) to get equations (1) and (2) in Section 4.2.
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