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ABSTRACT

How do we know if two systems – biological or artificial – process information
in a similar way? Similarity measures such as linear regression, Centered Kernel
Alignment (CKA), Normalized Bures Similarity (NBS), and angular Procrustes
distance, are often used to quantify this similarity. However, it is currently unclear
what drives high similarity scores and even what constitutes a “good” score. Here,
we introduce a novel tool to investigate these questions by differentiating through
similarity measures to directly maximize the score. Surprisingly, we find that
high similarity scores do not guarantee encoding task-relevant information in a
manner consistent with neural data; and this is particularly acute for CKA and even
some variations of cross-validated and regularized linear regression. We find no
consistent threshold for a good similarity score – it depends on both the measure
and the dataset. In addition, synthetic datasets optimized to maximize similarity
scores initially learn the highest variance principal component of the target dataset,
but some methods like angular Procrustes capture lower variance dimensions
much earlier than methods like CKA. To shed light on this, we mathematically
derive the sensitivity of CKA, angular Procrustes, and NBS to the variance of
principal component dimensions, and explain the emphasis CKA places on high
variance components. Finally, by jointly optimizing multiple similarity measures,
we characterize their allowable ranges and reveal that some similarity measures
are more constraining than others. While current measures offer a seemingly
straightforward way to quantify the similarity between neural systems, our work
underscores the need for careful interpretation. We hope the tools we developed
will be used by practitioners to better understand current and future similarity
measures.

Project page: https://diffscore.github.io

Code: https://github.com/diffscore/diffscore

Angular Procrustes, Linear Regression, CKA, Angular CKA, NBS
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Neuron 2
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Figure 1: (a) To better understand the properties of similarity measures we optimize synthetic
datasets to become more similar to a reference dataset, for example, neural recordings. (b) We
analyzed similarity scores between artificial datasets and electrode recordings from five experiments
on nonhuman primates spanning a diverse range of behaviors and brain regions.
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1 INTRODUCTION

Similarity measures have become a cornerstone in evaluating representational alignment across
different models (Kornblith et al., 2019), different biological systems (Kriegeskorte et al., 2008b),
and across both artificial and biological systems. Researchers have employed diverse methods to
compare model representations with, for example, brain activity, aiming to identify models that
exhibit brain-like representations (Yamins et al., 2014; Sussillo et al., 2015; Schrimpf et al., 2018;
Nayebi et al., 2018). However, while these measures are actively used and provide an efficient
way to compare structure across complex systems, it is not clear that they adequately represent
the computational properties of interest, and there is a need to better understand their limitations.
Whenever we choose a similarity measure, we are making a commitment to what we care about in
the two systems we are comparing. Therefore, understanding what drives these similarity scores is
crucial for understanding this commitment. The field lacks clear guidelines for interpreting similarity
scores in a given experimental context.

In this work we study several popular methods that have been proposed to quantify the similarity
between models and neural data, in particular, linear regression (Yamins et al., 2014; Schrimpf
et al., 2018), Centered Kernel Alignment (CKA) (Kornblith et al., 2019), angular Procrustes distance
(Williams et al., 2021; Ding et al., 2021), and Normalized Bures Similarity (NBS) (Tang et al., 2020).
See appendix C.1 for a brief overview. We analyzed neural data from studies on nonhuman primates
(Figure 1) and compared the neural responses to task-optimized recurrent neural networks (RNNs),
or synthetic datasets, with different similarity scores. In order to study what drives high similarity
scores we directly optimize the synthetic datasets to maximize their similarity to the neural datasets
as assessed by different similarity measures.

Disagreement between similarity measures. An example application of similarity measures is to
quantify how brain-like models are. However, when we compare task-optimized RNNs to two neural
datasets, as shown in Figure 2, we find that different similarity measures do not agree about which
models are more similar to the data, or even about whether the models are more or less similar than
two baseline scores that compare modified versions of the neural data to the original neural data. Are
most of the models generally performing well or not, i.e. achieving model-data similarities above
one or both of these baseline scores? Different measures give different answers. These similarity
measures lack consistency and do not present a consensus interpretation. This is not an irrelevant
exercise as all of these similarity measures have been used in the literature to compare models to
neural data.

Our main contributions and findings can be summarized as follows:

1. We show that a good value for a similarity score varies depending on the similarity measure
and the dataset (Figure 3). Furthermore, we demonstrate that a high similarity score does not
guarantee that models encode task-relevant information in a manner consistent with neural
data. This is particularly relevant for the many studies that rely on these similarity measures to
quantitatively characterize the degree of alignment between models and brains.

2. We identify what drives high similarity scores by differentiating through the similarity measures
to directly maximize the score. We discover that different similarity measures differentially
prioritize learning principal components of the data. For example, CKA, as opposed to angular
Procrustes, may indicate a high score when many of the lower variance components are not
captured, even when these dimensions carry crucial task-related information (Figures 4 and 5).

3. Through theoretical derivation we show the sensitivity of CKA, angular Procrustes, and Nor-
malized Bures Similarity to the variance of principal component dimensions, and explain the
dependence CKA shows to high variance components (section 4.3 and Figure 6)

4. We characterize the allowable range of scores between two different similarity measures by
jointly optimizing their scores. Surprisingly, we reveal that a high angular Procrustes similarity
implies a high CKA score, but not the converse (for the dataset shown in Figure 7).

5. Comparing similarity scores across studies is challenging, primarily due to variability in naming
and implementation conventions. As part of our contribution to the research community we
have created, and are continuing to develop, a Python package that benchmarks and standardizes
similarity measures. Currently there are approximately 100 different similarity measures from
14 packages. Similarity package: https://github.com/diffscore/similarity-repository
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Figure 2: Different similarity measures do not agree on the relative rankings when comparing
models to neural datasets. One example application of similarity measures is to evaluate the
similarity of task-optimized recurrent neural networks to neural datasets. We consider two neural
datasets from (a) prefrontal cortex (PFC) (Mante et al., 2013) and (b) Frontal Eye Field (FEF) (Siegel
et al., 2015) in monkeys performing an experimental task that required the animal to attend to either
color or motion information while ignoring the non-cued feature of the stimuli. (c, d) RNNs with
three different architectures, CTRNN, LowPassCTRNN, LSTM and three different nonlinearities,
ReLU, ReTanh, Tanh are compared to neural datasets (see appendix B for details).

2 RELATED WORK

Reviews. Recent reviews by Sucholutsky et al. (2023) and Klabunde et al. (2023) provide compre-
hensive overviews of representational similarity measures and their theoretical properties. While
these reviews highlight the diversity of available metrics, they offer limited practical guidance on
interpreting similarity scores.

Our work addresses this gap by proposing a general framework for evaluating similarity measures. By
directly optimizing synthetic datasets to maximize their similarity to, for example, neural recordings,
we can systematically investigate how different metrics prioritize various aspects of the data, such
as specific principal components or task-relevant information. Similarity measures are often charac-
terized by the invariance properties between representations with maximum similarity. In contrast,
we focus on what drives intermediate similarity scores and how to interpret them, since we are often
dealing with intermediate levels of similarity in practice when comparing models to brain data.

Mathematical properties. This work builds upon several important theoretical and empirical
contributions. Kornblith et al. (2019) discussed the invariance properties of similarity measures
and their implications for comparing neural representations. Williams et al. (2021) advocated for
similarity measures that satisfy the axioms of a metric distance. Harvey et al. (2023) established
a duality between Normalized Bures Similarity (NBS) and Procrustes distance, shedding light on
their mathematical relationship to CKA. We leverage these theoretical insights to provide a deeper
interpretation of our empirical findings.

Comparison with functional measures. Our approach shares similarities with the work of Ding
et al. (2021), who evaluated metrics based on their correlation with functional behavioral measures.
They analyzed a collection of trained models and observed how variations in the models, such as
the removal of principal components, impacted both the similarity scores and the performance on
task-specific probes. They identified that CKA exhibited sensitivity primarily to the top principal
components, while orthogonal Procrustes demonstrated more robust performance.

However, our approach differs significantly in how we construct a diverse set of datasets with varying
behavioral characteristics. Instead of relying on pre-trained models, we begin with unstructured
noise and directly optimize it to maximize similarity to neural recordings. This allows us to address
questions such as whether high similarity scores can be achieved without encoding task-relevant
variables. Our optimization-based approach reveals how different similarity measures guide the
emergence of task-relevant information within the synthetic datasets, offering a dynamic perspective
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on their properties. Additionally, by leveraging our optimization-based perspective for multiple
similarity measures we can find the allowable ranges of scores, and identify dependencies between
similarity measures.

In contrast to the majority of previous work, our method is model-agnostic, focusing on the properties
of similarity measures themselves rather than specific model architectures. We demonstrate the
generalizability of our findings by applying our framework to multiple neural datasets, revealing
consistent patterns in how different metrics prioritize data features. Interestingly, we find that the
optimization dynamics observed with neural data are closely predicted when using Gaussian datasets
with matched variance distributions. This suggests that our insights extend beyond the specifics of
individual neural datasets and reflect fundamental properties of the similarity measures themselves.

3 METHOD

3.1 MEASURING SIMILARITY

To evaluate the similarity of representations between two systems, we extract feature representations
such as activity in a brain area or model layer in response to some sample stimuli. Our objective is to
quantify the alignment between these representations using a similarity score. Assume two datasets
X and Y represent these features with dimensions (sample, feature) and mean-centered columns.
Datasets with temporal dynamics are reshaped from (time, sample, feature) to (time*sample, feature).
We define a scoring function score(X,Y ) as a measure that increases with similarity, achieving a
maximum of 1 when X = Y .

We consider the following similarity measures (see appendix C.1 for details):

• Centered Kernel Alignment (CKA) measures the correlation between the kernels of two
datasets X and Y (Kornblith et al., 2019). We consider here linear CKA where the kernels are
XXT and Y Y T .

CKA(X,Y ) =
⟨vec(XXT ), vec(Y Y T )⟩

∥XXT ∥F ∥Y Y Y ∥F
• Angular CKA is a variant of CKA that satisfies the axioms of a distance metric (Williams et al.,

2021; Lange et al., 2022). It is defined as the arccosine of CKA. We additionally renormalize it
to have a value between 0 and 1, where 1 is perfect similarity.

• Angular Procrustes finds the optimal orthogonal linear alignment between X and Y to maxi-
mize their correlation (Williams et al., 2021; Ding et al., 2021).

min
Q∈O

arccos
⟨X,QY ⟩

∥X∥F ∥Y ∥F
where O is the group of orthogonal linear transformations. Williams et al. (2021) proposed
taking the arccosine to satisfy the axioms of a distance metric. Here we rescale the angular
Procrustes distance to obtain a scoring measure between 0 and 1, where 1 is perfect similarity.

• Normalized Bures Similarity (NBS) (Tang et al., 2020) is the cosine of the angular Procrustes
distance (Harvey et al., 2023). NBS is also closely related to CKA and mainly differs by a
choice of matrix norm (see details in appendix C.1).

NBS(X,Y ) =
∥XTY ∥∗√

∥XXT ∥∗∥Y Y T ∥∗
• Ridge Regression finds the best linear mapping B that predicts a reference dataset X from a

dataset Y (Yamins et al., 2014; Schrimpf et al., 2018). We measure the goodness of fit using R2

and use ridge regularization as well as 5-fold cross-validation that tests generalization across
different experimental conditions. We use λ = 100 by default and show results with varying λ
in appendix A.

B∗ = argmin
B

∥X − Y B∥2F + λ∥B∥F

R2
LR = 1− ∥X − Y B∗∥2F

∥X∥2F
• Linear Regression. Same as Ridge Regression but for λ = 0 (unregularized).

4
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3.2 OPTIMIZING SIMILARITY SCORES

To better characterize similarity measures we optimize synthetic datasets Y to become more similar
to a reference dataset X . We initialize the synthetic dataset Y by randomly sampling from a standard
Gaussian distribution with the same shape as X . We use Adam (Kingma & Ba, 2017) to optimize Y
to maximize the similarity score with X , leveraging the differentiability of the similarity measures,
and stop the optimization when the score reaches a fixed threshold near 1. Note that some similarity
measures have parameters to optimize to compute the similarity score. Our method can be applied in
such cases too, as long as the similarly score is differentiable with respect to the input datasets. For
example, in the case of linear regression, we directly differentiate PyTorch’s lstsq function.

As we optimize Y towards greater similarity with X , we simultaneously evaluate how well task-
relevant variables can be linearly decoded from the evolving synthetic data. This decoding analysis
employs logistic regression with stratified 5-fold cross-validation. For datasets with temporal dynam-
ics, we fit a separate decoder for each time step and report the average accuracy across time.

We also evaluate how each principal component (PC) of the reference dataset X is captured as Y
is optimized for similarity. Specifically, for each PC vi of X , we use linear regression to find the
optimal linear combination of columns of Y that best predicts Xvi. The goodness of fit is then
quantified using the R2 coefficient:

R2
PCi

:= 1− ∥(X − X̂)vi∥2

∥Xvi∥2

where X̂ = Y B̂ and B̂ = argminB∥X − Y B∥2F .

4 RESULTS

4.1 WHAT CONSTITUTES A GOOD SIMILARITY SCORE DEPENDS ON THE SIMILARITY
MEASURE AND THE DATASET

What is a good value for a similarity score? Our approach to address this question is to examine,
across five neural datasets, the similarity score required for a synthetic dataset to encode task relevant
information to the same degree as the neural data. More specifically, the dots along the x-axis in
Figure 3 indicate the score when a decoder trained on the synthetic data can extract 90% of the full
task relevant information present in the neural data. Consider the Mante 2013 dataset, and notice
that the “good” scores for the six similarity measures are quite different, ranging from less than
0.5 to almost 1. So even for the same dataset, the similarity score required to encode task relevant
information to a similar extent as the neural data, can be very different across similarity measures.

Now if we look across the five neural datasets, at a single similarity measure, we can see that what
constitutes a good score varies depending not only on the similarity measure but also on the dataset.
An angular Procrustes score above 0.5 may constitute a good score for the Mante 2013 dataset but a
score above 0.8 is required for the Siegel 2015 dataset (see also Supplementary Figure S1).

High similarity scores do not guarantee encoding of task relevant variables. A crucial point to
make with Figure 3 is that high similarity scores near the maximum value of 1, particularly for CKA
and unregularized linear regression without cross-validation, do not guarantee that models encode
task-relevant information in a manner consistent with neural data, i.e. the CKA and linear regression
curves in the Siegel 2015 dataset do not approach the horizontal line showing the decode accuracy
for the neural data. There may be important features in a dataset that are not captured by a model
even when the model-data similarity score is high.

For linear regression, even cross-validated and regularized, a high similarity score does not nec-
essarily mean that the task relevant information is encoded in a similar manner to the neural data
(Supplementary Figure S2).

Surprisingly, in Figure 3 some optimized datasets encode task relevant information better than the
original neural data (colored lines showing decode accuracy are above the horizontal dashed line).
This might suggest that the optimized datasets are denoised versions of the original data. We tested
this hypothesis by removing low-variance principal components from the neural dataset, but this did
not change the results. This suggests it is probably a more complex form of denoising and would
require further investigation (Supplementary Figure S3).
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Figure 3: What constitutes a good score varies depending on the similarity measure and the
dataset. Decode accuracy for experimental variables versus similarity scores. The experimental
variables are color vs motion contexts (binary variable) for Mante 2013 and Siegel 2015, reaching
direction (total of 8 directions) for Hatsopoulos 2007, object categories (total of 8 categories)
for MajajHong 2015, and texture vs noise categories (binary variable) for FreemanZiemba 2013.
Horizontal dashed lines show the decode accuracy from the neural data (upper line) and chance
level (lower line). Colored dots above the x-axis indicate the similarity scores when the decode
accuracy reaches 90% midway between chance level and the decode accuracy from the reference
neural dataset.

4.2 OPTIMIZATION DYNAMICS OF SIMILARITY SCORES

4.2.1 LOW-DIMENSIONAL SYNTHETIC DATASETS

Question. How much of the neural data must be captured by a synthetic dataset or model before the
decode accuracy reaches the level seen in the neural dataset itself? One perspective on this question
is to decode the task variables from neural data after projecting onto principal components 1 through
N, where principal component 1 captures the most variance. As we might expect, in order to capture
all the information about the task variables, at least several principal components must be included in
the decode (Figures S1c and S1d show an example of this analysis for two of the neural datasets).
This motivates the following hypothesis.

Hypothesis. Perhaps the reason that some variations of linear regression and CKA similarity scores
can be so high while the synthetic data fails to encode task variables is because these similarity
measures preferentially rely on the top few principal components. In other words, if these measures
only encode information from the top principal components then this may not be sufficient to encode
all the task variables. We explore this hypothesis in the following set of analyses with a synthetic
dataset based on the neural recordings from Mante et al. 2013.

Figure 4a shows the reference dataset (compare to Figure 2a). We can think of this reference dataset
as a low-dimensional neural trajectory summarizing the population activity of many neurons, or
alternatively, as the firing rates of two neurons over time (shown here encoding the two task variables
of choice and dot motion coherence), recorded during six different experimental conditions, with
the color in Figure 4a denoting the condition. Figure 4b shows the transformation of an initially
random Gaussian noise dataset as it is optimized to maximize either the angular Procrustes or CKA
similarity score with respect to the reference dataset. The score increases from an initial value near 0
to a maximum near 1 as optimization progresses, with the insets at the top of the figure showing the
optimized noise dataset at various points during this procedure. The yellow curve shows how well
the optimized dataset captures the first principal component of the reference dataset, as quantified by
R2, throughout optimization (see section 3.2 for details). Notice that the second principal component,
shown in purple, is only captured at a much higher optimization score for CKA versus angular
Procrustes. Figure 4c shows the same results when a synthetic Gaussian noise dataset is optimized
towards the reference dataset using either linear regression similarity or angular CKA similarity
(Williams et al., 2021).

Dependence on the variance distribution. The optimization dynamics not only depend on the
similarity measure but also on the variance distribution of the reference dataset. Figure 4d shows four
reference datasets with the same variance along the first principal component but decreasing variance
along the second. If both dimensions have approximately equal variance then angular Procrustes,
CKA, and linear regression will learn both dimensions similarly during optimization as shown by
the white curve in Figure 4e. The curves are colored to indicate the fraction of variance the second
principal component has relative to the first, so 1 indicates both principal components have the same
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Figure 4: Different similarity measures differentially prioritize learning principal components
of the data. (a) Reference dataset used as a target during optimization. (b, c) Initial Gaussian random
noise data is updated to maximize similarity with the reference dataset, as quantified by one of the
similarity measures. The transformation of the random noise dataset is shown at the top of panel b.
The first principal component of the reference dataset is increasingly well captured by the optimized
data as the similarity scores increase (yellow curves). The second, lower variance, component
is also learned when maximizing the angular Procrustes similarity but is only captured at
high similarity scores when maximizing linear regression, CKA, and angular CKA similarity.
(d) Four reference datasets with decreasing variance along the second principal component. (e)
Similarity measures capture both principal components when their variance is approximately equal.
However, when the variance differs, CKA and linear regression preferentially neglect the low variance
component (curves colored according to asymmetry of variance distribution).

variance. As the asymmetry between the principal components grows, the optimization to maximize
angular Procrustes similarity still effectively learns the lower variance principal component (first
column, second row), while CKA and linear regression do not capture the second principal component
of the reference dataset until much later during optimization.

4.2.2 NEURAL DATASETS

The optimization dynamics revealed in Figure 4a for a two-dimensional dataset also holds on real
neural data (B.1). We now consider several neural datasets as the reference dataset for the optimization
procedure. Figure 5a shows the optimization dynamics when a random noise Gaussian dataset is
optimized towards the Siegel et al. 2015 dataset by maximizing angular Procrustes similarity (top) or
CKA similarity (bottom). Each curve shows how the optimized dataset captures a single principal
component of the reference dataset during the course of optimization; the yellow curve shows the
highest variance component. Similar to the results in Figure 4, optimizing for angular Procrustes
similarity, as opposed to CKA, captures more of the lower variance components in the data for a
given similarity score.

A convenient way of summarizing these curves is to note the similarity score required to capture
a given principal component above some threshold. The PC threshold is defined here (and shown
in Figure 5a for PC 1) as the centerpoint between the maximum and initial R2 value for a given
principal component. Figure 5b shows the score required to reach the principal component threshold
for the different principal components in the Mante et al. 2013 dataset. Figures 5c and 5d show the
same curves when the reference datasets are now the electrode recordings from Siegel et al. 2015 and
Majaj et al. 2015. Figures 5b, 5c, and 5d additionally show that the metric version of CKA (angular
CKA) increases CKA’s sensitivity to lower variance components.
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Figure 5: (a) A randomly initialized synthetic dataset is updated to maximize the similarity
with a neural dataset, taken here to be the FEF dataset from (Siegel et al., 2015). The principal
components (PCs) of this reference dataset are captured by the optimized dataset at different similarity
scores, which in subsequent figures we call the score to reach the PC threshold. (b) The score to reach
the PC threshold for the (Mante et al., 2013) dataset is shown as a function of the variance explained
by each PC. The highest variance PC is learned first during optimization at the lowest similarity score
(bottom right of figure). A vertical slice through the figure shows the similarity score required to
capture a specific PC. For example, to capture the PC at 10−2 requires a much lower similarity score
when maximizing angular Procrustes versus CKA (light blue curve is below the red curve). (c, d)
The reference dataset used as a target during optimization is the neural activity from (Siegel et al.,
2015) FEF (panel c) and (Majaj et al., 2015) (panel d). (e) The neural data points are the same as in
panels c and d (colored dots). The similarity scores at which PCs of this neural activity are learned,
is well predicted by replacing neural activity with random Gaussian datasets that have a matching
distribution of variances for each PC (black curves).

Neural curves predicted by matched Gaussians. Surprisingly, the optimization dynamics shown
in these figures are well matched when the reference neural dataset is replaced by a new reference
dataset that consists of random Gaussian numbers with variances for each principal component
matched to the neural data (Figure 5e). The variance distribution of the reference dataset strongly
determines when each principal component is captured during optimization.

4.3 THEORETICAL ANALYSIS OF CKA AND ANGULAR PROCRUSTES

We aim to understand the increased sensitivity of CKA scores to high variance principal components
compared to angular Procrustes. Following Harvey et al. (2023), we use the Normalized Bures
Similarity (NBS) metric as an intermediary metric between CKA and angular Procrustes. Specifically,
we study the sensitivity to dimensions of different variances by analyzing the similarity scores between
a neural dataset and a modified version of the same dataset when a single principal component (PC) is
perturbed (Figure 6). We “perturb” a single PC of the neural dataset by first decomposing the dataset
into its projections onto every PC and then replacing a single one of these projections by Gaussian
random noise that is rescaled so the variance is unchanged.
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From NBS to CKA. NBS and CKA mainly differ by a choice of matrix norm as shown in the
following formulation (Harvey et al., 2023) (see appendix C.1 for details):

CKA(X,Y ) =
∥XTY ∥2F

∥XXT ∥F ∥Y Y T ∥F
NBS(X,Y ) =

∥XTY ∥∗√
∥XXT ∥∗∥Y Y T ∥∗

NBS quantifies similarity using the nuclear norm, which involves a sum of singular values, whereas
CKA uses the Frobenious norm, which sums the square of the singular values. The additional square
operation in CKA significantly increases the contribution of large variance components. We show this
in theory by considering how CKA and NBS change when perturbing a single principal component
of the data. The result is that CKA depends quadratically on the variance of the perturbed principal
component, whereas NBS has a linear dependence (see proof in appendix C.2).

CKA(X, X̃k) ≈
∑

i̸=k(λ
i
X)2∑

i(λ
i
X)2

NBS(X, X̃k) ≈
∑

i ̸=k λ
i
X∑

i λ
i
X

where X̃k is equal to X where only the kth principal component is modified, and λi
X are the

eigenvalues of XXT .

We validate these results empirically by computing CKA and NBS scores between five different
neural datasets and versions of these datasets when a single principal component is perturbed (see
colored dots in Figure 6). As predicted by the theory, the NBS and CKA scores are well matched by,
respectively, a linear and a quadratic function of the variance of the perturbed PC (see orange and
blue curves).

From angular Procrustes to NBS. Harvey et al. (2023) showed that angular Procrustes is related to
Normalized Bures Similarity (NBS) (Tang et al., 2020) by the arccosine function. We additionally
normalize the angular Procrustes distance to obtain a score version, where 1 corresponds to perfect
similarity.

AngularProcrustesScore(X,Y ) = 1− arccos(NBS(X,Y )) ∗ 2/π

The arccosine function decreases linearly around 0 with a slope of −1 and has a vertical asymptote in
1. When NBS is small, which corresponds to high variances of the perturbed PC in Figure 6, angular
Procrustes is also linear. When NBS is around 1, which corresponds to low variances of the perturbed
PC in Figure 6, angular Procrustes has increased sensitivity compared to NBS, as explained by the
large slope of arccosine around 1.

Mante 2013 Siegel 2015 Hatsopoulos 2007 MajajHong 2015 FreemanZiemba 2013

CKA
NBS
Angular Procrustes

Theory

Variance of perturbed PC

Sc
or
e

Variance of perturbed PC Variance of perturbed PC Variance of perturbed PC Variance of perturbed PC

Figure 6: The similarity score between five neural datasets and a modified version of these
datasets when a single principal component is perturbed. The colored dots show the empirical
CKA, NBS, and angular Procrustes scores. The solid lines show the predictions of our theory.
In particular, the CKA scores decrease quadratically with the variance of the perturbed principal
component, whereas NBS scores decrease linearly. Angular Procrustes is related to NBS by the
arccosine function, which explains its linear dependence to high variance PCs and its increased
sensitivity to low variance PCs compared to NBS.

4.4 ARE METRICS MUTUALLY INDEPENDENT?

A natural question that arises is whether these different similarity metrics are independent of each
other, or if they exhibit consistent relationships. To address this, we consider three possible rela-
tionships between any two given similarity metrics (Figure 7). Independent: The two metrics are
independent. A high score on one metric offers no guarantee of a high score on the other. Coupled:
The two metrics are tightly coupled. A high score on one metric implies a high score on the other, and
vice versa. Asymmetric: One metric subsumes the other. A high score on the first metric guarantees
a high score on the second, but not the other way around.
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Figure 7: We jointly optimized the values of both angular Procrustes and CKA or linear
regression to illustrate the allowed ranges of both similarity scores (gray region enclosed by the
solid black lines). (a) Different categories of possible relationships between a similarity measure A
and a similarity measure B. (b) Allowable ranges of similarity scores for a fixed reference dataset,
illustrated here for the Siegel 2015 dataset. These ranges are estimated by jointly optimizing a pair of
similarity measures to get as close as possible to different target values (shown with the pink dots
forming a square on the first plot). If angular Procrustes has a high score of 0.9 (horizontal dashed
line) then linear regression will have a value above this. In contrast, a high linear regression score of
0.9 (vertical dashed line) does not imply a high angular Procrustes score, and a wide range of angular
Procrustes scores are possible (see appendix C.3 for details).

We jointly optimize multiple similarity scores to find their allowed ranges (Figure 7) and show that a
high angular Procrustes similarity implies a high CKA score, but not the converse. A high value
of angular Procrustes implies a high score for unregularized linear regression but linear regression
that is regularized and cross-validated across experimental conditions can take independent values.

5 DISCUSSION

Our study reveals critical limitations of commonly used similarity measures for comparing models
and neural datasets. While these measures offer a seemingly straightforward way to quantify
representational alignment, our optimization-based approach shows that high similarity scores,
particularly for CKA and linear regression, do not guarantee that synthetic datasets encode task-
relevant information in a manner consistent with neural data. Specifically, we demonstrate that
measures like CKA are heavily influenced by the top principal components of the data, often
achieving high scores even when lower variance components, which might carry crucial task-related
information, remain poorly captured.

The central aim of our work is to explore the question of what it means for a similarity score to be
good, as well as what drives a high similarity score. Our findings demonstrate that the interpretation
of these scores is highly dependent on the specifics of both the metric and the dataset. We argue that
similarity scores require further interpretation before making any claim based on them. Here we show
two concrete ways of doing so, that incorporate the context of the dataset and similarity measure, by
optimizing synthetic datasets to determine (i) how strongly task variables are encoded in order to
reach the score (Figure 3), and (ii) how many PCs need to be captured in order to reach the score
(Figures 4 and 5).

Limitations & future work. Our study focused on differentiable, geometry-based similarity measures
and their optimization dynamics. Future work should investigate how it extends to other types of
measures. Additionally, when we study the optimization dynamics we are studying both the behavior
of the optimization method and the behavior of the similarity measure. Future work should investigate
the potential limitations of our gradient-based optimization method, and how to better untangle it
from the behavior of the similarity measure.

Moving forward, our python package aims to standardize similarity measures, facilitating a more
cumulative scientific approach by centralizing findings related to these measures, and enabling more
integrated benchmarking and comparisons. There are many similarity measures we have not analyzed
in this work, for example, even CKA has at least 12 variations, which are easily accessible in our pack-
age. These similarity measures may, upon further investigation with the techniques we have proposed
here, suffer from the same limitations we have demonstrated. Before using a similarity measure it is
crucial to be aware of these limitations. Similarity package: https://github.com/diffscore/similarity-
repository
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A ADDITIONAL RESULTS: DECODE ACCURACY OF TASK VARIABLES

Figures S1a and S1b show the decode accuracy of a linear classifier trained to decode task relevant
variables for the Mante 2013 and the Siegel 2015 datasets (cross-validated across different conditions)
as the similarity score increases. For both datasets, monkeys are shown a field of colored moving
dots on each trial, and are required to attend to either color or motion information while ignoring
the non-cued feature of the stimuli. Following Mante et al. (2013), we consider as the relevant task
variables, the direction of motion of the dots, the color of the dots, the contextual cue, and the response
of the monkey. We additionally binarize each of these variables for our decoding analysis. Before
optimization, the synthetic datasets initially consisted of Gaussian noise and the decode accuracy
was near the baseline chance level of 0.5 as expected for a binary classifier. We show results for the
context task variable in Figure 3.

In Figure S2 we focus on a popular similarity measure, linear regression, and show how much
task relevant information can be decoded from a synthetic dataset that is optimized to become
increasingly more similar to the Siegel 2015 dataset. Even when linear regression is cross-validated
and regularized, a high similarity score does not necessarily mean that task relevant information is
encoded in a similar manner to neural data (leftmost panels).
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Figure S1: (a, b) Decode accuracy for experimental variables versus similarity scores. Decode is
from synthetic data optimized towards greater similarity with the neural data from (a) Mante et al.
(2013) and (b) Siegel et al. (2015). Horizontal dashed lines indicate the decode accuracy from the
neural data. (c, d) Decode accuracy from neural data versus number of principal components included
in the decode. Decode uses data from (c) prefrontal cortex from Mante et al. 2013 and (d) FEF from
Siegel et al. 2015.
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Figure S2: Decode accuracy versus similarity scores when optimizing ridge regression scores
with varying regularization strengths λ. Regression scores are cross-validated across conditions.
Horizontal lines show the decode accuracy from the neural data for the task relevant variables, and
colored curves shows the corresponding decode accuracy on a synthetic dataset that is optimized to
become increasingly more similar to the neural data. For some values of the ridge regularization
parameter, even at the highest similarity scores near 1, the synthetic dataset does not encode task
relevant information to the same extent as the neural data.
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Figure S3: We test whether removing low-variance principal components from the neural dataset
increases the decoding accuracy, in order to see if this “denoising” may be a potential mechanism
for explaining the increased decoding accuracy in the optimized dataset compared to the reference
neural dataset in Figure 3. We show results for decoding of the context task variables from the Mante
2013 dataset after projecting onto principal components 1 through N, where principal component 1 is
taken to have the highest variance, and N increases along the x-axis of the figure. The solid blue line
shows the decoding accuracy from the synthetic dataset optimized with Angular Procrustes when
the similarity score reaches a value of 0.9. Although the decoding accuracy from the neural data
increases slightly when the lowest variance components are removed, it does not match the decoding
accuracy from the synthetic data. This suggests the improved decoding accuracy from the synthetic
data is probably a more complex form of denoising and would require further investigation.

B NEURAL DATASETS AND MODELS

B.1 DATASETS

We analyzed neural data from five studies on nonhuman primates:

• Mante et al. (2013): Prefrontal cortex (PFC) electrode recordings during a contextual decision-
making task involving colored moving dots. Activity is averaged across trials with the same
condition (72 unique conditions) and averaged across 50 ms non-overlapping time bins during
the 750 ms interval from 100 ms after dots onset to 100 ms after dots offset. The total number
of neurons recorded is 727. To make optimization faster, we reduce the dimensionality of this
dataset by keeping 99% of the variance, corresponding to the first 448 principal components.
Data link1. The final dataset used in all the similarity analyses had size (time = 15, sample = 72,
feature = 448).

• Siegel et al. (2015): Electrode recordings from multiple cortical regions during a contextual
decision-making task involving colored moving dots, similar to Mante et al. (2013). We analyze
data from the Frontal Eye Field (FEF) region during the stimulus period of the task. Activity
is averaged across trials with the same condition (42 unique conditions) and averaged across
50 ms non-overlapping time bins from 0 to 500 ms after dots onset. A total of 1220 neurons
were recorded. We reduce the dimensionality of this dataset by keeping 99% of the variance,
corresponding to the first 278 principal components. The final dataset used in all the similarity
analyses had size (time = 11, sample = 42, feature = 278).

• Hatsopoulos et al. (2007): Primary motor (M1) electrode recordings during a center-out reaching
task. Simultaneous recordings were collected for 391 trials, 141 neurons. Activity is averaged
across 50 ms non-overlapping time bins from 0 to 500 ms after movement onset. Data link2. The
final dataset used in all the similarity analyses had size (time = 10, sample = 391, feature = 141).

• Majaj et al. (2015): Inferior temporal (IT) electrode recordings during object image presentations.
Simultaneous recordings for 3200 trials, 168 neurons. Activity is averaged across all time steps.
The final dataset used in all the similarity analyses had size (sample = 3200, feature = 168).

• Freeman et al. (2013): Primary (V1) and secondary (V2) visual area electrode recordings during
texture and noise image presentations. Simultaneous recordings were collected for 135 trials,

1https://www.ini.uzh.ch/en/research/groups/mante/data.html
2https://datadryad.org/stash/dataset/doi:10.5061/dryad.xsj3tx9cm
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205 neurons. Data is averaged across 150 ms non-overlapping time bins. The final dataset used
in all the similarity analyses had size (time = 2, sample = 135, feature = 205).

We use the BrainScore3 library (Schrimpf et al., 2020) for the Majaj et al. (2015); Freeman et al.
(2013) datasets.

B.2 RECURRENT NEURAL NETWORK (RNN) MODELS

RNN architectures. We show results for three commonly used RNN architectures: LSTMs (Hochre-
iter & Schmidhuber, 1997) and two choices for continuous time recurrent neural networks (CTRNNs),
which differ by the position of the nonlinearity (Miller & Fumarola, 2012). A first alternative is given
by the following equations. {

τ
dh

dt
= −h+Wr +Bu+ b

r = f(h) + ξ

where u is the input, h represents the membrane potential, ξ is a Gaussian white noise, and r is the
firing rate produced by the model and is used to compare the model with the neural data. The second
alternative is given by the following equation.

τ
dr

dt
= −r + f(Wr +Bu+ b) + ξ

We call it the LowPassCTRNN since it can be shown that its firing rate is a low-pass filter of the
firing rate of the first architecture, which we call CTRNN (Miller & Fumarola, 2012). The RNNs are
trained using supervised learning on simplified task inputs and outputs.

Comparing task-optimized RNNs to neural datasets. We train the RNNs on the tasks from Mante
et al. (2013) and Siegel et al. (2015), and compare them to the respective neural datasets. We consider
two neural datasets from prefrontal cortex (PFC) (Mante et al., 2013) and Frontal Eye Field (FEF)
(Siegel et al., 2015) in monkeys performing an experimental task that required the animal to attend
to either color or motion information while ignoring the non-cued feature of the stimuli. On each
trial, a field of colored moving dots is shown. Monkeys are given a cue at the beginning of the
trial to determine whether the dots in the stimulus are moving left vs right, or are red vs green.
The monkey reported its choice with a saccade to one of two visual targets. In both datasets, we
analyzed neural activity taken when the dot stimulus was presented. In panel a of Figure 2 neural
activity is visualized in a low-dimensional space capturing task-relevant dynamics using the targeted
dimensionality reduction method from Mante et al. 2013. Each curve shows the average neural
activity for a different experimental condition. See Mante et al. 2013 for a detailed description of the
analysis. This visualization highlights features of the data but the similarity scores were computed
using the firing rates from the electrode recordings before any dimensionality reduction. In panel b of
Figure 2 neural firing rates for two example neurons are shown with the colors denoting average.

In Figure 2 c, d, we compare model-data similarity scores to two baseline scores. The Neuron-split
baseline score is obtained by dividing the neurons from a single dataset into disjoint sets and then
comparing. If the model-data scores are equal to the neuron-split scores this indicates that model
activity is indistinguishable from the neural activity of other recorded neurons. The Condition-average
baseline score is obtained by averaging the neural activity along the trial and condition dimensions
and comparing it to the original dataset. Each neuron in this condition-averaged dataset still has a
unique time-varying firing rate. This strong baseline shows the similarity to the original data that one
can obtain by only keeping the condition-independent neural dynamics.

C SIMILARITY MEASURES

C.1 DEFINITIONS

Several methods have been proposed to measure similarity between models and neural data (see
(Sucholutsky et al., 2023), (Klabunde et al., 2023) for comprehensive reviews). While some efforts
have been made to characterize these metrics mathematically, for instance, by examining their

3https://github.com/brain-score/vision
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invariance properties, clear guidance in interpreting similarity scores for a given scenario remains
limited. To address this gap, we introduce a novel method for analyzing the specific aspects of
data prioritized by different similarity metrics. Our method leverages the differentiability of these
metrics and is applicable to a wide range of measures. We focus here on three commonly used
metrics and their variants, linear regression (Yamins et al., 2014; Schrimpf et al., 2018), Centered
Kernel Alignment (CKA) (Kornblith et al., 2019), and Procrustes distance (Williams et al., 2021;
Ding et al., 2021). These methods quantify similarity based on the goodness of fit after aligning the
representations. This alignment transformation allows for greater flexibility by making similarity
measures invariant to specific transformations. For example, instead of demanding a one-to-one
mapping of neurons between datasets, these methods can accommodate scenarios where neurons in
one dataset correspond to linear combinations of neurons in the other.

Consider two datasets X and Y with shape (sample, feature) and mean-centered columns. Datasets
with dynamics are shaped from (time, sample, feature) to (time*sample, feature).

Assuming X as our reference dataset (e.g., neural data), linear regression seeks the optimal linear
mapping B to predict X from Y . We use the R2 coefficient to evaluate goodness of fit and ridge
regularization with parameter λ = 100, as well as 5-fold cross-validation. Note that we apply
cross-validation after reshaping the data from (time, sample, feature) to (time*sample, feature).

B∗ = argmin
B

∥X − Y B∥2F + λ∥B∥F

R2
LR = 1− ∥X − Y B∗∥2F

∥X∥2F

It’s important to note that this score is not symmetric. Applying linear regression on Y , X instead of
X , Y may yield significantly different scores. This asymmetry arises because one dataset might be
highly predictive of the other, while the reverse might not hold true.

Unlike linear regression, CKA and Procrustes are symmetric, meaning the metric yields the same
result whether applied to X, Y or Y, X. Moreover, they exhibit a different class of invariance. While
linear regression is invariant under invertible linear transformations, CKA and Procrustes are invariant
under orthogonal linear transformations. This stricter invariance to orthogonal transformations
potentially reduces sensitivity to noise (Kornblith et al., 2019).

CKA measures the correlation between the kernels of two datasets X and Y (Kornblith et al., 2019).
We consider here linear CKA where the kernels are XXT and Y Y T .

CKA(X,Y ) =
⟨vec(XXT ), vec(Y Y T )⟩

∥XXT ∥F ∥Y Y Y ∥F
=

∥XTY ∥2F
∥XXT ∥F ∥Y Y T ∥F

CKA scores range from 0 to 1, with 1 indicating perfect similarity. We also consider the arccosine
of CKA, a metric satisfying the axioms of a distance metric (e.g., the triangle inequality) with 0
signifying perfect similarity (Williams et al., 2021). This metric, also known as Angular CKA (Lange
et al., 2022), is then normalized to a similarity score between 0 and 1 for direct comparison with other
scoring methods. This normalization involves dividing the angular distance by π/2 and subtracting
the result from 1, ensuring the measure increases with similarity.

AngularCKAScore(X,Y ) := 1− arccos(CKA(X,Y ))

π/2

Procrustes distance provides another approach for quantifying similarity (Williams et al., 2021; Ding
et al., 2021). This metric identifies the optimal orthogonal alignment to maximize the correlation
between X and Y :

max
Q∈O

⟨X,QY ⟩
∥X∥F ∥Y ∥F

where O is the group of orthogonal linear transformations. An angular distance metric can be obtained
by taking the arccosine of this quantity (Williams et al., 2021).
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As shown in Harvey et al. (2023), Procrustes distance is closely related to Normalized Bures Similarity
(NBS) (Tang et al., 2020), with Procrustes distance equating the arccosine of NBS. NBS is defined as:

NBS(X,Y ) =
∥XTY ∥∗√

∥XXT ∥∗∥Y Y T ∥∗

This definition resembles CKA but utilizes the nuclear matrix norm instead of the Frobenius matrix
norm. The Frobenius norm, denoted by ∥A∥F for a matrix A, is calculated as the square root of the
sum of squared singular values. The nuclear norm, ∥A∥∗, is simply the sum of singular values. The
implications of this difference in matrix norms for the weighting of principal components by CKA
and NBS are further explored in C.2.

Similar to the score version of CKA distance, we define a score version of Procrustes distance,
ranging from 0 to 1, where 1 represents perfect similarity.

AngularProcrustesScore(X,Y ) := 1− arccos(NBS(X,Y ))

π/2

C.2 THEORETICAL ANALYSIS OF CKA AND NBS

Our results show that similarity in the high variance components seem to dominate the Centered
Kernel Alignment (CKA) score. In contrast, while the high variance components still have an overall
larger impact than lower variance components, metrics like Normalized Bures Distance (NBS) seem
to be more sensitive to changes in lower variance components relative to CKA. We explain this
difference by showing, in theory, how CKA and NBS changes when perturbing a single principal
component of the data. The result is that CKA depends quadratically on the variance of the perturbed
principal component, whereas NBS has a linear dependence. We start the derivation from the matrix
norm definitions of CKA and NBS (Harvey et al., 2023).

NBS(X,Y ) =
∥XTY ∥∗√

∥XXT ∥∗∥Y Y T ∥∗

CKA(X,Y ) =
∥XTY ∥2F

∥XXT ∥F ∥Y Y T ∥F

Let X be a dataset, and Y be a perturbed version of X , denoted X̃k, where only the kth principal
component is modified. Specifically, define Y such that its jth left singular vector uj

Y is equal to the
jth left singular vector uj

X of X for all j ̸= k, and define uk
Y to be a perturbation of uk

X that preserves
variance. Here we randomly sample uk

Y from a Gaussian distribution with the same variance as
the variance of uk

X so that σk
Y = σk

X . The right singular vectors of Y are the same as the right
singular vectors of X . Intuitively this perturbation affects only the projection of the data along the
kth principal component.

We first show how CKA(X, X̃k) depends on the variance of the perturbed principal component. As
shown in (Kornblith et al., 2019), CKA can be rewritten in terms of dot products of the left singular
vectors.

CKA(X,Y ) =

∑
i,j λ

i
Xλj

Y ⟨ui
X , uj

Y ⟩2√∑
i(λ

i
X)2

√∑
j(λ

j
Y )

2

where X = UXΣXV T
X , Y = UY ΣY V

T
Y are the SVD decompositions of X and Y respectively,

and λi
X = (σi

X)2, λi
Y = (σi

Y )
2. Since uj

Y = uj
X for all j ̸= k and since UX is an orthogonal

matrix, the dot products ⟨ui
X , uj

Y ⟩ are equal to 0 for all j ̸= i whenever j ̸= k. The dot products
⟨ui

X , uk
Y ⟩ are not guaranteed to be zero since randomly sampling uk

Y doesn’t guarantee to preserve
the orthogonality with the other left singular vectors. However, when the number of samples in
the data is large the projection uk

Y on the other singular vectors will be relatively small. With the
assumption that ⟨ui

X , uk
Y ⟩ ≈ 0, CKA can be written as:
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CKA(X, X̃k) ≈
∑

i ̸=k(λ
i
X)2∑

i(λ
i
X)2

This shows that CKA scores between the original data and the perturbed data depend quadratically
on the variance of the perturbed principal component. As shown in Figure 6, our theoretical
approximation closely matches simulations.

As opposed to CKA, NBS cannot be directly rewritten as a sum of left singular vector dot products.
However, we show that NBS reduces to a simple form when Y is defined as X perturbed along a
single principal component and when ⟨ui

X , uk
Y ⟩ ≈ 0 is assumed. We start by expressing the nuclear

norm in the numerator of NBS in terms of the SVD decomposition of X and Y .

∥XTY ∥∗ = ∥VXΣXUT
XUY ΣY V

T
Y ∥∗ = ∥ΣXUT

XUY ΣY ∥∗

The individual entries of the product of matrices inside the nuclear norm corresponds to the dot
products between the left singular vectors of X and Y weighted by the corresponding singular values.

[ΣXUT
XUY ΣY ]ij = σi

Xσj
Y ⟨u

i
X , uj

Y ⟩

By definition of Y ≡ X̃k,

σi
Xσj

Y ⟨u
i
X , uj

Y ⟩ =
{
(σi

X)2δij if j ̸= k

σi
Xσk

X⟨ui
X , uk

Y ⟩ if j = k

With our assumption that ⟨ui
X , uk

Y ⟩ ≈ 0 and the nuclear norm property ∥A∥∗ = Tr
[√

ATA
]
, we

find:

∥XTY ∥∗ ≈
∑
i ̸=k

(σi
X)2

Since our perturbation preserves the variance, we have ∥XXT ∥∗ = ∥Y Y T ∥∗ =
∑

i(σ
i
X)2. We

finally obtain the following approximation, which explicitly reveals the linear dependence of NBS on
the variance of the principal components.

NBS(X, X̃k) ≈
∑

i̸=k(σ
i
X)2∑

i(σ
i
X)2

=

∑
i ̸=k λ

i
X∑

i λ
i
X

C.3 JOINT OPTIMIZATION OF SIMILARITY MEASURES

Figure 7 shows how two metrics relate by jointly optimizing for both metrics. Given a score for the
first metric and a score for the second metric, we ask whether it is possible to find a single synthetic
dataset that would produce these two similarity scores. Specifically, for a given reference dataset
X , similarity measures A and B, and respective targets targetA and targetB, we optimize a synthetic
dataset Y to minimize the sum of absolute errors:

min
Y

[
|scoreA(X,Y )− targetA|+ |scoreB(X,Y )− targetB|

]
We chose the absolute error instead of the squared error as we find in practice that it gives scores that
are closer to their targets.

This analysis gives an approximation of the range of scores that two metrics can jointly take. For
example, if two metrics are completely independent, then any point on the [0, 1] × [0, 1] square is
reachable (see third plot of Figure 7b for an example). However, if there exists a one-to-one mapping
between the two metrics, then the scores are constrained to lie on a one-dimensional curve.
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Figure S4: Computing the allowed ranges between two similarity scores by optimizing synthetic
data towards a grid of target similarity scores. (1) Given a synthetic dataset Y and a reference
dataset X we attempt to simultaneously achieve the desired target scores for similarity measures A
and B (pink circle). To do this we optimize Y with the Adam optimizer by differentiating through the
scores for similarity measure A, scoreA(X,Y ), and B, scoreB(X,Y ), to minimize a sum of absolute
error loss function between the current and target similarity scores. As Y is optimized the scores for
measures A and B trace out the curve shown in blue. Note that the final achievable scores for the two
similarity measures approach but, in this case, do not reach the target scores. (2) This optimization
procedure is repeated for many different target scores (pink dots) and the intermediate scores are
recorded (blue curves). (3) The edges of the blue curves are marked with black dots and approximate
a boundary of achievable scores as shown in gray.
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Figure S5: We analyze different variations of Representational Similarity Analysis (RSA)
(Kriegeskorte et al., 2008a) and CKA by jointly optimizing the similarity measures to approxi-
mate the allowable regions of scores. (a) We compare CKA and a commonly used version of RSA
that uses the Euclidean distance to compute the Representational Dissimilarity Matrices (RDMs)
and cosine similarity to compare the RDMs. We find that these two similarity measures are mostly
independent, where a high score for one measure doesn’t necessarily imply a high score for the other.
(b) We confirm the equivalence between CKA and RSA when centering the Euclidean RDMs before
computing the cosine similarity, as shown by Williams (2024). (c) We compare CKA to another
common variation of RSA that computes the correlation between the RDMs instead of the cosine
similarity. We find that these two measures are also mostly independent. (d) We compare two RSA
variants together and show that changing the RDM comparison method makes the RSA measures
non-equivalent.
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