
Model Recycling: Model component reuse to promote
in-context learning

Lindsay M. Smith
Princeton University

lindsay.smith@princeton.edu

Chase Goddard
Princeton University

cgoddard@princeton.edu

Vudtiwat Ngampruetikorn*

University of Sydney
vudtiwat.ngampruetikorn@sydney.edu.au

David J. Schwab*

The Graduate Center, CUNY
dschwab@gc.cuny.edu

Abstract

In-context learning (ICL) is a behavior seen in transformer-based models where,
during inference, the model is able to leverage examples of a novel task in order
to perform accurately on that task. Here we study the role of different model
components on ICL behavior via model component recycling. Previous work
has found a plateau in the training loss before models begin to learn a general-
purpose ICL solution. We explore a model recycling experiment related to ICL,
investigating whether recycling model components can reduce the early plateau
in the training loss and whether certain components impact ICL more than others.
We find that transferring embeddings and early layers of the transformer from a
trained model to an untrained model results in the elimination of the plateau seen in
standard model training. Moreover, transferring only later layers of the transformer
does not result in significant plateau reductions, indicating the importance of the
embeddings and early transformer layers in ICL performance.

1 Introduction

In-context learning (ICL) is an intriguing phenomenon in transformers where, during inference,
examples of a novel task are presented in the context, and the model is able to perform the task
without any new training or weight updates [3]. Despite its central role in now widely adopted large
language models, what aspects of the model architecture and training data enable ICL remain unclear.
Recent works suggest that larger models seem to elicit better ICL [1], and whether ICL emerges
depends also on training data diversity [2, 7]. In addition, growing evidence highlights the training
dynamics as an important consideration of systems exhibiting ICL [8, 3].

In this paper, we explore how different components of the model affect the phenomena of ICL,
focusing on the role of the embeddings and of the transformer itself. We consider the linear regression
setting [7], where the transformer model must learn linear functions from the context inputted to the
model. We sample tasks drawn from a high task diversity distribution by choosing a set of weight
vectors from a hypersphere.

We leverage two experimental setups to probe the role of different aspects of the architecture on the
emergence of ICL (Figure 1). In particular, we investigate how to reduce the plateau that occurs in
the training loss before an ICL solution begins to be learned [4]. We find that the loss plateau can
be removed by transferring just the trained embeddings and the first two layers of the transformer

*DJS and VN contributed to this work equally.

Workshop on Scientific Methods for Understanding Deep Learning, NeurIPS 2024.



to a randomly-initialized transformer, either freezing the embeddings or allowing them to continue
training, and then training again (Figure 2). The plateau can be reduced by simply transferring the
embeddings, or the embeddings and the first layer of the transformer, but it is not enough to entirely
remove the plateau.

transfer

embeddings
randomly-
initialized

embeddings

transformer

(can be frozen)

OUTPUT ORDER
TRANSFER SETUP

x0 , y0 , x1 , y1 , ..., x49 , y49

sequence of x-y pairs
x0 , y0 , x1 , y1 , ..., x49 , y49

sequence of x-y pairs

original 
training

training for transfer 
experiment

transfer

transfer 
starting 

from 
emb, then 

emb & 
layer 1, ...embeddings embeddings

transformer

layer 1
layer 2

layer 10 layer 10
layer 9randomly-

initialized
transformer

randomly-
initialized

transformer

(can be frozen)

prediction: y prediction: y prediction: y prediction: y

INPUT ORDER
TRANSFER SETUP

x0 , y0 , x1 , y1 , ..., x49 , y49

sequence of x-y pairs
x0 , y0 , x1 , y1 , ..., x49 , y49

sequence of x-y pairs

original 
training

training for transfer 
experiment

a b

layer 1 layer 1

transfer 
starting 

from layer 
10, then 
layers 10 
& 9, ...

layer 10

Figure 1: The setup of our models for the two different training scenarios. The original model,
consisting of embeddings and a transformer, is on the left of the dotted line in both panels. (a) We
perform our input order transfer experiments by transferring the components of the trained model to
a new, randomly-initialized model. We start transferring components from the “input” side, i.e. the
embeddings, then the embeddings and the first layer of the transformer, then the embeddings and first
two layers of the transformer, and so on through the embeddings and all layers of the transformer. (b)
The same as in (a), but instead we perform our component recycling experiments by transferring the
components from the “output” side, i.e., the last layer of the transformer, then the last two layers of
the transformer, and so on through all the layers and the embeddings.

2 Methodology

We use a standard GPT-2 style transformer [9] with a total hidden dimension of dh = 128, 10 layers,
and 8 attention heads in all experiments. Our context consists of sequences of n = 50 (x, y) pairs for
a total sequence length of 100 tokens (50 x’s and 50 y’s). We focus on d = 10 dimensional regression
in all experiments. We use a learned linear embedding from d = 10 dimensions to dh = 128
dimensions to convert the sequence data into tokens for the transformer and a PyTorch Embedding
layer [6] as the learnable positional embeddings. We also pad the target values yi with d− 1 zeroes.
These linear embeddings and the positional embeddings are the embeddings that are imported and/or
frozen in our experiments.

We define a linear-regression task to be a vector w ∈ Rd. We construct the tasks the transformer must
learn in-context by creating a sequence of example pairs {x1, y1, . . . , xn}, where yi = wTxi + ϵi.
Here, xi ∼ N (0, Id) and ϵi ∼ N (0, σ2). We sample the vectors w from p(w), the uniform
distribution on the surface of the unit hypersphere, {w | w · w = 1}. In our experiments, we sample
a set of 210 training tasks from p(w) to ensure sufficiently high task diversity.

During training, the transformer Tθ is optimized to minimize the mean squared error (MSE) between
a context of data Ck ≡ {x1, y1, . . . , xk} and the target yk, thus training on all tokens in the sequence.
For each batch, the tasks w are drawn without replacement from the set of 210 training tasks. We
minimize the MSE,

Ltrain(θ) = Ew

[
1

n

n∑
k=1

(Tθ(Ck)− yk)
2

]
(1)

over the parameters θ using AdamW [5] with default parameters except for the learning rate, which
we set to 3× 10−4.

2



We evaluate the performance of the transformer on unseen ICL tasks by sampling new w vectors i.i.d.
from p(w). We evaluate models by computing the MSE between the full context Cn and the final
target yn (testing the last token predictions):

Ltest(θ) = Ew∼p(w)

[
(Tθ(Cn)− yn)

2
]

(2)

3 Experiments and Results

We perform an experiment exploring the role of architectural components on ICL by investigating the
plateau found in the early stage of the training curve.

To explore how to reduce the initial plateau length in the training loss curve, we performed ex-
periments where we transferred parts of trained models to otherwise randomly-initialized models.
We hypothesized that by training a model and transferring some pretrained components to newly
initialized models, we can reduce the plateau length. Figure 1 shows the setup of the different kinds
of experiments: input-order transfer and output-order transfer. We first train for 100 epochs (10,000
steps) on 210 tasks, as this produces a plateau in training before the model begins to learn an ICL
solution.

0 500 1000 1500
Step

ORIG
emb

emb-L0
emb-L1
emb-L2
emb-L3
emb-L4
emb-L5
emb-L6
emb-L7
emb-L8
emb-L9

Co
m

po
ne

nt
s R

ec
yc

le
d

Train Losses for Input Order Transfer, frozen

0 500 1000 1500
Step

ORIG
emb

emb-L0
emb-L1
emb-L2
emb-L3
emb-L4
emb-L5
emb-L6
emb-L7
emb-L8
emb-L9

Co
m

po
ne

nt
s R

ec
yc

le
d

Train Losses for Input Order Transfer

0 500 1000 1500
Step

ORIG
L9

L9-8
L9-7
L9-6
L9-5
L9-4
L9-3
L9-2
L9-1
L9-0

L9-emb

Co
m

po
ne

nt
s R

ec
yc

le
d

Train Losses for Output Order Transfer, frozen

0 500 1000 1500
Step

ORIG
L9

L9-8
L9-7
L9-6
L9-5
L9-4
L9-3
L9-2
L9-1
L9-0

L9-emb

Co
m

po
ne

nt
s R

ec
yc

le
d

Train Losses for Output Order Transfer

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 2: ICL plateau shortening experiments. Only the first 2,000 steps out of 10,000 steps are
shown to highlight the plateau. The color represents the training loss from the transfer experiments
when training originally on 210 tasks and sampling from the entire hypersphere (‘ORIG’), transferring
the embeddings (‘emb’), and/or layers of the 10-layer transformer (‘L0’ through ‘L9’) to a randomly-
initialized model, and then training again on 210 tasks. Also tested freezing the transferred embeddings
and/or transformer layers (right column) so that they cannot be updated when retraining. Note that
the final layer norm and linear output layer of the transformer are not transferred.

For the input-order experiments, we transfer components from the input side of the model. First, we
transfer only the embeddings (both token and positional). In the subsequent experiment, the first layer

3



of the transformer is transferred together with the embeddings. To complete the set of experiments in
this setting, we consider the transfer processes which include more and more layers of the transformer
until the last layer is included. We place the transferred components in a new, randomly-initialized
model. In our “frozen” experiments, the parameters in these components are fixed; otherwise, they
are allowed to be trained with the rest of the model. Figure 1.a shows the setup of the input-order
transfer. In the output-order transfer experiment, we perform an analogous set of experiments: we
transfer the layers of the transformer and the embeddings from the pretrained model starting from
the output side of the model, i.e., transferring the final layer of the transformer, and then in the next
experiment transferring the final two layers of the transformer, and so on through all the layers and
then the embeddings. We either freeze these components or allow them to be further trained, and
randomly initialize the rest of the model. Figure 1.b shows the setup of the output-order transfer
experiments. We then train these new models – the input-order transfer, frozen-input-order transfer,
output-order transfer, and frozen-output-order transfer models – on the same diversity of tasks as in
the originally-trained model (210) and for another 100 epochs.

Transferring from the input side of the model leads to reductions in the plateau in the original training
dynamics, and in fact, only transferring the embeddings and the first two layers of the transformer is
all that is necessary to completely eliminate the plateau (Figure 2, top left and top right). However,
when transferring from the output side of the model, many more layers are needed in order to
significantly reduce the plateau. It appears that the deeper layers are less useful in reducing the
plateau in the training dynamics, as seen in the output-order experiments (Figure 2, bottom left and
bottom right). Interestingly, we observe non-monotonic behavior when transferring more layers in
these output-order experiments. We leave the investigation of the origin of the non-monotonicity to
future work.

Based on these results, we theorize that the embeddings, which are just a linear layer and a PyTorch
Embedding layer, are not expressive enough to allow an otherwise randomly-initialized model to
train well, but the embeddings plus the first layer of the transformer have enough information about
the tasks to form a robust representation of the ICL tasks, even without the rest of the transformer. We
note that we only investigate transferring the embeddings and the layers of the transformer, ignoring
the final layer norm and linear output layer of the model.

Freezing the the transferred components so that they cannot be further trained does not seem to have
a significant impact on the plateau reduction in the input-order experiments. However, freezing the
layers of the transformer in the output-order experiments does affect the plateau when all layers are
transferred.

4 Conclusion

We explored an experimental setup to investigate model component recycling for ICL with the aim of
reducing the plateau in the training loss commonly seen in ICL work. We found that transferring
the embeddings and first two layers of the transformer of a model to an untrained model results
in the elimination of the plateau seen in the original training of the model. Transferring only the
embeddings and the first layer of the transformer also reduces the plateau length, but does not
eliminate it. However, just transferring the final layers of the transformer to an untrained model does
not significantly reduce the training plateau. These results have implications both for building a
fundamental understanding of ICL and for efficient model training in order to elicit ICL behavior. We
hope that the empirical results presented here will help inform future work in developing a theoretical
framework for ICL behavior.

Acknowledgments and Disclosure of Funding

LMS is supported by the National Science Foundation Graduate Research Fellowship Program under
Grant No. DGE-2039656. VN acknowledges research funds from the University of Sydney. DJS
was partially supported by a Simons Fellowship in the MMLS, a Sloan Fellowship, and the National
Science Foundation, through the Center for the Physics of Biological Function (PHY-1734030).

4



References
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners, July 2020.
URL http://arxiv.org/abs/2005.14165. arXiv:2005.14165 [cs].

[2] Stephanie C. Y. Chan, Adam Santoro, Andrew K. Lampinen, Jane X. Wang, Aaditya Singh,
Pierre H. Richemond, Jay McClelland, and Felix Hill. Data Distributional Properties Drive
Emergent In-Context Learning in Transformers, November 2022. URL http://arxiv.org/
abs/2205.05055. arXiv:2205.05055 [cs].

[3] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A Survey on In-context Learning,
June 2024. URL http://arxiv.org/abs/2301.00234. arXiv:2301.00234 [cs].

[4] Jingwen Fu, Tao Yang, Yuwang Wang, Yan Lu, and Nanning Zheng. Breaking through the
learning plateaus of in-context learning in Transformer. June 2024. URL https://openreview.
net/forum?id=2K87GFLYWz.

[5] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, January 2019. URL
http://arxiv.org/abs/1711.05101. arXiv:1711.05101 [cs, math].

[6] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[7] Allan Raventos, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity
and the emergence of non-Bayesian in-context learning for regression. November 2023. URL
https://openreview.net/forum?id=BtAz4a5xDg.

[8] Aaditya K. Singh, Stephanie C. Y. Chan, Ted Moskovitz, Erin Grant, Andrew M. Saxe, and Felix
Hill. The Transient Nature of Emergent In-Context Learning in Transformers, December 2023.
URL http://arxiv.org/abs/2311.08360. arXiv:2311.08360 [cs].

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

A Appendix / supplemental material

A.1 Additional model and figure details

Our transformer has an expansion factor of 4 and dropout set to 0.1. We use a batch size of 100
sequences and trained for 10,000 steps. Experiments were run on one NVIDIA A100 GPU or one
MIG instance (out of 7) on one NVIDIA A100 GPU.

5

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2205.05055
http://arxiv.org/abs/2205.05055
http://arxiv.org/abs/2301.00234
https://openreview.net/forum?id=2K87GFLYWz
https://openreview.net/forum?id=2K87GFLYWz
http://arxiv.org/abs/1711.05101
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://openreview.net/forum?id=BtAz4a5xDg
http://arxiv.org/abs/2311.08360
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

	Introduction
	Methodology
	Experiments and Results
	Conclusion
	Appendix / supplemental material
	Additional model and figure details


