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Abstract

Congenital heart disease (CHD) presents com-
plex, lifelong challenges often underrepre-
sented in traditional clinical metrics. While
unstructured narratives offer rich insights into
patient and caregiver experiences, manual the-
matic analysis (TA) remains labor-intensive
and unscalable. We propose a fully auto-
mated large language model (LLM) pipeline
that performs end-to-end TA on clinical nar-
ratives which eliminates the need for manual
coding or full transcript review. Our system
employs a novel multi-agent framework, where
specialized LLM agents assume roles to en-
hance theme quality and alignment with hu-
man analysis. To further improve thematic rel-
evance, we optionally integrate reinforcement
learning from human feedback (RLHF). This
supports scalable, patient-centered analysis of
large qualitative datasets and allows LLMs to
be fine-tuned for specific clinical contexts.

1 Introduction

Congenital heart disease (CHD) affects approxi-
mately 1% of live births, with around 40,000 cases
annually in the U.S., and over 12 million people
living with CHD worldwide (Centers for Disease
Control and Prevention, 2022; Liu et al., 2019).
The lifelong journey of individuals and families
affected by complex CHD brings emotional, lo-
gistical, and structural challenges that are often
overlooked in traditional clinical metrics. Recent
qualitative studies highlight the importance of map-
ping lived experiences and identifying outcomes
that patients and caregivers themselves consider
meaningful, particularly those related to capability,
comfort, and calm (Mery et al., 2023).

Despite growing recognition of the importance
of lived experience, post-discharge care still relies
heavily on two primary forms of data: structured
patient-reported outcomes (PROs) and unstructured
narratives. Structured PROs, typically gathered

through standardized processes, are essential for
monitoring health status but often fail to capture the
complexity of patient and caregiver needs (Valderas
et al., 2008). Unstructured data, such as inter-
views and open-text survey responses, offer richer
insights into emotional, social, and logistical expe-
riences (Greenhalgh et al., 2019). However, these
narratives remain underutilized due to the substan-
tial time, cost, and expertise required for manual
thematic analysis (TA) (Mery et al., 2023). Tra-
ditional TA is foundational to qualitative research
but remains labor-intensive, time-consuming, and
prone to inconsistency (Braun and Clarke, 2006;
Nowell et al., 2017). Coding1 just 10–15 inter-
views can take 40–60 hours, often requiring expert
reviewers and therefore, limiting scalability in clin-
ical settings (Watkins, 2017; Namey et al., 2008).

These limitations have driven recent efforts to
automate TA using machine learning and large lan-
guage models (LLMs). Hybrid frameworks now
combine human judgment with automated com-
ponents, enabling faster analysis while retaining
interpretability (Dai et al., 2023b; Xu et al., 2025c).
However, most still rely on human-in-the-loop
workflows that require full transcript review limit-
ing scalability. This raises a fundamental question:
what’s the point of introducing LLMs if humans
still need to go through the entire transcript?

To address these limitations, we propose
Auto-TA (Figure 1), a fully automated LLM
pipeline that performs end-to-end thematic anal-
ysis on unstructured clinical narratives without re-
quiring manual coding or full transcript review,
with the ultimate goal of identifying meaningful
outcomes1 and gaps in care1. Unlike prior hybrid
approaches that rely on human-in-the-loop work-
flows, our pipeline is designed to autonomously
generate codes1, extract themes1, and evaluate
alignment. To further enhance theme generation
quality, we incorporate a multi-agent system where
specialized LLM agents collaborate to improve



alignment with human-generated themes. Each
agent takes on a distinct role—such as coder (gen-
eration agent), reviewer (feedback agent) — fa-
cilitating iterative evaluation and refinement that
captures diverse perspectives and overcomes chal-
lenges related to semantic nuance. As an extension,
we explore the integration of optional human feed-
back to refine theme generation. By leveraging rein-
forcement learning from human feedback (RLHF),
we aim to improve thematic relevance, consistency,
and alignment with real-world needs in clinical con-
texts, while preserving scalability. Drawing on ex-
pert ratings or predefined metrics such as coherence
and distinctiveness, RLHF enables our system to it-
eratively optimize outputs beyond static prompting.
This approach supports patient-centered research
and informs clinical decision-making by identify-
ing meaningful outcomes1 and gaps in care1 within
large-scale unstructured qualitative data.

In summary, our contribution is as following:

• Automated Thematic Analysis: Proposed
Auto-TA (Figure 1), an end-to-end LLM
pipeline that performs TA on unstructured
clinical narratives without requiring manual
coding or transcript review.

• Multi-Agent Theme Refinement: Introduced
a multi-agent LLM system with specialized
roles to improve theme quality and alignment
with human analysis.

• Scalable RLHF Integration: Optionally incor-
porates reinforcement learning from human
feedback (RLHF) to improve thematic rele-
vance and alignment with patient-centered out-
comes, while preserving scalability.

2 Related Work

Automated Thematic Analysis (TA) with LLMs
Efforts to automate TA with LLMs have progressed
from hybrid, human-in-the-loop methods to au-
tonomous multi-agent systems. LLM-in-the-loop
approach (Dai et al., 2023a) accelerated coding by
60%, while single-agent models replicated high-
level themes but lacked nuance (Paoli, 2024). Bias
and hallucination risks remain a concern, especially
in health and policy contexts (Lee et al., 2024;
Khan et al., 2024). LLM-TA (Raza et al., 2025) im-
proved lexical alignment with expert CHD themes
but required manual transcript review. TAMA (Xu
et al., 2025a) introduced a coder–reviewer–refiner

agent framework, boosting HIT rate and reducing
analysis time by 99%. Domain-specific pipelines
validate efficiency gains but highlight ongoing chal-
lenges in bias and privacy (Qiao et al., 2025).

Thematic-LM performed multi-agent TA on Red-
dit threads related to climate change, highlighting
opportunities for automation while raising open
questions around semantic evaluation (Qiao et al.,
2025).

Multi-Agent LLMs Multi-agent large language
model (LLM) systems were first formalized by
CAMEL, which introduced two role-playing GPT-
3.5 agents that interact to decompose and solve
tasks (Li et al., 2023). Such systems consist of two
or more LLM-powered agents that communicate to
collaborate or compete on a given problem. Build-
ing production pipelines has been simplified by Au-
toGen, a lightweight framework for spawning role-
conditioned agents that converse and invoke exter-
nal APIs (Wu et al., 2023). Systematic benchmarks
such as AgentBench and MultiAgentBench confirm
that coordinated or competitive teams consistently
outperform single-model baselines across web nav-
igation, coding, negotiation, and other tasks (Liu
et al., 2023; Zhu et al., 2025). In evaluation settings,
ChatEval shows that a debating panel of agents
yields markedly more reliable text judgments than
a solitary judge (Chan et al., 2024), while COP-
PER augments collaboration with counterfactual
self-reflection fine-tuned by PPO to tackle credit-
assignment issues (Bo et al., 2024). Overall, these
results highlight role specialization, debate, and re-
flection as key inductive biases for scaling LLM ca-
pabilities, while domain-specific applications (e.g.,
qualitative health analytics) and group-level reward
modeling remain open research challenges.

Reinforcement Learning (RL) is a computa-
tional framework in which an agent learns, by trial
and error, to choose actions that maximize long-run
cumulative reward in an environment (Sutton and
Barto, 1998). Within the LLM domain, the three-
stage RL-from-human-feedback (RLHF) recipe of
supervised fine-tuning, reward-model training, and
policy optimization with Proximal Policy Opti-
mization (PPO) has become the standard since In-
structGPT demonstrated large gains in helpfulness
and compliance (Ouyang et al., 2022; Schulman
et al., 2017). Follow-up work such as Helpful and
Harmless (Bai et al., 2022) scales the pipeline and
explores reward–KL trade-offs, while RLHF for
specific text tasks, such as summary generation



Figure 1: The Auto-TA Framework. An end-to-end multi-agent LLM pipeline for thematic analysis of unstructured
clinical narratives. Coder agents with diverse identities generate preliminary codes from interview transcripts,
which are processed into themes by downstream agents. A feedback agent evaluates outputs and provides iterative
refinement. Optional integration of reinforcement learning from human feedback (RLHF) allows the system to
optimize thematic relevance and alignment with patient-centered outcomes. The implementation of RLHF is
currently in progress.

(Stiennon et al., 2020), confirms that preference-
based rewards outperform maximum-likelihood
fine-tuning. Recent variants introduce hierarchical
or self-refinement rewards, but consensus is still
emerging around stable optimization and domain-
specific signal design, leaving room for customized
reward modeling in qualitative health analytics.

Definitions and Abbreviations Table 1 defines
key terms and medical abbreviations used through-
out the paper.

3 Method

3.1 The Auto-TA Framework

Figure 1 presents an overview of
the Auto-TA framework. It com-
prises three interacting group of agents:
Generation Agents , Feedback Agents ,

and Reinforcement Learning , which operate in
coordination to perform automated TA. The full
process is summarized below:

Generation Agents We instantiate two cate-
gories of generation agents:

a) Coder Agents with Identities. A pool of
k=4 role-conditioned GPT-4o1 agents2 are

1All prompts use temperature = 0 for determinism.
2Physician, Surgeon, Researcher, Layperson were assigned

each given the full interview transcript as in-
put. If the transcript exceeds the model’s
input batch limit, it is divided into contigu-
ous chunks x ∈ R≤1500, and each agent pro-
cesses the same chunk independently. Each
agent then emits a set of initial codes Cr =
{cr,1, . . . , cr,nr}, where r ∈ R denotes the
role-specific identity of the agent and nr is the
number of codes produced by role r. Exam-
ple role prompts are provided in Appendix F,
where all identities follow a similar structure.

b) Theme-Generation Agents. The codes from
all roles are merged and passed to a secondary
set of agents that cluster semantically sim-
ilar codes and generate preliminary themes
Θ(0) = {θ(0)1 , . . . , θ

(0)
m }. Each theme is con-

cise, often within 60 words. Some agents
operate without identity conditioning, while
others may retain role-specific perspectives to
support diverse theme formulation. In subse-
quent steps, feedback from the feedback agent
is used to iteratively refine and improve the
generated themes.

Together these agents reduce a transcript to a
concise thematic representation without human re-
view, completing Steps 1–3 of reflexive TA (Braun

per Cardiac Expert guidance to simulate prior TA. Future work
should consider alternative identities.



Term Definition

Code A discrete analytical unit that captures
a key pattern within the data, generated
directly from the dataset and retaining
its interpretive significance without being
reducible to smaller meaningful compo-
nents. Coding refers to the process of
generating these codes from the original
text. A coder is an individual who per-
forms coding by identifying and labeling
meaningful segments of data. Examples
are in Appendix G.2.

Themes Inductively derived patterns or topics of
meaning that emerged from participants’
narratives about their lived experiences,
identified through iterative coding and
consensus across multiple coders. These
themes were then categorized into mean-
ingful outcomes and gaps in care, with
outcomes further grouped using the capa-
bility, comfort, and calm framework.

Meaningful Out-
comes

Patient- and family-prioritized goals that
reflect capability (doing the things in life
you want to), comfort (experience of phys-
ical/emotional pain/distress), and calm
(experiencing health care with the least
impact on daily life).

Gaps in Care Gaps in care refer to unmet needs or break-
downs in healthcare delivery that hinder
patients and families from receiving con-
sistent, compassionate, and coordinated
support across the care journey.

Table 1: Key Definitions and Abbreviations used in
this paper, consistent with Mery et al. (2023). Additional
abbreviations are listed in Appendix B.

and Clarke, 2006).

Feedback Agents The feedback agent F acts
as an autonomous critic. Given Θ(t) at refinement
round t, it produces:

• Evaluation Scores: Obtain s(t) = ⟨C,D, T ⟩
on the trustworthiness dimensions defined in
Section 4.

• Edit Themes: Suggests specific edits to
themes, such as ADD (adding), SPLIT (split-
ting), COMBINE (combining), or DELETE

(deleting), each targeted to a particular theme.
If RL is disabled, the proposals are applied

heuristically: themes with C < 0.7 trigger ADD;
DL < 0.20 triggers COMBINE, etc. The resulting
Θ(t+1) is re-scored until ∥s(t+1) − s(t)∥1 < 0.05
or a maximum of three iterations3.

3The specific thresholds and number of iterations are sub-
ject to change. In practice, these values are tuned based on
empirical validation and expert feedback to meet the goals of
inductive TA. For example, in the AAOCA dataset, cardiac
experts provide feedback to ensure that the thresholds and

Reinforcement Learning When expert raters
are available, Auto-TA can optionally switch to a
RLHF loop:

a) Human raters assign binary rewards (r ∈ 0, 1)
to each theme set, where 1 indicates meet-
ing quality standards and 0 indicates other-
wise. While we use Coverage, Actionability,
Distinctiveness, and Relevance as evaluation
criteria adopted from Xu et al. (2025a), users
may define their own criteria based on specific
needs.

b) A reward model Rϕ is updated via MSE loss
on the rated batches.

c) The policy parameters θ of the Theme-
Generation agent are optimized with Proximal
Policy Optimisation (PPO):

θ ← θ + α∇θ Eπθ

[
Rϕ(Θ

(t))− βKL
(
πθ ∥ πSFT

)]
Here, πθ denotes the current policy of the

theme-generation agent, and Rϕ(Θ
(t)) is the

reward assigned by a model evaluating the
quality of the generated theme set Θ(t). The
KL divergence term KL(πθ ∥ πSFT) measures
deviation from the base supervised model
πSFT, which acts as a regularizer to prevent the
policy from drifting too far. The coefficient β
controls the strength of this regularization, bal-
ancing reward maximization and policy align-
ment. The update step uses a learning rate α
to scale the gradient ∇θ, which indicates the
direction to adjust parameters θ to increase
the expected objective. The expectation Eπθ

is taken over actions sampled from the current
policy, reflecting average performance under
the agent’s behavior.

The feedback agent is retained as a critic dur-
ing training; its scores are concatenated to the re-
ward model input, enabling reward shaping without
additional human cost. If no human feedback is
supplied, Auto-TA degrades to the heuristic loop
above.

In summary, the architecture automates TA in
under 10 minutes per 10k-word transcript. The
optional RLHF path enables the system to adapt
to researcher preferences over time without requir-
ing full transcript re-reads. The resulting themes
are categorized into outcomes and care gaps, with
outcomes further organized using the capability,
comfort, and calm framework (Mery et al., 2023).

parameters align with clinically meaningful interpretations.



End-to-End Workflow of Auto-TA

Step 1: Transcript Processing Each
transcript is fed to k=4 role-
conditioned coder agents. If the
transcript exceeds the input limit,
it is divided into chunks and
broadcast to all agents.

Step 2: Code Aggregation and Theme
Generation Codes from all roles
are merged and clustered by theme-
generation agents to produce pre-
liminary themes Θ(0).

Step 3: Feedback Evaluation A feedback
agent critiques the initial themes
and produces quality scores s(0).

Step 4: Theme Refinement Themes are
iteratively improved via heuristic
edits or PPO updates, producing
Θ(1).

Step 5: Repeat Steps 3–4 until conver-
gence or a maximum of tmax = 5
iterations.

Step 6: Output Final theme set Θ⋆ =
Θ(tconv) and its associated audit
trail.

3.2 Dataset

This study analyzes a targeted subset of transcripts
from a broader qualitative project on the lifelong
experiences of individuals and families affected by
single-ventricle congenital heart disease (SV-CHD)
(Mery et al., 2023). We use de-identified transcripts
from nine moderated focus groups involving 42 par-
ents of children diagnosed with Anomalous Aor-
tic Origin of a Coronary Artery (AAOCA). Each
90-minute session captures narrative-driven discus-
sions on diagnosis, care pathways, emotional bur-
dens, and decision-making. The transcripts average
10,987 words (SD: 1,537; median: 11,457).

We also incorporate human-generated themes
from Mery et al. (2023) as references to compute
traditional metrics against LLM-generated themes.
For consistent referencing, each quote was manu-
ally assigned Quote IDs, a unique identifier. Fur-
ther corpus details are in Appendix A.1.

4 Evaluation

4.1 Evaluation Criteria

We adopt the four criteria of credibility, confirma-
bility, dependability, and transferability from the
trustworthiness framework in qualitative research
introduced by Lincoln and Guba (1985) and later
applied to TA by Nowell et al. (2017) and Korstjens
and Moser (2018). These criteria were also recently
employed in TA using LLMs (Qiao et al., 2025).

Credibility and Confirmability (C) We evalu-
ate credibility and confirmability jointly by assess-
ing the degree to which the generated themes are
grounded in the original data. Specifically, we re-
trieve the associated segments using Quote IDs and
task an evaluator agent with determining whether
each theme is consistent with its supporting quotes.
This consistency check identifies cases where the
theme reflects the quoted content accurately versus
instances of hallucination or bias. Let Q denote
the set of all coded quotes, and Qref ⊆ Q be the
subset of quotes that are used to generate at least
one theme. We define C as:

C =
|Qref|
|Q|

× 100

A higher value of C indicates stronger alignment
between themes and the underlying data, reflect-
ing both accurate representation (credibility) and
traceable justification (confirmability) in the anal-
ysis. C can be enhanced through prolonged en-
gagement, triangulation (e.g., multiple coders or
data sources), and member checking, thereby maxi-
mizing the overlap between participant intent and
the researcher’s interpretations (Lincoln and Guba,
1985; Nowell et al., 2017; Korstjens and Moser,
2018).

Dependability (D) Dependability reflects the
stability of theme generation across independent
runs. We compute lexical overlap using bidirec-
tional ROUGE scores (Lin, 2004). Specifically,
R1 and R2 represent the ROUGE-1 (unigram) and
ROUGE-2 (bigram) overlap scores, respectively.
Given two sets of themes A and B generated from
independent runs, we define:



RA→B
1 =

|unigrams(A) ∩ unigrams(B)|
|unigrams(A)|

(1)

RA→B
2 =

|bigrams(A) ∩ bigrams(B)|
|bigrams(A)|

(2)

R1 =
1

2

(
RA→B

1 +RB→A
1

)
(3)

R2 =
1

2

(
RA→B

2 +RB→A
2

)
(4)

D =
1

2
(R1 +R2) (5)

We evaluate D across 10 independent genera-
tions per transcript and report results aggregated
across all 9 transcripts. Higher values of D indicate
stronger inter-run consistency. To further support
dependability, we maintain a methodological log
and employing coding strategies (Korstjens and
Moser, 2018).

Transferability (T ) Transferability concerns the
extent to which themes Θ, generated from a dataset
D, can be meaningfully applied to a new but con-
textually similar corpus D′. In qualitative research,
high T is traditionally supported through thick de-
scription—that is, detailed accounts of participants,
settings, and analytical choices that enable readers
to assess contextual relevance (Lincoln and Guba,
1985; Nowell et al., 2017).

In our framework, we use transferability by di-
viding the dataset into a training set and a validation
set. Specifically, we use 7 transcripts to generate
Θtrain and 2 transcripts to generate Θval, then com-
pute bidirectional ROUGE to assess overlap:

R′
1 =

1

2

(
RΘtrain→Θval

1 +RΘval→Θtrain
1

)
(6)

R′
2 =

1

2

(
RΘtrain→Θval

2 +RΘval→Θtrain
2

)
(7)

T =
1

2

(
R′

1 +R′
2

)
(8)

To robustly estimate transferability, we compute
T across all

(
9
2

)
= 36 possible 7-train / 2-validation

transcript splits. For each split, we perform in-
dependent thematic analysis on both subsets and
evaluate bidirectional ROUGE overlap between the
resulting theme sets. We report the mean and stan-
dard deviation of T across these 36 combinations
to capture overall generalizability and variation
across different training-validation configurations.
A higher T indicates that themes generated from

one subset of the corpus generalize well to oth-
ers, suggesting good conceptual transfer across the
dataset.

4.2 Other Metrics

To evaluate the alignment between LLM-generated
and human-generated themes, we explore alterna-
tive metrics beyond those used in prior work (Raza
et al., 2025; Xu et al., 2025b). Jaccard Similarity
(J) and HIT Rate (R), commonly used in earlier
studies, rely on surface-level word overlap and bi-
nary thresholding, which makes them less effective
at capturing paraphrastic variation and deeper se-
mantic relationships. This motivates the use of
more comprehensive and semantically informed
measures of thematic alignment.

Cosine Similarity (Cbi) To quantify semantic
alignment at the individual theme level, we cal-
culate the cosine similarity between each pair
(ti, ℓj) using embeddings from a sentence-level
transformer model (all-mpnet-base-v2). Bidi-
rectional Cosine similarity(Cbi) is defined as

C(ti, ℓj) =
vti · vℓj

∥vti∥∥vℓj∥
,

where vti and vℓj are the embedding vectors of
ti and ℓj , respectively. To summarize alignment,
we first report the unidirectional mean maximum
similarity from human to LLM themes:

CT→L =
1

n

n∑
i=1

max
j

cosine(ti, ℓj),

which reflects how well each human theme is cap-
tured by its closest LLM-generated counterpart.

To account for potential asymmetry, we also
compute the reverse direction, measuring how well
each LLM theme aligns with the closest human
theme:

CL→T =
1

m

m∑
j=1

max
i

cosine(ℓj , ti).

The bidirectional cosine alignment score is then
defined as the average of both directions:

Cbi =
1

2
(CT→L + CL→T ) ,

providing a balanced measure of mutual semantic
alignment between theme sets.



Levenshtein Distance (DL) We compute the av-
erage maximum normalized Levenshtein similarity
between each human theme and LLM theme. Full
formulation is provided in Appendix C.

BLEU Score (B) We use BLEU (Papineni et al.,
2002) to measure n-gram overlap (up to 4-grams
with brevity penalty) between human and LLM
themes, and report the maximum score per human
theme and averaging over all.

5 Results

Impact of Agent Identities Our results suggest
that assigning domain-specific identities to agents
lead to substantial improvements in credibility
(C), with the Cardiac Surgeon and Qualitative Re-
searcher identities achieving the highest scores
(Table 2). All identity-augmented agents outper-
formed the baseline in C, with gains ranging from
+11.54 to +16.28. Dependability (D) is largely un-
affected or slightly reduced, likely due to variability
from non-uniform agent behavior. Transferability
(T ) improves with identity augmentation, with the
Medical Doctor and Psychologist agents showing
the highest gains (+0.026, +0.027), suggesting
expert-informed themes generalize better. T shows
minimal change across all 36 combinations with
low standard deviation, indicating consistent perfor-
mance and supporting the robustness of Auto-TA.

Theme Alignment with Human Ground Truth
We evaluated the alignment between LLM-
generated and human-generated themes using Cbi,
DL, and B (Table 3). Higher alignment for the
Cardiac Surgeon agent likely reflects the presence
of a cardiac expert in the human analyst group.
Alignment appears influenced by annotator exper-
tise; different expert compositions (e.g., more qual-
itative researchers) could shift alignment patterns.
Even when surface-level overlap is low, identity-
augmented agents often capture subtle or over-
looked aspects of the data not fully represented
in the human-generated themes. This suggests
that identity conditioning can expand the thematic
space in meaningful and complementary ways.

This observation also points to the limita-
tions of traditional evaluation metrics that rely
on surface-level comparison between human and
LLM-generated themes. As shown in Table 4, low
scores on metrics such as B do not necessarily
imply incorrect themes. Rather, they underscore
the need for evaluation criteria better suited to the

interpretive nature of qualitative research, where
multiple valid versions of TA can coexist.

Our preliminary results showed no significant
changes using the four criteria from previous stud-
ies, including distinctiveness and actionability (Fig-
ure 5). This may be due to the use of a coarse
5-point integer scoring system within a form-filling
paradigm using LLM evaluators, which may lack
the resolution to capture micro-scale improvements.
To address this, we propose adopting a scalar scor-
ing system (e.g., continuous values between 1.00
and 5.00) to better reflect incremental changes in
theme quality during iterative refinement.

6 Limitations

A key limitation of our approach lies in the as-
sumption that alignment with human-generated
themes is a sufficient indicator of thematic qual-
ity. In practice, there may be multiple valid sets
of right themes for the same transcript, depend-
ing on the perspective and interpretive lens of the
analyst. As such, high alignment with a human-
coded reference set does not necessarily imply bet-
ter or more meaningful TA. This observation aligns
with findings from prior work. For instance, a
cardiac expert cited in Mery et al. (2023) noted
that approximately two-thirds of themes tend to
be straightforward and expected, regardless of the
analyst’s background. However, the remaining one-
third are more variable and dependent on individual
expertise and interpretation. Beyond this concep-
tual limitation, several practical constraints remain.
The framework has not yet been tested across dif-
ferent domains, leaving its ability to generalize to
other clinical or non-clinical settings uncertain. In
its current form, the architecture does not support
interaction among agents, which limits opportuni-
ties for collaborative reasoning or negotiated theme
development. Evaluation is also limited to a single
comparison with human-coded themes, offering
little insight into the stability of outputs across mul-
tiple runs. Moreover, the system shows notable
sensitivity to prompt wording, where minor vari-
ations can lead to substantially different thematic
results and may raise concerns about reproducibil-
ity in real-world applications.

7 Conclusion and Future Work

We presented Auto-TA, a fully automated, multi-
agent LLM framework for end-to-end thematic
analysis of unstructured clinical narratives. Role-



Agent Identity C ∆C D ∆D T ∆T

NO IDENTITIES (BASELINE) 82.13± 18.96 – 0.400± 0.017 – 0.308± 0.018 –
CARDIAC SURGEON 98.41± 4.76 +16.28 0.395± 0.019 -0.005 0.318± 0.027 +0.010
QUALITATIVE RESEARCHER 97.56± 3.34 +15.43 0.397± 0.014 -0.003 0.324± 0.023 +0.016
MEDICAL DOCTOR 96.83± 8.98 +14.70 0.389± 0.025 -0.011 0.334± 0.007 +0.026
PSYCHOLOGIST 93.67± 2.35 +11.54 0.359± 0.018 -0.041 0.325± 0.015 +0.027

Table 2: Performance of Identity-Augmented Agents Evaluation results across core metrics: credibility (C),
dependability (D), and transferability (T ). Values denote the mean and standard deviation computed over nine
transcripts. Bolded values indicate the best performance, and underlined values denote the second-best. ∆ columns
indicate improvements over the baseline. Higher values are better for C, D, and T . Definitions for each evaluation
metric are in Section 4.

Agent Identity Cosine (Cbi) ∆C Levenshtein (DL) ∆DL BLEU (B) ∆B

NO IDENTITIES (BASELINE) 0.132± 0.027 – 0.301± 0.027 – 0.019± 0.008 –
CARDIAC SURGEON 0.115± 0.053 −0.017 0.259± 0.089 −0.042 0.020± 0.009 +0.001
QUALITATIVE RESEARCHER 0.107± 0.046 −0.025 0.252± 0.082 −0.049 0.014± 0.007 −0.005
MEDICAL DOCTOR 0.112± 0.018 −0.020 0.287± 0.025 −0.014 0.018± 0.006 −0.001
PSYCHOLOGIST 0.121± 0.029 −0.011 0.282± 0.021 −0.019 0.020± 0.006 +0.001

Table 3: Semantic and Lexical Alignment Metrics. Mean ± standard deviation scores across three metrics used to
evaluate alignment between LLM-generated and human-generated themes: bidirectional Cosine Similarity (Cbi),
Levenshtein Distance (DL), and BLEU Score (B). ∆ columns represent absolute changes from the baseline (No
Identities). Higher values indicate better alignment, except for DL, where lower values indicate better alignment.

# Human Theme Closest LLM Themes (iteration=5)

1 Clarity of potential risks and outcomes Desiring Comprehensive Data on Long-Term Outcomes
Seeking Clarity and Understanding about My Child’s
Condition

2 Freedom from hypervigilance related to the condition Feeling Overwhelmed by Emotional Uncertainty
Living with Constant Anxiety about Child’s Health

3 The diagnosis given in a compassionate and empathic way Experiencing Relief from Diagnosis and Support
Feeling Overwhelmed by Medical Decisions

4 A sense of control over the future Balancing Relief and Anxiety about the Future
Seeking Reassurance and Clear Communication from
Medical Professionals

5 Being heard and taken seriously by clinicians Seeking Reassurance and Clear Communication from
Medical Professionals
Feeling Isolated During the Medical Journey

6 Individualized support for management decision-making Advocating for Child’s Medical Needs
Navigating Surgical Decision Anxiety

7 Receiving support from others Finding Strength in Family and Community Support
Finding Joy in Family Connections

8 Being appropriately informed Seeking Reassurance and Clear Communication from
Medical Professionals
Desiring Clear Communication from Medical Professionals

9 Partnership with the care team Seeking Reassurance and Clear Communication from
Medical Professionals
Advocating for Child’s Medical Needs

10 Feeling that my child is safe Coping with Health Crisis Trauma
Feeling Overwhelmed by Medical Decisions

11 Not feeling responsible for the diagnosis and its timing Struggling with Feelings of Guilt and Responsibility
Desiring Proactive Healthcare Measures to Prevent Crises

12 Appropriately coping with stress, anxiety and depression Feeling Overwhelmed by Emotional Uncertainty
Managing Ongoing Anxiety about My Child’s Health

Table 4: Examples of semantic alignment between human and LLM-generated themes. Each human-generated
theme is matched with the two LLM-generated themes exhibiting the highest cosine similarity scores, based on the
similarity matrix heatmap (Figure 4b) after five refinement iterations incorporating feedback from the feedback agent.
These LLM-generated themes are drawn from agents with diverse identities in the Auto-TA pipeline. Although
traditional alignment scores are modest, the most similar LLM themes often reflect comparable underlying meanings,
and in some cases, elaborate or extend the human-coded interpretations.



conditioned agents enhanced alignment with
human-coded themes, particularly when identities
matched annotator expertise. Despite low tradi-
tional metric scores, identity-augmented agents
captured valid insights and expanded the thematic
space. Auto-TA demonstrates potential for scal-
able, expert-informed qualitative analysis, support-
ing future extensions through domain adaptation,
reinforcement learning, and agent collaboration.

Future work should explore evaluation methods
that go beyond surface-level alignment, focusing on
the distinctiveness, utility, and interpretive depth
of LLM-generated themes in specific clinical or
research contexts. Bridging machine efficiency
and human interpretability will likely require iter-
ative collaboration with domain experts. Incorpo-
rating expert feedback into a reinforcement learn-
ing framework could enable adaptive refinement
based on human judgment. Expanding the frame-
work to new domains will help assess its general-
izability, while structured dialogue or negotiation
among agents may better mirror human qualitative
analysis. An identity generation agent that selects
optimal personas based on dataset context could
further improve relevance. Finally, examining re-
producibility and sensitivity to prompt variation is
essential for real-world reliability.
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Appendix

A Dataset Details

A.1 Original Corpus Composition and
Participant Summary

Between February and September 2020, transcripts
were collected from 19 moderated focus groups
(Experience Groups, 90 minutes, 3–7 participants),
35 semi-structured 1:1 interviews (60 minutes), and
4 co-design workshops aimed at validating emerg-
ing journey maps. The full composition of the
parent corpus is shown in Table 5.

Table 5: Parent corpus composition

# Sessions Participants Approx. Words

EG Sessions 19 134 ∼260 k
1:1 Interviews 35 56† ∼210 k
Workshops 4 58 ∼50 k

Total 58 170 ∼520 k
†35 family participants + 21 stakeholders

Of the 96 survey respondents, most were parents
(n=52) or patients (n=29), with smaller numbers
of siblings (n=9), partners (n=4), and fetal case
participants (n=4). Females comprised the major-
ity across groups, especially among parents (77%)
and patients (55%). Most respondents identified
as White (81% of parents, 78% of patients), with
smaller proportions identifying as Hispanic/Latino
or Black.

A.2 Quote Identification and Traceability
Each statement in the transcripts is tagged with a
unique Quote ID to support reference and trace-
ability during TA. The format [P#_S###] identi-
fies both the speaker and the sequence: P# denotes
the participant (e.g., P1 = Participant 1), and S###
marks the specific utterance from that participant.
This system facilitates coding accuracy and enables
cross-referencing between annotations and original
context. A total of 85 participants contributed to
the subset analyzed in this study.
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A.3 Visualizing Transcript Embeddings via
t-SNE

Figure 2: 3D t-SNE projection of sentence embeddings
from Interview 1, showing clusters by speaker identity.

Figure 3: 2D t-SNE projection of sentence embeddings
with representative labels and speaker roles.

A.4 Ethics Statement
The original study was approved by the UT
Austin Institutional Review Board [Protocol
#2019080031] and registered on CLINICALTRI-
ALS.GOV [NCT04613934]. The dataset was gener-
ated in the study by Mery et al. (2023).

B Additional Abbreviations

Table 6 lists abbreviations that appear frequently in
the paper for ease of reference.

C Evaluation Metrics Details

Levenshtein Distance (DL) To capture lexical
similarity between themes, we compute the nor-
malized Levenshtein distance between each pair
(ti, ℓj), defined as the minimum number of single-
character edits (insertions, deletions, or substitu-
tions) required to transform one string into the other.

Term Definition

Agent An autonomous computational entity
(LLM) that interacts with other agents or
the environment to perform specific tasks.

CHD Congenital Heart Disease
SV-CHD Single-Ventricle Congenital Heart Disease
AAOCA A congenital heart condition where a

coronary artery arises from the aorta in an
atypical location.

TA Thematic analysis, a method for identi-
fying and reporting patterns, as proposed
by Braun and Clarke (2006).

LLM Large Language Model
RL Reinforcement Learning
RLHF Reinforcement Learning from Human Feed-

back
PPO Proximal Policy Optimization (Schulman

et al., 2017)
IRB Institutional Review Board

Table 6: Glossary of key terms and abbreviations.

The normalized form is given by:

Levenshtein(ti, ℓj) =
edit_distance(ti, ℓj)

max(|ti|, |ℓj |)
,

where |ti| and |ℓj | denote the lengths of the re-
spective strings. For interpretability, we convert
distance into a similarity score:

simlev(ti, ℓj) = 1− Levenshtein(ti, ℓj),

so that values closer to 1 indicate higher surface-
level string similarity. We report the average maxi-
mum similarity per human theme:

DL =
1

n

n∑
i=1

max
j

simlev(ti, ℓj),

which assesses how well each human theme is
lexically approximated by its most similar LLM-
generated theme.

D Dependability (D) and Transferability
(T ) Score Details

Table 7 presents detailed ROUGE-1 and ROUGE-2
scores used to assess theme dependability (D) and
transferability (T ) across agent identities.

E Supplementary Results on Theme
Alignment

This section provides supplementary visualizations
related to theme alignment with human ground



Agent Identity R1 ∆R1 R2 ∆R2 R′
1 ∆R′

1 R′
2 ∆R′

2

NO IDENTITIES (BASELINE) 0.564 ± 0.020 – 0.236 ± 0.018 – 0.437 ± 0.020 – 0.180 ± 0.018 –
CARDIAC SURGEON 0.563 ± 0.022 −0.001 0.227 ± 0.021 −0.009 0.449 ± 0.028 +0.012 0.188 ± 0.026 +0.008
QUALITATIVE RESEARCHER 0.538 ± 0.020 −0.026 0.255 ± 0.016 +0.019 0.456 ± 0.030 +0.019 0.192 ± 0.022 +0.012
MEDICAL DOCTOR 0.546 ± 0.028 −0.018 0.232 ± 0.026 −0.004 0.464 ± 0.009 +0.027 0.204 ± 0.006 +0.024
PSYCHOLOGIST 0.488 ± 0.026 −0.076 0.229 ± 0.018 −0.007 0.452 ± 0.020 +0.015 0.198 ± 0.016 +0.018

Table 7: Lexical overlap scores used in evaluating dependability and transferability. R1 and R2 denote bidirectional
ROUGE-1 and ROUGE-2 scores, respectively, computed across two independent theme generation runs from
the same transcript (see Eq. 3–4); their average defines dependability D (Eq. 5). R′

1 and R′
2 denote analogous

ROUGE scores computed between themes generated from different transcript subsets (train vs. validation) and
define transferability T (Eq. 8). Higher values indicate stronger consistency or generalizability.

truth. Figure 4 shows improved cosine similarity
between LLM and human themes from iteration
0 to 5. Figure 5 indicates that reviewer-assigned
scores remained static, highlighting the need for
more sensitive metrics. Table 8 shows semantically
aligned theme pairs from the CARDIAC SURGEON

agent, highlighting shared or complementary mean-
ings despite low similarity scores.

F Example Prompt with Identities

Prompt for Surgical Coder Identity

You are an experienced cardiac surgeon specializing
in Anomalous Aortic Origins of Coronary Artery
(AAOCA). Your role is to code patient narratives
from a surgical perspective.
Our end goal is to perform TA on the provided tran-
script (Braun and Clarke, 2006).
The steps that should be performed are as follows:

1. Familiarization
Read and re-read the data to become deeply
familiar with it.

2. Generating Initial Codes
Systematically code interesting features across
the dataset.

3. Searching for Themes
Group codes into potential themes, collating
relevant data.

4. Reviewing Themes
Check if themes work in relation to coded ex-
tracts and the full dataset.

5. Defining and Naming Themes
Refine each theme and define its essence and
scope.

6. Producing the Report
Final analysis and write-up with evidence-rich
examples.

Your job is to perform ONLY Step 2.
You MUST provide the unique Quote IDs and de-
scriptions about the codes according to the context of
the original text. The Quote IDs in the transcript are
marked as [P1_S002] for example.
Here is the Original transcript:

(a) Cosine Similarity at Iteration 0

(b) Cosine Similarity at Iteration 5

Figure 4: Comparison of LLM-human theme similarity
across iterations. Higher similarity scores in later itera-
tions suggest better thematic alignment after feedback-
driven refinement.

G Example Prompt and Generated Codes

G.1 Example Prompt for Code Generation



# Human Theme Closest LLM Themes (Cardiac Surgeon, iteration=0)

1 Clarity of potential risks and outcomes Postoperative Outcomes and Recovery
Concerns About Long-Term Outcomes and Data Scarcity

2 Freedom from hypervigilance related to the condition majority of the mental health affect from PTSD
Initial Underestimation of Condition Severity

3 The diagnosis given in a compassionate and empathic way Relief in Diagnosis; Initial Diagnosis and Confusion
4 A sense of control over the future Post-Surgery Clearance and Future Concerns
5 Being heard and taken seriously by clinicians Privacy and Protection of Child’s Emotional Well-being
6 Individualized support for management decision-making Decision for Surgery; Decision-Making and Surgical Con-

siderations
7 Receiving support from others Role of Support Systems
8 Being appropriately informed Privacy and Protection of Child’s Emotional Well-being
9 Partnership with the care team the kids on his team."; Trust in Medical Team

10 Feeling that my child is safe Navigating Parent-Child Communication
11 Not feeling responsible for the diagnosis and its timing Diagnosis and Initial Reactions
12 Appropriately coping with stress, anxiety and depression Depression; Anxiety

Table 8: Examples of semantic alignment between human and LLM-generated themes. Each human-generated
theme is paired with two closely aligned LLM-generated themes from the CARDIAC SURGEON identity. Although
traditional alignment scores between human- and LLM-generated themes are low, many theme pairs share similar
underlying meanings, and some even build upon or encompass each other.

Figure 5: Theme quality scores (Coverage, Actionabil-
ity, Distinctiveness, and Relevance) across refinement
iterations. Flat trends suggest that integer-based eval-
uation lacks granularity to detect micro-level improve-
ments.

Prompt: Surgical Perspective on Coding
Patient Narratives

You are an experienced cardiac surgeon specializing
in Anomalous Aortic Origins of Coronary Artery
(AAOCA). Your role is to code patient narratives
from a surgical perspective.
Our end goal is to perform TA on the provided tran-
script (Braun and Clarke, 2006).
The steps that should be performed are as follows:

1. Familiarization: Read and re-read the data to
become deeply familiar with it.

2. Generating Initial Codes: Systematically code
interesting features across the dataset.

3. Searching for Themes: Group codes into poten-
tial themes, collating relevant data.

4. Reviewing Themes: Check if themes work in
relation to coded extracts and the full dataset.

5. Defining and Naming Themes: Refine each
theme and define its essence and scope.

6. Producing the Report: Final analysis and write-
up with evidence-rich examples.

Your task is to perform ONLY Step 2. You MUST
include unique Quote IDs (e.g., [P1_S002]) with
descriptions grounded in the transcript.

G.2 Example of Generated Codes

Note that Vanilla refers to agents with no desig-
nated identities.

Initial Codes from Surgeon Perspective

1. Understanding AAOCA Quote ID: [P1_S001]
Use of acronyms and terminology (AAOCA,
ALCA) reflects familiarity with medical vocabu-
lary.

2. Variation in Medical Conditions Quote ID:
[P2_S001]
Illustrates how the anomaly presents differently
depending on which coronary artery is affected.

3. Simplifying Medical Terminology Quote ID:
[P4_S001]
Parents often simplify terminology for ease of
communication with others.

4. Lack of Understanding Among Non-Medical
Individuals Quote ID: [P4_S003]
Indicates that detailed terminology is typically
only understood by healthcare professionals.

5. Emotional Impact of Medical Complexity
Quote ID: [P5_S001]
Parents express emotional burden due to difficulty
explaining the condition.



6. Privacy and Child’s Emotional Well-being
Quote ID: [P2_S003]
Parents shield children from information to avoid
psychological stress.

. . .

Initial Codes from Vanilla Identity

1. Use of Acronyms and Simplification Quote ID:
[P1_S001], [P2_S001], [P4_S001], [P5_S001],
[P3_S001]
Participants refer to the condition using acronyms
like “AAOCA” and simplified terms to enhance
comprehension.

2. Emotional Impact and Coping Quote ID:
[P5_S008], [P2_S007], [P4_S007], [P1_S002]
Expressed emotions include devastation, stress,
and relief; a recurring theme across interviews.

3. Lack of Information and Data Quote ID:
[P4_S010], [P5_S017], [P1_S013]
Participants highlight frustrations stemming from
the rarity of AAOCA and limited clinical data.

4. Decision-Making Challenges Quote ID:
[P4_S008], [P2_S011], [P5_S021]
Ambiguity in choosing surgery vs. watchful
waiting due to mixed medical recommendations.

5. Protective Parenting and Monitoring Quote ID:
[P2_S014], [P3_S012], [P5_S024]
Parents remain highly vigilant, often suppressing
their concerns to avoid alarming children.

. . .

6. Sharing Experiences and Offering Help Quote
ID: [P5_S027], [P1_S021]

Participants value peer mentorship and express
willingness to support newly diagnosed families.

7. Impact on Daily Life and Activities Quote ID:
[P3_S004], [P4_S012], [P5_S015]

The condition disrupts routines and limits
children’s participation in physical activities.
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