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Abstract
Deep models have recently achieved remarkable
performances in solving partial differential equa-
tions (PDEs). The previous methods are mostly
focused on PDEs arising in Euclidean spaces
with less emphasis on the general manifolds with
rich geometry. Several proposals attempt to ac-
count for the geometry by exploiting the spa-
tial coordinates but overlook the underlying in-
trinsic geometry of manifolds. In this paper,
we propose a Curvature-aware Graph Attention
for PDEs on manifolds by exploring the impor-
tant intrinsic geometric quantities such as curva-
ture and discrete gradient operator. It is realized
via parallel transport and tensor field on mani-
folds. To accelerate computation, we present three
curvature-oriented graph embedding approaches
and derive closed-form parallel transport equa-
tions, and a subtree partition method is also de-
veloped to promote parameter-sharing. Our pro-
posed curvature-aware attention can be used as
a replacement for vanilla attention, and exper-
iments show that it significantly improves the
performance of the existing methods for solv-
ing PDEs on manifolds. Our code is available at
https://github.com/Supradax/CurvGT.

1. Introduction
Partial differential equations (PDEs) serve as fundamental
tools for describing a wide range of scientific phenomena.
However, deriving closed-form solutions for general PDEs
is often infeasible. The numerical methods such as finite
difference methods and finite element methods, discretizing
PDE domains into grids, offer a viable alternative but are
often costly. Recently, data-driven deep models (Lu et al.,
2021; Li et al., 2023d; 2020a; Kovachki et al., 2023) have
emerged as powerful tools for PDE-governed tasks. They
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solve PDEs by learning the mapping between input-output
pairs in an end-to-end manner. Thus they outperform nu-
merical solvers in time-sensitive scenarios (e.g., real-time
rendering in gaming engines) while slight inaccuracy is
tolerable. However, most of them are dedicated to PDEs
in Euclidean space. To generalize the methods to discrete
manifolds, the work Geo-FNO (Li et al., 2023a) and Tran-
solver (Wu et al., 2024) are proposed.

Geo-FNO (Li et al., 2023a) attempts to learn a universal
mapping that transforms a curved surface into regularly
spaced grids and then solves the PDEs in Euclidean space
with Fourier neural operators. However, the reduction to
Euclidean space might fail since the existence of such a
universal parametrization is not always guaranteed. By
contrast, Transolver (Wu et al., 2024) directly handles the
ambient space in which the surface resides. By establishing
a global coordinate system, it encodes relative positions
into node features so as to distinguish different parts of the
surface. Nevertheless, relying solely on spatial coordinates
leaves the intrinsic geometry of the manifold unexplored. In
particular, it is a well-established theory that the curvature
of underlying manifolds dominates the physical laws of
observable phenomena (Naber, 2011). Hence, the curvature
is essential for developing an accurate solver for PDEs on
the manifolds. However, neither Geo-FNO nor Transolver
explicitly considers it in their model design.

On the other hand, the discrete manifolds are often repre-
sented by graphs (with node coordinates) and Graph Trans-
formers (Ying et al., 2021; Zhang et al., 2023) have achieved
promising results on a wide spectrum of graph-related tasks,
whose successes can largely be attributed to the inductive
bias injected into the self-attention to capture the underly-
ing topology and geometry. However, as one of the most
important geometry quantities of manifolds, the curvature
is still under-explored. To further explore the intrinsic ge-
ometry of the underlying manifold, we propose a Curvature-
aware Graph Attention for time-dependent PDEs on discrete
manifolds, which naturally encodes the curvature into the
self-attention mechanism. However, simply treating curva-
tures as additional node features has limited impact because
it only reveals the local curvature at points, and it is the
curvature of the path connecting points that dominates the
physics laws. In addition, in contrast to message-passing
in Euclidean space, the tangent vectors of different points
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on a manifold residing in different tangent spaces own dis-
tinct local coordinates, which prevents us from aggregating
information with a shared linear mapping.

To address these challenges, we propose to generalize the
vanilla attention to manifolds via parallel transport. As a
well-developed mathematical tool in differential geometry,
parallel transport can naturally carry the path curvature from
one point to another and align the local coordinate systems
of different tangent spaces. Moreover, we propose to replace
the linear mapping with the tensor field (multi-linear map-
ping) on manifolds to generalize the message aggregation.
This is illustrated in Figure 1. To accelerate the computation
of parallel transport, we present three curvature-oriented
graph embedding methods and derive closed-form parallel
transport equations accordingly; we also develop a subtree
partition to promote parameter-sharing for the tensor field
implementation. Lastly, a multi-head curvature-aware at-
tention is presented to enhance the representation learning
capability. Our proposed curvature-aware attention can be
used as a replacement for vanilla attention in existing meth-
ods such as Graph Transformers, Graph Attention Networks,
etc. The experimental results show that it is able to improve
the performances of the existing methods significantly for
PDEs on general manifolds. To summarize, our contribu-
tions are as follows.

• We propose a novel Curvature-aware Graph Attention
for PDEs on manifolds, which naturally incorporates
the curvature and discrete gradient operator as the in-
ductive bias.

• The proposed attention is realized by a combination
of parallel transport and tensor fields on manifolds;
we present three curvature-oriented graph embedding
methods and derive closed-form parallel transport equa-
tions to accelerate computation, and a subtree partition
method is also proposed to promote parameter-sharing.

• Our proposed curvature-aware attention can be used as
a direct replacement for self-attention. It significantly
improves the performances of the existing methods for
solving PDEs on manifolds.

2. Related Work
Neural Operator. Physics-Informed Neural Networks
(PINN) are originally proposed to solve PDEs with exact
formulas in continuous domains (Raissi, 2018), applied to
fluid simulation in graphics (Jain et al., 2024), which is,
however, intractable on a manifold. PINN based on graphs
can better adapt to manifolds in the form of point clouds
and structured meshes (Brandstetter et al., 2022). Different
from PINNs, neural operators map a function to another
by leveraging data-driven loss instead of the physical loss

Figure 1. By interpreting node features as tangent vectors on the
manifold, the message passing on a manifold is naturally defined as
the parallel transport onward and node update can be generalized
to multi-linear mapping in the tangent vector space.

given by PDEs (Lu et al., 2021; Jin et al., 2022; Li et al.,
2023d). As for neural operators on graphs, spatial methods
like multi-scale techniques implemented by pooling (Gao &
Ji, 2019) or matrix decomposition (Li et al., 2020b) and spec-
tral methods from Fourier operator (Li et al., 2020a; 2023a)
to wavelet decomposition (Gupta et al., 2021; Tripura &
Chakraborty, 2023; Xiao et al., 2023) are respectively pro-
posed to enhance the graph-model performance. Spatial
and spectral methods have recently achieved seamless in-
tegration. U-FNO (Wen et al., 2022) and U-NO (Rahman
et al., 2023) utilize U-Net and FNO to capture multi-scale
features in spatial and spectral domains, respectively. Since
spectral methods are easier to handle in regular spaces, Geo-
FNO (Li et al., 2023a) maps an irregular spatial domain to
a regular grid followed by spectral blocks while LSM (Wu
et al., 2023) first hierarchically projects a high-dimension
spatial domain to latent physical tokens.

The paradigm of operator learning has been recently shifted
to Transformer architectures with a focus on finding PDE-
compatible attention mechanisms. HT-Net (Liu et al., 2023)
adopts the canonical V-cycle (Gao & Ji, 2019; Li et al.,
2020b) to obtain hierarchical attention on the PDE domain;
GNOT (Hao et al., 2023) gains insight from Mixture of
Experts(MoE) in which boundary shapes and edge features
get involved in cross-attention; Transolver (Wu et al., 2024)
decomposes the non-Euclidean PDE domain into slices and
establishes slice-wise attention onward. To mitigate the
quadratic attention problem in transformers, two types of
softmax-free attention (Cao, 2021) are proposed to enhance
the efficiency, which is further extended in OFormer (Li
et al., 2023c) and FactFormer (Li et al., 2023e).

Geometric Graph Embedding. It is usually assumed that
data features concentrate on a low-dimension manifold in a
hidden feature space (Ghojogh et al., 2023). Among those
non-trivial manifolds, hyperbolic space is a popular choice
as the embedded space for hierarchical graphs, which is
realized by bringing in gyrovector spaces (Peng et al., 2022)
or classical hyperbolic models (Nickel & Kiela, 2017; 2018).
In our task, the graph has a natural geometry inherited from
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Figure 2. Notations of Geometric Quantities

the manifold M by discretization. The work that utilizes
spatial coordinates as geometric information has been stud-
ied (Wu et al., 2024) whereas the intrinsic geometry of
surfaces has not yet been explored.

3. Preliminaries
Riemannian Manifold. A Riemannian manifold M is a
topological space that locally resembles Euclidean space and
is equipped with a positive metric tensor field g. ∀p ∈ M,
there is an associated tangent space TpM with inner product
g|p. The cotangent vector space T ∗

pM is the dual space of
TpM, consisting of linear functionals that map u ∈ TpM
to a scalar via v∗(u) := ⟨v,u⟩g|p . A tensor is a multi-
linear mapping comprised of tangent vectors and cotangent
vectors. For example, a (1,1)-tensor u ⊗ v∗ acting on a
tangent vector w gives a tangent vector ⟨v,w⟩g|p u while a
(0,2)-tensor u∗ ⊗ v∗ acting on two tangent vectors w1,w2

in order gives a scalar ⟨u,w1⟩g|p ⟨v,w2⟩g|p .

Parallel Transport. Though Euclidean vectors can be par-
alleled in any manner without changing their inner products.
However, to preserve inner products on M, their compo-
nents must vary in accordance to g and the specific path
γ between p, q ∈ M. Formally, let γ(0) = p, γ(s) = q,
and the tangent vector u ∈ TpM is parallel transported
along γ, resulting in the vector Γ(γ)s0u ∈ TqM. The par-
allel transport of a cotangent vector v∗ can be defined in
consistency with the inner-product-preserving nature by:
Γ(γ)s0v

∗(u) := ⟨Γ(γ)s0v,u⟩g|q .

Curvature. Curvature is an essential intrinsic geometry
property of manifolds and is central to many physics theo-
ries such as general relativity (Stephani, 2004), gauge the-
ory (Naber, 2011), and string theory (Zwiebach, 2009). The
sectional curvature K(u,v)|p measures how much the ge-
ometry of a 2-dimensional sectional of manifold spanned
by u,v ∈ TpM deviates from being flat. For the 2-
dimensional manifolds, the sectional curvature is identical
to the Gaussian curvature K that characterizes the degree
and nature of local bending (Tu, 2017). The Gaussian cur-
vature K|vi at point vi can be estimated with the aid of the
normal bundle theory (Yau & Gu, 2008) in a robust manner:

K|vi =
1

2

∑
vj∈N (vi)

vj − vi

||vi − vj ||2
φij · n. (1)

The illustration of geometric quantities n,vi, φij can be
found in Figure 2.

4. Method
Problem setup. In this work, we consider the time-
dependent PDEs on a manifold M of the form

du(x, t)

dt
= R(u) (2)

where x ∈ M, u(x, t) is a function of x and time t, R
is a linear or nonlinear differential operator. For instance,
R(u) = ∆u(x, t) + f(x, t) for a heat equation, u(x, t) and
f(x, t) represent the observed temperature field and heat-
source distribution, respectively. In practice, M is often
given as a discrete manifold, i.e., a graph G with node set
V and edge E. Given a discrete manifold G and a collec-
tion of m functions u1(x, t), u2(x, t), . . . , um(x, t) on G at
time t, the neural operator F aims to produce the function
u(x, t + 1) on G at t + 1. As most of the PDEs of inter-
est in practice are established on 2-dimensional manifolds,
we will primarily focus on these manifolds in this study.
ui(x, t) will also be denoted by u

(t)
i for short.

4.1. Design Motivation and Challenges

Design Motivation. Self-attention mechanisms (Vaswani
et al., 2017) have become the de-facto choice for founda-
tion model designs across various domains. In particular,
Graph Transformers (Ying et al., 2021; Zhang et al., 2023)
have extended their successes to graph structure data and
achieved state-of-the-art performance on a wide range of
graph-related tasks. The success of Graph Transformer can
be largely credited to the inductive bias injected into the self-
attention to capture the underlying local structures, which
are oblivious to the naive implementation. For example,
Graphormer (Ying et al., 2021) introduces the node central-
ity and shortest path distance (SPD) to correct the attention
score, thereby making it aware of the node degree and pair-
wise node relationship; Graphormer-GD (Zhang et al., 2023)
further explores the Resistance Distance (RD) to enhance
its expressiveness. In a nutshell, the core idea behind this
success is to introduce bias to help the attention mechanism
be aware of the local topology (node degree) and geometry
(pairwise node distance) of the underlying graph.

Inspired by the above observation, it is appealing to gen-
eralize such success to the discrete manifold, represented
as a graph with rich geometry. As mentioned in Section 1,
one of the critically important geometry quantities on the
manifold that dominate the underlying physics law is the cur-
vature. In this paper, we aim to propose a curvature-aware
self-attention mechanism to solve the PDEs on a manifold.
Instead of adopting the Graph Transformer architecture, we
still opt for the message-passing framework to avoid the
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Figure 3. A node is locally embedded into one of the constant Gaussian curvature surfaces, enabling us to perform fast parallel transport.
Parameter sharing are implemented by broadcasting source node parameters via parallel transport.

quadratic complexity O(|V |2).

Challenges of Encoding Curvature. To illustrate our
method, we first recall the general graph message-passing
steps by focusing on one single-layer transformation,

m′
u =

∑
v∈N (u)

αuvWhv (3)

h′
u = σ

(
W̃hu +m′

u

)
(4)

αuv = softmaxv(a
⊤[hu∥hv]) (5)

in which hv ∈ RD,h′
u ∈ RD′

are node representations
for node u, v ∈ V , m′

u is the aggregated message for node
u from its neighbors v, whereas W,W̃ ∈ RD′×D,a ∈
R1×2D are learnable parameters, and σ() is the activation
function. To incorporate curvature information, one may
attempt to mimic the Graphormer by either computing the
local curvature of node u, v denoted by cu, cv and concate-
nating it to hu,hv or adding a bias term ϕuv (e.g., SPD or
RD) to correct the attention score, i.e., replacing Eq. (5) with

αuv = softmaxv(a
⊤[hu∥cu∥hv∥cv]) + ϕuv.

However, such a straightforward adaptation will not work
for two reasons. (i) It is the curvature of the path between
u, v that dominates the physics law, simply concatenating
cv to hv will not work as cv can only reveal the local cur-
vature at point v; unlike the distance (SPD or RD), there
is no closed-form formula to calculate the curvature of the
path between two points u, v on a manifold. (ii) To acquire
the aggregated message m′

u in Eq. (3), we transform hv

from RD to RD′
with a linear mapping hv 7→ Whv. This

is feasible as both hv and m′
u live in the Euclidean space.

However, on a manifold M, hv and m′
u will reside in two

different tangent spaces, TvM and TuM, respectively, and
it makes no sense to transform vectors via linear mapping
between two tangent spaces since each of them owns a dis-
tinct local coordinate. Hence, it is unclear how to aggregate

the representations from different tangent spaces TvM with
v ∈ N (u) to produce m′

u. For the same reason, Eq. (4) and
Eq. (5) have similar issue.

To address the above two challenges, we propose to align dif-
ferent tangent spaces on a manifold via parallel transport and
generalize the matrix multiplication (linear mapping) with
the tensor field (multi-linear mapping). By integrating the
two techniques in a systematic way, we develop a curvature-
aware graph attention mechanism that can more effectively
solve the PDEs on manifold, the details are presented in
Section 4.2. Besides, to further accelerate the computation
of parallel transport, we propose three curvature-oriented
graph embedding methods and derive closed-form parallel
transport equations in Section 4.3, and in Section 4.4 we
also present a subtree partition approach to promote the
parameter-sharing for the tensor field implementation. The
framework is presented in Figure 3.

4.2. Curvature-aware Graph Attention

The parallel transport serves as a foundation tool for our
proposed curvature-aware graph attention. To compute m′

u,
each neighboring node representation hv is moved from
TvM to Γ(γ)s0[hv] ∈ TuM via parallel transport. The
benefits are twofold: 1) the parallel transport is a well-
developed tool in differential geometry and it can reveal the
curvature of the space (more concretely, the curve along
which it moves), and thus we can encode the curvature of
the path γ into the transported vector Γ(γ)s0[hv]; 2) the
transported Γ(γ)s0[hv] becomes a tangent vector in TuM,
which enables us to generalize the matrix multiplication
with the tensor field to calculate m′

u.

To motivate our design, we first rewrite the matrix multipli-
cation with its singular value decomposition form:
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Wh =
∑
i

λipiq
⊤
i h =

∑
i

λipi⟨qi,h⟩

=
∑
i

λi(pi ⊗ q∗
i )(h)

(6)

in which pi,qi are left- and right-singular vectors of W.
The key observation is that the inner product ⟨qi,h⟩ times
pi can be viewed as a (1, 1)-tensor or multi-linear mapping
pi ⊗ q∗

i acting on a tangent vector h, which can be general-
ized to manifolds naturally. In view of tensor fields, we can
rewrite the first two message-passing steps in Eq. (3) and
Eq. (4) in the following forms.

m′
u =

∑
v∈N (u)

αuv(w1 ⊗w∗
2)(Γ(γ)

s
0[hv]) (7)

h′
u = σ ((w̃1 ⊗ w̃∗

2)(hu) +m′
u) (8)

in which w1,w2, w̃1, w̃2 ∈ R3 are parameters to learn.
We first move hv ∈ TvM via parallel transport to obtain
a tangent vector Γ(γ)s0[hv] ∈ TuM. Then we apply a
(1, 1)-tensor w∗

1 ⊗w2 to Γ(γ)s0[hv] to yield a transformed
tangent vector in TuM, and consequently, m′

u will also be
a tangent vector in TuM, which can be used to generate
h′
u. In a similar spirit, Eq. (5) can be generalized with a

(0, 2)-tensor a∗1 ⊗ a∗2 to produce a scalar as follows:

αuv = softmaxv ((a
∗
1 ⊗ a∗2)(hu,Γ(γ)

s
0[hv])) (9)

where a1,a2 ∈ R3 are learnable parameters.

Implementation of Tensor Field. Our proposed curvature-
aware graph attention involves a (1, 1)-tensor w1 ⊗w∗

2 and
a (2, 0)-tensor a∗1 ⊗ a∗2 operation, which is defined by inner
product on the manifold with associated metric tensor field
g as follows (assuming both tensors are assigned to point u
and h,h′ ∈ TuM):

(w1 ⊗w∗
2)(h) = w1⟨w2,h⟩g|u ,

(a∗1 ⊗ a∗2)(h,h
′) = ⟨a1,h⟩g|u⟨a2,h

′⟩g|u .
(10)

By Jacobi field theory (Jost, 2017), a trivial Jacobi field
along a radial geodesic enables a Taylor expansion to esti-
mate the metric tensor field g by curvature tensor Riklj :

gij(x) = δij −
1

3
Rikljx

kxl +O(|x|3) (11)

in which Riklj is tractable with Taubin tensor (Taubin,
1995). Notably, for a surface embedded in R3, there is
only one independent component R1212, which simplifies
computation dramatically.

Remark 1. As a side benefit, generalizing the matrix multi-
plication in Euclidean space to the tensor field on manifold
M ensures that the obtained h′

u in Eq. (8) still resides in
TuM, which permits us to stack up multiple curvature-
aware graph attention layers to learn more expressive repre-
sentations.

(a) Sphere (b) Psuedosphere

Figure 4. Subgraphs are embedded into constant curvature surfaces.
It is common to handle the pseudosphere PS2 with the Poincaré’s
half-plane H2 via isometry φ : PS2 → H2.

Remark 2. In our proposed attention, message passing is
achieved by using tangent vector fields. However, in many
PDEs, both input and output are scalar fields. The conver-
sion from a vector field to a scalar field can be achieved by
adding a learnable cotangent vector field. Conversely, the
most natural vector field related to a scalar field is its gradi-
ent, obtained by the discrete gradient operator G (Jacobson,
2013), which is also an important geometry quantity.

4.3. Fast Parallel Transport

To support our proposed curvature-aware graph attention,
we need a fast and accurate implementation of parallel trans-
port on manifold M. Since M is often represented by its
discrete version G = (V,E), it suffices to consider the de-
sign of parallel transport along a directed edge (v, u) ∈ E.
To this end, we propose to embed an edge (v, u) into three
types of constant Gaussian curvature surfaces, namely, the
sphere S2, the plane R2, and the pseudosphere PS2, which
owns positive, zero, and negative curvature, respectively.
The idea is to approximate the local geometry of (v, u) with
the three constant curvature surfaces depending on the value
of curvature K|u at u as follows:

S2 if K|u > ϵ,

R2 if − ϵ ≤ K|u ≤ ϵ,

PS2 if K|u < −ϵ,

(12)

in which threshold ϵ > 0 is given. Therefore, we only need
to consider the parallel transport along the three constant
Gaussian curvature surfaces. To offer a fast implementation,
we will derive a closed-form formula for each of them in the
remainder of this section. First, the parallel transport on R2

is simply an identity map. Next, we consider S2 and PS2.

Parallel Transport on S2. The embedding of edge (v, u)
into S2 is simple. We can just treat the spatial coordinates
u,v ∈ R3 of u, v as two vectors on S2 and calculate their
rotation angle θ, which is closely related to the path curva-
ture from v to u on S2. Theorem 4.1 states that the parallel
transport on the sphere is uniquely determined by θ.

Theorem 4.1 (Parallel transport on S2). Let u, v ∈ S2 ⊂
R3 , θ := arccos(u · v) and the orthonormal basis be
{e1 = u, e2 = u× v/ ∥u× v∥2, e3 = e1 × e2}. Suppose
the geodesic between v and u is γ(t) = cos θe1 + sin θe3,
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Figure 5. The computation diagram commutes.

then hv = ae3 + be2 ∈ TvS2 is parallel transported to
Γ(γ)θ0hv = a cos θe3 − a sin θe1 + be2 ∈ TuS2.

The proof of the theorem is given in Appendix A. In short,
Theorem 4.1 offers us a very cheap manner to transport hv

from the tangent space TvS2 to TuS2 on the sphere.

Parallel Transport on PS2. To derive the parallel transport
in PS2, we propose to map an edge (v, u) to Poincaré’s
half-plane H2 with an isometry φ : PS2 → H2, because
the two spaces are isometric and H2 is a well-studied hy-
perbolic space that enjoys appealing properties. To achieve
the transformation, it suffices to design the pushforward
φ∗ : TuPS2 → TpH2 of the isometry by making it pre-
serve the direction and distance between points in PS2.
To this end, we note that the two principal directions at
a point u are exactly the two axes of H2, as illustrated in
Figure 4-(b). Hence, φ∗ can be designed to map u to the
coordinate (0, 1) in H2 and v to the location along the direc-
tion projn⊥

u
(v − u) with a distance dR3(u,v), where proj

is the projection operator and n⊥
u denotes the orthogonal

complement of normal vector at u (the tangent plane of PS2
at point u). In the remainder of this section, we will denote
the coordinate of v ∈ H2 by (xv, yv) ∈ R2 or represented
by the complex number zv = xv + iyv .

Now we are ready to derive the parallel transport in H2.
First, if γ happens to be a line segment parallel to y-axis,
Γ(γ)s0 is then a simple scaling transformation as stated by
Theorem 4.2. However, in general, γ is more likely to be a
section of semi-circle centered on x-axis and Theorem 4.2
will fail. Fortunately, we can turn the semi-circle into a seg-
ment by inversion z 7→ 1/z and translation Ta : z 7→ z + a,
which are isometric transformations in H2 (as justified by
Lemma 4.3). Meanwhile, Lemma 4.4 states that parallel
transport and the pushforward of isometric transformation
are commutative (the lemma is illustrated in Figure 5), en-
abling us to transform the semi-circle into a segment parallel
y-axis and then apply Theorem 4.2 to derive the closed-form
parallel transport on H2 for the general cases. The result is
summarized in Theorem 4.5, the computation only involves
2× 2-matrix multiplication, which incurs little overhead.

Initial State Parameter Sharing Scheme

Figure 6. The graph is partitioned into two subtrees with depth
d = 3, highlighted in different colors.

Theorem 4.2 (Parallel transport on H2). Let u, v ∈ H2 s.t.
xu = xv. Parallel transport along the segment from v to u
is given by Γ(γ)s0hv = yu/yvhv ∈ TuH2.

Lemma 4.3. The special Möbius group M(C) := {z 7→
(cz + d)/(az + b) : a, b, c, d ∈ C, ad − bc = 1} is an
isometric transformation group of H2. Inversion z 7→ 1/z
is a special case of M(C) which maps circles that pass
through the origin to a line parallel to the y-axis and vice
versa. Besides, the translations Ta(a ∈ R) along x-axis in
H2 also form an isometric automorphism group.

Lemma 4.4. If φ : (M, g) → (N , h) is isometric, that is,
⟨u,v⟩g|p = ⟨φ∗u, φ∗v⟩h|φ(p)

holds for all u,v ∈ TpM,
then the pushforward φ∗ and parallel transport commute:

φ∗ ◦ Γ(γ)s0 = Γ(φ(γ))s0 ◦ φ∗. (13)

Furthermore, if φ ◦ φ = id then we also have

Γ(γ)s0 = φ∗ ◦ Γ(φ(γ))s0 ◦ φ∗. (14)

Theorem 4.5 (Parallel transport on H2). If γ is on a semi-
circle then by the commutativity between the pushforward
of isometric transformation and parallel transport we have

Γ(γ)s0hv = (T−a)∗◦φ∗◦Γ(φ(γ))s0◦φ∗◦(Ta)∗(hv). (15)

Moreover, let (−a, 0) be the left intersection between γ and
x-axis, and z̃ := φ(z) = −1/(z+a), then Eq. (15) becomes

Γ(γ)s0hv =
ỹu
ỹv

J|z̃uJ|zv+ahv ∈ TuH2 (16)

where J|z = |z|−2

(
x2 − y2 2xy
−2xy x2 − y2

)
.

In our implementation, hv is represented by a 3D-vector
(for the convenience of computation) of dimension two (in
its local coordinate). Hence, it can be transformed by a 2×2
matrix locally.

4.4. Subtree Partition to Facilitate Parameter Sharing

When generalizing the matrix multiplication from the Eu-
clidean space to the tensor field on manifolds, the learnable
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parameters Θ = {wi, w̃i,ai} (i = 1, 2) in Eq. (7-9) will
all fall in the tangent space TuM. In contrast to the Eu-
clidean space Rn, each TuM is a local coordinate and it
is geometrically unmeaningful to share parameters across
distinct coordinates. As a consequence, we have to assign a
group of different parameters to each node u ∈ V and the
number of parameters will grow with |V |, which hinders
the statistical strength sharing across nodes and renders the
learning infeasible.

To control the number of parameters and promote statistical
strength sharing, we further develop a subtree partition ap-
proach. We start by noting that the tensor field is eventually
instantiated with the inner product on manifolds in Eq. (10)
and the parallel transport preserves inner products, i.e.,

⟨Γ(γ)s0[v1],Γ(γ)
s
0[v2]⟩g|v = ⟨v1,v2⟩g|u . (17)

This enlightens us to share parameters across nodes with
parallel transport. Specifically, we can move the parameters
Θ from a node u to node w via parallel transport and let
them share one set of parameters. Then the curvature-aware
attention becomes

m′
w =

∑
v∈N (w)

αwvΓ(η)
t
0[w

∗
1 ⊗w2](Γ(γ)

s
0[hv])

h′
w = σ

(
Γ(η)t0[w̃

∗
1 ⊗ w̃2](hu) +m′

w

)
αwv = softmaxv

(
Γ(η)t0[a

∗
1 ⊗ a∗2](hw,Γ(γ)

s
0[hv])

) (18)

in which η is the piecewise geodesic from u to w (to trans-
port parameters Θ) and γ is the geodesic from v to w (to
transport representation hv).

To reduce the average transporting distance, we start with
a randomly selected node u ∈ V (as the source node) and
run the BFS (breadth first search) with a maximum depth
d to form a subtree T of G. Next, we randomly select
another source node u′ from the unvisited to repeat the
above procedure until all nodes in G are visited. In such a
manner, we partition G into a collection of subtrees. We
only assign parameters Θ to source nodes and the other
nodes in a subtree share the same set of parameters with
the source nodes via parallel transport. Figure 6 shows a
partition with two subtrees.

Computation Complexity. The complexity of a typical
single-head GAT layer is O(|V |D+|E|D) (Veličković et al.,
2018) where D is the number of features. Note that a set
of edge-wise parameters to support parallel transport only
includes a 2-order transform matrix, a 2-order metric matrix,
and local coordinates while the parallel transport along each
edge can be done within O(1). A subtree with maximum
depth d requires parallel transport for (d−1) times to ensure
the parameters are broadcast to all nodes. Therefore, the
complexity of a single-head layer is O(|V |Dd+ |E|D).

Attention Head I Attention Head II Attention Head III

Base GNN

Figure 7. Multi-head attention via diverse subtree partitions.

4.5. Generalized Geometric Multi-Head Attention

Multi-head attention expects the model to learn from differ-
ent represent subspaces (Vaswani et al., 2017). Following
the same spirit and noting that the subtree partition is not
unique, we present a multi-head attention mechanism on
manifolds by different partitions, as shown in Figure 7. The
realization is simple since it only involves an extra concate-
nation operation. Specifically, the curvature-aware graph
attention layer with C heads is shown as follows:

m′
v→w,i = Γ(η)t0[w

∗
1,i ⊗w2,i] (Γ(γ)

s
0[hv,i])

m′
w =

∣∣∣∣∣∣C
i=1

∑
v∈N (w)

αwv,im
′
v→w,i

h′
w,i = Γ(η)t0[w̃

∗
1,i ⊗ w̃2,i] (hw,i)

h′
w = σ

(∣∣∣∣∣∣C
i=1

h′
w,i +m′

w

)
αwv,i = softmaxv Γ(η)

t
0[a

∗
1,i ⊗ a∗2,i](hw,i,Γ(γ)

s
0[hv,i])

(19)
where hw,i is the feature tangent vector in TwM of the i-th
head and mw,hw ∈ R3C .

5. Experiments
Experiment Settings. A dataset is a collection of tuples
(u

(t)
1 , ..., u

(t)
m ;u(t+1)) and the associated neural operator is

F : L2(M) × ... × L2(M) → L2(M). Following the
paradigm in (Li et al., 2020a), we assume the input functions
I following a certain distribution µ and define the loss by:

L := EI∼µℓ(F(I), u(t+1)) (20)

where ℓ is a function that measures the difference between
the output F(I) and the ground truth u(t+1). ℓ is usually
chosen to be Lp norm when solving PDEs in Euclidean
spaces. Here we adopt L2 norm || · ||2 and Hilbert H1 norm
|| · ||H1(M) since they can be naturally extended to a general
manifold M:

||u(x)||22 :=

∫
x∈M

u2(x)dx, (21)

||u(x)||2H1(M) := ||u(x)||22 + ||∇u(x)||22. (22)
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Table 1. Performances of different methods on the discrete wrinkle (see Figure 10) governed by isotropic diffusion, p-Laplacian diffusion
and wave equation (see Appendix B.1), respectively. The relative errors of L2 and H1 are reported.

Model Isotropic Diffusion p-Laplacian Diffusion Wave Equation
L2(%) H1(%) L2(%) H1(%) L2(%) H1(%)

ResNet 2.008±2.187 7.470±9.149 29.362±6.412 54.117±12.384 4.218±3.917 4.484±4.325
GCN 7.947±0.805 44.587±11.203 5.445±2.885 12.923±8.527 21.783±1.586 24.901±1.985
DeepONet 2.296±0.046 8.977±0.534 37.855±0.530 48.302±2.134 25.773±1.051 27.536±1.399
GraphTransformer 0.061±0.018 0.221±0.056 9.695±4.236 14.443±4.780 11.848±4.495 13.679±5.439
FourierType 0.086±0.027 0.327±0.114 14.044±4.405 20.313±6.184 15.824±4.552 17.530±5.957
GalerkinType 0.077±0.028 0.291±0.107 13.456±2.711 16.928±2.938 14.204±5.655 15.748±7.033
Graph U-Net 7.043±0.282 41.989±6.142 10.971±1.912 49.765±32.059 16.184±0.697 19.116±2.217
MKGN 0.640±0.693 2.139±2.212 7.418±0.731 21.064±5.351 2.966±1.599 4.105±2.324
GNOT 0.040±0.023 0.160±0.061 2.466±1.453 4.390±1.923 0.351±0.181 0.457±0.274
GINO 0.320±0.011 1.415±0.051 42.819±1.149 52.579±1.011 2.043±0.555 2.136±0.343
Geo-FNO 0.075±0.029 0.249±0.055 1.936±0.389 8.177±1.375 2.394±0.245 2.196±0.306
Transolver 0.681±0.181 1.687±0.344 1.935±0.318 3.905±0.550 1.646±0.493 1.855±0.497

Curv-GT (Ours) 0.025±0.008 0.101±0.033 1.577±0.839 3.212±1.432 0.035±0.014 0.039±0.017

To calculate the above integrals, we first compute the mass
matrix M with finite element methods. M is a diagonal
matrix whose diagonal element mi is the surface area that
vertex vi takes up. Therefore, we have ∥u(x)∥22 ≈ u⊤Mu.
Likewise, one can adopt a discrete gradient operator G
induced by a Witney basis to take the place of ∇ (Jacobson,
2013), which is indeed a matrix:

||∇u(x)||22 ≈
|V |∑
i=1

mi ⟨f(Gu), f(Gu)⟩g|vi (23)

where f maps the vector field on faces to that on vertices
and the inner product in each tangent space at vi are defined
as those in constant curvature spaces.

Datasets. The previous methods (Li et al., 2023a) select
a function u(x, t) on a geometry object and compute its
source terms f(x, t) by the corresponding equations to ob-
tain a data tuple (u(t), f (t);u(t+1)). Such an approach is
out of the following considerations: (i) Popular datasets (Li
et al., 2023a) are limited to Euclidean spaces, which does
not match the task we focus on; (ii) Convergence and ac-
curacy of numerical methods on a general manifold cannot
be guaranteed. Hence, we generate the dataset by selecting
a collection of functions on a certain parametric surface in
advance, and closed-form computations on parametric man-
ifolds make the dataset more reliable. In this paper, various
time-dependent PDEs on different manifolds are studied.
More details are available in Appendix B.

Baselines and Implementation Details. To showcase the
efficacy of our proposed Curvature-aware Attention, we
equip it with the Graph Transformer and denote the result-
ing method as Curv-GT. We evaluate Curv-GT against the
following neural PDE solvers including, GCN (Xu et al.,
2023), GAT (Veličković et al., 2018), DeepONet (Lu et al.,
2021; Jin et al., 2022), Graph U-Net (Gao & Ji, 2019), Graph

Transformer (Yun et al., 2019), MKGN (Li et al., 2020c),
Galerkin-type Attention (Cao, 2021), GNOT (Hao et al.,
2023), GINO (Li et al., 2023b), Geo-FNO (Li et al., 2023a)
and Transolver (Wu et al., 2024). The implementation de-
tails are provided in Appendix C.

Main Results. We first study the performance of different
methods for PDEs on the wrinkle manifold—a complex
manifold containing both positive, constant, and negative
curvatures (shown in Figure 10). To make it more intuitive,
the results are shown in the form of a relative loss L/LBase

where LBase denotes the loss obtained by simply taking the
observation u(t) as the prediction at time t+ 1. As shown
in Table 1, our proposed Curv-GT consistently achieves
the best results over three wrinkle manifold benchmarks.
The non-graph-based models like ResNet and DeepONet
struggle with the p-Laplacian Diffusion equation as they pre-
dict with node features and global 3D coordinates, failing
to capture features from neighbors and in addition, solely
relying on 3D coordinates limits solving the PDEs in R3

instead of M, which lose the geometry completely. Tradi-
tional graph-based models like GT with various different
types of attention are not able to perceive the geometric
structure since these attentions are all based on node fea-
tures. Spectral methods like GCN and GINO can yield
large errors as they neglect the local spatial structures. Geo-
FNO and Transolver give rise to relative small errors among
the baseline methods, indicating the usefulness of geome-
try information. However, the performance gaps between
Geo-FNO, Transolver and Curv-GT also show that directly
learning the mapping from parameter space to the manifold
or merely leveraging the extrinsic geometry is not sufficient
for solving PDEs on manifolds. The experiments on more
manifolds are available in Appendix D.

Ablation on Curvature Geometry. The performances of
different methods with and without our proposed curvature-
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Table 2. Performances of different methods with/without curvature-
aware attention for p-Laplacian diffusion on the wrinkle manifold.

Model Configuration L2(%)

GAT Non-Curvature-Aware 8.47±2.82
GAT Direct Concatenation 6.92±1.86
GAT Linear Mapping 4.57±0.70
GAT Curvature-Aware 3.41±0.59
GT Non-Curvature-Aware 9.70±4.24
GT Curvature-Aware 1.58±0.84
GNOT Non-Curvature-Aware 4.39±1.92
GNOT Curvature-Aware 0.92±0.31

Table 3. Repeated experiments on a torus with different subtree
partition schemes.

Subtree amount 33.51±1.61

Subtree scale Mean 30.63±1.47
Standard error 1.92±0.18

Loss L2 loss (%) 1.69±2.85
H1 loss (%) 1.93±2.82

aware attention are reported in Table 2, including GAT, GT,
and GNOT. It shows that our proposed curvature-aware
attention can outperform their non-curvature-aware coun-
terparts by large margins. Besides, Table 2 also presents
the performances of GAT by directly concatenating (Direct
Concatenation) the point curvatures to node features and
aggregating information with a shared linear mapping (Lin-
ear Mapping). It can be observed that the results are much
worse than our proposed curvature-aware attention.

Ablation on Multi-Head Attention. In this experiment,
we aim to verify the efficacy of the proposed muli-head
curvature-aware attention. Figure 8 presents the perfor-
mance change against the number of heads C and the maxi-
mum depth of subtrees d. It demonstrates that 1) the increase
in the number of heads can enhance model accuracy and
stability, and it limits the model learning capability if its
value is too small; 2) the performance drops if d is too large
because it cannot capture the local features well with a large
depth. In conclusion, a proper depth should be associated
with the specific structure of a discrete manifold.

Training Time Comparison. In this experiment, we run dif-
ferent neural PDE solvers on elliptic paraboloids in different
resolutions. Figure 9 presents the average one-epoch train-
ing times of different methods varying against the graph size
(|V |). It can be observed that our proposed Curv-GAT is
still faster than GINO. In particular, the one-epoch training
time over a graph with a size of 2500 is around 15 seconds,
which can satisfy the practical requirements.

Stability of Subtree Partitioning. The subtree partitioning
may be very imbalanced due to random selections. Our 100
trials on a 1,024-node torus show stable results, as shown in
Table 3.
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Figure 8. Performance change against the number of heads C and
the maximum depth of subtrees d, the shaded areas around the line
indicate standard deviations.
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Figure 9. Single-epoch training time of different models.

6. Conclusion and Future Work
In this paper, a curvature-aware attention is proposed to act
as an effective and efficient injected bias for solving PDEs
on manifolds. It is achieved via a combination of parallel
transport and tensor fields on manifolds. Our proposed
curvature-aware attention can be used as a replacement for
vanilla attention, and the experimental results show that
it can significantly improve the performance of existing
methods for solving PDEs on manifolds. In the future, we
would like to explore how to extend our curvature-aware
attention to address more general tasks on manifolds.
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A. Formulas on parallel transport
A.1. Proof of Theorem 4.1

Note that the tangent space at a point on the sphere is isometric to that at any other point. Combined with the fact that
parallel transport preserves the inner product. Thus e2 keeps orthogonal to the tangent vector of the geodesic γ̇ and its length
keeps fixed due to the isometric property. Likewise, e3 must rotate along with γ(t) and the orthogonal property makes it be
γ̇.

To make it self-contained, we offer a complete proof for Theorem 4.2 and Lemma 4.4 whereas the proofs for Lemma 4.3
can be found in (Anderson, 2005),

A.2. Proof of Theorem 4.2

The metric of H2 is g = 1
Ky2 dx ⊗ dx + 1

Ky2 dy ⊗ dy, namely, g = diag{K−1y−2,K−1y−2}. Any segment parallel to
y-axis is a geodesic as said in (Anderson, 2005). One shall compute the Christoffel symbols via Eq. (38) to establish the
differential equations of parallel transport.

Γx =

(
0 − 1

y

− 1
y 0

)
,Γy =

( 1
y 0

0 − 1
y

)
(24)

One can verify that U = y cos θ∂x + y sin θ∂y (θ is a constant) is indeed a parallel transported vector field by

∇∂y
U = 0 (25)

A.3. Proof of Lemma 4.3

The isometry property of Möbius transform group and Poincaré half-plane can be found in (Anderson, 2005), whereas the
isometry of translation holds by its definition.

A.4. Proof of Lemma 4.4

Let {xi}, {x̃i} denote the coordinate systems on M,N and φ : M → N be the isomorphic mapping. The corresponding
pushforward φ∗ : TM → TN gives φ∗(

∂
∂xi ) =

∂x̃j

∂xi
∂

∂x̃j .

The isometric condition means ∀p ∈ M,∀U, V ∈ TpM, g(U, V )|p = g̃(φ∗U,φ∗V )|φ(p) and equivalently,

gij := g

(
∂

∂xi
,

∂

∂xj

)
(26)

= g̃

(
φ∗

(
∂

∂xi

)
, φ∗

(
∂

∂xj

))
(27)

= g̃

(
∂x̃m

∂xi

∂

∂x̃m
,
∂x̃n

∂xj

∂

∂x̃n

)
(28)

=
∂x̃m

∂xi

∂x̃n

∂xj
g̃

(
∂

∂x̃m
,

∂

∂x̃n

)
(29)

=:
∂x̃m

∂xi

∂x̃n

∂xj
g̃mn (30)

Due to the uniqueness of g̃jk, we can show the identity

gmn =
∂xm

∂x̃i

∂xn

∂x̃j
g̃ij (31)
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via direct verification by showing g̃mng̃nl = δml :

gmngnl =

(
∂xm

∂x̃i

∂xn

∂x̃j
g̃ij
)(

∂x̃p

∂xn

∂x̃q

∂xl
g̃pq

)
(32)

=
∂xm

∂x̃i

∂x̃q

∂xl
g̃ij g̃pq

(
∂xn

∂x̃j

∂x̃p

∂xn

)
(33)

=
∂xm

∂x̃i

∂x̃q

∂xl
g̃ij g̃pq

(
∂x̃p

∂x̃j

)
(34)

=
∂xm

∂x̃i

∂x̃q

∂xl
g̃ij g̃pqδ

p
j (35)

=
∂xm

∂x̃i

∂x̃q

∂xl
δiq (36)

= δml (37)

Recall the definition of Christoffel symbol

Γk
im :=

1

2
gkr(grm,i + gim,r − gim,r) (38)

and note that

grm,i =
∂

∂xi
grm =

∂x̃j

∂xi

∂

∂x̃j

(
∂x̃α

∂xr

∂x̃β

∂xm
g̃αβ

)
=

∂x̃j

∂xi
g̃αβ,j

(
∂x̃α

∂xr

∂x̃β

∂xm

)
+

∂x̃j

∂xi
g̃αβ

∂

∂x̃j

(
∂x̃α

∂xr

∂x̃β

∂xm

)
(39)

Substitute gkr, grm,i, gim,r, gir,m with the metric tensor in N and we yield the Christoffel symbol transform formula:

Γ̃k
ij =

∂x̃k

∂xγ

(
Γγ
αβ

∂xα

∂x̃i

∂xβ

∂x̃j
+

∂2xγ

∂x̃i∂x̃j

)
(40)

We first show the identity holds for any isometric mapping φ.

φ∗(∇XY ) = ∇̃φ∗X(φ∗Y ) (41)

Let X = xi ∂
∂xi and Y = yi ∂

∂xi , the left-hand-side becomes:

φ∗(∇XY ) = φ∗(x
i∇ ∂

∂xi
(yj

∂

∂xj
)) (42)

= xiφ∗(
∂yj

∂xi

∂

∂xj
+ yjΓk

ij

∂

∂xk
) (43)

= xi ∂y
j

∂xi
φ∗(

∂

∂xj
) + xiyjΓk

ijφ∗(
∂

∂xk
) (44)

= xi ∂y
j

∂xi

∂x̃m

∂xj

∂

∂x̃m
+ xiyjΓk

ij

∂x̃m

∂xk

∂

∂x̃m
(45)

= xi

(
∂yj

∂xi

∂x̃m

∂xj
+ yjΓk

ij

∂x̃m

∂xk

)
∂

∂x̃m
(46)
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And the right-hand-side is:

∇̃φ∗X(φ∗Y ) = ∇φ∗(xi ∂

∂xi )

(
φ∗(y

j ∂

∂xj
)

)
(47)

= xi∇ ∂x̃l

∂xi
∂

∂x̃l

(
yj

∂x̃k

∂xj

∂

∂x̃k

)
(48)

= xi ∂x̃
l

∂xi
∇ ∂

∂x̃l

(
yj

∂x̃k

∂xj

∂

∂x̃k

)
(49)

= xi ∂x̃
l

∂xi

(
∂yj

∂x̃l

∂x̃k

∂xj

∂

∂x̃k
+ yj

∂2x̃k

∂x̃l∂xj
+ yj

∂x̃k

∂xj
Γ̃m
lk

∂

∂x̃m

)
(50)

= xi ∂x̃
l

∂xi

(
∂yj

∂x̃l

∂x̃k

∂xj

∂

∂x̃k
+ yj

∂δkl
∂xj

+ yj
∂x̃k

∂xj
Γ̃m
lk

∂

∂x̃m

)
(51)

= xi ∂x̃
l

∂xi

(
∂yj

∂x̃l

∂x̃m

∂xj
+ yj

∂x̃k

∂xj
Γ̃m
lk

)
∂

∂x̃m
(52)

It suffices to show that
∂yj

∂xi

∂x̃m

∂xj
+ yjΓk

ij

∂x̃m

∂xk
=

∂x̃l

∂xi

(
∂yj

∂x̃l

∂x̃m

∂xj
+ yj

∂x̃k

∂xj
Γ̃m
lk

)
(53)

First, note that ∂yj

∂x̃l
∂x̃l

∂xi = ∂yj

∂xi and it is thus reduced to show

Γk
ij

∂x̃m

∂xk
=

∂x̃l

∂xi

∂x̃k

∂xj
Γ̃m
lk (54)

And the identity holds since

∂x̃l

∂xi

∂x̃k

∂xj
Γ̃m
lk =

∂x̃l

∂xi

∂x̃k

∂xj

∂x̃m

∂xγ

(
Γγ
αβ

∂xα

∂x̃l

∂xβ

∂x̃k
+

∂2xγ

∂x̃l∂x̃k

)
(55)

=
∂x̃m

∂xγ
Γγ
αβ

(
∂x̃l

∂xi

∂xα

∂x̃l

)(
∂x̃k

∂xj

∂xβ

∂x̃k

)
+

∂x̃k

∂xj

∂x̃m

∂xγ

(
∂x̃l

∂xi

∂

∂x̃l

)(
∂xγ

∂x̃k

)
(56)

=
∂x̃m

∂xγ
Γγ
αβδ

α
i δ

β
j +

∂x̃k

∂xj

∂x̃m

∂xγ

(
∂δγi
∂x̃k

)
(57)

=
∂x̃m

∂xγ
Γγ
ij (58)

= Γk
ij

∂x̃m

∂xk
(59)

Whence for any parallel transported vector field U(s) along geodesic γ parametrized by arc length s ∈ [0, T ]in M, we
must have ∇γ̇U = 0. Note that the isomorphic mapping φ maintains arc length and we can see that 0 = φ∗(∇γ̇U) =

∇̃
φ∗( ˙φ(γ))

(φ∗U),∀s ∈ [0, T ]. Therefore φ∗U is also a parallel transported vector field along φ(γ). Note that

Γ(γ)s0U(0) = U(s) = φ−1
∗ ◦ φ∗(U(s)) = φ−1

∗ (Γ(φ(γ))s0φ∗U(0)) (60)

It is then proved that the pushforward and the parallel transport commute.

A.5. Proof of Theorem 4.5

Consider the isometric mapping, φ ◦ Td : z := x+ ỹi 7→ z̃ = − 1
z := x̃+ ỹi. And we have:

x̃ = − x

x2 + y2
, ỹ =

y

x2 + y2
(61)
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(a) Sphere (b) Elliptic (c) Hyperbolic (d) Torus (e) Wrinkles

Figure 10. The manifolds studied in the datasets.

Table 4. Various surfaces are used as background manifolds and PDEs listed in Section B.1 are generated on all of them.
Surface Sphere Elliptic Paraboloid Hyperbolic Paraboloid Torus Wrinkles

Vertex amount 162 2,500 2,500 512 1,225
Edge amount 960 14,406 14,406 3,072 6,936
Face amount 320 4,802 4,802 1,024 2,312
Train set size 396 396 396 396 396
Test set size 99 99 99 99 99

Then φ∗ : TzH2 → Tz̃H2 is:

φ∗

( ∂
∂x
∂
∂y

)
=

(
∂x̃
∂x

∂ỹ
∂x

∂x̃
∂y

∂ỹ
∂y

)( ∂
∂x̃
∂
∂ỹ

)
(62)

=
1

x2 + y2

(
x2 − y2 2xy
−2xy x2 − y2

)( ∂
∂x̃
∂
∂ỹ

)
(63)

= |z|−2

(
x2 − y2 2xy
−2xy x2 − y2

)( ∂
∂x̃
∂
∂ỹ

)
(64)

=: J|z
( ∂

∂x̃
∂
∂ỹ

)
(65)

Then the pushforward of T−a ◦ φ∗ ◦ Γ(φ(γ))s0 ◦ φ∗ ◦ Ta is given by id ◦J|z̃u ◦ ỹu

ỹv
id ◦J|zv+a ◦ id.

B. Benchmark Details
B.1. Time-dependent Equations

Consider the Riemannian manifold (M, g) and we have the following common useful operators: the gradient operator ∇,
the divergence operator div and the Laplacian-Beltrami operator ∆.

∇u := gij
∂u

∂xi

∂

∂xj
(66)

div Y := |det g|− 1
2

∂

∂xi

(
|det g| 12 yi

)
(67)

∆u := |det g|− 1
2

∂

∂xi

(
|det g| 12 gij ∂u

∂xj

)
(68)

where X = yi ∂
∂xi .

Heat Equation. The governing equation of a temperature field on the manifold M is:

∂u

∂t
(x, t)−∆u(x, t) = f(x, t) (69)
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where u is the temperature of x ∈ M at time t, ∆ is the Laplacian-Beltrami operator associated with M and f is the source
term. The neural operator is required to predict the temperature field at time t+ 1 with observations of u(x, t) and f(x, t) at
time t.

Wave Equation. Wave equations can be used to depict the behaviors of electric field intensity E(x, t) and magnetic
induction B(x, t) etc in electro dynamics and Schrödinger Equation in quantum theory. The wave equation adopted in the
dataset is of the simplified form:

∂2u

∂t2
(x, t)−∆u(x, t) = f(x, t) (70)

Compared with Eq. (69), it only differs in the time-dependent term. Note that the second-order derivative offers an extra
degree of freedom and thus the neural operator is required to predict the field at time t+ 1 given two observations of u(x, t)
and f(x, t) at time t and t− 1.

Non-Isotropic Diffusion Equations. The diffusion term in Eq. (69) is linear and isotropic, however, this may fail to reflect
the phenomenon in some heterogeneous materials since the diffusion velocity in different directions may differ. The adopted
governing PDE is given by:

∂2u

∂t2
(x, t)− div(a(x)∇u(x, t)) = f(x, t) (71)

Therefore, the neural operator takes observations of u(x, t), a(x), f(x, t) at time t as inputs and outputs a prediction for
u(x, t) at time t+ 1. In some scenarios, a(x) is modeled to be |∇u|p−2 and the diffusion term is termed as p-Laplacian ∆p:

∆pu := div(|∇u|p−2∇u) (72)

The associated PDE turns to be:
∂u

∂t
(x, t)−∆pu(x, t) = f(x, t) (73)

In a more complicated scenario, for example, a generalized non-Newtonian fluid can be modeled after an anisotropic
dissipative potential restricted to two power laws (Ciani et al., 2024), which is:

∂u

∂t
(x, t)− div

(
(|∇u|p−2 + a(x, t)|∇u|q−2)∇u

)
= f(x, t) (74)

C. Implementation Details
The experiments were conducted on Ubuntu 20.04 LST equipped with 4 NVIDIA RTX A6000 GPUs, each with 48 GB of
GPU memory. Our method is implemented with Pytorch 1.13 and Python 3.12. The initial learning rate γ of each model is
selected from the set {i× 10−j : i ∈ {1, 5}, j ∈ {1, 2, 3}} to optimize its performance. Besides, the Adam optimizer is
used with a decay rate β1 = 0.9. Datasets are partitioned into train-set and test-set by ratio 0.8 randomly. A validation set is
then created with a ratio of 0.1 from the train-set. The batch size is fixed at either 10 or 20 up to the graph scale. Specifically,
for experiments on the sphere, torus and wrinkle manifold, the batch size is set to 20 while 10 is adopted for the others. All
models are trained for 300 epochs. The one behaving best on the validation set is selected to participate in the comparison.
The curvature threshold ε is set to 10−3, in order to both avoid numerical instability and capture the curvature information
of most vertices. All curvature-aware models use a 3-head curvature-aware attention mechanism, resulting in the attention
head amount D = 3. Guided by Figure 8, a proper subtree partition maximum depth d is set to 4. For instance, in that kind
of partition, the wrinkle is then decomposed into 27 subtrees.

D. Experiments on More Manifolds
The performance of different methods for solving PDEs on more manifolds, including the Sphere, Elliptic Paraboloid,
Hyperbolic Paraboloid, and Torus. The results are reported in Table 5 and visualized in Figure 12-14. Our proposed
Curv-GT can achieve the best results in most cases.

We further conduct an experiment on heat equation on the canonical Stanford Bunny (a complex manifold beyond toy
examples), in which the dataset is obtained by finite difference method. The result is shown in Table 6 and visualized in
Figure 15.
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Figure 11. Isotropic diffusion on the wrinkle manifold
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Figure 12. p-Laplacian on a hyperbolic paraboloid
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Figure 13. Heterogeneous diffusion on an elliptic paraboloid
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Figure 14. Wave equation on a torus

Table 5. Performance of different methods on more manifolds.

Model
Isotropic Diffusion

on Elliptic Paraboloid
Wave Equation

on Torus
Isotropic Diffusion

on Sphere
L2(%) H1(%) L2(%) H1(%) L2(%) H1(%)

DeepONet 19.456±2.168 34.418±3.577 0.005±0.002 0.007±0.002 15.929±1.529 24.119±3.319
FourierType 2.399±0.479 9.301±1.960 0.018±0.004 0.025±0.006 0.875±0.105 1.605±0.151
GalerkinType 3.082±1.107 11.499±4.600 0.027±0.013 0.043±0.021 0.932±0.376 1.727±0.562
MKGN 5.252±0.623 27.152±2.998 0.120±0.019 0.194±0.030 5.571±0.268 10.135±0.521
GNOT 0.180±0.064 0.345±0.229 0.007±0.003 0.009±0.003 0.060±0.025 0.094±0.040
GINO 19.823±2.626 29.597±2.509 0.313±0.035 0.341±0.037 4.898±0.432 6.450±0.265
Transolver 0.099±0.041 0.367±0.185 0.135±0.043 0.269±0.042 3.002±0.634 4.986±1.155

Curv-GT (Ours) 0.073±0.013 0.343±0.048 0.002±0.001 0.002±0.001 0.080±0.011 0.131±0.018

Model
p-Laplacian Diffusion

on Hyperbolic Paraboloid
Heterogeneous Diffusion

on Elliptic Paraboloid
p-Laplacian Diffusion

on Torus
L2(%) H1(%) L2(%) H1(%) L2(%) H1(%)

DeepONet 43.768±1.261 53.701±1.683 11.623±1.202 10.124±1.337 64.574±1.695 40.440±6.051
FourierType 15.221±1.761 21.972±1.968 16.117±1.142 16.575±1.943 34.360±7.227 70.818±1.910
GalerkinType 16.850±2.951 23.587±3.820 17.428±1.465 16.595±2.513 68.499±19.866 75.289±17.174
MKGN 10.649±0.859 39.236±2.943 3.260±0.628 2.658±0.447 48.342±8.062 58.266±8.042
GNOT 0.843±0.135 1.838±0.341 2.228±0.071 0.777±0.036 4.917±1.440 5.445±1.559
GINO 49.120±0.771 46.683±0.918 7.078±1.068 6.115±1.230 58.005±6.218 62.090±6.771
Transolver 1.137±0.192 2.152±0.392 2.100±0.070 0.653±0.067 2.903±1.444 3.150±1.536

Curv-GT (Ours) 0.799±0.065 1.383±0.108 1.973±0.149 1.677±0.032 0.736±0.136 1.050±0.130

Table 6. Different models are compared on the Stanford bunny heat equation dataset.
Model Curv-GAT(ours) GAT GNOT Transolver

L2 loss (%) 0.0058±0.0008 0.0116±0.0022 0.0106±0.0003 0.0102±0.0006
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Figure 15. Heat equation on Stanford bunny.
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