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Abstract

Despite the widespread adoption of decoder-001
only autoregressive language models, explain-002
ability evaluation research has predominantly003
focused on encoder-only models, specifically004
masked language models (MLMs). Eval-005
uating the faithfulness of an explanation006
method—how accurately the method explains007
the inner workings and decision-making of the008
model—is very challenging because it is very009
hard to separate the model from its explana-010
tion. Most faithfulness evaluation techniques011
corrupt or remove some input tokens consid-012
ered important according to a particular attribu-013
tion (feature importance) method and observe014
the change in the model’s output. While these015
faithfulness evaluation techniques are suitable016
for MLMs, as they involve corrupted or masked017
inputs during pretraining, they create out-of-018
distribution inputs for CLMs due to the funda-019
mental difference in their training objective of020
next token prediction. In this study, we propose021
a technique that leverages counterfactual gener-022
ation to evaluate the faithfulness of attribution023
methods for autoregressive language modeling024
scenarios. Our technique creates natural, fluent,025
and in-distribution counterfactuals, something026
that we show is important for a faithfulness027
evaluation method. We apply our method to028
several attribution methods and evaluate their029
faithfulness in predicting the important tokens030
of a few large language models.031

1 Introduction032

Most state-of-the-art NLP systems use autoregres-033

sive transformer-based language models (Touvron034

et al., 2023; Brown et al., 2020; Groeneveld et al.,035

2024). Since these models are opaque, there is036

a great motivation to understand their decision-037

making process, and so, the explanation methods038

are becoming increasingly important.039

Attribution methods try to explain which input040

features are most salient in the model’s predic-041

tions. A pressing issue for testing and evaluat-042

ing the attribution methods is that most techniques 043

focus on encoder-only masked language models 044

(Modarressi et al., 2023). Almost all previous faith- 045

fulness evaluation techniques corrupt the input in 046

one way or another, i.e., masking or erasing unim- 047

portant tokens according to the attribution tech- 048

nique, and then looking at the change in the pre- 049

diction. These techniques work probably just fine 050

for MLMs, pre-trained for mask and span infilling. 051

For causal language models (CLMs) like GPT-2, 052

pre-trained for the next token prediction, masking 053

or erasing creates an out-of-distribution input for 054

the model. In this case, it is unclear whether cor- 055

ruption techniques evaluate the informativeness of 056

the corrupted tokens or the robustness of the model 057

to unnatural text and the artifacts introduced during 058

test time. 059

In this work, inspired by counterfactual gener- 060

ation—changing the model’s input in a way that 061

flips the output—we develop a technique for evalu- 062

ating the faithfulness of attribution methods in the 063

autoregressive generation scenario. We use coun- 064

terfactual generators to change the input focusing 065

on the important tokens specified by the attribution 066

methods, and make sure that the input to the model 067

is natural, fluent, and in-distribution. That way, we 068

know that the change in the model’s prediction is 069

because of changing the important tokens and not 070

because of the input being out of distribution. We 071

argue that if an attribution method helps the coun- 072

terfactual generator to change the model’s predic- 073

tion with fewer changes, that method knows more 074

about the model’s inner workings, which means 075

it is more faithful. Also, because of the large out- 076

put space of autoregressive language models like 077

GPT-2 and LLaMA, including often thousands of 078

vocabulary items, looking at the entire output space 079

does not provide much insight. We use contrastive 080

explanation Yin and Neubig (2022), which means 081

looking only at the token predicted by the model 082

and a foil token. 083
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We apply our faithfulness evaluation approach084

to several attribution techniques including gradient085

norm, gradient × input, Erasure, KernelSHAP, and086

integrated gradient in the next word prediction of087

two LMs: our fine-tuned Gemma-2b and off-the-088

shelf Gemma-2b-instruct (Team et al., 2024).089

Our contributions are as follows. (i) We intro-090

duce a novel faithfulness evaluation protocol fo-091

cused on not changing the input data distribution of092

the model, suitable for the attribution methods of093

language models. (ii) We evaluate and rank some094

of the more popular attribution methods using our095

approach. (iii) In our evaluations we find that lin-096

ear and complete feature attribution methods like097

integrated gradients are no better than random in098

helping a counterfactual generator model to flip the099

label which is the same as when users want to in-100

fer counterfactual model behavior (Bilodeau et al.,101

2024).102

2 Related work103

Feature Importance (Attribution). attributions104

are local explanations that assign a score to each in-105

put feature (token embeddings in most NLP tasks).106

The score represents how important that feature107

is for the predictor model according to that expla-108

nation method. We can categorize these methods109

into four types. Perturbation-based methods which110

work by perturbing the input examples such as111

removing or masking to measure feature impor-112

tance (Li et al., 2016, 2017; Feng et al., 2018; Wu113

et al., 2020). Gradient-Based methods determine114

the importance of each input feature by measur-115

ing the derivative of output with respect to each116

input (Mohebbi et al., 2021; Kindermans et al.,117

2019; Sundararajan et al., 2017; Lundstrom et al.,118

2022; Enguehard, 2023; Sanyal and Ren, 2021;119

Sikdar et al., 2021). Surrogate model based meth-120

ods use a simple, interpretable model to explain121

the original complex, black-box model (Ribeiro122

et al., 2016; Lundberg and Lee, 2017; Kokalj et al.,123

2021). Decomposition-based methods try to break124

down the importance score into linear contributions125

from the input (Montavon et al., 2019; Voita et al.,126

2021; Chefer et al., 2021; Modarressi et al., 2022;127

Ferrando et al., 2022).128

Evaluating Explanations. Current faithfulness129

metrics mostly use removing important tokens or130

retraining only on important tokens identified by131

the attribution methods, (Chan et al., 2022). Abnar132

and Zuidema (2020) use agreement with gradient133

and ablation methods as an evaluation of their ex- 134

planation methods. Wiegreffe and Pinter (2019) 135

acknowledges that gradient methods should not be 136

treated as ideal or ground truth but use the gradi- 137

ent as a proxy of the model’s intrinsic semantics. 138

Explanations’ trustworthiness is task- and model- 139

specific (Bastings et al., 2022), and different attribu- 140

tion methods give deeply inconsistent results Neely 141

et al. (2022). So using one explanation method 142

as the standard or the ground truth in all scenar- 143

ios does not seem to be justifiable. DeYoung et al. 144

(2020) introduce comprehensiveness, if only the 145

chosen important tokens are used to make the pre- 146

diction (are highlighted inputs necessary), and suf- 147

ficiency, if the chosen important tokens on their 148

own are sufficient to make the prediction. Carton 149

et al. (2020) introduce a normalized version of com- 150

prehensiveness and sufficiency by dividing these 151

measures into null difference. The Null difference 152

is the sufficiency of an empty input or compre- 153

hensiveness of a full input. It is unclear whether 154

corruption techniques evaluate the informativeness 155

of the corrupted tokens or the robustness of the 156

model to unnatural text and the artifacts introduced 157

during test time. Hooker et al. (2019) suggest re- 158

training the model for removed percentages of the 159

input to achieve a model that has the same train 160

and evaluation distribution. However, this retrain- 161

ing is expensive while also changing the model 162

parameters by retraining. 163

Some of the previous work consider an attribu- 164

tion method either faithful or unfaithful but not 165

both Han et al. (2020); Jain et al. (2020) and use 166

the term faithful “by construction”. Other works ar- 167

gue that faithfulness is more of a spectrum and we 168

should evaluate the “degree of faithfulness” of an 169

explanation method (Jacovi and Goldberg, 2020). 170

We use the latter approach and search for a suffi- 171

ciently faithful explanation method for our tasks. 172

Ross et al. (2021) use attributions to generate coun- 173

terfactuals and Atanasova et al. (2023) use counter- 174

factuals to evaluate faithfulness of natural language 175

explanations—When we want the model to tell us 176

in natural language why it made a particular deci- 177

sion. 178

Another line of work tries to evaluate explana- 179

tions using uncertainty estimation. Slack et al. 180

(2021) develop a Bayesian framework for generat- 181

ing feature importance estimates along with their 182

associated uncertainty in the form of credible inter- 183

vals. 184

Out-of-Distribution Detection. In order to 185
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make sure the generated counterfactuals are in-186

distribution we use an OOD detection method. We187

can classify the types of OOD data as either seman-188

tic or background shift (Arora et al., 2021). Seman-189

tic features have a strong correlation with the label190

and semantic shift happens when we encounter un-191

seen classes at test time while background features192

consist of population-level statistics that do not de-193

pend on the label and focus on the style of the text.194

There are two common types of OOD detection195

methods, calibration and density estimation. den-196

sity estimation methods, e.g. PPL outperform cali-197

bration methods under background shifts while the198

opposite is true under semantic shift. As we want199

to evaluate background shifts we use density-based200

methods. Chen et al. (2023) show that fine-tuning201

eliminates the pre-trained task agnostic knowledge202

about general linguistic properties which are useful203

cues for the detection of non-semantic shift. We204

use both fine-tuned and off-the-shelf instruct-tuned205

models in our evaluations to see the difference in206

explanation evaluation.207

3 Our method208

Our faithfulness evaluation protocol consists of209

two models. The first is the counterfactual gener-210

ator model and the second is the predictor model.211

We want to evaluate the faithfulness of attribution212

methods for the predictor model. First, we give a213

sentence to the predictor, then use an attribution214

method to identify the most important tokens for215

the predictor’s decision-making process. We begin216

by replacing 10% of these most important tokens217

with ’<mask>’ and present the masked sentence218

and the foil label (The label with the second high-219

est logit) to the editor to generate a counterfactual220

sentence (one that flips the prediction of the predic-221

tor model). If unsuccessful in flipping the predic-222

tion, we incrementally increase masking by 10%223

until we either flip the prediction or reach a mask-224

ing threshold of 50%. This evaluation protocol is225

shown in 2. The attribution technique that helps us226

identify the most critical tokens for creating coun-227

terfactuals and helps creating counterfactuals with228

the least amount of change in the original text, is229

the one that provides the most faithful representa-230

tion of the predictor’s decision-making process.231

Due to the large output space of LMs, we use232

contrastive explanations proposed by Yin and Neu-233

big (2022) that measure the attribution of input to-234

kens for a contrastive model decision. Contrastive235

attributions try to identify the most important to- 236

kens that led the model to predict the target yt 237

instead of a foil yf . Then we use a separate editor 238

model to change these important tokens to generate 239

counterfactuals, i.e. generating examples that will 240

make the original predictor model more likely to 241

predict the foil. 242

The protocl to evaluate attributions consists of 243

two phases. The first phase is creating the edi- 244

tor that can generate counterfactuals. We employ 245

two approaches for creating the editor model. Our 246

first approach is prompting a powerful off-the-shelf 247

instruction-tuned editor to change the corrupted 248

sentence. Our second approach is fine-tuning a 249

smaller model specifically for counterfactual gen- 250

eration. For fine-tuning, we add two tokens to the 251

embedding space and the tokenizer, specifically 252

<mask>and <counterfactual>. For creating training 253

examples for our counterfactual generator, inspired 254

by Wu et al. (2021) and Donahue et al. (2020), we 255

randomly mask between 5 and 50 percent of the 256

tokens, then append each example’s label to it, e.g. 257

positive or negative for SST-2 dataset, then append 258

the <counterfactual>token, and lastly, we append 259

the original unmasked example. The training ex- 260

ample creation is shown in figure 3. 261

In the second phase of evaluating attributions, 262

first we acquire the most important tokens accord- 263

ing to a specific attribution method that was ap- 264

plied to the predictor and mask those tokens, use 265

the second most probable prediction of the predic- 266

tor between the labels as the foil label, then use 267

one of the counterfactual generators to generate the 268

unmasked sentence. The prompting technique used 269

for the first approach of counterfactual generation 270

(using off-the-shelf instruct-tuned model) during 271

evaluation is shown in the upper part of figure 1 272

And the prompting technique used for the second 273

approach of counterfactual generation (using our 274

fine-tuned model) during evaluation is shown in the 275

lower part of figure 1. If counterfactual generator is 276

unsuccessful in flipping the predictor’s prediction, 277

we linearly increase the mask percentage from 10 278

up to 50 percent of tokens. 279

4 Experimental Setup 280

4.1 Datasets 281

Three datasets are used for evaluating faithfulness. 282

SST-2 (Socher et al., 2013) and IMDB (Maas et al., 283

2011) which are binary classification, and AG- 284

News (Zhang et al., 2015) a four class classification 285
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Figure 1: Prompting techniques used for counterfactual
generation. The upper / lower box is the prompt for-
mat given to our instruct-tuned generator / fine-tuned
generator.

dataset. Faithfulness evaluation datasets should286

not have gold attribution labels because we do not287

want human intuition in faithfulness evaluation. We288

want to know how the model makes a prediction289

(Jacovi and Goldberg, 2020).290

4.2 Models291

4.2.1 Editor Models292

For editing the corrupted input we use three mod-293

els. Off-the-shelf phi-3-14B-instruct(phi-it) (Ab-294

din et al., 2024), and two models that we fine-tune295

in accordance with section 3 , phi-3-3.8B (phi-ft)296

(Abdin et al., 2024) and Pythia-2.8B (pythia) (Bi-297

derman et al., 2023) using Low Rank Adaptation298

(LoRA) (Hu et al., 2022). We train these models299

for 15 epochs using dynamic masking (Liu et al.,300

2019), which means masking each example differ-301

ently in each epoch.302

4.2.2 Predictor Models303

We use Gemma-2b Team et al. (2024) as the pre-304

dictor. We fine-tune the raw language model for305

the three tasks (gemma-ft). We use LoRA for fine-306

tuning. We also use an off-the-shelf instruct-tuned307

version (gemma-it) in one-shot scenario.308

4.3 Attribution Methods309

Here we detail the six attribution methods that we310

use. We use all attribution methods in a contrastive311

way (Yin and Neubig, 2022). Contrastive attribu-312

tions measure which features from the input make313

the foil token yf more likely and the target token314

yt less likely. We denote contrastive, target, and315

foil attributions by SC , St, and Sf respectively:316

SC = St − Sf (1)317

We use implementation of these attribution meth- 318

ods provided by Yin and Neubig (2022) (for Gra- 319

dient × input, gradient norm and erasure) and by 320

Captum (Miglani et al., 2023) (for KernelSHAP 321

and Integrated Gradient). 322

4.3.1 Gradient Norm 323

We can calculate attributions based on the norm of
the gradient of the model prediction, with respect
to the input (Simonyan et al., 2013; Li et al., 2016).
Gradient with respect to feature xi:

g(xi) = ∇xiq(yt|x)

Where q(yt|x) is the model output for token yt
given the input x. The contrastive gradient:

gC(xi) = ∇xi (q(yt|x)− q(yf |x))

We will use both norm one and norm two:

SC
GN1(xi) = ||gC(xi)||L1

SC
GN2(xi) = ||gC(xi)||L2

4.3.2 Gradient × Input 324

In gradient × input method (Shrikumar et al., 2016;
Denil et al., 2014), we take the dot product of the
gradient with the input token embedding xi:

SGI(xi) = g(xi) · xi

By multiplying the gradient with the input embed-
ding, we also account for how much each token is
expressed in the attribution score. The Contrastive
Gradient × Input is:

SC
GI(xi) = gC(xi) · xi

4.3.3 Erasure 325

Erasure-based methods measure the importance of
each token by erasing it and seeing the effect on
the model output (Li et al., 2017). This is achieved
by taking the difference of model output with the
full input x and part of the input zeroed out, x¬i:

St
E(xi) = q(yt|x)− q(yt|x¬i)

For the contrastive case:

SC
E = (q(yt|x)−q(yt|x¬i))−(q(yf |x)−q(yf |x¬i))
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Figure 2: Our process of generating counterfactuals for evaluating attribution methods. The predictor (an LM),
generates a label for the given text, and an attribution method specifics the most important tokens. We mask the top
n% of them and ask an editor (another LM) to change the label of the input text by filling in the masked tokens. If
the attribution method is more faithful, then the needed n% should be a lower number.

Figure 3: Training example creation for fine-tuning the counterfactual generator, and one given sample.

4.3.4 KernelSHAP326

KernelSHAP (Lundberg and Lee, 2017) explains327

the prediction of a classifier q by learning a lin-328

ear model ϕ locally around each prediction. The329

objective function of KernelSHAP constructs an330

explanation that approximates the behavior of q331

accurately in the neighborhood of x. More im-332

portant features have higher weights in this linear333

model ϕ. Let Z be a set of N randomly sampled334

perturbations around x:335

St
ϕ = argmin

ϕ

∑
z∈Z

[q(yt|z)− ϕT z]2πx(z) (2)336

KernelSHAP uses a kernel πx that satisfies cer-337

tain principles when input features are considered338

agents of a cooperative game in game theory. We339

use equation 2 in a contrastive way. First we nor-340

malize St
ϕ and Sf

ϕ by dividing to their L2 norm and341

then subtracting:342

SC
ϕ =

St
ϕ

||St
ϕ||

−
Sf
ϕ

||Sf
ϕ ||

(3)343

4.3.5 Integrated Gradients344

Integrated Gradients (IG) (Sundararajan et al.,345

2017) is a gradient-based method which addresses346

the problem of saturation: gradients may get close347

to zero for a well-fitted function. IG requires a base-348

line b as a way of contrasting the given input with349

information being absent. For input i, we compute:350

St
IG =

1

m

m∑
k=1

∇xiq
(
yt

∣∣∣b+ k

m
(x−b)

)
·(xi−bi) (4)351

That is, we average over m gradients, with the 352

inputs to ft being linearly interpolated between the 353

baseline and the original input x in m steps. We 354

then take the dot product of that averaged gradient 355

with the input embedding xi minus the baseline. 356

We use zero vector baseline (Mudrakarta et al., 357

2018), and 5 steps. The contrastive case becomes: 358

SC
IG =

St
IG

||St
IG||

−
Sf
IG

||Sf
IG||

(5) 359

5 Results 360

In Tables 1 and 2, we show the average masking 361

percent needed (the average percentage of tokens 362

the counterfactual generator should change) to flip 363

the label for fine-tuned and instruct-tuned predic- 364

tor models, respectively. In Tables 3 and 4, we 365

show what percentage of labels each counterfactual 366

generator is able to flip by changing the corrupted 367

tokens for fine-tuned and instruct-tuned predictor 368

models, respectively. Attribution methods that are 369

able to flip the labels with less mask percent (i.e. 370

less change) are also able to flip more labels. 371

For the fine-tuned predictor (Tables 1 and 3), gra- 372

dient norm methods consistently perform the best 373

for SST-2 and IMDB datasets. For AG-News, the 374

Erasure method always performs the best or near 375

the best. In Bilodeau et al. (2024), it is proved that 376

for mildly rich model classes (today’s language 377

models easily surpass this richness threshold), it 378

is impossible to conclude that the user does better 379

than random guessing at inferring counterfactual 380

model behaviour using linear and complete fea- 381

ture attribution methods without strong additional 382
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Attribution
method

SST-2 IMDB AG-News
phi-it phi-ft pythia phi-it phi-ft pythia phi-it phi-ft pythia

gradnorm1 24.25 34.70 31.60 18.00 29.35 24.40 43.20 42.60 40.70
gradnorm2 23.95 35.70 31.75 17.85 29.60 24.30 43.30 42.75 41.35
gradinp 33.80 38.65 36.00 22.70 31.05 26.60 44.40 42.25 40.65
erasure 25.65 35.35 32.55 20.45 29.75 25.50 42.90 42.30 40.25
IG 35.30 41.35 41.65 32.30 35.35 30.60 46.65 44.30 42.00
KernelSHAP 32.85 41.80 40.60 30.85 35.35 30.40 46.45 43.90 42.00
Random 34.95 42.80 40.05 30.95 35.05 32.05 46.05 43.35 42.45

Table 1: The mean percentage needed to mask to achieve flipping Gemma-ft’s label or reaching 50 percent masking
in 200 examples of evaluation split in SST-2, IMDB, and AG-News datasets (lower is better). Off-the-shelf phi-3-
14B-it (phi-it), fine-tuned pythia-2.8B (pythia), and fine-tuned phi-3-3.8B (phi-ft) models are used to fill the masks
and generate counterfactuals.

Attribution
method

SST-2 IMDB AG-News
phi-it phi-ft pythia phi-it phi-ft pythia phi-it phi-ft pythia

gradnorm1 26.40 31.25 27.85 37.80 34.65 36.15 38.25 24.95 18.55
gradnorm2 26.45 30.35 28.15 38.25 34.90 34.90 38.25 24.70 18.75
gradinp 26.80 31.85 28.60 36.50 33.70 32.95 39.35 24.65 18.40
erasure 26.70 29.05 23.80 37.15 35.10 35.75 36.95 24.85 18.30
IG 26.00 30.60 26.50 37.10 33.45 34.70 39.60 25.25 17.95
KernelSHAP 30.00 30.90 25.50 34.85 32.90 33.80 39.40 25.70 18.10
Random 29.60 31.90 26.65 35.65 32.95 35.70 38.20 24.85 18.10

Table 2: The mean percentage needed to mask to achieve flipping Gemma-it’s label or reaching 50 percent masking
in one-shot scenario in 200 examples of evaluation split in SST-2, IMDB, and AG-News datasets (lower is better).
Phi-3-14B-it (phi-it), fine-tuned pythia-2.8B (pythia), and fine-tuned phi-3-3.8B (phi-ft) models are used to fill the
masks and generate counterfactuals.

Attribution
method

SST-2 IMDB AG-News
phi-it phi-ft pythia phi-it phi-ft pythia phi-it phi-ft pythia

gradnorm1 87.5 63.5 72.0 99.0 74.0 87.5 20.0 22.5 27.5
gradnorm2 87.0 59.0 71.5 97.5 78.0 91.5 19.0 22.5 26.0
gradinp 57.0 37.0 48.0 85.0 72.0 77.5 20.5 24.0 27.5
erasure 80.5 53.0 68.0 89.0 73.0 78.0 23.0 24.0 28.0
IG 52.5 35.0 35.0 77.5 63.0 70.0 13.0 18.5 23.5
KernelSHAP 60.0 29.5 34.0 78.0 57.0 72.5 17.0 18.5 22.0
Random 53.0 30.5 38.5 76.0 60.5 68.5 15.0 20.0 23.5

Table 3: The mean percentage of success in flipping Gemma-ft’s label in 200 examples of evaluation split in
SST-2, IMDB, and AG-News datasets (higher is better). Phi-3-14B-it (phi-it), fine-tuned pythia-2.8B (pythia), and
fine-tuned phi-3-3.8B (phi-ft) models are used to fill the masks and generate counterfactuals.

assumptions on the learning algorithm or data dis-383

tribution. They prove this for SHAP and IG which384

are linear and complete, and we get a similar re-385

sult that IG and KernelSHAP methods are no better386

than random at helping the counterfactual generator387

to flip the predictor model’s label. Our results show388

that simple methods like gradnorm1, gradnorm2, 389

and Erasure are consistently better regardless of the 390

editor used. 391

For the instruct-tuned predictor (Tables 2 and 392

4), no attribution method is consistently better than 393

random. This indicates that these methods are not 394
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Attribution
method

SST-2 IMDB AG-News
phi-it phi-ft pythia phi-it phi-ft pythia phi-it phi-ft pythia

gradnorm1 69.0 56.5 65.0 38.0 47.5 44.5 41.5 65.0 83.0
gradnorm2 69.0 56.0 64.0 37.0 48.0 46.5 43.0 65.5 83.5
gradinp 69.5 52.0 62.0 49.0 54.0 57.5 40.5 67.0 83.5
erasure 66.0 61.0 71.5 43.0 48.5 50.5 45.0 67.5 83.5
IG 73.0 56.5 69.0 53.0 54.5 50.5 36.5 64.5 84.5
KernelSHAP 62.0 58.0 69.5 56.0 55.0 54.5 43.5 63.5 83.5
Random 62.0 52.0 69.0 63.0 55.5 52.5 43.5 66.5 83.5

Table 4: The mean percentage of success in flipping Gemma-it’s label in 200 examples of evaluation split in
SST-2, IMDB, and AG-News datasets (higher is better). Phi-3-14B-it (phi-it), fine-tuned pythia-2.8B (pythia), and
fine-tuned phi-3-3.8B (phi-ft) models are used to fill the masks and generate counterfactuals.

Editor SST-2 IMDB AG-News
gemma-ft gemma-it gemma-ft gemma-it gemma-ft gemma-it

phi3-ft 0.20 10.96 4.13 4.61 1.29 5.68
phi3-it 0.40 3.11 3.64 2.44 1.63 2.07
pythia-ft 0.24 2.85 25.92 4.80 1.66 3.47
erase 1.17 57.28 3.10 48.02 3.44 48.0
unk 1.81 98.88 87.52 99.35 1.60 99.18

Table 5: OOD percentage when our counterfactual editor models generate samples, compared to Erase and UNK
methods. The numbers are the percentages of corrupted examples that are out of the 99th percentile of the negative
log likelihood of the original sentences (lower is better).

faithful for the models not fine-tuned on the task,395

suggesting careful application of them to the pre-396

trained LLMs.397

Why should we use counterfactuals instead of398

erasing the important tokens or replacing im-399

portant tokens? We want to evaluate attribu-400

tion methods and not the predictor model’s robust-401

ness to OOD text. In order to show that we have402

achieved this goal, we use an OOD detection tech-403

nique to measure what percentage of our generated404

inputs are OOD. To do so, for each dataset, we mea-405

sure the negative-log-likelihood (NLL) of the 200406

original text using different predictors. We evaluate407

masked text in three ways: (I) using an editor to408

fill the mask (ii) using an unimportant token (the409

<unk>token), and (iii) erasing the tokens. We do410

this test for the five amounts of corruption (10 to411

50 percent) and for the seven types of attribution412

methods and take the average. In OOD detection a413

threshold is always used to label anything higher414

than that as OOD. We set this threshold to be the415

99th percentile of the original sentences’ NLL. We416

consider anything that has an NLL of more than417

this threshold as OOD.418

In Table 5, we show that predictor models that419

are fine-tuned for classification in a specific dataset 420

are mostly insensitive to corruption. A model that 421

is fine-tuned for sentiment analysis becomes insen- 422

sitive to unnaturalness of the text. Also, it is shown 423

that for predictor models that are not fine-tuned 424

for a specific dataset, corrupting the inputs makes 425

those inputs OOD. 426

We design another test to understand the con- 427

sistency of the editor models with each other, and 428

the consistency of the editor models with other 429

corruption methods. We use Spearman’s rank cor- 430

relation coefficient. We rank the attribution meth- 431

ods’ mask percentage needed to flip the label for 432

each example for all five corruption methods (our 433

three editors, Erase, and <unk>), get the correla- 434

tion of these ranks with each other, and then take 435

the average over 200 examples. We show this for 436

SST-2 dataset in 4. Other datasets get similar re- 437

sults and are shown in appendix A. The first row of 438

figure 4, these average correlations are shown for 439

fine-tuned models. The second row shows these 440

correlations when the predictor models are off-the- 441

shelf instruct-tuned predictor models. The figure 442

shows the rank of explanations using editors has 443

a higher correlation with unk/erase when the pre- 444

dictor model is fine-tuned. The third row of 4 is 445

7



Figure 4: In the first row average correlation of attribu-
tion ranks for fine-tuned predictor is presented, and the
second row presents the average correlation of attribu-
tion ranks when the predictor is an off-the-shelf model.
The third row shows the difference between the first
two, which shows when we use editors the difference
in correlation between two different kinds of predictors
is near zero but using unk/erase is not consistent in the
two scenarios

the difference between the first and second rows. It446

indicates that the correlation difference of editors447

using fine-tuned and instruct-tuned predictors is448

near zero but the difference with other corruption449

methods (unk/erase) is significant. This suggests450

that when evaluating explanations on an off-the-451

shelf instruct-tuned model, it is crucial not to use 452

corrupted OOD text. 453

6 Conclusion 454

In this work we designed a faithfulness evalua- 455

tion protocol based on counterfactual generation. 456

We showed attribution methods have different effi- 457

cacy in models that are fine-tuned for our specific 458

dataset and off-the-shelf instruct-tuned models. We 459

showed that counterfactual generators are a good 460

option for evaluating feature attribution because 461

they can generate mostly in-distribution text for the 462

predictor model and the counterfactual generator 463

is able to separate evaluating model and evaluating 464

attribution because we are sure the examples we are 465

evaluating the model on are mostly in-distribution. 466

In the end we also showed that the attribution meth- 467

ods that are close to random in helping a user to 468

infer counterfactual model behavior are also close 469

to random in helping counterfactual generator to 470

create a counterfactual. 471

8



7 Limitations472

Our work is limited in several aspects. First, we473

rely on generating counterfactuals, for which a474

strong generative model is needed. Generating475

counterfactuals especially for long sequences is476

computationally expensive. Second, the Counter-477

factual generator may unintentionally know the478

artifacts and shortcuts used by the predictor to flip479

the label, and this could limit the intended applica-480

tion of it in our approach. Third, we evaluated our481

faithfulness method for classification datasets. In-482

cluding generative tasks is more challenging in this483

framework. It isn’t more challenging than other484

faithfulness evaluation methods Finally, some of485

the well-performing attribution methods like De-486

compX (Modarressi et al., 2023) are implemented487

for specific architecture of transformers (BERT-488

like models), and since our method is introduced489

for more recent generative models, we could not490

evaluate them in this paper.491
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