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Abstract

In order to avoid disadvantages of monocropping for soil and
environment, it is advisable to practice intercropping of vari-
ous plant species whenever possible. However, intercropping
is challenging as it requires a balanced planting schedule due
to individual cultivation time frames. Maintaining a contin-
uous harvest reduces logistical costs and related greenhouse
gas emissions, and contributes to food waste prevention. In
this work, we address these issues and propose an optimiza-
tion method for a full harvest season of large crop ensem-
bles that complies with given constraints. By using an ap-
proach based on an evolutionary algorithm combined with a
novel hierarchical loss function and adaptive mutation rate,
we transfer the multi-objective into a pseudo-single-objective
optimization problem and obtain faster convergence and bet-
ter solutions than for conventional approaches.

1 Introduction
In a recent study, the Food and Agriculture Organization of
the United Nations stated that almost 1.4 billion hectares or
30% of the world’s agricultural land are used to produce
food that later goes to waste. They also stated that global
food loss causes 3.3 gigatons of carbon dioxide emissions
or 7% of the world’s total greenhouse gas emissions (FAO
2013, 2019). Efficient use of agricultural and logistical ca-
pacities is therefore crucial for sustainable global food sup-
ply.

A particular application of artificial intelligence in agri-
culture is the optimization of harvest schedules or agri-food
supply chains (Taşkıner and Bilgen 2021). Even in other
food-related disciplines, harvest schedules are of major im-
portance, e.g. in aquaculture (Yu and Leung 2006). In this
work, we will focus on optimizing a planting schedule with
regard to a sustainable yield sketched in Figure 1. In par-
ticular, our goal is to find planting dates for many crop
species such that the resulting yield is efficiently distributed.
In this way, we facilitate prevention of food waste and sur-
plus greenhouse gas emissions.

Scheduling problems are difficult to solve by involving
numerous soft- and hard constraints and requiring to fac-
tor in environmental conditions. Common approaches thus
consider stochastic models and commercial solvers which,
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Figure 1: Problem setting: for given planting dates, corre-
sponding harvest dates have to be predicted. Predictions are
based on uncertain Growing Degree Unit (GDU) forecasts.
The challenge is to schedule planting dates for more than
1000 individual crops and desired yields simultaneously, re-
sulting in a continuous harvest yield distribution.

however, are essentially “black box” systems whose deci-
sions are opaque and difficult to comprehend. Alternatively,
scheduling problems are commonly cast as multi- or many-
objective optimization (Branke et al. 2008) problems. Be-
sides many other optimization strategies like in (Ferrer et al.
2008) and (Varas et al. 2020), these problems are often opti-
mized by evolutionary algorithms (EAs) like NSGA-II (Deb
et al. 2002) or MOEA/D (Zhang and Li 2007) as in (Rogha-
nian and Cheraghalipour 2019), or in combination with other
models (Cheraghalipour, Paydar, and Hajiaghaei-Keshteli
2019).

In the work at hand, we consider a basic evolution strategy
(ES) often referred to as (1+1)-ES. It is simple to implement
and can be generalized towards (µ+ λ)-ES which allow for
distributed computation.

Our contributions can be summarized as follows:

• we propose a generic formalization of the harvest schedule
optimization problem, which is agnostic with respect to
time scales, crop types, and desired yield

• a novel hierarchical loss function is devised that converts
naive multi-objective problems into a single-objective
problem, enabling faster optimization

• uniform escape from local optima is facilitated via a new
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Figure 2: GDU forecast mean and ±1σ standard deviation
for site 0 (blue) and site 1 (orange).

dynamic oscillating mutation rate
• we provide an experimental evaluation on realistic data

This work provides a summary of results for the above
points. A detailed discussion of methods and the full set
of results will be available in an extended version of this
manuscript.

2 Background
The first building block of our method is Gaussian pro-
cess regression (GPR) for time series prediction (Rasmussen
and Williams 2006). GPR is a kernel-based non-parametric
method to inter- and extrapolate data points. It allows us to
include available background knowledge about agricultural
time series, e.g. the existence of annual periodicity, other
seasonal effects, and trends, by choosing appropriate kernel
functions.

The second building block are evolutionary algorithms
(EAs) which are a class of meta-heuristic optimization al-
gorithms inspired by biological mechanisms (Holland 1992;
Bäck 1996). The common procedure is to generate one or
more possible solutions in the form of state vectors, called
population. During a generation, the populations, or parents,
are mutated, resulting in children. An environment thereafter
has to select the best population(s) which themselves are ini-
tial states for further mutations in the upcoming generation
(Hassanat et al. 2019). This procedure within a generation
cycle is referred to as evolution strategy (ES). We focus on
(µ + λ)-ES (Beyer and Schwefel 2002). µ is the number
of parents that undergo mutations resulting in λ children.
The “+” sign indicates that, when selecting the µ “fittest”
mutants, parents and children are taken into account. Since
EAs are meta-heuristic optimization methods, they typically
yield only approximately optimal solutions to a problem.
The major advantage, however, is that they can handle dis-
crete high-dimensional and multi-objective inputs and that
their objective- or fitness function does not have to be (con-
tinuously) differentiable as in the case of, say, gradient de-
scent based methods.

3 Modeling the Problem
Next, we focus on our harvest scheduling problem by dis-
cussing constraints, the mathematical problem formaliza-

tion, and adaptations to the optimization algorithm, i.e. os-
cillating mutation rate and the hierarchical loss.

3.1 Constraints
Seeding and growing of crop are fraught with several con-
straints and uncertainties. Two constraints are the win-
dows or periods of possible planting and their planting
as a whole at one point in time for each individual crop.
Furthermore, we introduce the two variables, i.e. desired
yield for each species and the “performance” of the field
to accumulate crop growth. In phenology, the latter is of-
ten measured by Growing Degree Units. This is the accu-
mulated time-dependent temperature T (t) above a certain
base temperature Tbase during the interval of interest. Hence,
GDU =

∫
(T (t)−Tbase)dt. Commonly, the interval is a day,

which is why it is also referred to as Growing Degree Days
(GDD) (McMaster and Wilhelm 1997). Seasonal (and geo-
graphical) variations in GDU accumulation have direct im-
pact on the predicted harvest time. Thus, the harvest time is
a probability density over time points, although further sim-
plifications like mean harvest time and standard deviations
or a simple time interval are conceivable as well. EAs work
on discrete domains, so we will consider discrete time points
and intervals. They do not necessarily have to be equidistant,
but one usually considers days or weeks as units.

3.2 Formalization
Next, we introduce quantities that impact our problem. Let
D = {1, 2, . . . , dmax} ⊂ N+ be the possible planting and
harvesting dates. The dates themselves are encoded with an
index d ∈ D as well as the earliest and latest planting dates
for each species s ∈ S, thus dearly(s), dlate(s) ∈ D. We fur-
ther introduce S as the set of species. Moreover, we have the
required accumulated amount of GDU for each species to be
harvested, i.e. gharvest(s). Thus, we calculate the harvest date
by dharvest(s, dplant) =

min
d

d ≥ dplant

∣∣∣∣∣∣
d∑

x=dplant

gacc(x) ≥ gharvest(s)

 , (1)

with GDU accumulation function gacc(x).
Given all this information, we define a harvest matrix H ∈

D|S|×|D| that contains the harvest date for each species (as
rows) and each planting date (as columns). We assign the
value −1 impossible planting dates. Thus, H = {H(i, j)}
where H(i, j) ={

dharvest(s = i, dplant = j) if j ∈ [dearly(i), dlate(i)]

−1 otherwise
, (2)

with harvest dates from Equation (1).
The precalculation of the harvest matrix reduces the

schedule calculation time. With ~q = (q(s)) ∈ (R+
0 )
|S| as

the vector of desired harvest quantity for each crop species,
we can write the date harvest ~h(~dplant) ∈ (R+

0 )
|D| as

~h(~dplant) =
∑
s∈S

{
Idmax(H(s, dplant(s)), d)q(s)

}
d∈D

, (3)
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Figure 3: Weekly harvest quantity for all 3 scenarios on site 1. The bars show the harvest per week for an unoptimized schedule
given in the dataset (orange) and our results (blue). The dashed lines mark target (red) and maximally needed capacity (purple).
For uncertainty estimation (error bars), 100 harvest matrices are resampled from the GDU forecast. The over- and undershoot
reduction ratios Ro and Ru refer to the unoptimized schedule. It is visible that our optimized schedule largely prevents over-
and undershoot.

where Idmax is the identity matrix with dmax dimensions map-
ping dates to themselves again. For instance, a date-to-week
mapping matrix yields the weekly harvest.

3.3 Designing the Optimization Algorithm
In this work, we consider the (1 + 1)-ES. This turns out to
be a good choice in our experiments, and there is no op-
timal choice due to the No-free-Lunch-Theorem for Search
(Wolpert and Macready 1996). In the case that parent and
child have the same loss value, we prefer the child to the
parent, increasing the probability to overcome plateaus in
the loss landscape.

Oscillating Mutation Rate. We draw the ini-
tial planting dates from a uniform distribution U by
dplant(s) ∼ U [dearly(s), dlate(s)] for each species s ∈ S
within its individual time window. Mutation is done by
redrawing few elements. Further, we will use an initial
mutation rate of 1

|S| , so we expect one planting to change by
mutation. After this initial step, we exploit the advantages of
an adaptive mutation rate (Blum, Puisa, and Wintermantel
2005; Agapie 2001) by introducing a counter j = 0 that is
increased by 1 if the mutant is worse than the parent. This is
done up to a maximum ratio ρmax of elements. If the mutant
is better than the parent, the counter is reset to 0. Moreover,
there is the mentioned “plateau case” where the mutant is
as good as the parent. In this case, the counter keeps its
current value. Hence, we formulate a mutation rate that is
oscillating between 1

|S| and ρmax with frequency ω.

ρ(j) =
1

|S|
(
1 + (ρmax|S| − 1) sin2(ωj)

)
, (4)

which enables the algorithm to try a wide range of mutations
and escape from local optima without turning into a random
walk. This principle is connected with the concept of “tem-
perature” in simulated annealing (Kirkpatrick, Gelatt, and
Vecchi 1983) but with advantage to be adaptive to the land-
scape in vicinity of the current best solution.

Hierarchical Loss Function. First, we define the loss vec-
tor ~L(~h) = (L+, L−) =

(∑
h∈~h+

lC(h),
∑

h∈~h−
lC(h)

)

with

lC(h) =

{
h
C

(
1− h

C

)
h
C < 1

exp
(
h
C

)
− exp(1) h

C ≥ 1
, (5)

which has to be minimized in the following. ~h+ only con-
tains harvest quantities above and equal to the capacity
limit, and ~h− only contains those below. We discriminate
between two cases with different optimization goals. For
h(d) < Ctarget, we want either full capacity harvest or no
harvest at all, whereas for h(d) ≥ Ctarget, we want to mini-
mize overshoot. The total harvest is constant, meaning that
decrease of harvest at one date simultaneously increases har-
vest at another date by the same quantity. Our loss promotes
high-harvest dates getting “full” in terms of the target ca-
pacity, while simultaneously eliminating low-harvest dates.
Thus, in case of h < Ctarget, two harvest quantities diverge,
provoked by a concave loss function. For h ≥ Ctarget, the
involved dates’ quantities converge, provoked by a convex
function.

Although this might sound like a multi-objective ap-
proach, we still formulate a single-objective problem by pre-
ferring the loss in the region above capacity limit (L+) over
the region below it (L−). Thus, every net change from over
into under capacity is promoted. This is what we call hier-
archical loss where hierarchy decreases with increasing ele-
ment index in ~L. The flexibility to include further objectives
or knowledge at this stage is obvious since one may add loss
categories.

4 Application and Results
In the considered dataset, two harvesting sites 0 and 1 are
available. We will perform the optimization along two sce-
narios S1 and S2, targeting different objectives. In S1, the
sites have weekly harvest capacity limits, whereas in S2, the
capacity is not given. Here, a reasonable capacity should be
found during optimization. The GDU accumulation for har-
vesting season 2020/21 is forecasted by using a historical
dataset of 11 years for both planting sites. The accumulation
curves are plotted in Figure 2.



The GDU accumulation forecast comes along with uncer-
tainties. Fortunately, GPR models have the property of not
just extrapolating unseen regions, but also giving the con-
fidence of their predictions. The actual predicted value is
a mean value with a Gaussian standard deviation. We can
exploit this to propagate uncertainties and estimate the sen-
sitivity of our optimization to different GDU accumulation
scenarios, i.e. weather conditions, by resample many har-
vest matrices by the bootstrap technique (Efron and Tibshi-
rani 1993) and evaluate our result for all. We further sub-
stitute the identity matrix in Equation (3) for date-to-date
mapping with a day-to-week mapping binary week matrix
W ∈ {0; 1}|D|×|W|.

We further compared our method with two established
EAs, namely NSGA-II and MOEA/D, by using two multi-
objective optimization strategies each. For a short-time run
of 106 generations, all those variants are outperformed by
our method. Additionally, we formulated the problem as
a mixed-integer linear program (MILP) and solved it with
CPLEX®. Here, we observed as well that our method leads
to significantly better results than the exact one of the solver.
For the sake of brevity, a more detailed elaboration and plots
can be found in the Appendix.

4.1 Harvest Schedule Optimization
For the optimization scenarios, our proposed EA applies
the adaptive mutation rate shown in Equation (4). We use
ρmax = 1% and ω = 5× 10−4. The number of species |S|
is 1375 for site 0 and 1194 for site 1.

Our hierarchical loss needs the capacity limit for the sep-
aration between the two regions. For S1, the target capacity
is given. We split S2 into two slightly different approaches,
S2-1 and S2-2, since “lowest capacity needed” is always a
trade-off with the number of total harvest weeks. The op-
timization is exactly the same as for S1 but with different
inference of the capacity limit. In S2-1, we link the target
capacity limit to the number of harvest weeks the current
solution needs. For S2-2, we determine the maximum num-
ber of possible harvest weeks. Thus, we expect S2-1 to need
a higher capacity in less weeks whereas S2-2 needs a lower
capacity in more weeks if not all possible weeks are harvest
weeks after all.

In Figure 3, the weekly harvest quantity is plotted against
the harvest weeks for site 1. The light yellow bars are the
weekly harvest quantity if the plants are planted by the orig-
inal planting schedule given in the data. Blue bars represent
our optimized result after 109 generations.

5 Discussion
In the following, we illuminate our optimization results from
a technical as well as a social impact point of view.

5.1 Optimization Process
All scenarios show that the main optimization process needs
orders of 106generations to saturate at a moderately well
optimized state. The optimization process plot in Figure 4
shows that behavior exemplarily for two scenarios and three
independent runs each. Beyond 107 generations, fine-tuning
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Figure 4: Optimization process with 3 independent runs. The
two lower plots show the loss vector componentsL+ andL−
against iterations. The upper plot shows the mutation rate for
each successful improvement as a dot.

occurs, e.g., if a constellation is found that a complete
harvest week can be canceled for. The optimization pro-
cess directly shows the characteristics and the strength of
our method. Firstly, the hierarchical character of the loss
is observable by a monotonically decreasing L+ and an
L− showing jumps to higher values. Secondly, fine-tuning
preferably happens with higher mutation rates than the in-
termediate saturation. Using the adaptive mutation rate pre-
vents the EA from getting stuck in local optima. More
sophisticated optimization needs stronger mutations, i.e.
higher mutation rates.

5.2 Social Impact
Our defined loss vector components have illustrative inter-
pretations. For instance, L+ minimizes food or crop waste
by overshoot reduction, whereas L− minimizes logistic
costs accompanied by greenhouse gas emissions. By con-
struction, our hierarchy prefers food waste prevention to
emission reduction. Firstly, it reduces the food waste by ac-
cepting additional emission. Secondly, the emission is re-
duced by distributing the yield preferably efficient. Given
the hierarchy, no new food waste is created thereby.

Furthermore, the bootstrap shows that the optimization
just for one GDU forecast overfits on that single scenario.
This is visible by the resulting error bars in Figure 3. Op-
timizing for many GDU forecast realizations is expensive
due to many loss evaluations. Nevertheless, we observe that
the uncertainty propagation from GDU forecast to harvest
yield still stays within standard deviation. Thus, our opti-
mization is robust against environmental forecast uncertain-
ties and can schedule the harvest reliably. Additionally, the
optimization can be adjusted on-the-fly, e.g. once a more
precise forecast (harvest matrix) is available.

We introduce the overshoot (undershoot) reduction ratio
Ro (Ru) that describes, to which extent we can reduce food
waste and emissions with respect to the unoptimized case
given in the data. As shown in Figure 3, we can reduce 62%
to 100% of over- and undershoot for both sites and all sce-
narios which is a drastic improvement. Using our method,
one could thus tackle global food waste on a supply chain as
well as on a farming level, which additionally contributes to
a more efficient agricultural land use.
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A Appendix
A.1 Comparison between Many-, Multi-, and

Hierarchical Single-objective Optimization
In order to show that transferring the harvest scheduling
into a single-objective optimization problem improves the
convergence, we test our (1 + 1)-ES against the commonly
known algorithms NSGA-II and MOEA/D as a baseline. To
get a proxy for the speed of convergence, we feature how
the methods perform in a short-run optimization stopped af-
ter 106 seen populations. We compare a many-objective ap-
proach with six efficiency and continuity criteria with our hi-
erarchical single-objective approach. Additionally, a multi-
objective approach by using the two components of the loss
vector ~L as (coordinative) objectives is evaluated. The upper
and middle plots of Figure 5 show the results for the three
stated problem formulations. The goodness of optimization
is shown by considering distance to the next optimum (ca-
pacity limit or zero harvest) for each harvest week. Thus,
lower bars represent better optimization. As expected, our
approach shows a faster convergence to a rather preferable
interim solution. Certainly, the solutions can be further im-
proved by a long-run optimization.

A.2 Comparison with Exact Methods
Indeed, it is possible to formulate our problem as a mixed-
integer linear programming (MILP) problem. However, as
stated in the Introduction chapter, exact methods like MILP
need to have objective functions that are less generic than
those of, for instance, (meta-)heuristic approaches like EAs.
Thus, we have to deal with several limitations that can not
be considered by the MILP method. For instance, the con-
cave loss function cannot be minimized by the solver. Ad-
ditionally, our scenarios with variable target capacity cannot
be represented by an appropriate objective function either.
The lower plot in Figure 5 shows the result, if we solve the
S1 scenario (fixed target capacity) of our harvest schedul-
ing problem by using the commercial solver CPLEX®. As
an objective function, we are limited to use the summed
squared error over all weeks between harvest yield and tar-
get capacity. As well as for the common two compared EA
methods, our method clearly outperforms the MILP method.
Note that the given MILP solution is already the best solu-
tion we can get at this point while our method was stopped
in an early state. This vividly shows that complex problems
like harvest scheduling can be solved better if the used op-
timization method allows for including sophisticated objec-
tives and prior knowledge.

A.3 Code Availability
The dataset used in this work is restricted by copyright. Nev-
ertheless, we generated a similar dataset with the same char-
acteristics. Example code to reproduce optimization results
and comparison with NSGA-II and MOEA/D is available at
https://github.com/mrcgndr/harvest schedule optimization.
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Figure 5: Comparison of different optimization strategies.
For S1 and site 1, we compare our method with two estab-
lished EAs, namely NSGA-II (top) and MOEA/D (middle).
In addition, the bottom plot shows a comparison with an ex-
act method represented by formulation as a mixed-integer
linear program (MILP) solved with CPLEX®. Evolution-
ary approaches are stopped after 106 evaluations. The bars
show the distance to the next optimum, i.e. capacity limit
or zero harvest. Thus, the lower the bars, the better the op-
timization state. For the evolutionary approaches, we show
the 6-objective (blue bars) and the 2-objective (orange bars)
optimization with the respective algorithm. Our (1 + 1)-ES
method, shown by the green bars in all plots, has the low-
est overall deviations and, thus, outperforms the reference
methods. The hierarchical loss, given in the legend, is only
used for the 2-objective and our approaches.

https://github.com/mrcgndr/harvest_schedule_optimization

	1 Introduction
	2 Background
	3 Modeling the Problem
	3.1 Constraints
	3.2 Formalization
	3.3 Designing the Optimization Algorithm

	4 Application and Results
	4.1 Harvest Schedule Optimization

	5 Discussion
	5.1 Optimization Process
	5.2 Social Impact

	A Appendix
	A.1 Comparison between Many-, Multi-, and Hierarchical Single-objective Optimization
	A.2 Comparison with Exact Methods
	A.3 Code Availability


