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Abstract

This paper initiates the study of data-dependent regret bounds in constrained
MAB settings. These are bounds that depend on the sequence of losses that
characterize the problem instance. Thus, in principle they can be much smaller
than classical Õ(

√
T ) regret bounds, while being equivalent to them in the worst

case. Despite this, data-dependent regret bounds have been completely overlooked
in constrained MABs. The goal of this paper is to answer the question: Can data-
dependent regret bounds be derived in the presence of constraints? We provide
an affirmative answer in constrained MABs with adversarial losses and stochastic
constraints. Specifically, our main focus is on the most challenging and natural
settings with hard constraints, where the learner must ensure that the constraints
are always satisfied with high probability. We design an algorithm with a regret
bound consisting of two data-dependent terms. The first one captures the difficulty
of satisfying the constraints, while the second one encodes the complexity of
learning independently of their presence. We also prove a lower bound showing
that these two terms are not artifacts of our specific approach and analysis, but rather
the fundamental components that inherently characterize the problem complexity.
Finally, in designing our algorithm, we also derive some novel results in the related
(and easier) soft constraints settings, which may be of independent interest.

1 Introduction

Over the past few years, constrained multi-armed bandit (MAB) problems have gained increasing
popularity in learning theory (see, e.g., [Liakopoulos et al., 2019, Pacchiano et al., 2021, Castiglioni
et al., 2022a, Chen et al., 2022]). In unconstrained MAB problems, the learner is evaluated solely in
terms of regret, which measures the difference between the learner’s performance and the performance
of an optimal-in-hindsight decision. Constrained settings introduce additional challenges, as the
learner must also ensure that certain constraints are not violated excessively while learning.

A growing trend in unconstrained MAB research is the derivation of data-dependent regret bounds
(see, e.g., [Neu, 2015a, Lee et al., 2020a]). These bounds depend on the sequence of losses that
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characterize the problem instance. Some example of such bounds—typically called small-loss regret
bounds—are of the form Õ(

√
L∗), where L∗ denotes the cumulative loss of an optimal-in-hindsight

decision. Clearly, data-dependent bounds can be much smaller than classical Õ(
√
T ) regret bounds,

while being equivalent to them in the worst case. Despite this, data-dependent regret bounds have
been completely overlooked in the literature on constrained online learning problems.

The main goal of this paper is to initiate the study of data-dependent regret bounds in constrained
MAB settings. In particular, we aim at answering the following research question:

Can data-dependent regret bounds be derived in the presence of constraints?

In this paper, we provide an affirmative answer to the question above, as described in the following.

We refer the reader to Appendix B for a complete discussion on related works.

1.1 Original Contributions

Given an impossibility result by Mannor et al. [2009], which prevents from obtaining sub-linear
regret in constrained settings where both the losses and the constraints are selected adversarially,
in this paper we focus on constrained MABs with adversarial losses and stochastic constraints, as
customarily done in the literature (see, e.g., [Qiu et al., 2020]). Specifically, our main focus is on the
most challenging and natural settings with hard constraints, where the learner’s goal is to minimize
the regret while ensuring that the constraints are satisfied at every round with high probability.

1.1.1 Warm-Up: Soft Constraints

As a preliminary step toward our final goal, we design an algorithm with a small-loss regret bound in
constrained MAB settings with soft constraints, which may be of independent interest. These settings
only require that the constraint violations grow sub-linearly with the number of rounds T , thereby
allowing to violate the constraints in some rounds. Although soft constraints are technically easier
than hard ones, our algorithm incorporates some key components that are also central to the algorithm
for hard constraints. At a high level, our algorithm builds upon an approach introduced by Lee
et al. [2020a] to derive small-loss regret bounds in unconstrained problems. Our algorithm—called
Constrained OMD with Log-Barrier (COLB)—applies this approach to a “safe” set of decisions that
optimistically satisfy the constraints. This allows to attain sub-linear violations with a high-probability

regret bound of Õ(
√∑T

t=1 ℓ
⊤
t x

∗), where x∗ is a decision that is optimal in hindsight while satisfying
the constraints in expectation.

1.1.2 Hard Constraints

Our main result in this paper is an algorithm with a data-dependent regret bound in constrained MAB
settings with hard constraints. Our algorithm for these settings—called Safe OMD with Log-Barrier
(SOLB)—employs all the core components of COLB, and it adds new ones to deal with hard constraints.
Specifically, SOLB always chooses a suitable combination between the decision suggested by COLB
and a decision that strictly satisfies the constraints, which is given as input to the algorithm. The
SOLB algorithm achieves a high-probability regret bound that is characterized by two data-dependent
terms, described in the following.

• The first term is Õ(
√∑T

t=1(ℓ
⊤
t (x

⋄ − x∗))2), where x⋄ is the decision that strictly satisfies
the constraints given as input. This term captures the difficulty due to constraints.

• The second term is Õ(
√∑T

t=1 ℓ
⊤
t x

∗), and it intuitively encodes the performance of a
decision x∗ that is optimal in hindsight while satisfying the constraints in expectation.

Finally, we also provide a lower bound that demonstrates that the two terms in the regret bound of the
SOLB algorithm are not artifacts of our specific approach and analysis, but rather the fundamental
components that inherently characterize the complexities of the problem. Interestingly, this result
also shows that data-dependent regret bounds can not only outperform classical Õ(

√
T ) bounds, but

also offer insights into the underlying complexities of learning problems.

2



2 Constrained Multi-Armed Bandits

In the multi-armed bandit (MAB) framework [Lattimore and Szepesvári, 2020], a learner is repeatedly
faced with a decision among K ∈ N+ actions over T ∈ N+ rounds. At each round t ∈ [T ],2 the
learner chooses a strategy (i.e., a probability distribution over actions) xt ∈ ∆K , where ∆K is the
simplex of dimension K − 1. Then, they play an action at ∼ xt sampled according to this strategy
and observe a loss ℓt(at), which is defined by a vector ℓt ∈ [0, 1]K of losses at round t.3 In this paper,
we study a constrained version of the MAB framework [Pacchiano et al., 2021]. At each t ∈ [T ], in
addition to a loss, the learner also observes m ∈ N+ constraint costs gt,i(at), one for each constraint
i ∈ [m]. Each of them is determined by a vector gt,i ∈ [0, 1]K of constraint costs at round t. Each
constraint i ∈ [m] is associated to a threshold αi ∈ [0, 1], and it is considered satisfied by a learner’s
strategy whenever the constraint cost is below αi in expectation.

Motivated by a well-known impossibility result by Mannor et al. [2009],4 in this paper we focus on
constrained MAB problems in which the losses are chosen adversarially and the constraint costs
are selected stochastically. Specifically, we assume that, at each round t ∈ [T ], the loss vector ℓt is
chosen by an adaptive adversary that is aware of the history of interaction up to round t− 1, while
each cost vector gt,i, for i ∈ [m], is sampled independently from a probability distribution Gi. For
ease of notation, in the following we use ℓ1:T to denote the sequence of all loss vectors ℓt, for t ∈ [T ],
while we denote by gi := Eg∼Gi

[g] the expected value of Gi, for every i ∈ [m].

The performance (in terms of losses) of a learning algorithm is usually measured in terms of regret
with respect to a baseline. In the constrained MABs addressed in this paper, the baseline is formally
defined by the following optimization problem parametrized by ℓ1:T and gi for i ∈ [m]:

OPT(ℓ1:T , {gi}i∈[m]) :=

{
min
x∈∆K

∑T
t=1 ℓ

⊤
t x s.t.

g⊤
i x ≤ αi ∀i ∈ [m].

(1)

Program (1) encodes the value of a strategy that is optimal in hindsight, i.e., a strategy that minimizes
the cumulative loss while ensuring that the constraints are satisfied in expectation. In the following,
we denote one such strategy, which is an optimal solution to Program (1), as x∗ ∈ ∆K . Then, for a
sequence of losses ℓ1:T , the (cumulative) regret over the T rounds is defined as

RT (ℓ1:T ) :=

T∑
t=1

ℓ⊤t xt − OPT(ℓ, {gi}i∈[m]) =

T∑
t=1

ℓ⊤t xt −
T∑
t=1

ℓ⊤t x
∗.

Remark 1 (On the regret definition). Differently from the standard MAB framework [Lattimore and
Szepesvári, 2020], in constrained settings an optimal strategy x∗ may not coincide with a vertex of
the simplex ∆K , i.e., an optimal action may not exist. This is intuitive since, whenever the action
associated with the smallest loss in hindsight does not satisfy the constraints in expectation, an
optimal strategy x∗ may play that action as much as possible, while satisfying the constraints in
expectation. This is the reason why the regret RT (ℓ1:T ) is defined with respect to (randomized)
strategies, rather than actions. This definition is standard in constrained online learning settings (see,
e.g., [Efroni et al., 2020, Pacchiano et al., 2021, Bernasconi et al., 2022]).

In this paper, our goal is to design learning algorithms for constrained MAB settings that achieve small-

loss style regret bounds of the form RT (ℓ1:T ) ≤ Õ(
√∑T

t=1 ℓ
⊤
t x

∗), where
∑T
t=1 ℓ

⊤
t x

∗ represents
the cumulative loss incurred by a strategy x∗ that is optimal in hindsight. These regret bounds are
arbitrarily better than common Õ(

√
T ) regret bounds when x∗ outperforms other strategies on the

sequence of losses ℓ1:T , while being equivalent to them in the worst case. It is well known that small
loss regret bounds can be achieved in unconstrained MABs (see, e.g., [Lee et al., 2020a]), but it
remains an open question whether they can also be derived in constrained settings.

In constrained MABs, a fundamental challenge is the fact that the learner must account for constraint
violations during learning. Our primary focus is on satisfying the constraints at every round with
high probability. However, we also derive some results for the weaker goal of minimizing cumulative
violations, as a preliminary step. Next, we formally introduce these two goals.

2Given n ∈ N, we denote by [n] the set {1, . . . , n} of the first n natural numbers.
3In this paper, we use the notation c(i) to denote the i-th element of vector c.
4Mannor et al. [2009] show that if both losses and costs are selected adversarially, no algorithm can

simultaneously achieve sublinear (in T ) regret and sublinear (in T ) cumulative constraint violation.
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Soft Constraints In this setting, the goal of the learner is to minimize the (cumulative) positive
constraint violations over the T rounds, defined as VT := maxi∈[m]

∑T
t=1

[
g⊤
i xt − αi

]+
, where

we let [·]+ := max{0, ·}. Intuitively, VT represents the total constraint violation accumulated by
the learner during the learning process, and it also ensures that negative violations (i.e., constraint
satisfactions) do not cancel out positive ones. The goal is to guarantee that VT = o(T ).5

Hard Constraints In this setting, the goal of the learner is to guarantee that g⊤
i xt ≤ αi for every

constraint i ∈ [m] and round t ∈ [T ] with high probability.6 This objective is only attainable under
the following two assumptions, which are common in the literature on hard constraints settings (see,
e.g., [Pacchiano et al., 2021, Liu et al., 2021, Bernasconi et al., 2022]).

Assumption 1 (Slater’s condition). Program (1) satisfies Slater’s condition, i.e., it admits a strictly
feasible solution x⋄ ∈ ∆K , which is a strategy such that g⊤

i x
⋄ < αi for every constraint i ∈ [m].

Assumption 2 (Knowledge of a strictly feasible strategy). The learner knows a strictly feasible
strategy x⋄ := argmaxx∈∆K

mini∈[m][αi − g⊤
i x] and its associated cost θi := g⊤

i x
⋄.7 We denote

by ρ ∈ [0, 1] to margin by which x⋄ satisfies the constraints, formally ρ := mini∈[m] [αi − θi].

Intuitively, Assumptions 1 and 2 are necessary to ensure that, in early rounds when little information
is available, the learner has sufficient exploration opportunities without violating the constraints.

3 Being Safe While Learning With an Increasing Learning Rate

We begin by presenting two core components of our algorithms presented in Sections 4 and 5. The
first one is a safe decision space, which is a restricted set of strategies used to control constraint
violations. The second component is OMD with log-barrier [Lee et al., 2020a], which is an existing
algorithm that achieves data-dependent regret bounds in unconstrained settings and serves as a
foundation for our algorithms. The goal of this section is to show how these two components can be
combined to achieve data-dependent regret bounds while controlling constraint violations.

3.1 Costs Estimation and Safe Decision Spaces

Estimating costs is a crucial task for any algorithm operating in constrained MABs. However, using
these estimates in order to control constraint violations may not be trivial. Next, we describe the
approach used by our algorithms. In the following, we let Nt(a) :=

∑t
τ=1 1{aτ=a} be the number of

rounds up to t ∈ [T ] in which action a ∈ [K] is played. Then, an unbiased estimator for the cost of
constraint i ∈ [m] when playing action a ∈ [K] is ĝt,i(a) := 1

max{1,Nt(a)}
∑
τ∈[t] gτ,i(a)1{aτ=a}.

The following result quantifies the uncertainty associated with the estimator above.

Lemma 1. Let δ ∈ (0, 1) and βt(a, δ) := min
{
1,
√

4 ln (TKm/δ)/max{1, Nt(a)}
}

for a ∈ [K].

Then, with probability at least 1− δ, |ĝt,i(a)− gi(a)| ≤ βt(a, δ) for every t ∈ [T ], i ∈ [m], a ∈ [K].

This above lemma is a trivial consequence of Hoeffding’s inequality and a union bound. We denote
by ĝt,i ∈ [0, 1]K the vector whose entries are the estimates gt,i(a), while we let βt(δ) ∈ [0, 1]K be
the vector of the bounds βt(a, δ). For clarity, in the rest of the paper we omit δ from the argument of
βt(δ). Moreover, we denote by E(δ) the event defined by Lemma 1, which satisfies P(E(δ)) ≥ 1− δ.

5Let us remark that, in the soft constraints setting, we are interested in obtaining small-loss bounds only
for the regret. Indeed, small-loss bounds naturally belong to adversarial settings, as they become vacuous in
stochastic ones (recall that constraint costs are stochastic in our setting). Moreover, an optimal-in-hindsight
strategy x∗ satisfies the constraints in expectation, by definition. Thus, it would not make any sense to derive a
small-loss bound for the cumulative positive constraint violations VT .

6A constraint i ∈ [m] is satisfied at t ∈ [T ] whenever its cost is below αi in expectation over the randomness
of the strategy xt and the cost gt,i. This is standard in constrained MABs (e.g. [Pacchiano et al., 2021]).

7Previous works (see, e.g., [Pacchiano et al., 2021, Liu et al., 2021, Bernasconi et al., 2022]) usually assume to
know a generic strictly feasible strategy. For ease of presentation, in this work we assume to know a strategy that
satisfies the constraints as much as possible. Nonetheless, our results can be generalized to the case commonly
considered in the literature.
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Safe Decision Space Lemma 1 provides some confidence intervals for the estimated costs. Next,
we describe how these intervals can be used to define a sequence of sets, called safe decision spaces,
which contain strategies that an algorithm can employ to control the cumulative constraint violations,
that is, attaining VT ≤ Õ(

√
T ). Formally, for every round t ∈ [T ], we let

St :=
{
x ∈ ∆K : (ĝt,i − βt)

⊤x ≤ αi ∀i ∈ [m]
}

be the safe decision space at time t. This definition is standard in the constrained MAB literature.
Intuitively, an algorithm that selects strategies from St ensures that, with probability at least 1− δ,
the expected (optimistic) incurred costs remain below the thresholds at every round t ∈ [T ], and for
every action a ∈ [K] and constraint i ∈ [m]. It is easy to see that this holds thanks to Lemma 1 and
the way in which the safe decision spaces are constructed.

3.2 Data-Dependent Bounds via Increasing Learning Rate

Next, we recall some needed details of the OMD with log-barrier algorithm by Lee et al. [2020a].
This algorithm achieves small-loss guarantees in unconstrained MABs, with a regret of Õ(

√
L∗)

with high probability, where L∗ is the cumulative loss of an action that is optimal in hindsight. The
algorithm works as standard OMD with log-barrier regularization ψt(x) =

∑K
a=1

1
ηt,a

ln 1
x(a) (where

Dψt(·, ·) is the Bregman divergence built given ψt), where ηt,a is an increasing sequence of learning
rates. Specifically, each time the probability of selecting an action goes below a certain threshold,
the learning rate is increased by a constant factor, while the threshold is increased. This procedure
is key to achieve the desired data-dependent regret bound. One of the main technical features of
OMD with log-barrier is its restricted decision space. Indeed, differently from most of the OMD-like
algorithms, it is only allowed to select strategies belonging to the truncated simplex, which is defined
as Ω :=

{
x ∈ ∆K : x(a) ≥ 1

T ∀a ∈ [K]
}
. This design choice avoids forced uniform exploration,

and remarkably simplifies the analysis.

3.3 A Truncated Safe Decision Space

Our algorithms, presented in the following sections, rely on combining an OMD with log-barrier
sub-routine with safe decision-making. This raises some challenges, since both components put
some restrictions on the space from which strategies are chosen. In particular, OMD with log-barrier
requires selecting strategies from the truncated simplex Ω, while a safe decision-making involves
choosing strategies from the safe decision space St. Unfortunately, these two sets may in general be
disjoint. Our algorithms implement a procedure that enables these two elements to work together.
Specifically, at each round t ∈ [T ], they employ a larger safe decision space S◦

t , which is defined as:

S◦
t :=

{
x ∈ ∆K : (ĝt,i − βt)

⊤x ≤ αi +
K

T
∀i ∈ [m]

}
.

This decision space is strictly larger than the safe decision space St.
The following lemma characterizes the decision space obtained by intersecting Ω and S◦

t : the
truncated safe decision space.
Lemma 2. For every t ∈ [T ], let S̃t := Ω ∩ S◦

t be the intersection of the truncated simplex and the
safe decision space. Then, under E(δ), it holds that ∩t∈[T ]S̃t is non-empty.

The above lemma can be proven by showing that any x◦ ∈ ∆K that satisfies the constraints in
expectation is included in S◦

t . Moreover, ∥x◦ − x̃∥1 ≤ K
T , where x̃ := argminx∈Ω ∥x − x◦∥1.

Thus, x̃ belongs to both Ω and S◦
t . Additional details can be found in Appendix C. Intuitively,

Lemma 2 states that, with high probability, at every round t ∈ [T ] there exists a strategy satisfying
both the requirements of OMD with log-barrier and a “suitably-relaxed” safety condition.

4 Warm-Up: Small-Loss Guarantees in MABs with Soft Constraints

As a preliminary step toward our main result for the hard constraints settings, we design an algorithm
with small-loss regret bound for soft constraints settings. Although these settings are technically
easier than hard constraints ones, our algorithm incorporates some key components that are also
central to the algorithm for hard constraints settings designed in Section 5. Moreover, the algorithm
may also be of independent interest for other learning settings with soft constraints.
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Algorithm 1 COLB

Require: Learning rate η > 0, confidence δ ∈ (0, 1), thresholds {αi}i∈[m]

1: Define increase factor κ← e
1

lnT

2: Initialize x1 ← 1
K
1, h1,a ← 2K, η1,a ← η for all a ∈ [K], ĝ1,i ← 0 for all i ∈ [m], β1 ← 1

3: for t ∈ [T ] do
4: Select action at ∼ xt
5: Observe loss ℓt(at) and constraint costs gt,i(at),∀i ∈ [m]

6: Update ĝt,i and βt as described in Section 3.1
7: Compute the safe decision space S◦

t as described in Section 3.3
8: Compute the truncated safe decision space S̃t ← Ω ∩ S◦

t

9: if S̃t is not empty then
10: Compute ℓ̂t(a)←

ℓt(a)1{at=a}
xt(a)

,∀a ∈ [K]

11: xt+1 ← argminx∈S̃t
ℓ̂t

⊤
x+Dψt(x,xt), where ψt(x) =

∑K
a=1

1
ηt,a

ln 1
x(a)

12: for a ∈ [K] do
13: if 1

xt+1(a)
> ht,a then

14: ht+1,a ← 2
xt+1(a)

, ηt+1,a ← ηt,aκ

15: else
16: ht+1,a ← ht,a, ηt+1,a ← ηt,a
17: else
18: Select strategy xt+1 ∼ Ω randomly

4.1 The COLB Algorithm

Algorithm 1 provides the pseudo-code of Constrained OMD with Log-Barrier (COLB). At a high
level, the algorithm implements the combination of OMD with log-barrier and safe decision spaces
introduced in Section 3. Indeed, Algorithm 1 is conceptually split into two main blocks. One block
contains the set of instructions necessary to control constraint violations, highlighted in blue. The
other block, highlighted in green, defines the OMD with log-barrier sub-routine. Algorithm 1 first
defines a factor κ that is employed to increase the learning rate ηt,a for action a if the probability
of choosing the action falls below a certain threshold ht,a (Line 1). At each round, after playing
an action and observing some feedback (Lines 4-5), the algorithm updates empirical means and
confidence bounds for constraint costs (Line 6). Then, it builds the truncated safe decision space S̃t
(Line 8), as described in Section 3. If this set is not empty (Line 9), then an update of OMD with
log-barrier is performed over S̃t (Lines 10-11). Moreover, if the probability specified by computed
strategy is too small for some action a ∈ [K], i.e., 1/xt+1(a) ≥ ht,a, then the learning rate ηt,a is
increased by a κ factor and the threshold is increased to 2/xt+1(a) (Line 13-16). Finally, if S̃t is empty,
then a strategy is sampled randomly from the truncated simplex (Line 18).

In the following, we provide the theoretical guarantees attained by COLB, starting from constraint
violations.

Theorem 1. Let δ ∈ (0, 1). Then, with probability at least 1 − 2δ, the COLB algorithm suffers

cumulative positive constraint violations VT ≤ O
(√

KT ln (TKm/δ)
)
.

The proof of Theorem 1 relies on Lemma 2, and it can be found in Appendix C.3. The bound provided
in the theorem matches, up to constant factors, the lower bound provided in Theorem 3 of [Bernasconi
et al., 2022].

We are now ready to prove the main result of this section, which is a small-loss regret bound for COLB.
This is stated in the following theorem.

Theorem 2. Let δ ∈ (0, 1) and η = min
{
1/40H lnT ln(H/δ),

√
K/

∑T
t=1 ℓ⊤t x∗ ln(1/δ)

}
, where H :=

ln (⌈ln(T )⌉⌈3 ln(T )⌉/δ). Then, with probability at least 1− 4δ, COLB suffers a cumulative regret that

can be bounded as RT (ℓ1:T ) ≤ Õ
(√

K
∑T
t=1 ℓ

⊤
t x

∗ ln (1/δ)

)
.

6



Theorem 2 is proved by noticing that, even though the strategy update of Algorithm 1 works on
changing decision spaces S̃t, projecting does not prevent the OMD sub-routine from guaranteeing
small-loss bounds. The proof can be found in Appendix C.2. Some remarks are in order.

Remark 2 (Tightness). The bound in Theorem 2 is tight, up to constants and logarithmic terms.
Indeed, Theorem 3 of [Gerchinovitz and Lattimore, 2016] provides a regret lower bound of Ω(

√
KL∗)

in unconstrained MABs, where L∗ is the total loss of an optimal-in-hidsight action. The bound in
Theorem 2 scales with the total loss of an optimal-in-hindsight randomized strategy x∗. However,
since in unconstrained settings an optimal (randomized) strategy is as powerful as an optimal action,
the lower bound of [Gerchinovitz and Lattimore, 2016] carries over to our setting as well.

Remark 3 (Knowledge of
∑T
t=1 ℓ

⊤
t x

∗). Assuming knowledge of L∗ to set the learning rate is
standard in the literature on small-loss bounds. As discussed in Remark 2 of [Allenberg et al., 2006]
and Remark 1 of [Lee et al., 2020a], a doubling trick can relax this requirement, while ensuring
that the regret bound does not deteriorate. This procedure is described in Appendix C.3 of [Lee
et al., 2020b]. In our case, we require that

∑T
t=1 ℓ

⊤
t x

∗ is known, instead of L∗. However the
considerations made for L∗ still hold, and our algorithms can be made adaptive w.r.t. this quantity.

5 Data-Dependent Guarantees in MABs with Hard Constraints

This section is entirely devoted to the main contribution of this paper, which is an algorithm that
achieves a (tight) data-dependent regret bound in constrained MABs with hard constraints. The
section begins by introducing the algorithm, which builds on the COLB algorithm introduced in
Section 4 for soft constraints. After proving the guarantees attained by the algorithm, the section ends
by proving a lower bound demonstrating that the regret bound of the algorithm is tight.

5.1 The SOLB Algorithm

Algorithm 2 provides the pseudo-code of Safe OMD with log-barrier (SOLB). Notice that the
algorithm takes additional inputs compared to COLB. Specifically, it takes as inputs a strictly feasible
strategy, i.e., a strategy x⋄ ∈ ∆K as defined in Assumption 2, and its associates costs {θi}i∈[m].

Algorithm 2 highlights in pink its differences with respect to Algorithm 1. The key difference between
COLB and SOLB is that the strategy chosen by the latter is not readily the one selected through the
OMD update. Specifically, at each round t, SOLB plays a convex combination between the strictly
feasible strategy x⋄ given as input and the one selected by OMD, denoted x̃t. The combination factor
γt is chosen in an adaptive way to guarantee that the resulting strategy xt satisfies the constraints
with high probability. Intuitively, the combination factor γt weights how safe is to play the strategy
computed by OMD rather than the strictly feasible strategy. If the strategy x̃t produced by the OMD
update satisfies the constraints with high probability, then γt is set to zero, and the algorithm selects
strategy x̃t. A larger γt weights more the strictly feasible strategy x⋄ than x̃t. In the first rounds,
since confidence intervals for cost estimates are large, γt is strictly greater than zero, while, as the
confidence intervals become smaller, γt approaches zero. As in Algorithm 1, when the truncated safe
decision space is not empty, the algorithm runs a step of the OMD with log-barrier sub-routine. Then,
a new combination factor is computed (Line 19). On the other hand, if the truncated safe decision
space is empty, then γt is set to zero (Line 23), and the algorithm thus selects the known strictly
feasible strategy. In Figure 1 in Appendix A, we provide a graphical intuition on how xt is selected
when K = 3.

5.2 Theoretical Guarantees of SOLB

In this section, we provide the theoretical guarantees attained by SOLB. We start by showing that
SOLB satisfies the constraints at every round with high probability.

Theorem 3. Let δ ∈ (0, 1). With probability at least 1− δ, SOLB guarantees that g⊤
i xt ≤ αi holds

for every action a ∈ [K], constraint i ∈ [m], and round t ∈ [T ].

Theorem 3 can be proven by analyzing the behavior of the combination factor γt. We show that
γt is large enough to compensate the violations potentially suffered by the strategy x̃t+1 computed
by the OMD update. Specifically, γt = 0 when x̃t+1 satisfies the constraints with high probability.
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Algorithm 2 SOLB

Require: Learning rate η > 0, confidence parameter δ ∈ (0, 1), thresholds {αi}i∈[m], strictly feasible strategy
x⋄ ∈ ∆K with its associated costs {θi}i∈[m] (see Assumption 2)

1: Define increase factor κ← e
1

lnT

2: Initialize x̃1 ← 1
K
1, ρ1,a ← 2K, η1,a ← η for all a ∈ [K], ĝ1,i ← 0 for all i ∈ [m], β1 ← 1

3: Initialize γ0 ← maxi∈[m]
1−αi
1−θi

4: Select x1 ← γ0x
⋄ + (1− γ0)x̃1

5: for t ∈ [T ] do
6: Select action at ∼ xt
7: Observe loss ℓt(at) and constraint costs gt,i(at), ∀i ∈ [m]

8: Update ĝt,i and βt as described in Section 3.1
9: Compute the safe decision space S◦

t as described in Section 3.3
10: Compute the truncated safe decision space S̃t ← Ω ∩ S◦

t

11: if S̃t is not empty then
12: Compute ℓ̂t(a)←

ℓt(a)1{at=a}
xt(a)

,∀a ∈ [K]

13: x̃t+1 ← argminx∈S̃t
ℓ̂t

⊤
x+Dψt(x,xt), where ψt(x) =

∑K
a=1

1
ηt,a

ln 1
x(a)

14: for a ∈ [K] do
15: if 1

xt+1(a)
> ht,a then

16: ht+1,a ← 2
xt+1(a)

, ηt+1,a ← ηt,aκ

17: else
18: ht+1,a ← ht,a, ηt+1,a ← ηt,a

19: Compute the combination factor:

γt ←

maxi∈[m]

{
min{(ĝt,i+βt)

⊤x̃t+1,1}−αi

min{(ĝt,i+βt)
⊤x̃t+1,1}−θi

}
if E holds

0 otherwise
,

20: where E = {∃i ∈ [m] : (ĝt,i + βt)
⊤x̃t+1 > αi}

21: else
22: Select strategy x̃t+1 ∼ Ω randomly
23: Set the combination factor to γt ← 1

24: xt+1 ← γtx
⋄ + (1− γt)x̃t+1

Otherwise, γt is proportional to the pessimistic violation that x̃t+1 would suffer. Assuming that
x⋄ is strictly feasible implies that γt < 1 in every round t in which the truncated safe decision
space is non-empty. To see this, notice that γt ≤ maxi∈[m]

1−αi

1−θi ≤ maxi∈[m]
1−αi

1−αi+ρ
< 1. Thus, a

minimum amount of exploration is always guaranteed. When the truncated safe decision space is
empty, the algorithm uses the strictly feasible strategy.

We now analyze the regret suffered by SOLB. Before presenting our main result, we introduce some
technical lemmas that are useful to understand the nature of the regret bound.

Lemma 3. Let δ ∈ (0, 1) and ρ ≥ 12K
T . Then, with probability at least 1− 2δ, SOLB satisfies:

R⋄
T (ℓ1:T ) ≤ O

K
ρ

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2

· ln
(
KTm

δ

)
+
K

ρ6
ln

(
KTm

δ

) , (2)

where R⋄
T (ℓ1:T ) :=

∑T
t=1 γt−1ℓ

⊤
t (x

⋄ − x∗).

Intuitively, the above lemma states that the regret accrued by the strictly feasible strategy, when
weighted by the combination factors, is not too large. Specifically, the term that appears in Equa-
tion (2) is the scaled Euclidean norm of the sequence of instantaneous regrets suffered by x⋄. This
quantity represents some sort of distance between an optimal strategy and the strictly feasible one. At
the end of this section, we provide a discussion on the role of this quantity, showing that it represents
a source of complexity for the problem instance.
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Lemma 4. Let δ ∈ (0, 1) and η ≤ ρ
40H lnT ln(H/δ) , where H := ln (⌈ln(T )⌉⌈3 ln(T )⌉/δ). Then, with

probability at least 1− 2δ, SOLB satisfies:

R̃T (ℓ1:T ) ≤ O

(
K

η
+
η

ρ

T∑
t=1

ℓ⊤t xt +
Kη

ρ
ln

(
1

δ

)
+

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)
+
η

ρ

T∑
t=1

ℓ⊤t x
∗ ln

(
1

δ

))
,

where R̃T (ℓ1:T ) =
∑T
t=1(1− γt−1)ℓ

⊤
t (x̃t − x∗).

Lemma 4 provides an upper bound on the regret accrued by the strategy proposed by OMD, when
weighted by 1− γt. The bound seems involved. However, the terms we are more interested in are
the second and the fifth, which dominate the other ones. In particular, we highlight how the quantity
R̃T (ℓ1:T ) is bounded by a sum of the total loss of the strategy played by SOLB and the total loss of
the optimal strategy. This provides a link between the total loss of the strategy proposed by OMD,
the total loss of the strategy that is actually played by SOLB, and the total loss of the optimal strategy.
Keeping in mind that our goal is to obtain a regret bound for SOLB that scales with the latter, Lemma
4 plays a key role in the final result. The proofs of the lemmas are in Appendix D.1.

We are now ready to present our main result, i.e., a high-probability regret bound for SOLB.

Theorem 4. Let δ ∈ (0, 1), ρ ≥ 12K
T , and η = min

{
ρ

40H lnT ln(H/δ) ,
√
K/

∑T
t=1 ℓ⊤t x∗ ln(1/δ)

}
, where

H := ln (⌈ln(T )⌉⌈3 ln(T )⌉/δ). Then, SOLB suffers a cumulative regret bounded as:

RT (ℓ1:T ) ≤ Õ

(
K ln (1/δ)

ρ

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2

︸ ︷︷ ︸
(A) Safety Complexity

+
1

ρ

√√√√K

T∑
t=1

ℓ⊤t x
∗ ln

(
1

δ

)
︸ ︷︷ ︸

(B) Bandit Complexity

)
, (3)

where Õ hides universal constants and logarithmic terms not depending on δ.

Theorem 4 is proved by decomposing the regret in the quantities analyzed in Lemmas 3 and 4. By
construction, xt = γt−1x

⋄+(1−γt−1)x̃t, which impliesRT (ℓ1:T ) = R⋄
T (ℓ1:T )+ R̃T (ℓ1:T ). Thus,

we can sum the upper bounds presented in Lemmas 3 and 4. Finally, noting that, by definition of η, it
holds η

ρ

∑T
t=1 ℓ

⊤
t xt ≤ 1

2RT + η
ρ

∑T
t=1 ℓ

⊤
t x

∗, we can solve the deriving quadratic inequality in RT ,
which yields Equation (3). A detailed proof of Theorem 4 is in Appendix D.1. Theorem 4 is one of
the main results of this paper. It establishes a regret bound that depends on two contributions: the
total loss incurred by an optimal-in-hindsight strategy (B), and the total squared difference between
the losses of the strictly feasible strategy and the benchmark (A). This result provides a natural
interpretation on the intrinsic difficulty of MABs with hard constraints. On the one hand, our bound
scales as the performance of an optimal strategy, which is common to any small-loss bound in
unconstrained MABs. We call this contribution Bandit Complexity, as it represents the complexity of
learning independently of the presence of the constraints. On the other hand, we pay an additional
term—peculiar of our setting—that encodes the distance between the benchmark and the strictly
feasible strategy given as input to the algorithm. We call this contribution Safety Complexity, as it
represents the complexity of learning an optimal feasible strategy while satisfying the constraints at
every round with high probability. We acknowledge that the state-of-the-art bounds in online settings
with hard constraints are of order Õ(1/ρ

√
T ) (e.g., [Pacchiano et al., 2021]). Indeed, our bound not

only improves the aforementioned result in the best case, while being equivalent in the worst one, but
it also decomposes the former in two quantities that are easily interpretable.

5.3 A Small-Loss Style Regret Lower Bound

In this section, we provide a small-loss style regret lower bound for the hard constrained bandit
problem. In [Gerchinovitz and Lattimore, 2016] the authors show that, in adversarial non-constrained
bandit problems, the regret suffered by every algorithm is lower bounded as O(

√
L∗), where L∗ is the

total loss accrued by the benchmark. This term is represented, in our setting, by the Bandit Complexity
contribution. In our setting, the strictly feasible strategy x⋄ is crucial in defining how hard is an
instance: in fact, Equation (3) shows that SOLB benefits instances where the optimum is close (in terms
of performances) to the strictly feasible strategy, which translates in a small Safety Complexity. This
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behavior is natural as the strictly feasible strategy represents a starting point for the exploration, and
the algorithm remains somehow tied to that. This raises the natural question on whether this double de-
pendency, one on the optimal total loss and the other on the difference with the strictly feasible strategy,
is actually tight. The next two results bridge Theorem 4 with the standard literature results, i.e. regret
bounds depending on T , and show that the performance of SOLB is optimal when disregarding logarith-
mic terms. We start by introducing an important technical notion, that is handy in bridging constrained
small-loss bounds and standard bounds depending on T only. We define the constrained small-loss

balls as Bω,∆,T :=
{
ℓ1:T ∈ [0, 1]KT :

∑T
t=1 ℓ⊤t x∗

T ≤ ω ∩
∑T

t=1(ℓ
⊤
t (x⋄−x∗))2

T ≤ ∆2
}
. The quantities

ω,∆ ∈ [0, 1] represent two different sources of difficulty for the learning algorithm: ω express how
difficult is the identification of the optimum as in a non-constrained bandit problem, and ∆ represents
the additional difficulty provided by the constraints satisfaction. The next result allows us to rephrase
the regret upper bound provided in Theorem 4 in terms of the constrained small-loss ball. In fact, it is
a trivial consequence of Equation (3) and the definition of constrained small-loss ball.

Corollary 1. For all ω ∈ [0, 1] and for all ∆ ∈ [0, 1], it holds supℓ1:T∈Bω,∆,T
E[RT (ℓ1:T )] ≤

Õ
(
K∆
ρ

√
T + 1

ρ

√
KωT

)
, where the expectation is taken w.r.t. the internal algorithm randomization.

Notice that ω and ∆ can be treated as instance-dependent parameters, as they represent how far an
instance is from the worst-case one, i.e. when those two are both equal to 1. Finally, the next result
shows that no algorithm can have a better dependence on the parameters ω and ∆.

Theorem 5. Let K ≥ 2, T ≥ max
{
2, (11 + lnT )

(
8
3

)2}
, and ω ∈

[
1
T

(
11
2 + lnT

)
, 12
]
. Then for

every randomized algorithm, we have supℓ1:T∈Bω,∆,T
E[RT (ℓ1:T )] ≥ Ω

(
∆
ρ

√
T +

√
ωT
)
, where

the expectation is taken with respect to the internal randomization of the algorithm.

A detailed proof of Theorem 5 can be found in Appendix D.3. This result shows that SOLB achieves
an optimal dependence on both ∆ and ω.

Finally, we leave as an open question whether the dependence on the constant ρ in contribution (B) of
the regret upper bound can be removed. Notice that ρ is a constant tied to the strictly feasible strategy
and it encompasses the difficulty provided by the constraints to the instance. Thus, we believe that
the 1/ρ dependence should affect contribution (A) only and we conjecture that our lower bound is
actually tight, while it is the upper bound that can be lowered.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction state all the main contributions made by the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: All the assumptions are clearly stated in Section 2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All the theoretical results clearly state their assumptions, while all their proofs
are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed, since the work is mainly
theoretical.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

The Appendix is structured as follows:

• In Appendix A, we provide a graphical representation of Algorithm 2’s update.

• In Appendix B, we provide the complete discussion on related works.

• In Appendix C, we provide the omitted analysis for the soft constraints setting.

• In Appendix D, we provide the omitted analysis for the hard constraints setting.

A Graphical Representation of the Update of Algorithm 2

x̃t+1

x⋄

xt+1

(a)

x̃t+1

x⋄

xt+1

(b)

x̃t+1

x⋄

xt+1

(c)

Figure 1: A graphical representation of the update performed by Algorithm 2. For the sake of exposition, we
omit the constraint x(a) ≥ 1/T,∀a ∈ [K]. Specifically, in Figure 1(a), we provide the graphical representation
of the safe subset of the simplex. Notice that, the strictly safe strategy x⋄ associated to the Slater’s parameter ρ
is a vertex of the simplex. In Figure 1(b), we provide the graphical representation of the estimated safe decision
space. Notice that, x̃t+1 lies on this set as prescribed by the projection of both Algorithm 1 and Algorithm 2.
Finally, in Figure 1(c), we provide how the convex combination is performed. Notice that, xt+1 is computed
pessimistically. Indeed, due to the high uncertainty in the constraints estimation, xt+1 is an interior point of the
safe space.

B Related Works

Data-Dependent Regret Bounds Over the last two decades, in the literature on (unconstrained)
adversarial MABs there has been an increasing interest in providing regret guarantees that depend
on the difficulty of the specific instance faced by algorithm. Such bounds are usually referred to
as data-dependent bounds or instance-dependent bounds. Examples include, but are not limited to,
small-loss bounds (also called first-order bounds). An algorithm enjoying small-loss guarantees
has its regret upper bound scaling with O(

√
L∗), where L∗ ≤ T is the total loss accrued by the

benchmark. Small loss bounds over the expected regret have been obtained in several settings, from
MABs to contextual bandits [Allenberg et al., 2006, Neu, 2015b, Allen-Zhu et al., 2018, Lee et al.,
2020b]. However, few works managed to recover small-loss guarantees that hold with high probability
[Neu, 2015a, Lee et al., 2020a]. The tightness of small-loss bounds has been analyzed only recently.
In particular, in [Gerchinovitz and Lattimore, 2016] the authors provide data-dependent lower bounds
for adversarial MABs, showing that the O(

√
L∗) rate cannot be improved.
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Constrained Online Learning Online leaning with unknown constraints has been widely inves-
tigated (see, e.g., [Mannor et al., 2009, Liakopoulos et al., 2019, Castiglioni et al., 2022a,b]). Two
main settings are usually studied. In soft constraints settings (see, e.g., [Chen et al., 2022]), the
aim is to guarantee that the constraint violations incurred by the algorithm grow sub-linearly. In
hard constraints settings, the algorithms must satisfy the constraints at every round, by assuming
knowledge of a strictly feasible decision (see, e.g., [Pacchiano et al., 2021]). Both soft and hard
constraints have been generalized to settings that are more challenging than MABs, such as linear
bandits (see, e.g., [Gangrade et al., 2024]) and games (see, e.g., [Bernasconi et al., 2022]). None
of these works in the constrained online learning literature studies data-dependent regret bounds.
There also exists a huge literature on constrained Markov decision processes (see, e.g., [Wei et al.,
2018, Zheng and Ratliff, 2020, Bai et al., 2020, Efroni et al., 2020, Qiu et al., 2020, Ding et al.,
2021, Liu et al., 2021, Wei et al., 2022, 2023, Ding and Lavaei, 2023, Stradi et al., 2024b, Müller
et al., 2024, Stradi et al., 2025, 2024a]). Most of these works focus on stochastic settings, and none
of them provides data-dependent regret bounds. Finally, some works focus on constrained online
convex optimization settings (see, e.g., [Mahdavi et al., 2012, Jenatton et al., 2016, Yu et al., 2017]).
Nonetheless, they do not provide data-dependent regret bounds.

C Omitted Proofs for Soft Constraints

C.1 Non-Emptiness of the Truncated Safe Decision Space

Lemma 2. For every t ∈ [T ], let S̃t := Ω ∩ S◦
t be the intersection of the truncated simplex and the

safe decision space. Then, under E(δ), it holds that ∩t∈[T ]S̃t is non-empty.

Proof. Consider a feasible strategy x◦, namely, g⊤
i x

◦ ≤ αi for all i ∈ [m]. Under the event E(δ),
Lemma 1 implies (

ĝt,i − βt
)⊤

x◦ ≤ αi, ∀t ∈ [T ]. (4)
Notice that, since x∗ is feasible, the aforementioned reasoning still holds for the constrained optimal
solution.

Then, notice that for any x ∈ ∆K , there exists a strategy x̃ ∈ Ω s.t. ∥x̃− x∥1 ≤ K
T .

Thus, employing the reasoning above and taking:

x̃ := argmin
x∈Ω

∥x− x◦∥1,

we have, for all i ∈ [m] and for all t ∈ [T ]:

(ĝt,i − βt)
⊤x̃ = (ĝt,i − βt)

⊤(x̃± x◦)

= (ĝt,i − βt)
⊤x◦ + (ĝt,i − βt)

⊤(x̃− x◦)

≤ αi + ∥x̃− x◦∥1

≤ αi +
K

T
,

which holds with probability at least 1− δ and implies that S̃t is never empty.

To conclude the proof, we notice that:⋂
t∈[T ]

S̃t =
⋂
t∈[T ]

(Ω ∩ S◦
t )

= Ω ∩

 ⋂
t∈[T ]

S◦
t

 .

Noticing that, by Equation (4) and employing the same reasoning above, it holds:

x̃ ∈
⋂
t∈[T ]

S̃t,

concludes the proof.
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C.2 Cumulative Regret of COLB

Lemma 5. For any δ ∈ (0, 1), for any u s.t. u ∈ ∩t∈[T ]S̃t, Algorithm 1 guarantees the following
bound:

T∑
t=1

ℓ̂t
⊤
(xt − u) ≤ O

(
K lnT

η
+ η

T∑
t=1

ℓt(at)

)
− h⊤

Tu

10η lnT
,

with probability at least 1− δ.

Proof. We fix u s.t. u ∈ ∩t∈[T ]S̃t, that is, any possible vector belonging to the intersection
between the safe sets built by Algorithm 1. Then, we apply standard OMD with log-barrier results
(see [Agarwal et al., 2017]) to obtain:

T∑
t=1

ℓ̂t
⊤
(xt − u) ≤

T∑
t=1

(Dψt
(u,xt)−Dψt

(u,xt+1)) +

T∑
t=1

K∑
a=1

ηt,ax
2
t (a)ℓ̂t

2
(a). (5)

The result above holds since S̃t is a polytope (thus, convex) for any t ∈ [T ]. As S̃t is included in ∆K ,
then the intersection is convex. Moreover, we notice that, by Lemma 2, we have, with probability at
least 1− δ, that ∩t∈[T ]S̃t is non-empty, by construction of the estimated safe set. Equation (5) holds
under the event mentioned above.

For the last term of Equation (5), we simply notice that, for any t ∈ [T ], it holds:

ηt,ax
2
t (a)ℓ̂t

2
(a) = ηt,ax

2
t (a)

ℓ2t (a)

x2t (a)
1{at = a}

≤ ηt,atℓ
2
t (at)

≤ ηt,atℓt(at)

≤ ηT,atℓt(at)

≤ 5ηℓt(at),

where the last inequality holds since ηT,a = κnaη1,a, where na is the number of times Algorithm 1
increases the learning rate for arm a, and κna ≤ 5.

In the following, we define h(y) = y− 1− ln y. Thus we bound the first two term of Equation (5) as
follows:

T∑
t=1

(Dψt
(u,xt)−Dψt

(u,xt+1))

≤ Dψ1(u,x1) +

T−1∑
t=1

(
Dψt+1(u,xt+1)−Dψt(u,xt+1)

)
(6)

=
1

η

K∑
a=1

h

(
u(a)

x1(a)

)
+

K∑
a=1

T−1∑
t=1

(
1

ηt+1,a
− 1

ηt,a

)
h

(
u(a)

xt+1(a)

)
,

where Inequality (6) holds since the Bregman is always greater or equal than zero.

Thus, we focus on the first term, bounding it as follows:

1

η

K∑
a=1

h

(
u(a)

x1(a)

)
=

1

η

K∑
a=1

− ln(Ku(a)) (7)

≤ K lnT

η
, (8)

where Equation (7) holds since xt is initialized uniformly and Inequality (8) holds since u(a) ≥ 1/T
for all a ∈ [K].

To bound the final term, we will refer as ta to the last time step where the learning rate of arm a is
increased. Thus, we proceed as follows.(

1

ηtj+1,a
− 1

ηtj ,a

)
h

(
u(a)

xtj+1(a)

)
=

1− κ

knjη
h

(
u(a)

xtj+1(a)

)
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≤
−h
(

u(a)
xtj+1(a)

)
5η lnT

=
−h
(
u(a)hT,a

2

)
5η lnT

=
ln
(
u(a)hT,a

2

)
− u(a)hT,a

2 + 1

5η lnT

≤
lnT − u(a)hT,a

2 + 1

5η lnT
,

where we used that 1− κ ≤ − 1
lnT and u(a)hT,a

2 ≤ 1
xtj+1(a)

≤ T .

Combining the previous bounds concludes the proof.

Theorem 2. Let δ ∈ (0, 1) and η = min
{
1/40H lnT ln(H/δ),

√
K/

∑T
t=1 ℓ⊤t x∗ ln(1/δ)

}
, where H :=

ln (⌈ln(T )⌉⌈3 ln(T )⌉/δ). Then, with probability at least 1− 4δ, COLB suffers a cumulative regret that

can be bounded as RT (ℓ1:T ) ≤ Õ
(√

K
∑T
t=1 ℓ

⊤
t x

∗ ln (1/δ)

)
.

Proof. We first decompose the regret as follows:

RT :=

T∑
t=1

ℓ⊤t (xt − x∗)

=

T∑
t=1

ℓ̂
⊤
t (xt − u) +

T∑
t=1

(ℓt − ℓ̂t)
⊤xt +

T∑
t=1

(ℓ̂t − ℓt)
⊤u+

T∑
t=1

ℓ⊤t (u− x∗)

≤
T∑
t=1

ℓ̂
⊤
t (xt − u) +

T∑
t=1

(ℓt − ℓ̂t)
⊤xt +

T∑
t=1

(ℓ̂t − ℓt)
⊤u+K,

where we take u as minu∈∩t∈[T ]S̃t
∥x∗ − u∥1 and the inequality follows from the Hölder inequality

after noticing that, under the event of Lemma 2, which holds with probability at least 1 − δ, the
maximum ℓ1 distance between the safe optimum x∗ and u is K/T .

We will bound the remaining quantities separately.

Bound on the first term The first term follows from Lemma 5.

Bound on the second term To bound the second term we notice that it is a Martingale difference
sequence, where any difference is bounded as:∣∣∣∣(Et [ℓ̂t]− ℓ̂t

)⊤
xt

∣∣∣∣ ≤ max

{
ℓ̂t

⊤
xt,Et

[
ℓ̂t

]⊤
xt

}
= max

{
K∑
a=1

xt(a)
ℓt(a)

xt(a)
1{at = a},Et

[
ℓ̂t

]⊤
xt

}
≤ 1.

Similarly, we bound the second moment as:

Et

[((
Et
[
ℓ̂t

]
− ℓ̂t

)⊤
xt

)2
]
= Et

[((
ℓt − ℓ̂t

)⊤
xt

)2
]

≤ Et
[
ℓ̂
⊤
t xt

]
= ℓ⊤t xt.
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Thus we can apply the Freedman inequality to attain, with probability at least 1− δ:

T∑
t=1

(ℓt − ℓ̂t)
⊤xt = O


√√√√ T∑

t=1

ℓ⊤t xt ln

(
1

δ

)
+ ln

(
1

δ

) .

Bound on the third term To bound the third term, we again notice that the quantity of interest
is a Martingale difference sequence, but we apply a modified version of the Freedman inequality
(see [Lee et al., 2020a]).

First we notice that:
(ℓ̂t − ℓt)

⊤u ≤ h⊤
t u ∈ [1, T ].

We now focus on bounding the second moment as follows:

Et
[(

(ℓ̂t − ℓt)
⊤u
)2]

≤ Et
[(

ℓ̂t
⊤
u
)2]

= Et
[
ℓ2t (at)u

2(at)

x2t (at)

]
≤

K∑
a=1

u2(a)ℓt(a)hT,a

≤ h⊤
Tu · ℓ⊤t u.

Thus, with probability at least 1− δ, we have by Theorem 2.2 of [Lee et al., 2020a]:

T∑
t=1

(ℓ̂t − ℓt)
⊤u = H


√√√√8

T∑
t=1

ℓ⊤t u · h⊤
Tu ln

(
H

δ

)
+ 2h⊤

Tu ln

(
H

δ

) ,

where H = ln
(

⌈log(T )⌉⌈3 log(T )⌉
δ

)
.

Final result Combining the previous results and applying a Union Bound, we have, with probability
at least 1− 3δ:

RT ≤ O

(
K lnT

η
+ η

T∑
T=1

ℓt(at)

)
− h⊤

Tu

10η lnT
+O


√√√√ T∑

t=1

ℓ⊤t xt ln

(
1

δ

)
+ ln

(
1

δ

)+

H


√√√√8

T∑
t=1

ℓ⊤t u · h⊤
Tu ln

(
H

δ

)
+ 2h⊤

Tu ln

(
H

δ

) .

Now we notice that, applying Freedman inequality, it is easy to show the following bound:

T∑
T=1

ℓt(at)−
T∑
t=1

ℓ⊤t xt ≤ 2

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)
+ ln

(
1

δ

)
,

which holds with probability at least 1− δ and implies, by AM-GM inequality:

T∑
t=1

ℓt(at) ≤ 2

T∑
t=1

ℓ⊤t xt + 2 ln

(
1

δ

)
.

Now, going back to the regret bound, it holds, with probability at least 1− 4δ, by Union Bound:

RT ≤ O

(
K lnT

η
+ η

T∑
t=1

ℓ⊤t xt + η ln

(
1

δ

))
− h⊤

Tu

10η lnT
+O


√√√√ T∑

t=1

ℓ⊤t xt ln

(
1

δ

)
+ ln

(
1

δ

)
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+H


√√√√8

T∑
t=1

ℓ⊤t u · h⊤
Tu ln

(
H

δ

)
+ 2h⊤

Tu ln

(
H

δ

)
= O

K lnT

η
+ η

T∑
t=1

ℓ⊤t xt + ln

(
1

δ

)
+

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)− h⊤
Tu

10η lnT

+H


√√√√8

20Hη lnT

20Hη lnT

T∑
t=1

ℓ⊤t u · h⊤
Tu ln

(
H

δ

)
+ 2h⊤

Tu ln

(
H

δ

)
≤ O

K lnT

η
+ η

T∑
t=1

ℓ⊤t xt + ln

(
1

δ

)
+

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)− h⊤
Tu

10η lnT

+ 160H2η lnT

T∑
t=1

ℓ⊤t u ln

(
H

δ

)
+

H

20Hη lnT
· h⊤

Tu+ 2Hh⊤
Tu ln

(
H

δ

)
(9a)

≤ O

K lnT

η
+ η

T∑
t=1

ℓ⊤t xt + ln

(
1

δ

)
+

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)
+ 160H2η lnT

T∑
t=1

ℓ⊤t u ln

(
H

δ

)
(9b)

≤ Õ

K
η

+ η

T∑
t=1

ℓ⊤t xt +

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)
+ η

T∑
t=1

ℓ⊤t u ln

(
1

δ

)
≤ Õ

K
η

+ η

T∑
t=1

ℓ⊤t xt +

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)
+ η

T∑
t=1

ℓ⊤t x
∗ ln

(
1

δ

) , (9c)

where Inequality (9a) holds by AM-GM inequality, Inequality (9b) holds for η ≤ 1

40H lnT ln(H
δ )

and

Inequality (9c) holds after noticing that by definition of u,
∑T
t=1 ℓ

⊤
t u ≤

∑T
t=1 ℓ

⊤
t x

∗ +K. Since
η ≤ 1

2 , we have:

η

T∑
t=1

ℓ⊤t xt ≤
1

2
RT + η

T∑
t=1

ℓ⊤t x
∗,

and the regret can be rewritten as:

RT ≤ Õ

2K

η
+ 2

√√√√(1

2
RT + η

T∑
t=1

ℓ⊤t x
∗

)
ln

(
1

δ

)
+ 4η

T∑
t=1

ℓ⊤t x
∗

 .

We then set η = min

{
1

40H lnT ln(H
δ )
,
√

K∑T
t=1 ℓ⊤t x∗ ln( 1

δ )

}
and we solve the quadratic inequality in

RT , obtaining the following regret bound:

RT ≤ Õ


√√√√K

T∑
t=1

ℓ⊤t x
∗ ln

(
1

δ

) .

This concludes the proof.

C.3 Cumulative Violations of COLB

Theorem 1. Let δ ∈ (0, 1). Then, with probability at least 1 − 2δ, the COLB algorithm suffers

cumulative positive constraint violations VT ≤ O
(√

KT ln (TKm/δ)
)
.
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Proof. First, we underline that the following analysis holds for every constraint i ∈ [m], including
the one being violated the most, i.e., ĩ ∈ argmaxi∈[m]

∑T
t=1

[
g⊤
i xt − αi

]+
.

By Lemma 2 we have that, under the clean event, xt ∈ S̃t. By construction, this implies (ĝt−1,i −
βt−1)

⊤xt ≤ αi +
K
T for every t ∈ [T ]. Employing Lemma 1, we get, under the clean event:[

g⊤
i xt − αi

]+ ≤ K

T
+ 2β⊤

t−1xt.

To bound the second term we proceed as follows:

T∑
t=1

β⊤
t−1xt =

T∑
t=1

K∑
a=1

βt−1(a)xt(a)

≤
T∑
t=1

K∑
a=1

βt−1(a)1t(a) +
√
2T log(δ−1) (10)

=

√
4 ln

(
TKm

δ

) T∑
t=1

K∑
a=1

1t(a)√
max{1, Nt−1(a)}

+
√

2T ln(δ−1)

≤ 3

√
4 ln

(
TKm

δ

) K∑
a=1

√
NT (a) +

√
2T ln(δ−1) (11)

≤ 3

√
4KT ln

(
TKm

δ

)
+
√
2T ln(δ−1), (12)

where Inequality (10) follows from Azuma Inequality,with probability at least 1− δ, Inequality (11)
holds since

∑T
t=1

1√
t
≤ 3

√
T , and Inequality (12) from Cauchy-Schwarz Inequality and the fact that∑K

a=1NT (a) = T .

Finally, it holds:

VT =

T∑
t=1

[
g⊤
i xt − αi

]+
≤

T∑
t=1

(
K

T
+ 2β⊤

t−1xt

)

≤ K + 3

√
4KT ln

(
TKm

δ

)
+
√
2T ln(δ−1).

Employing a Union Bound concludes the proof.

D Omitted Proofs for Hard Constraints

D.1 Cumulative Regret of SOLB

Lemma 3. Let δ ∈ (0, 1) and ρ ≥ 12K
T . Then, with probability at least 1− 2δ, SOLB satisfies:

R⋄
T (ℓ1:T ) ≤ O

K
ρ

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2

· ln
(
KTm

δ

)
+
K

ρ6
ln

(
KTm

δ

) , (2)

where R⋄
T (ℓ1:T ) :=

∑T
t=1 γt−1ℓ

⊤
t (x

⋄ − x∗).

Proof. We first split the round in two sets T1, T2. T1 encompasses the rounds t ∈ [T ] s.t. γt−1 ≤ 1/2,
T2 the remaining rounds.
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Bound in T1 We apply the Cauchy–Schwarz inequality obtaining the following bound:

∑
t∈T1

γt−1ℓ
⊤
t (x

⋄ − x∗) ≤

√√√√(∑
t∈T1

γ2t−1

)(∑
t∈T1

(
ℓ⊤t (x

⋄ − x∗)
)2)

=

√∑
t∈T1

γ2t−1 ·

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2
.

We will now focus on the bounding the sequence
∑
t∈T1

γ2t−1.

We proceed as follows:∑
t∈T1

γ2t−1 =
∑
t∈T1

max
i∈[m]

{
min{(ĝt−1,i + βt−1)

⊤x̃t, 1} − αi

min{(ĝt−1,i + βt−1)
⊤x̃t, 1} − θi

}2

≤
∑
t∈T1

max
i∈[m]

{
(ĝt−1,i + βt−1)

⊤x̃t − αi

(ĝt−1,i + βt−1)
⊤x̃t − θi

}2

≤
∑
t∈T1

(
2β⊤

t−1x̃t +
K
T

ρ

)2

≤
∑
t∈T1

2

(
2β⊤

t−1x̃t

ρ

)2

+
2K2

ρ2
,

where the second inequality holds by definition of ρ and by Lemma 1, with probability at least 1− δ.

Thus we bound the following quantity:∑
t∈T1

(
β⊤
t−1x̃t

)2
≤
∑
t∈T1

(
2(1− γt−1)β

⊤
t−1x̃t

)2
≤ 4

T∑
t=1

(
β⊤
t−1xt

)2
= 4

T∑
t=1

(
K∑
a=1

√
4 ln(TKm/δ)

max{1, Nt−1(a)}
xt(a)

)2

≤ 4K

T∑
t=1

K∑
a=1

(√
4 ln(TKm/δ)

max{1, Nt−1(a)}
xt(a)

)2

≤ K16 ln(TKm/δ)

T∑
t=1

K∑
a=1

1

max{1, Nt−1(a)}
xt(a)

= K16 ln(TKm/δ)

T∑
t=1

K∑
a=1

(
xt(a)− 1t(a)

max{1, Nt−1(a)}
+

1t(a)

max{1, Nt−1(a)}

)
,

where the first step holds since γt−1 ≤ 1/2.

We can bound the second term as:
T∑
t=1

K∑
a=1

1t(a)

max{1, Nt−1(a)}
≤ K

(
1 +

T∑
t=1

1

t

)
≤ 3K + 2K ln(T ).

To bound the first term we notice that it is a martingale difference sequence in which any martingale
difference is bounded by 1. Thus, we proceed as follows:

Et

( K∑
a=1

xt(a)− 1t(a)

max{1, Nt−1(a)}

)2
 ≤ Et

[
K

K∑
a=1

(
xt(a)− 1t(a)

max{1, Nt−1(a)}

)2
]
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= K

K∑
a=1

Et
[
(xt(a)− 1t(a))

2
]

max{1, N2
t−1(a)}

= K

K∑
a=1

xt(a)(1− xt(a))

max{1, N2
t−1(a)}

≤ K

K∑
a=1

xt(a)

max{1, Nt−1(a)}
,

and we apply Lemma 9 of [Jin et al., 2020] with λ = 1/2K to obtain, with probability at least 1− δ:
T∑
t=1

K∑
a=1

xt(a)− 1t(a)

max{1, Nt−1(a)}
≤ 1

2

T∑
t=1

K∑
a=1

xt(a)

max{1, Nt−1(a)}
+ 2K ln(1/δ).

Thus, employing a Union Bound, we obtain, with probability at least 1− 2δ:∑
t∈T1

(
β⊤
t−1x̃t

)2
≤ 96K2 ln(TKm/δ) + 128K2 ln2(TKm/δ),

and similarly: ∑
t∈T1

γ2t−1 ≤ 768

ρ2
K2 ln(TKm/δ) +

1024

ρ2
K2 ln2(TKm/δ) +

2K2

ρ2
.

To conclude, we have, with probability at least 1− 2δ:∑
t∈T1

γt−1ℓ
⊤
t (x

⋄ − x∗)

≤
√∑
t∈T1

γ2t−1 ·

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2

≤

√
768

ρ2
K2 ln(TKm/δ) +

1024

ρ2
K2 ln2(TKm/δ) +

2K2

ρ2
·

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2

≤ 43K ln(TKm/δ)

ρ

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2
.

Bound in T2 We first apply the Hölder inequality to obtain the following bound:∑
t∈T2

γt−1ℓ
⊤
t (x

⋄ − x∗) ≤
∑
t∈T2

γt−1.

To bound the aforementioned terms, we upper bound the cardinality of the set T2. This is done by
first bounding the cardinality of the following set:

T3 =

{
t ∈ [T ] :

K∑
a=1

βt−1(a)1t(a) ≥
ρ2

8

}
.

From the definition we can state the following lower bound:∑
t∈T3

K∑
a=1

βt−1(a)1t(a) ≥ |T3|
ρ2

8
.

We first bound the quantity
∑
t∈T3

∑K
a=1 βt−1(a)1t(a) similarly to what done in Theorem 1 as:

∑
t∈T3

K∑
a=1

βt−1(a)1t(a) ≤ 3

√
4K|T3| ln

(
TKm

δ

)
,
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which holds with probability at least 1− δ. Combining the previous bounds, we obtain:

|T3|
ρ2

8
≤ 3

√
4K|T3| ln

(
TKm

δ

)
,

which implies:

|T3| ≤
2304

ρ4
K ln

(
TKm

δ

)
.

Thus, we employ the reverse Markov inequality to bound the probability that t ∈ T2 ∩ T3. First we
lower bound the following quantity:

Et

[
K∑
a=1

βt−1(a)1t(a)

]
= β⊤

t−1xt

≥ (1− γt−1)β
⊤
t−1x̃t

≥ ρ

1 + ρ
β⊤
t−1x̃t

≥ ρ2

4
− ρK

T

≥ ρ2

6
,

where the last steps hold since:

γt−1 ≤ max
i∈[m]

{
1− αi
1− θi

}
= max
i∈[m]

{
1− αi

1 + ρ− αi

}
≤ 1

1 + ρ
,

β⊤
t−1x̃t ≥

ρ
2 − K

T when t ∈ T2, under the clean event and for ρ ≥ 12K
T . We can now employ the

reverse Markov inequality to state:

P

{
K∑
a=1

βt−1(a)1t(a) ≥
ρ2

8
|Ft−1

}
≥

ρ2

6 − ρ2

8

1− ρ2

8

≥ ρ2

24
.

Employing the equation above we can state that:

2304

ρ4
K ln

(
TKm

δ

)
≥ |T3| ≥

ρ2

24
|T2|,

from which:

|T2| ≤
55296

ρ6
K ln

(
TKm

δ

)
.

To conclude, we have, with probability at least 1− δ, the following bound:∑
t∈T2

γt−1ℓ
⊤
t (x

⋄ − x∗) ≤
∑
t∈T2

γt−1 ≤ |T2| ≤
55296

ρ6
K ln

(
TKm

δ

)
.

Combining everything Considering the quantity of interest, we have the following bound with
probability at least 1− 2δ by Union Bound:

T∑
t=1

γt−1ℓ
⊤
t (x

⋄ − x∗) =
∑
t∈T1

γt−1ℓ
⊤
t (x

⋄ − x∗) +
∑
t∈T2

γt−1ℓ
⊤
t (x

⋄ − x∗)

≤ 43K ln(TKm/δ)

ρ

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2

+
55296

ρ6
K ln

(
TKm

δ

)
.

This concludes the proof.
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Lemma 4. Let δ ∈ (0, 1) and η ≤ ρ
40H lnT ln(H/δ) , where H := ln (⌈ln(T )⌉⌈3 ln(T )⌉/δ). Then, with

probability at least 1− 2δ, SOLB satisfies:

R̃T (ℓ1:T ) ≤ O

(
K

η
+
η

ρ

T∑
t=1

ℓ⊤t xt +
Kη

ρ
ln

(
1

δ

)
+

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)
+
η

ρ

T∑
t=1

ℓ⊤t x
∗ ln

(
1

δ

))
,

where R̃T (ℓ1:T ) =
∑T
t=1(1− γt−1)ℓ

⊤
t (x̃t − x∗).

Proof. Similarly to the analysis employed to prove Theorem 2, we decompose the quantity of interest
as follows:
T∑
t=1

(1− γt−1)ℓ
⊤
t (x̃t − x∗)

≤
T∑
t=1

(1− γt−1)ℓ̂
⊤
t (x̃t − u) +

T∑
t=1

(1− γt−1)(ℓt − ℓ̂t)
⊤x̃t +

T∑
t=1

(1− γt−1)(ℓ̂t − ℓt)
⊤u

+

T∑
t=1

ℓ⊤t (u− x∗)

≤
T∑
t=1

(1− γt−1)ℓ̂
⊤
t (x̃t − u) +

T∑
t=1

(1− γt−1)(ℓt − ℓ̂t)
⊤x̃t +

T∑
t=1

(1− γt−1)(ℓ̂t − ℓt)
⊤u+K.

We proceed bounding each term separately.

Bound on the first term To bound the first term, we can apply a similar analysis to the one of
Lemma 5, since, x̃t is played independently on γt−1 except for the loss estimator, to attain, under the
clean event:
T∑
t=1

(1− γt−1)ℓ̂
⊤
t (x̃t − u)

≤ O
(
K lnT

η

)
− min
t∈[T ]

(1− γt−1)
h⊤
Tu

10η lnT
+

T∑
t=1

(1− γt−1)

K∑
a=1

ηt,ax̃
2
t (a)ℓ̂t

2
(a)

≤ O
(
K lnT

η

)
− ρ

h⊤
Tu

10η lnT
+

T∑
t=1

(1− γt−1)

K∑
a=1

ηt,ax̃
2
t (a)ℓ̂t

2
(a).

To bound the last term, we proceed as follows:

(1− γt−1)ηt,ax̃
2
t (a)ℓ̂t

2
(a) = (1− γt−1)ηt,ax̃

2
t (a)

ℓ2t (a)

x2t (a)
1{at = a}

=
1

1− γt−1
(1− γt−1)

2ηt,ax̃
2
t (a)

ℓ2t (a)

x2t (a)
1{at = a}

≤ 1

ρ
ηt,ax

2
t (a)

ℓ2t (a)

x2t (a)
1{at = a}

≤ 1

ρ
ηt,atℓ

2
t (at)

≤ 1

ρ
ηt,atℓt(at)

≤ 1

ρ
ηT,atℓt(at)

≤ 5

ρ
ηℓt(at).

Thus, we obtain the following final bound, which holds with probability at least 1− δ:
T∑
t=1

(1− γt−1)ℓ̂
⊤
t (x̃t − u) ≤ O

(
K lnT

η
+
η

ρ

T∑
t=1

ℓt(at)

)
− ρ

h⊤
Tu

10η lnT
.
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Bound on the second term To bound the second term we first notice that (1−γt−1)x̃t ≤ xt. Thus,
we proceed similarly to Theorem 2, noticing that the quantity of interest is Martingale difference
sequence, where any difference is bounded as:∣∣∣∣(1− γt−1)

(
Et
[
ℓ̂t

]
− ℓ̂t

)⊤
x̃t

∣∣∣∣ ≤ (1− γt−1)ℓ̂t
⊤
x̃t

≤ ℓ̂t
⊤
xt

=

K∑
a=1

xt(a)
ℓt(a)

xt(a)
1{at = a}

≤ 1.

Furthermore, we bound the second moment as:

Et

[(
(1− γt−1)

(
Et
[
ℓ̂t

]
− ℓ̂t

)⊤
x̃t

)2
]
= Et

[(
(1− γt−1)

(
ℓt − ℓ̂t

)⊤
x̃t

)2
]

≤ Et
[(

(1− γt−1)ℓ̂
⊤
t x̃t

)2]
≤ Et

[(
ℓ̂
⊤
t xt

)2]
≤ Et

[
ℓ̂
⊤
t xt

]
= ℓ⊤t xt.

Thus we can apply the Freedman inequality to attain, with probability at least 1− δ:

T∑
t=1

(1− γt−1)(ℓt − ℓ̂t)
⊤x̃t ≤ O


√√√√ T∑

t=1

ℓ⊤t xt ln

(
1

δ

)
+ ln

(
1

δ

) .

Bound on the third term To bound the third term, we notice that the quantity of interest is a
Martingale difference sequence. To apply the modified version of the Freedman inequality (see [Lee
et al., 2020a]), we notice that:

(1− γt−1)(ℓ̂t − ℓt)
⊤u ≤ (1− γt−1)

K∑
a=1

1

xt(a)
u(a)

= (1− γt−1)

K∑
a=1

1

γt−1x⋄(a) + (1− γt−1)x̃t(a)
u(a)

≤ (1− γt−1)

K∑
a=1

1

(1− γt−1)x̃t(a)
u(a)

≤
K∑
a=1

1

minτ∈[t] x̃τ (a)
u(a)

≤ h⊤
t u ∈ [1, T ].

We now focus on bounding the second moment as follows:

Et
[(

(1− γt−1)(ℓ̂t − ℓt)
⊤u
)2]

≤ Et
[(

(1− γt−1)ℓ̂t
⊤
u
)2]

= Et
[
(1− γt−1)

2 ℓ
2
t (at)u

2(at)

x2t (at)

]
≤ Et

[
(1− γt−1)

2 ℓ2t (at)u
2(at)

(1− γt)2x̃2t (at)

]
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≤
K∑
a=1

u2(a)ℓt(a)hT,a

≤ h⊤
Tu · ℓ⊤t u.

Thus, with probability at least 1− δ, we have by Theorem 2.2 of [Lee et al., 2020a]:

T∑
t=1

(1− γt−1)(ℓ̂t − ℓt)
⊤u = H


√√√√8

T∑
t=1

ℓ⊤t u · h⊤
Tu ln

(
H

δ

)
+ h⊤

Tu ln

(
H

δ

) ,

where H = ln
(

⌈ln(T )⌉⌈3 ln(T )⌉
δ

)
.

Final result Combining the previous equations, we get, with probability at least 1− 3δ, by Union
Bound, the following bound:

T∑
t=1

(1− γt−1)ℓ
⊤
t (x̃t − x∗)

≤ O

(
K lnT

η
+
η

ρ

T∑
t=1

ℓt(at)

)
− ρ

h⊤
Tu

10η lnT
+O


√√√√ T∑

t=1

ℓ⊤t xt ln

(
1

δ

)
+ ln

(
1

δ

)
+H


√√√√8

T∑
t=1

ℓ⊤t u · h⊤
Tu ln

(
H

δ

)
+ h⊤

Tu ln

(
H

δ

)+K

≤ O

K lnT

η
+
η

ρ

T∑
t=1

ℓt(at) +

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)− ρ
h⊤
Tu

10η lnT

+H


√√√√8

T∑
t=1

ℓ⊤t u · h⊤
Tu ln

(
H

δ

)
+ h⊤

Tu ln

(
H

δ

) ,

where H = ln
(

⌈ln(T )⌉⌈3 ln(T )⌉
δ

)
.

Finally, we proceed similarly to Theorem 2, obtaining:
T∑
t=1

(1− γt−1)ℓ
⊤
t (x̃t − x∗)

≤ O

K lnT

η
+

2η

ρ

T∑
t=1

ℓ⊤t xt +
2η

ρ
ln

(
1

δ

)
+

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)− ρ
h⊤
Tu

10η lnT

+H


√√√√8

T∑
t=1

ℓ⊤t u · h⊤
Tu ln

(
H

δ

)
+ h⊤

Tu ln

(
H

δ

)
= O

K lnT

η
+

2η

ρ

T∑
t=1

ℓ⊤t xt +
2η

ρ
ln

(
1

δ

)
+

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)− ρ
h⊤
Tu

10η lnT

+H


√√√√8

20ρHη lnT

20ρHη lnT

T∑
t=1

ℓ⊤t u · h⊤
Tu ln

(
H

δ

)
+ h⊤

Tu ln

(
H

δ

)
≤ O

K lnT

η
+

2η

ρ

T∑
t=1

ℓ⊤t xt +
2η

ρ
ln

(
1

δ

)
+

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)− ρ
h⊤
Tu

10η lnT
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+
160H2η lnT

ρ

T∑
t=1

ℓ⊤t u ln

(
H

δ

)
+

ρH

20Hη lnT
h⊤
Tu+Hh⊤

Tu ln

(
H

δ

)

≤ Õ

K
η

+
η

ρ

T∑
t=1

ℓ⊤t xt +
Kη

ρ
ln

(
1

δ

)
+

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)
+
η

ρ

T∑
t=1

ℓ⊤t x
∗ ln

(
1

δ

) ,

where the first step holds by Freedman inequality and a union bound, setting the confidence to
1 − 4δ, and AM-GM inequality, the third step by AM-GM inequality and the last step holds for
η ≤ ρ

40H lnT ln(H
δ )

.

This concludes the proof.

Theorem 4. Let δ ∈ (0, 1), ρ ≥ 12K
T , and η = min

{
ρ

40H lnT ln(H/δ) ,
√
K/

∑T
t=1 ℓ⊤t x∗ ln(1/δ)

}
, where

H := ln (⌈ln(T )⌉⌈3 ln(T )⌉/δ). Then, SOLB suffers a cumulative regret bounded as:

RT (ℓ1:T ) ≤ Õ

(
K ln (1/δ)

ρ

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2

︸ ︷︷ ︸
(A) Safety Complexity

+
1

ρ

√√√√K

T∑
t=1

ℓ⊤t x
∗ ln

(
1

δ

)
︸ ︷︷ ︸

(B) Bandit Complexity

)
, (3)

where Õ hides universal constants and logarithmic terms not depending on δ.

Proof. We first notice that the regret can be decomposed as:

RT :=

T∑
t=1

ℓ⊤t xt − ℓ⊤t x
∗

=

T∑
t=1

γt−1ℓ
⊤
t (x

⋄ − x∗) +

T∑
t=1

(1− γt−1)ℓ
⊤
t (x̃t − x∗).

Employing Lemma 3, Lemma 4 and a Union Bound, we have, with probability at least 1− 5δ:

RT ≤ 43K ln(TKm/δ)

ρ

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2

+
55296

ρ6
K ln

(
TKm

δ

)

+ Õ

K
η

+
η

ρ

T∑
t=1

ℓ⊤t xt +
Kη

ρ
ln

(
1

δ

)
+

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)
+
η

ρ

T∑
t=1

ℓ⊤t x
∗ ln

(
1

δ

)
= Õ

(
K

ρ

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2

+
K

η
+
η

ρ

T∑
t=1

ℓ⊤t xt +
Kη

ρ
ln

(
1

δ

)
+

√√√√ T∑
t=1

ℓ⊤t xt ln

(
1

δ

)

+
η

ρ

T∑
t=1

ℓ⊤t x
∗ ln

(
1

δ

))
.

Since η ≤ ρ
2 , we have:

η

ρ

T∑
t=1

ℓ⊤t xt ≤
1

2
RT +

η

ρ

T∑
t=1

ℓ⊤t x
∗,

and the regret can be rewritten as:

RT ≤ Õ

(
K

ρ

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2

+
2K

η
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+ 2

√√√√(1

2
RT +

η

ρ

T∑
t=1

ℓ⊤t x
∗

)
ln

(
1

δ

)
+

4η

ρ

T∑
t=1

ℓ⊤t x
∗ ln

(
1

δ

))
.

We then set η = min

{
ρ

40H lnT ln(H
δ )
,
√

K∑T
t=1 ℓ⊤t x∗ ln( 1

δ )

}
and we solve the quadratic inequality in

RT , obtaining the following regret bound:

RT ≤ Õ

K
ρ

√√√√ T∑
t=1

(
ℓ⊤t (x

⋄ − x∗)
)2

+
1

ρ

√√√√K

T∑
t=1

ℓ⊤t x
∗ ln

(
1

δ

) .

This concludes the proof.

D.2 Safety Property of SOLB

Theorem 3. Let δ ∈ (0, 1). With probability at least 1− δ, SOLB guarantees that g⊤
i xt ≤ αi holds

for every action a ∈ [K], constraint i ∈ [m], and round t ∈ [T ].

Proof. To prove the result, we consider separately the case in which γt = 0 and γt ∈ (0, 1). Notice
that, when γt = 1, the constraints are trivially satisfied by definition of the strictly feasible solution.

When γt = 0, by construction, it holds that ∀i ∈ [m] : (ĝt,i + βt)
⊤x̃t+1 ≤ αi and xt+1 = x̃t+1.

Thus, we have:

αi ≥ (ĝt,i + βt)
⊤x̃t+1

= (ĝt,i + βt)
⊤xt+1

≥ g⊤
i xt+1,

where the last step holds thank to Lemma 1 with probability at least 1− δ.

When γt = (0, 1), γt can be selected either as 1−αi

1−θi or as (ĝt,i+βt)
⊤x̃t+1−αi

(ĝt,i+βt)
⊤x̃t+1−θi . In the first case, it

holds:

g⊤
i xt+1 = g⊤

i (γtx
⋄ + (1− γt)x̃t+1)

≤ γtθi + (1− γt)

=
1− αi
1− θi

(θi − 1) + 1

=
αi − 1

θi − 1
(θi − 1) + 1

= αi.

Similarly, in the latter case, it holds:

g⊤
i xt+1 = g⊤

i (γtx
⋄ + (1− γt)x̃t+1)

= γtθi + (1− γt)g
⊤
i x̃t+1

≤ γtθi + (1− γt)(ĝt,i + βt)
⊤x̃t+1

= γt(θi − (ĝt,i + βt)
⊤x̃t+1) + (ĝt,i + βt)

⊤x̃t+1

=
(ĝt,i + βt)

⊤x̃t+1 − αi

(ĝt,i + βt)
⊤x̃t+1 − θi

(θi − (ĝt,i + βt)
⊤x̃t+1) + (ĝt,i + βt)

⊤x̃t+1

=
αi − (ĝt,i + βt)

⊤x̃t+1

θi − (ĝt,i + βt)
⊤x̃t+1

(θi − (ĝt,i + βt)
⊤x̃t+1) + (ĝt,i + βt)

⊤x̃t+1

= αi.

This concludes the proof.
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ℓt(a1) ℓt(a2) ℓt(a3) gt(a1) gt(a2) gt(a3)
ν1

Wt/2 Wt/2 (Wt+∆)/2 Dt Dt Ct
ν2

Wt/2 Yt/2 (Wt+∆)/2 Bt Bt Ct
ν3

Yt/2 Wt/2 (Wt+∆)/2 Bt Bt Ct
ν4

Yt/2 Yt/2 (Wt+∆)/2 Bt Bt Ct
Table 1: Summary of the losses (first three columns) and constraints costs (last three columns) associated to each
of the four instances.

D.3 Regret Lower Bound in MABs with Hard Constraints

Theorem 5. Let K ≥ 2, T ≥ max
{
2, (11 + lnT )

(
8
3

)2}
, and ω ∈

[
1
T

(
11
2 + lnT

)
, 12
]
. Then for

every randomized algorithm, we have supℓ1:T∈Bω,∆,T
E[RT (ℓ1:T )] ≥ Ω

(
∆
ρ

√
T +

√
ωT
)
, where

the expectation is taken with respect to the internal randomization of the algorithm.

Proof. We split the proof in two parts: first, we prove a Ω
(√

ωT +∆
√
T/ρ

)
lower bound for the

expected regret of any randomized algorithm, when the losses are stochastic. In a stochastic setting,
ω represents the double of the expected value of the loss of the best strategy, while ∆ the double of
the expected value of the difference between the strictly safe strategy and the benchmark. Second, we
show that there exists at least a sequence of loss belonging to Bω,∆,T such that the lower bound from
the first step holds.

Step 1 Let B(ω) indicate a Bernoulli probability distribution with mean ω ∈ (0, 1). We start by
introducing four instances of the hard constrained bandit problem where both losses and constraints
costs are stochastic. To do so, we assume that both losses and constraints are sampled in advance,
and introduce the following auxiliary sequences, for all t ∈ [T ]:

Wt ∼ B(ω),

Yt ∼ B(ω + ψ),

Bt ∼ B(1/2),

Ct ∼ B(1/2− ρ),

Dt ∼ B(1/2 + ϵ),

where ω ∈ (0, 12 ), ψ ∈ (0, 1− ω) and ρ, ϵ ∈ (0, 12 ). We consider four instances {νi}4i=1, each with
K = 3 actions, namely a1, a2 and a3. In Table 1, we summarize how losses and constraints costs
are generated for each action and in each instance. Instance ν1 is the only one having different
constraints costs, while action a3 has, for every t ∈ [T ], the same loss in every instance. In all
instances, x⋄ = (0, 0, 1) is the only strictly safe strategy.

We start by considering ν1: in order to be safe with high probability, for a given confidence level
δ ∈ (0, 1), any algorithm must satisfy:

Pν1

(
∀t ∈ [T ] : xt(a3) ≥

ϵ

ϵ+ ρ

)
≥ 1− δ,

where xt is the strategy of the algorithm at time t, and Pν1
is the probability measure of instance ν1

which encompasses the randomness of both environment and algorithm. As a consequence, we have:

Pν1

(
T∑
t=1

xt(a3) ≥ T
ϵ

ϵ+ ρ

)
≥ 1− δ.

We now leverage Pinsker’s inequality to relate the probability measures Pν1 and Pνj , with j ∈
{2, 3, 4}, as follows:

Pνj

(
T∑
t=1

xt(a3) ≥ T
ϵ

ϵ+ ρ

)
≥ Pν1

(
T∑
t=1

xt(a3) ≥ T
ϵ

ϵ+ ρ

)
−
√

1

2
KLT (νj ,ν1),
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where KLT (νj ,ν1) is the KL-divergence between the probability measures Pνj and Pν1 after T
rounds of history.

Using the KL decomposition argument from Lemma 1 of [Gerchinovitz and Lattimore, 2016] (which
holds for correlated losses, as in our case), and by upper bounding the KL between two Bernoulli r.v.s
using the χ2-divergence (see Lemma 2.8 from Tsybakov [2008]), for every j ∈ {2, 3, 4}, we have

KLT (νj ,ν1) ≤ T (2KL(B(ω + ψ), B(ω)) + KL(B(1/2), B(1/2 + ϵ)))

≤ T

(
2

ψ2

ω(1− ω)
+

ϵ2

( 12 + ϵ)( 12 − ϵ)

)
≤ 1

4

where the last step is obtained by setting ψ = 1
4

√
ω(1−ω)

T and ϵ = 1
6

√
1
T . Thus, for every j ∈

{2, 3, 4}:

Pνj

(
T∑
t=1

xt(a3) ≥ T
ϵ

ϵ+ ρ

)
≥ 3

4
− δ.

Which implies, for every δ ∈ (0, 12 ):

Eνj

[
T∑
t=1

xt(a3)

]
≥ 1

4
T

ϵ

ϵ+ ρ
. (13)

Now, we focus on instance ν2 and ν3: in the former the optimal strategy is to always pull a1, while
in the latter to always pull a2. Hence, we can compute the expected regrets as:2Eν2

[RT ] = Eν2

[∑T
t=1 (ω + ψ − ψxt(a1) + (∆− ψ)xt(a3))

]
− Tω,

2Eν3
[RT ] = Eν3

[∑T
t=1 (ω + ψ − ψxt(a2) + (∆− ψ)xt(a3))

]
− Tω,2Eν2

[RT ] = Tψ − ψEν2

[∑T
t=1(xt(a1) + xt(a3))

]
+∆Eν2

[∑T
t=1 xt(a3)

]
,

2Eν3
[RT ] = Tψ − ψEν3

[∑T
t=1(xt(a2) + xt(a3))

]
+∆Eν3

[∑T
t=1 xt(a3)

]
.

We now leverage Lemma A.1 from [Auer et al., 2002] and relate the expectations Eνj
, for j ∈ {2, 3},

with Eν4 :

Eνj

[
T∑
t=1

xt(ai)

]
≤ Eν4

[
T∑
t=1

xt(ai)

]
+ T

√
ln 2

2
KLT (ν4,νj), (14)

for every ai, where KLT indicates the KL-between the probability measures after T rounds of history,
and can be bounded as8:

KLT (ν4,νj) ≤ T
ψ2

ω(1− ω)
. (15)

It follows:2Eν2 [RT ] = Tψ − ψEν4

[∑T
t=1(xt(a1) + xt(a3))

]
−
√

ln 2
2

ψ4T 3

ω(1−ω) +∆Eν2

[∑T
t=1 xt(a3)

]
,

2Eν3 [RT ] = Tψ − ψEν4

[∑T
t=1(xt(a2) + xt(a3))

]
−
√

ln 2
2

ψ4T 3

ω(1−ω) +∆Eν3

[∑T
t=1 xt(a3)

]
,2Eν2

[RT ] = ψEν4

[∑T
t=1 xt(a2)

]
−
√

ln 2
2

ψ4T 3

ω(1−ω) +∆Eν2

[∑T
t=1 xt(a3)

]
,

2Eν3
[RT ] = ψEν4

[∑T
t=1 xt(a1)

]
−
√

ln 2
2

ψ4T 3

ω(1−ω) +∆Eν3

[∑T
t=1 xt(a3)

]
,

8Note that KL divergence is invariant to scaling, thus we directly compare Bernoulli distribution instead of
the distributions derived by dividing by two.
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where the first step is a consequence of Equation (15), and the second step follows from the identity
xt(a1) + xt(a2) + xt(a3) = 1, for every t ∈ [T ]. We are now ready to lower bound the average
expected regret between instances ν2 and ν3.

Eν2 [RT ] + Eν3 [RT ] ≥ ψEν4

[
T∑
t=1

(xt(a1) + xt(a2))

]
−

√
ln 2

2

ψ4T 3

ω(1− ω)
+ ∆Eν3

[
T∑
t=1

xt(a3)

]

=
Tψ

2
+

(
∆− ψ

2

)
Eν4

[
T∑
t=1

xt(a3)

]
−

√
ln 2

2

ψ4T 3

ω(1− ω)

≥ Tψ

2
+
T∆

8

ϵ

ϵ+ ρ
−

√
ln 2

2

ψ4T 3

ω(1− ω)

≥ 1

16

√
ω(1− ω)T +

1

48ρ
∆
√
T

where the second inequality follows from Equation (13) and the fact that ∆ ≥ ψ, the last inequality
from the definition of ψ and ϵ, and the fact that ρ ≥ ϵ. Noting that max {Eν2

[RT ],Eν3
[RT ]} ≥

(Eν2
[RT ] + Eν3

[RT ]) /2, we can conclude first step.

Step 2 Note that ∆
2 =

√(
Wt+∆

2 − Wt

2

)2
, thus the (deterministic) term ∆

2

√
T is equivalent to the

quadratic term describing the average squared distance between the optimal policy and the strictly
safe strategy in instances ν2 and ν3.

Consider T ≥ max
{
2, (11 + lnT )

(
8
3

)2}
, and 1

2 ≥ ω ≥ 1
T max

{
1,
(
11
2 + lnT

)}
. Note that the

set of existence of ω is never empty due to the condition on T .

Consider modified versions of these instances with ω̃ = ω
2 : we apply Bernstein Inequality to obtain

that, with probability at least 1− δ′:

T∑
t=1

ℓ⊤t x
∗ =

T∑
t=1

Wt

2

≤ T ω̃

2
+

1

2

√
2T ω̃(1− ω̃) ln

(
1

δ′

)
+

1

3
ln

(
1

δ′

)
≤ Tω

4
+
Tω

4
≤ Tω

2
, (16)

by observing that
(
8
3

)2
ln
(

1
δ′

)
≤ Tω, which holds true for δ′ = 1

228T , given the conditions on T
and ω. Thus, instances ν2 and ν3 may generate, with high probability, loss sequences in which the
optimal one is bounded by Tω

2 . We conclude the proof by showing that, among these loss sequences,
at least one satisfies the previously derived lower bound. Without loss of generality, consider ν2 to
be the instance with the higher expected regret, we then apply the lower bound derived in Step 1 with
ω̃ to get

Eν2 [RT (ℓ1:T )] ≥
9

1024

√
Tω +

1

48ρ
∆
√
T , (17)

where ℓ1:T is a fixed loss sequence generated ν2, and using that ω ≤ 1
2 . Suppose by contradiction

that, for every ℓ1:T s.t. Equation (16) holds, then

Eν2 [RT (ℓ1:T )1Eq.(16)] <
9

2048

√
Tω +

1

48ρ
∆
√
T ,

Then, by setting δ′ = 1
228T , we have:

Eν2
[RT (ℓ1:T )] = Eν2

[RT (ℓ1:T )1Eq.(16)] + Eν2
[RT (ℓ1:T )(1− 1Eq.(16))]

<
9

2048

√
Tω +

1

48ρ
∆
√
T +

1

228
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<
9

1024

√
Tω +

1

48ρ
∆
√
T ,

where the first inequality derives from bounding the regret with T and the definition of δ′, and the
second inequality derives from observing that Tω >

(
2048
9·228

)2
, given the conditions on T and ω. This

represents a contradiction with the lower bound derived in the first step, and thus there must exist a
loss sequence such that Equation (16) and Equation (17) hold simultaneously.
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