
To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

LEARNING AND ALIGNING STRUCTURED RANDOM
FEATURE NETWORKS

Vivian White
Department of Computer Science
Western Washington University
Bellingham, WA, USA
whitev4@wwu.edu

Muawiz Chaudhary
Department of Computer Science
Mila, Concordia University
Montréal, QC, Canada

Guy Wolf
Department of Mathematics and Statistics
Mila, Université de Montréal
Montréal, QC, Canada

Guillaume Lajoie
Department of Mathematics and Statistics
Mila, Université de Montréal
Montreal, QC, Canada

Kameron Decker Harris
Department of Computer Science
Western Washington University
Bellingham, WA, USA
kameron.harris@wwu.edu

ABSTRACT

Artificial neural networks (ANNs) are considered “black boxes” due to the diffi-
culty of interpreting their learned weights. While choosing the best features is not
well understood, random feature networks (RFNs) and wavelet scattering ground
some ANN learning mechanisms in function space with tractable mathematics.
Meanwhile, the genetic code has evolved over millions of years, shaping the brain
to develop variable neural circuits with reliable structure that resemble RFNs. We
explore a similar approach, embedding neuro-inspired, wavelet-like weights into
multilayer RFNs. These can outperform scattering and have kernels that describe
their function space at large width. We build learnable and deeper versions of
these models where we can optimize separate spatial and channel covariances of
the convolutional weight distributions. We find that these networks can perform
comparatively with conventional ANNs while dramatically reducing the number
of trainable parameters. Channel covariances are most influential, and both weight
and activation alignment are needed for classification performance. Our work out-
lines how neuro-inspired configurations may lead to better performance in key
cases and offers a potentially tractable reduced model for ANN learning.

1 INTRODUCTION

Deep neural networks (DNNs) achieve state-of-the-art results, at the cost of large numbers of learned
parameters and complex input-output mappings that are difficult to understand. These interpretabil-
ity issues impact the trustworthiness of deep models. A key goal of neural network theory is to
understand the roles of architecture and weight structure in DNNs to help bridge the gap between
performance and interpretability. Among the extant theory for deep networks are kernels (Neal,
1995; Rahimi & Recht, 2007; Jacot et al., 2018) and wavelet scattering (Mallat, 2012; 2016). Ker-
nels define a reproducing kernel Hilbert space (RKHS) for functions, which can be used to charac-
terize the properties of neural network typically at or near their random initialization. Functions that
have small norms in the RKHS are easier to learn with fewer samples and have stronger generaliza-
tion abilities. Wavelet scattering is a type of deep convolutional network (CNN) that cascades fixed
wavelet filters with complex modulus nonlinearities and low-pass filters to separate image variation

1



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Figure 1: Learnable random feature convolutional networks: For a given layer representation,
weights in our networks are modeled as drawn from correlated Gaussians where the covariance may
be learned. We separably factor the weight covariance in a convolutional layer (red box) into two
parts: the covariance across n channels and the spatial covariance across d = d1 · d2 pixels in an
input patch. The spatial and channel covariances may be fixed at initialization or learned.

across scales. These networks build invariance to deformations, are mathematically tractable, and
rely on fewer parameters to achieve impressive performance, particularly in low-data regimes.

Whether or not the representations in the brain are “aligned” to those in DNNs is an interesting and
complicated question (Sucholutsky et al., 2023). Despite the name, neural networks on computers
typically share an only superficial resemblance to the brain.

In biological neurons, receptive fields are localized areas where stimuli evoke inhibitory or excita-
tory neuronal responses. Visual receptive fields have been optimized over millions of years to detect
small visual changes including edges, orientations, and spatial frequencies (Hubel & Wiesel, 1959).
They are classically understood as comparable to wavelets, which are selective to scale and orienta-
tion (Olshausen & Field, 1996). We connect these ideas to random feature networks (RFNs), where
hidden-layer weights are drawn from random distributions and only the output weights are learned.
Such structured RFNs have kernels that vary depending on weight distribution and describe their
function space at large width (Pandey et al., 2022).

We build randomized scattering networks (RSNs) with weight covariance modeled from biological
receptive field data and identical architecture to the wavelet scattering transform. The frozen filters in
these models are more interpretable than trained weights due to their wavelet eigenbasis and neural
inspiration. We compare V1-like RSNs against scattering networks and uncorrelated RSNs on image
classification. We find that the RSNs outperform scattering in most cases and biologically-inspired
weights may improve performance.

We further investigate the importance of covariance structure by building deeper CNNs where the
weight covariances are factored into a product of spatial and channel covariances (Fig. 1). By
allowing networks to learn these covariance matrices, we gain improved performance and find that
learning the channel part is more important than the spatial covariance in a deep architecture.

Finally, we try aligning resampled and trained factored networks. Guth et al. (2023) introduced
“rainbow networks” that cascade random feature maps with colored weight covariance matched
to the covariance structure of traditionally trained CNNs. These networks assume that the weight
dependencies across layers are reduced to rotations of independent random feature matrices which
align the input activations. Rainbow networks thus model the joint probability distribution of the
weights of trained networks. The authors sampled new weights from the learned weight distributions
and found that the sampled networks retrieve similar performance to the trained models after feature

2



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

alignment. Applying those techniques to our model, we show a collapse of this approach in later
layers of the sampled networks. Alignment to the reference network’s features is not sufficient for
good performance in deep networks.

Our main contributions are as follows: 1) We compare the performance of RSNs with differ-
ent weight distributions and traditional wavelet scattering transforms, finding similar performance
across weight initializations and improvements over scattering in most cases. 2) We build general
randomized CNNs with learnable covariances, separating the importance of spatial and channel co-
variances. These layers can be easily swapped in for convolutional layers in any architecture, and
they reach comparable performance with fewer learnable parameters, e.g. 18x fewer learnable pa-
rameters leads to only 3% reduction in accuracy on our widest ResNet-18. 3) We test two major
modifications to the rainbow alignment procedure which better stabilize calculations over layers and
avoid the aforementioned representation collapse problem. Our central finding is that learning co-
variance matrices within RFNs offers a path to achieve similar accuracy to traditional ANNs while
simultaneously bridging connections to theory and neuroscience.

2 RELATED WORK

A number of previous works have used correlated Gaussian structure in multilayer networks. Ja-
cobsen et al. (2016) showed that learnable weights structured from a fixed Gaussian derivative basis
improve performance over unstructured weights in limited dataset sizes and show improvements
against wavelet scattering on large datasets. Feinman & Lake (2019) used a correlated multivariate
Gaussian distribution to incorporate smooth and spatially correlated structure seen in V1 receptive
fields into random convolutional weights, which improves generalization performance. Garriga-
Alonso & van der Wilk (2021) found that spatial weight correlations are useful in deep networks,
and Fortuin et al. (2022) show that using spatially correlated Gaussian priors in Bayesian neural
networks improve performance compared to isotropic Gaussian priors.

Pandey et al. (2022) explored the use of a correlated Gaussian model to generate random receptive
fields inspired by neurons in the mouse primary visual cortex (V1). Structured random feature net-
works have fixed hidden weights sampled from a Gaussian process with a covariance modeled from
experimental receptive field data space. The weight covariances strongly impact the performance of
these networks by rotating and filtering the input before random projection. In single hidden layer
networks, weights with V1-inspired covariance achieve faster training times and higher accuracies
than uncorrelated weights.

We also draw upon prior work related to wavelet scattering. Angles & Mallat (2018) find that embed-
ding images using a wavelet scattering transform achieves strong performance in image generation
without the use of a discriminator or encoder. Gauthier et al. (2022) show that learning the wavelet
filters via parameterization can improve performance over traditional wavelet scattering filters. Li
& Bonner (2022) find that the wavelet scattering transform is a strong and interpretable method for
deep learning models related to V1.

3 METHODS

Our networks are multilayer CNNs, although nothing prevents our models from applying to fully-
connected or other layers. Layers are indexed as l = 0, . . . , L, where l = 0 and l = L refer to the
input and output layers of the network, respectively. Convolution is assumed to operate on patches
of size d1 × d2 containing d = d1 · d2 pixels per patch, nl−1 input channels and nl output channels.
Each nl × nl−1 × d1 × d2 weight tensor is thus equivalent to an nl × (nl−1d) matrix Wl. Layer L
is always a standard linear readout layer trained with standard methods.

3.1 NETWORKS WITH CORRELATED GAUSSIAN WEIGHTS

We build networks with different kinds of uncorrelated and correlated random weights. Uncorrelated
weights are drawn from either Gaussian or uniform distributions. The correlated weight model
draws the weights onto a neuron at layer l as w ∼ N (0, Cl), where Cl is a positive semi-definite
(nl−1d)× (nl−1d) covariance matrix (Fig. 1).

3



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Figure 2: Spectral structure of the learned weight covariance in the convolutional layers of RSN
trained on CIFAR10. (A) The top six spatial eigenvectors in the first convolutional layer, with their
eigenvalues underneath. The leading eigenvectors are reminiscent of edge detecting filters. (B) The
spatial covariance matrix in the first layer for a 7× 7 filter. (C) The eigenvalue distributions for both
the spatial and channel covariance of the second layer. Both are effectively low-dimensional.

For V1-like weights, we use a model of receptive field data from mouse V1 (Pandey et al., 2022).
In this setting CV1 depends on two parameters, the receptive field size s and spatial bandwidth f .
We ran a hyperparameter sweep over these parameters for an RSN trained on CIFAR10, finding
the optimal values s = 2 and f = 0.1. We use these values across all V1-like initializations. The
eigenbasis of V1-like random weights consists of Hermite wavelets.

We consider just multilayer feedforward networks. If Cl = RT
l Rl is the Cholesky square root of the

covariance of the layer l weights Wl, then the length nl feature vector zl satisfies the recursion

zl = ρ(Wlzl−1) = ρ(GlRlzl−1), (1)

where ρ(·) = max(·, 0). The Gaussian part Gl is an nl × (nl−1d) matrix of i.i.d. entries drawn
from a univariate Gaussian that is not learned with backpropagation. We discuss the structured
convolutional RFN kernel which can be applied to our networks in Appendix A.6.

3.2 LEARNING THE COVARIANCE MATRIX

In an RFN, the weights at all layers except the readout are frozen. To soften this constraint, we
allow the covariance Cl but not the initialization Gl to be learned. For CNNs, we factor Rl into the
separable product of two lower-dimensional matrices, an nl−1×nl−1 channel factor R1 and a d×d
spatial factor R2

1, as shown in Fig. 1. This yields Rl = R1 ⊗R2 and Cl = (R1 ⊗R2)
T (R1 ⊗R2).

We build factored learnable covariance layers to replace traditional Conv2d layers in PyTorch
(Paszke et al., 2019). These have R1 and R2 as parameters. In our parameterization, the diago-
nals of R1 and R2 are exponentiated and the lower triangular part is zero; these are initialized as the
identity. The matrix G is initialized with kaiming normal default scaling. We test a V1-like
initialization with R2 from the Cholesky decomposition of CV1 and test networks where channel
and spatial covariances (R1 and R2) are learned (LC and LS) or unlearnable (UC and US).

1Here, we do not explicitly show the dependence of R1 and R2 on the layer, although we allow this to vary.

4



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

3.3 RESAMPLING AND ALIGNING NETWORKS

From a multilayer network with fixed covariance structure, we create a new network where the
random matrices G′ are resampled. Our goal is to see whether the new untrained network can
recover the performance of the trained network purely through alignment, defined as follows: Given
two random vectors ϕ and ϕ′, we align by solving the orthogonal Procrustes problem

min
A:ATA=In

E∥Aϕ′ − ϕ∥2F ,

which leads to A = EFT := A(ϕ, ϕ′) where E and F are the orthogonal matrices of left and right
singular vectors of the cross-correlation matrix E[ϕ(ϕ′)T ]. If the features are deterministic matrices
Φ and Φ′, then using the SVD of Φ(Φ′)T minimizes ∥AΦ′ − Φ∥2F .

We consider three different kinds of alignment: activation alignment (AA, ϕ = z), and weight
alignment on the input (IWA, Φ = GT ) and output (OWA, Φ = G) dimensions. Guth et al. (2023)
studied AA but for reference networks without enforced Gaussian weight structure. In all cases, we
align earlier before later layers and adapt batchnorm statistics in-between. The final layer weights
are copied from the reference model: W ′

L = WL.

3.3.1 ACTIVATION ALIGNMENT

In the resampled network, the weights W ′
l = G′

lRl and features z′l = ρ(W ′
l z

′
l−1). To align acti-

vations, we average over both batches and spatial locations when computing the cross-correlation
E[zl(z′l)T ] (as in Guth et al., 2023). With some abuse of notation, we will still write A = A(zl, z

′
l),

but the nl × nl alignment acts on only the channel dimension as (A ⊗ Id)z
′
l. In our code this is

implemented as a forward pre hook to layer l + 1. Equivalently, we may absorb the alignment into
Rl+1 of the next layer:

z′l+1 = ρ(W ′
l+1(A⊗ Id)z

′
l) = ρ(Gl+1Rl+1(A⊗ Id)z

′
l), (2)

where Rl+1(A ⊗ Id) = R1,l+1A ⊗ R2,l+1. By taking the Cholesky decomposition of
(R1,l+1A)TR1,l+1A, a new upper-triangular matrix R̂1,l+1 can be stored to make an equivalent
factored covariance model.

3.3.2 WEIGHT ALIGNMENT

Given a resampled matrix G′ and reference G, we also consider aligning these matrices directly.
IWA does this on the input side of the weights: Ĝ = G′A, with A = A(GT , G′T ), acting on the
(nl−1d)-dimensional row-space of the initialization matrices. On the other hand, OWA treats the
output side of the weights: Ĝ = AG′, with A = A(G,G′) acting on nl-dimensional space. In either
case, we directly replace G′ with Ĝ in the corresponding layer.

3.4 ARCHITECTURES: RANDOMIZED SCATTERING NETWORK AND RESNET

RSNs are CNNs with random feature layers in the same architecture as a wavelet scattering net-
work. We test an RSN composed of two convolutional layers and compare these networks against
2-scale wavelet scattering networks from Kymatio (Andreux et al., 2020). We build versions of
these networks (RSN-Fact) where the convolutional layers are replaced by factored covariance lay-
ers. Additional details of the architecture and parameter counts are given in Appendix A.1. To
explore the effect of our structured weights on deeper networks, we also test ResNet-18 models (He
et al., 2015). We replace the convolutional layers with factored covariance layers (ResNet-Fact),
disabling the learning of R2 in the 1× 1 skip connection layers.

3.5 EXPERIMENTS

We run image classification experiments on the CIFAR10 and CIFAR100 datasets (Krizhevsky,
2009). In RFNs, all weights except the readout are kept at their initialization. In all other models
except traditional networks, the weight initializations Gl are fixed while the Rl are learned. To test
performance in the limited data regime, we evaluate our models on CIFAR10 with small sample

5



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

size (CIFAR10-S) using only 50 training samples per class. To understand variance due to initial-
ization and training process, we train ten different networks on each dataset and report the average
and standard error accuracy across seeds. We run experiments with RSN models initialized with
V1-like weights, Gaussian weights, and uniform weights, and a two-scale wavelet scattering net-
work. We include results of our RSN-Fact and ResNet-Fact models with V1-like spatial covariance
initialization.

Additionally, we run unsupervised learning experiments comparing RSNs to the wavelet scattering
embedding described in Angles & Mallat (2018) and see similar results across image generation
tasks (Fig. 9 in Appendix A.5).

We also run extensive resampling and alignment experiments for our various models and alignment
methods (AA, IWA, OWA). After alignment, we then fine-tune the readout layer. We estimate a
sampled accuracy and deviation using 5 different samples of models generated from this process,
before finetuning the readout layer over ten epochs of the training set.

The code for our experiments and to implement these networks and learning rules is available at
https://github.com/glomerulus-lab/fact-conv/.

4 RESULTS

4.1 LEARNING COVARIANCE STRUCTURE FOR IMAGE CLASSIFICATION

We train RSN, RSN-Trad, RSN-Fact, ResNet-Trad, and ResNet-Fact models on CIFAR10,
CIFAR10-S, and CIFAR100. Visualizations of the eigenspectra for the learned spatial and channel
covariance matrices in an RSN-Fact network are shown in Fig. 2 (see also Fig. 7 in Appendix A.2).
The leading spatial eigenvectors are relatively smooth and display characteristics of edge and blob
detectors. The spectra of our spatial and channel matrices are effectively low-dimensional, with a
few leading components accounting for most of the variance. These results are consistent across
layers and initializations. Although the exact structure of the eigenvectors varies, similar patterns
emerge across initializations (not shown).

Image classification results are displayed in Fig. 3 for models with fixed features (left) and learnable
features (right), including RSN, wavelet scattering, and ResNet architectures. Among the fixed-
feature RSN models with different weight distributions, we see moderate improvement with V1-like
initialization on CIFAR10. All of the RSN models outperform scattering except on CIFAR10-S, the
small data setting where scattering is known to be powerful (Oyallon et al., 2019; Gauthier et al.,
2022).

When features are learnable and we use lots of data (all settings except CIFAR10-S), all variations
of the factored covariance models outperform the fixed-feature networks. More learning tends to im-
prove performance for both RSN and ResNet. On the other hand, when in the small sample setting,
bigger models and more learning do not lead to good performance due to overfitting. ResNet-Fact
models performs worse than RSN-Fact on CIFAR10-S. RSN-USLC outperforms the other learnable
models, but it is still a 3% worse than wavelet scattering. This hints that the other models may be
overfitting spatial features. In the ResNet-Fact models, we see similar accuracies between the USLC
and LSLC models among all three datasets, showing that the majority of the ResNet performance
comes from learning the channel covariances.

Furthermore, in CIFAR10 and CIFAR100, these models approach (but fall slightly short of) the
performance of a traditional model with 17x fewer learned parameters. Full parameter counts are
shown in Table 2 in Appendix A.1.

Lastly, we compare ResNet-Fact models initialized with V1-inspired against ResNet-Fact models
initialized with identity spatial covariance in Table 3 in Appendix A.3 (RSN are also shown). In this
architecture, V1-like spatial covariance has only minor effects on performance.

4.2 RESAMPLING AND ALIGNMENT TO APPROXIMATE A REFERENCE NETWORK

We now look at the performance of resampled and aligned networks using the methods of activa-
tion alignment (AA) and input weight alignment (IWA) on ResNet-Fact models. We do not show

6

https://github.com/glomerulus-lab/fact-conv/


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

0

20

40

60

80

100

68.09
± 0.14

65.87
± 0.13

65.82
± 0.13 60.97

± 0.01
67.15
± 0.12 62.59

± 0.21
74.05
± 0.1 69.98

± 0.15
76.31
± 0.13

84.16
± 0.05 76.59

± 0.18

89.65
± 0.08

90.55
± 0.1

95.42
± 0.04

fixed features learnable features
CIFAR10

0

10

20

30

40

50

Te
st

 A
cc

ur
ac

y 
(%

)

41.99
± 0.26

42.55
± 0.32

42.4
± 0.2

48.37
± 0.28 43.31

± 0.22
27.45
± 1.58

39.36
± 0.44

45.05
± 0.22 39.88

± 0.44
43.55
± 0.24

31.13
± 0.32

37.54
± 0.78

36.49
± 0.66

40.98
± 0.73

CIFAR10-S

V1-Like
RFN Uniform

RFN Gaussia
n

RFN Scattering
RSN
USUC ResNet

USUC RSN
LSUC RSN

USLC RSN
LSLC RSN

Trad ResNet

LSUC ResNet

USLC ResNet

LSLC ResNet

Trad

0

20

40

60

80

40.55
± 0.08

40.08
± 0.15

39.91
± 0.15 28.68

± 0.01

39.73
± 0.15 32.1

± 0.19

49.21
± 0.1 43.36

± 0.08
52.0

± 0.09
58.11
± 0.1 48.42

± 0.26

67.07
± 0.08

67.63
± 0.23

78.25
± 0.09

CIFAR100

Figure 3: Classification performance of our various models—RSN with varied fixed initializations
(labeled “RFN”), comparable scattering networks, RSN-Fact and ResNet-Fact models with unlearn-
able/learnable covariance, and their traditionally-trained counterparts (“Trad”)—on test datasets.
USUC = fixed spatial and channel covariances, USLC = fixed spatial and learnable channel co-
variances, LSUC = learnable spatial and fixed channel covariances, LSLC = learnable spatial and
channel covariances. Fixed and learnable features maps are shown at left and right. Test accuracies
are shown averaged over ten trials with standard error. Learnable features and more complex models
tend to help except in the small sample setting. Our ResNet-Fact models are more lightweight than
traditional models: Resnet LSLC achieves within 5% accuracy with 17x fewer trainable parameters.

OWA, since it never achieved high accuracy in any of our experiments. Fig. 4, left, shows the re-
sults of applying our sampling procedure to a reference ResNet-Fact over several widths as well
as ResNet-Trad for comparison. Accuracy increases with width for ResNet-Trad and ResNet-Fact.
The various alignment methods show different behavior: AA never exceeds 25% accuracy, and IWA
hovers between 40 and 60%, whereas IWA + AA better approximates the accuracies of the refer-
ence ResNet-Fact, reaching nearly 90% at maximum width. For the successful IWA + AA method,
finetuning the linear classifier layer does not significantly change the accuracy compared to reusing
the readout weights of the reference. Unsurprisingly, even the best alignment method cannot attain
the full accuracy of the reference ResNet-Fact.

To understand why different alignment methods behave so differently, we inspect the intermediate
representations of the resampled width-1 networks via a linear probing (Fig. 4, right). In early
layers of the ResNet, probe accuracy increases as we move deeper into the network, reaching a
plateau around layer 3 although at a lower accuracy for AA. Around layer 8, IWA + AA starts to

7



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

2 3 2 2 2 1 20 21 22

Width

20

30

40

50

60

70

80

90
Ac

cu
ra

cy

Resampling and Alignment

ResNet-Trad
Reference
IWA + AA
IWA
AA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

Linear Probe

Figure 4: Left: Performance of Pretrained ResNets (brown), ResNet-Fact (blue) and its sampled
counterparts over width. Solid/dashed lines indicate with/without fine-tuning of the readout. Error
bars/color-fill indicate standard deviation of performance with/without finetuning of the the readout.
Results are calculated over 5 samplings. IWA + AA does the best in approximating performance of
the original network, requiring little finetuning of the linear classifier at large widths. Right: Linear
probe performance—training the readout on intermediate layers—of various methods of resampling
and aligning a pretrained network. AA reaches a low plateau and degrades roughly half-way through
the layers. IWA reaches better performance and delays this degradation until later layers. IWA +
AA best approximates the performance of the reference ResNet (blue).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Similarity of Aligned and Reference Weights

Reference
IWA+AA
IWA
AA
Resampled

Figure 5: Cosine similarity between aligned and reference weights by layer. AA and an unaligned
resampled network give weights which are nearly orthogonal to the reference width-1 ResNet. IWA
and IWA + AA produces weights which nearly line up with the originator pretrained network.

beat the performance of IWA alone. Probe accuracies of AA and IWA degrade past layers 9 and 14,
respectively.

Finally, Fig. 5 shows the cosine similarity of the aligned and reference weights for a width-1 ResNet
across layers. The different alignment methods lead to different aligned weights Ŵl = ĜlR̂l that
may be compared to the reference model weights Wl = GlRl; studying the composite weights
captures both weight and activation alignment effects. AA fails to align the weight matrices any
more than a randomly resampled network without any alignment step: aligned and reference weights
are nearly orthogonal for all layers. This is expected since the first layer weights are different. IWA,
on the other hand, leads to high similarity with the reference model. Interestingly, IWA + AA has

8



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

lower similarity than IWA alone but performs better in accuracy. OWA produces an intermediate
value of similarity (not shown).

5 DISCUSSION

We use correlated Gaussian weights as a flexible model for multilayer networks where the weights
are frozen or learned. This formulation is tested in Randomized Scattering Networks (RSNs) and
ResNets. RSNs follow a similar architecture to the wavelet scattering transform and use fixed neuro-
inspired filters as feature extractors. We find that RSNs can outperform wavelet scattering models
and that biologically-inspired weights can lead to an advantage in supervised learning. To high-
light the similarity between RSNs and wavelet scattering, we build image generation embeddings
described in Angles & Mallat (2018), seeing similar performance with both models (Appendix A.5).

Our main finding is that introducing covariance learnability into RSN and ResNet models leads to
improved performance. In particular, learning the channel covariance reaches within 5% of the per-
formance of a traditional CNN of the same architecture. This is achieved with 17x fewer parameters
than fully trained networks. In limited experiments, we find effectively low rank spatial and diagonal
channel covariances, suggesting further parameter reductions to try.

We experiment with activation alignment (AA), based on pre-activations to a layer, and input weight
alignment (IWA), where we directly align the weight matrices. With both of these methods, our
linear probe study shows a degradation of accuracy in later layers of ResNet-Fact. Combining
these two methods of alignment avoids the degradation and comes close to approximating original
performance at the cost of requiring direct access to the pretrained weights and destroying their
randomness. With this alignment technique, sampled weight performance converges to finetuned
performance at higher width, suggesting that finetuning the classifier head isn’t necessary.

Guth et al. (2023) studied AA applied to wide, moderately deep networks, where colored Gaussian
models were fit to each layer of a traditionally trained network. Among other results, they found
that AA alone can lead to good performance in 7-layer scattering networks. An important con-
clusion was that this would not affect the network kernel, since the weights at a given layer were
independent once conditioned on the previous layer weights. Weight alignment breaks this kernel
equivalence. There are many possible reasons for our contradictory results: narrower layers, differ-
ent architecture, or the covariance factorization. However, supplemental experiments (Fig. 8) with
rainbow sampling reveal similar discrepancies in ResNets. Probing readout accuracies from inter-
mediate layers leads us to hypothesize that in deeper networks, more than AA is needed to achieve
strong performance.

Limitations to our work include the few architectures that were considered and emphasis on thumb-
nail image datasets. We only considered the ReLU nonlinearity; other choices could lead to other
results. In particular, it is unclear how the signal processing ideas underlying our work apply to very
different domains such as text processing.

In future work, we plan to investigate further ways to compress networks using weight factorization.
Further speedups may be possible using methods such as fast random projections (Le et al., 2013).
We also want to study the randomized scattering kernel, to strengthen our theoretical understanding,
and more thoroughly analyze the optimal representations and dynamics of covariance learning.

ACKNOWLEDGMENTS

V.W. was supported by a fellowship from the International Network for Bio-Inspired Computing
(NSF AccelNet award 2019976) and travel grants from the WWU CS department and ASWWU
Student Enhancement Fund. G.W. acknowledges support from the Canada-CIFAR AI Chair pro-
gram, an NSERC Discovery Grant (RGPIN-03267), an NIH grant (R01GM135929), an NSF DMS
grant (2327211), and an FRQNT NOVA grant (2023-NOVA-329125). G.L. acknowledges support
from the Canada-CIFAR AI Chair program, the Canada Research Chair in Neural Computation and
Interfacing, and an NSERC Discovery Grant (RGPIN-2018-04821). We thank Mick Bonner, Flo-
rentin Guth, Brice Ménard, and Mark van der Wilk for discussions. Our code for rainbow sampling
was based off the CCN tutorial on the Bonner lab website. Thank you to Olexa Bilaniuk for support
with the Mila cluster.

9



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes, 2018.

Mathieu Andreux, Tomás Angles, Georgios Exarchakis, Roberto Leonarduzzi, Gaspar Rochette,
Louis Thiry, John Zarka, Stéphane Mallat, Joakim Andén, Eugene Belilovsky, Joan Bruna, Vin-
cent Lostanlen, Muawiz Chaudhary, Matthew J. Hirn, Edouard Oyallon, Sixin Zhang, Carmine
Cella, and Michael Eickenberg. Kymatio: Scattering transforms in python. Journal of Machine
Learning Research, 21(60):1–6, 2020. URL http://jmlr.org/papers/v21/19-047.
html.

Tomás Angles and Stéphane Mallat. Generative networks as inverse problems with scattering trans-
forms. CoRR, abs/1805.06621, 2018. URL http://arxiv.org/abs/1805.06621.

David Bosch, Ashkan Panahi, and Babak Hassibi. Precise asymptotic analysis of deep random
feature models.

Reuben Feinman and Brenden M. Lake. Learning a smooth kernel regularizer for convolutional
neural networks. CoRR, abs/1903.01882, 2019. URL http://arxiv.org/abs/1903.
01882.

Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar Ratsch,
Richard E Turner, Mark van der Wilk, and Laurence Aitchison. Bayesian neural network pri-
ors revisited. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=xkjqJYqRJy.

Adrià Garriga-Alonso and Mark van der Wilk. Correlated weights in infinite limits of deep convo-
lutional neural networks, 2021.

S. Gauthier, B. Therien, L. Alsene-Racicot, M. Chaudhary, I. Rish, E. Belilovsky, M. Eick-
enberg, and G. Wolf. Parametric scattering networks. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5739–5748, Los Alamitos, CA, USA,
jun 2022. IEEE Computer Society. doi: 10.1109/CVPR52688.2022.00566. URL https:
//doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00566.

Florentin Guth, Brice Ménard, Gaspar Rochette, and Stéphane Mallat. A rainbow in deep network
black boxes. arXiv preprint arXiv:2305.18512, 2023.

Kameron Decker Harris. Additive function approximation in the brain. CoRR, abs/1909.02603,
2019. URL http://arxiv.org/abs/1909.02603.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s striate
cortex. The Journal of Physiology, 148(3):574–591, 1959. doi: https://doi.org/10.1113/
jphysiol.1959.sp006308. URL https://physoc.onlinelibrary.wiley.com/doi/
abs/10.1113/jphysiol.1959.sp006308.

Jörn-Henrik Jacobsen, Jan Van Gemert, Zhongyou Lou, and Arnold W. M. Smeulders. Structured
receptive fields in cnns. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2610–2619, 2016. doi: 10.1109/CVPR.2016.286.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. CoRR, abs/1806.07572, 2018. URL http://arxiv.org/abs/
1806.07572.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Quoc Le, Tamas Sarlos, and Alexander Smola. Fastfood - Computing Hilbert Space Expansions
in loglinear time. In Proceedings of the 30th International Conference on Machine Learning,
pp. 244–252. PMLR, May 2013. URL https://proceedings.mlr.press/v28/le13.
html. ISSN: 1938-7228.

10

http://jmlr.org/papers/v21/19-047.html
http://jmlr.org/papers/v21/19-047.html
http://arxiv.org/abs/1805.06621
http://arxiv.org/abs/1903.01882
http://arxiv.org/abs/1903.01882
https://openreview.net/forum?id=xkjqJYqRJy
https://openreview.net/forum?id=xkjqJYqRJy
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00566
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00566
http://arxiv.org/abs/1909.02603
http://arxiv.org/abs/1512.03385
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1959.sp006308
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1959.sp006308
http://arxiv.org/abs/1806.07572
http://arxiv.org/abs/1806.07572
https://proceedings.mlr.press/v28/le13.html
https://proceedings.mlr.press/v28/le13.html


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Shi Pui Li and Michael Bonner. An interpretable alternative to convolutional neural networks: the
scattering transform. Journal of Vision, 22(14):3762–3762, December 2022. ISSN 1534-7362.
doi: 10.1167/jov.22.14.3762.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel net-
works. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/
file/81ca0262c82e712e50c580c032d99b60-Paper.pdf.

Stéphane Mallat. Group invariant scattering, 2012.

Stéphane Mallat. Understanding deep convolutional networks. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065):20150203, April
2016. ISSN 1471-2962. doi: 10.1098/rsta.2015.0203. URL http://dx.doi.org/10.
1098/rsta.2015.0203.

Radford M. Neal. Bayesian learning for neural networks. 1995. URL https://api.
semanticscholar.org/CorpusID:60809283.

Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381:607–609, 1996. URL https://doi.
org/10.1038/381607a0.

Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos Komodakis, Simon Lacoste-Julien,
Matthew Blaschko, and Eugene Belilovsky. Scattering networks for hybrid representation learn-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(9):2208–2221, Septem-
ber 2019. ISSN 1939-3539. doi: 10.1109/tpami.2018.2855738. URL http://dx.doi.org/
10.1109/TPAMI.2018.2855738.

Biraj Pandey, Marius Pachitariu, Bingni W. Brunton, and Kameron Decker Harris. Structured ran-
dom receptive fields enable informative sensory encodings. PLOS Computational Biology, 18
(10), 10 2022. doi: 10.1371/journal.pcbi.1010484. URL https://doi.org/10.1371/
journal.pcbi.1010484.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. CoRR, abs/1912.01703, 2019. URL http://arxiv.org/
abs/1912.01703.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural In-
formation Processing Systems, volume 20. Curran Associates, Inc., 2007. URL
https://proceedings.neurips.cc/paper_files/paper/2007/file/
013a006f03dbc5392effeb8f18fda755-Paper.pdf.

Mats L. Richter, Wolf Byttner, Ulf Krumnack, Anna Wiedenroth, Ludwig Schallner, and Justin
Shenk. (input) size matters for cnn classifiers. In Igor Farkaš, Paolo Masulli, Sebastian Otte,
and Stefan Wermter (eds.), Artificial Neural Networks and Machine Learning – ICANN 2021, pp.
133–144, Cham, 2021. Springer International Publishing. ISBN 978-3-030-86340-1.

Dominik Schröder, Hugo Cui, Daniil Dmitriev, and Bruno Loureiro. Deterministic equivalent and
error universality of deep random features learning.

11

https://proceedings.neurips.cc/paper_files/paper/2014/file/81ca0262c82e712e50c580c032d99b60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/81ca0262c82e712e50c580c032d99b60-Paper.pdf
http://dx.doi.org/10.1098/rsta.2015.0203
http://dx.doi.org/10.1098/rsta.2015.0203
https://api.semanticscholar.org/CorpusID:60809283
https://api.semanticscholar.org/CorpusID:60809283
https://doi.org/10.1038/381607a0
https://doi.org/10.1038/381607a0
http://dx.doi.org/10.1109/TPAMI.2018.2855738
http://dx.doi.org/10.1109/TPAMI.2018.2855738
https://doi.org/10.1371/journal.pcbi.1010484
https://doi.org/10.1371/journal.pcbi.1010484
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been Kim,
Bradley C. Love, Erin Grant, Iris Groen, Jascha Achterberg, Joshua B. Tenenbaum, Katherine M.
Collins, Katherine L. Hermann, Kerem Oktar, Klaus Greff, Martin N. Hebart, Nori Jacoby, Qi-
uyi Zhang, Raja Marjieh, Robert Geirhos, Sherol Chen, Simon Kornblith, Sunayana Rane, Talia
Konkle, Thomas P. O’Connell, Thomas Unterthiner, Andrew K. Lampinen, Klaus-Robert Müller,
Mariya Toneva, and Thomas L. Griffiths. Getting aligned on representational alignment, Novem-
ber 2023. URL http://arxiv.org/abs/2310.13018. arXiv:2310.13018 [cs, q-bio].

Lechao Xiao. Eigenspace Restructuring: a Principle of Space and Frequency in Neural Networks,
December 2021. URL http://arxiv.org/abs/2112.05611. arXiv:2112.05611 [cs,
stat].

Jacob A Zavatone-Veth and Cengiz Pehlevan. Learning curves for deep structured gaussian feature
models.

12

http://arxiv.org/abs/2310.13018
http://arxiv.org/abs/2112.05611


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

A APPENDIX

A.1 NETWORK ARCHITECTURES

The RSN models are composed of an input layer followed by two convolutional layers with (7× 7)
kernels, a hidden dimension of 100, a stride of 1, and padding set to 3. Each of these layers go
through batch normalization and average pooling before being flattened, concatenated, and passed
through a linear classifier. Fig. 6 models the architecture, which is similar to the scattering transform
with scale J = 2 and input passed through convolution, nonlinearity, and averaging. We train all
RSNs for 90 epochs using a stochastic gradient descent optimizer and update the learning rate by 0.2
every 20 epochs. Table 1 displays the number of learnable parameters in the feature and classifier
layers of the RSN along with a two-scale wavelet scattering model, RSN-Fact models with learnable
and unlearnable spatial and channel covariances, and a traditional version of RSN with learnable
weights in the convolution layers.

The ResNet models follow the architecture in He et al. (2015). We train all ResNets for 200 epochs
using stochastic gradient descent and update the learning rate using a cosine annealing scheduler. We
explore the effect of width by applying a scale factor to the number of channels in the convolutional
models. Table 2 displays the number of learnable parameters in variations of ResNet-Fact across
widths ranging from 2−3 to 22. Notably, we see a 14-18x decrease in learnable parameters between
LSLC and a fully trained ResNet, with the compression factor increasing with width.

A.2 LEARNED SPATIAL EIGENVECTORS

Fig. 7 displays the top six learned spatial eigenvectors in the second RSN convolutional layer (left)
and the first ResNet convolutional layer (right). We observe less smoothness than in the first RSN
layer (Fig. 2). The ResNet spatial filters are 3 × 3 so these eigenvectors are of a smaller shape, but
the first could be interpreted as a centered blob detector. We compared eigenvectors across different
random initializations, noting similar patterns across layers (not shown).

Figure 6: Network diagram for RSN. Two convolutional layers are fed through BatchNorm (not
shown), then their outputs and the input are pooled and concatenated before passing to the classifier.
Note that the “+” symbols correpond to concatenation, not summation as in a ResNet.

RSN Scattering USUC LSUC USLC LSLC Trad
CIFAR10 Feature 618 0 618 3.07k 5.98k 8.43k 520k

Readout 130k 32.7k 130k 130k 130k 130k 130k
CIFAR100 Feature 618 0 618 3.07k 5.98k 8.43k 520k

Readout 1.30M 327k 1.30M 1.30M 1.30M 1.30M 1.30M

Table 1: The number of learnable parameters in the feature and readout layers of each of our 3-layer
RSN models for CIFAR10 and CIFAR100 plus the single-scale wavelet scattering model. In the
fixed features and USUC columns, the learnable feature channels are due to batch normalization
layers. The rightmost column shows the number of learnable parameters in a fully-trained RSN.

13



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Width USUC LSUC USLC LSLC Trad Compression
2−3 1.85k 2.62k 11.6k 12.4k 176k 14.2
2−2 3.69k 4.46k 42.3k 43.1k 701k 16.3
2−1 7.37k 8.14k 161k 162k 2.80M 17.3
20 14.7k 15.5k 627k 628k 11.2M 17.8
21 29.5k 30.2k 2.48M 2.48M 44.7M 18.0
22 58.9k 59.7k 9.83M 9.83M 178M 18.1

Table 2: The number of learnable parameters in ResNet-Fact models trained on CIFAR10 at differ-
ent widths compared to traditional models. The compression ratio of LSLC learnable parameters
relative to traditional increases with width; this ratio is higher for USUC, LSUC, and USLC models.

Figure 7: Leading learned spatial eigenvectors. Left: The second RSN-Fact convolutional layer.
We see less smoothness than the first-layer eigenvectors (Fig. 2). Right: The first layer of a ResNet-
Fact. The ResNet is dominated by a 1x1 centered bump eigenfeature with significantly outlying
eigenvalue.

A.3 V1-LIKE VS DEFAULT INITIALIZATION

Table 3 shows the result of default versus V1-like initialization with ResNet-Fact and RSN-Fact
models for the spatial covariance matrix R2. We see that the V1-like initialization may lead to
slightly improved performance. In the ResNet models across both initializations, we see close per-
formance between USLC and LSLC, indicating that learning channels is beneficial. However, in
most of the RSN models (CIFAR10 and CIFAR100), we see that the LSUC models reach the closest
performance to LSLC, indicating that spatial covariance may be more important in this architecture.

A.4 NETWORK RESAMPLING

Fig. 8 shows a supplemental experiment applying the method of Guth et al. (2023) to ResNet-18.
In this scenario, we trained a ResNet-Trad model then at each layer fit a Gaussian covariance to
the trained weights and resample new weights accordingly. After weight sampling, we apply the
same alignment methods as studied in the main text. Our code was adapted from that provided
at https://bonnerlab.github.io/ccn-tutorial/pages/analyzing_neural_
networks.html.

Each linear probe (Alain & Bengio, 2018; Richter et al., 2021) trains read outs from the feature map
of some convolutional layer. For simplicity, we don’t show the skip-connection layers in ResNet
models. All linear probes are trained over 200 epochs with learning rate 10−4. The model parame-
ters and buffers are held fixed as it would be on evaluation.

14

https://bonnerlab.github.io/ccn-tutorial/pages/analyzing_neural_networks.html
https://bonnerlab.github.io/ccn-tutorial/pages/analyzing_neural_networks.html


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

USUC LSUC USLC LSLC
CIFAR10 ResNet-Fact V1 62.59 ± 0.21 76.59 ± 0.18 89.65 ± 0.08 90.55 ± 0.10

ResNet-Fact Default 62.50 ± 0.34 76.36 ± 0.11 89.52 ± 0.10 90.59 ± 0.08
RSN V1 67.15 ± 0.12 74.05 ± 0.1 69.98 ± 0.15 76.31 ± 0.13
RSN Default 66.03 ± 0.07 71.86 ± 0.07 68.6 ± 0.08 74.0 ± 0.11

CIFAR SS ResNet-Fact V1 27.45 ± 1.58 31.13 ± 0.32 37.54 ± 0.78 36.49 ± 0.66
ResNet-Fact Default 25.01 ± 1.63 29.55 ± 1.01 37.05 ± 0.75 35.97 ± 0.65
RSN V1 43.31 ± 0.22 39.36 ± 0.44 45.05 ± 0.22 39.88 ± 0.44
RSN Default 42.66 ± 0.32 44.44 ± 0.31 44.1 ± 0.32 43.4 ± 0.55

CIFAR100 ResNet-Fact V1 32.10 ± 0.19 48.42 ± 0.26 67.07 ± 0.08 67.63 ± 0.23
ResNet-Fact Default 32.49 ± 0.21 47.66 ± 0.24 66.47 ± 0.08 67.99 ± 0.13
RSN V1 Default 39.73 ± 0.15 49.21 ± 0.1 43.36 ± 0.08 52.0 ± 0.09
RSN Default 38.76 ± 0.09 46.09 ± 0.12 42.23 ± 0.09 49.22 ± 0.1

Table 3: We test the performance of V1-like spatial covariance initialization in the R2 matrix versus
the default covariance initialization on models with factored learnable covariance layers. Accuracy
is averaged over ten seeds with standard error reported. V1-initialization may improve performance
slightly, but its effects are weak especially in the ResNet.

2 3 2 2 2 1 20 21 22

Width
0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

Resampling and Alignment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

Linear Probe
ResNet-Trad
IWA + AA
IWA
AA + Color

Figure 8: The rainbow sampling method of Guth et al. (2023) applied to ResNet-18. Left: The
accuracy of traditional ResNets and their resampled and aligned (dashed) and resampled, aligned,
and fine-tuned (solid) counter parts over width. At larger widths we are unable to approximate the
performance of larger width networks. Right: We inspect the linear probe performance on various
methods of sampling a network from a pretrained convolutional network. AA accuracy declines
after layer 11. Aligning a sampled weight with a corresponding pretrained network’s layer weight,
IWA, prevents this decline. IWA + AA gives closest performance to that of the originator pretrained
network, but a large difference remains in later layers.

A.5 UNSUPERVISED LEARNING

To test our RSNs against wavelet scattering in the unsupervised learning domain, we build a
scattering-based image generator described in Angles & Mallat (2018). Their network provides a
strong mathematical framework with similar properties to generative adversarial networks (GANs)
and variational auto-encoders (VAEs). In their model, images are embedded with a wavelet scatter-
ing transform, then passed through an affine whitening layer. The whitened scattering representation
is then inverted by the generator model, which is composed of 5 convolutional layers with upsam-
pling, reflection padding, batch normalization, and ReLU nonlinearity.

We investigate whether embedding the input images with fixed V1-like features achieves similar per-
formance to the wavelet scattering embedding in three image generation areas: linear interpolation
between two images, generating new images from Gaussian white noise, and reconstructing images
from the training and test sets. We use the wavelet scattering package Kymatio (Andreux et al.,
2020) to regenerate results from Angles & Mallat (2018). In our RSN version of the wavelet scat-

15



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

A

aaaaaaaaaa
aa

Figure 9: Autoencoding with either wavelet scattering or randomized scattering networks produces
similar results. (A) Linear interpolation between two training images. (B) Reconstructing a set of
images from the test set. (C) New images generated from white noise. Left, the results of scattering
embedding and right, the results of our V1-like RSN embedding. The V1-like generated images are
less realistic.

tering embedding, the input image is passed through two convolutional layers with frozen V1-like
weights. We implement whitening using IncrementalPCA from scikit-learn (Pedregosa et al.,
2011). We test our image generation model on the CelebA dataset (Liu et al., 2015), composed of
over 200,000 images of celebrity faces.

Visually, we see similar results between our generated results and the wavelet scattering results
(Fig. 9), showing that fixed V1-like features work well as an embedding similar to scattering. How-
ever, our train PSNR score on CelebA is 30.45 and our test score is 28.89, while the scores in our
reconstructed network from Angles & Mallat (2018) are 30.21 for train and 29.91 for test, so our
networks perform slightly worse in this regard.

A.6 KERNELS OF MULTILAYER STRUCTURED RANDOM FEATURE NETWORKS

Kernels, e.g. the original neural network Gaussian process (NNGP, Neal, 1995) or the neural tangent
kernel (NTK, Jacot et al., 2018), are a popular way to analyze function spaces associated with neural
network architectures. The layer-l NNGP is given by the infinite width limit nl → ∞ of the scaled
inner product of hidden layer features zl for two different inputs z0 = x and z0 = x′:

kl(x, x
′) =

1

nl
⟨zl(x), zl(x′)⟩ ≈ EW1...Wl

[zl(x)zl(x
′)], (3)

which in a feedforward network depends on the the previous and current layer weights. In certain
settings NNGP and NTK kernels can be expressed recursively. With correlated Gaussian features,

16



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

this can be evaluated as the kernel for unstructured features acting on inputs zl−1(x) transformed as
Rlzl−1(x) (Pandey et al., 2022).

For a network with convolutional structure, zl[p] = ρ(GlΛUzl−1[p]) where p is a patch of the
representation at each layer. This implies a convolutional kernel representation (Mairal et al., 2014;
Guth et al., 2023):

kl(x, x
′) =

∑
p

Eg∼N (0,1)[ρ(⟨Rlzl−1(x)[p], g⟩])ρ(⟨Rlzl−1(x
′)[p], g⟩)]. (4)

Note that the structure of this function is additive (Harris, 2019) over patches. Concatenating fea-
tures, as in our RSN, yields a kernel of the form:

k(x, x′) = xTx′ +

L∑
l=1

kl(x, x
′). (5)

An interesting direction for future work is to study how the transformation induced by the covariance
of the correlated weights (Rl or equivalently the spectral decomposition of the covariance Cl) affects
the RKHS associated to the network. Perhaps the techniques of Xiao (2021), who studied CNNs
without covariance structure, are applicable. Additionally, we could apply methods from Bosch
et al., Schröder et al., and Zavatone-Veth & Pehlevan, who computed sharp asymptotics for the
generalization performance of networks with random weights. The former two works consider
nonlinear models with i.i.d. weights, while the latter considers correlated Gaussian weights.

17


	Introduction
	Related Work
	Methods
	Networks with Correlated Gaussian Weights
	Learning the Covariance Matrix
	Resampling and Aligning Networks
	Activation alignment
	Weight Alignment

	Architectures: Randomized Scattering Network and ResNet
	Experiments

	Results
	Learning Covariance Structure for Image Classification
	Resampling and Alignment to Approximate a Reference Network

	Discussion
	Appendix
	Network Architectures
	Learned Spatial Eigenvectors
	V1-like vs Default Initialization
	Network Resampling
	Unsupervised Learning
	Kernels of Multilayer Structured Random Feature Networks


