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Abstract

Human action recognition is the task of classifying human movement and ac-
tions from video data. To benchmark different algorithms within the action
recognition field, a common benchmark dataset, called NTU-RGB+D is used.
However, this dataset is not without its issues as some samples contain data
that is mistakenly captured as a human. In the context of this thesis, these are
defined as ghost bodies. This thesis explores to what extent the accuracy of a
state-of-the-art directed graph neural net, DGNN, is affected if trained without
ghost bodies. The results suggest that the accuracy increases by 1.79 percent-
age points when ghost bodies are excluded during testing with an unofficial
implementation of the DGNN. However, the results of the original DGNN
could not be fully replicated which undermines the strength of the results. De-
spite this, given the importance of the NTU dataset within action recognition,
we suggest considering a new benchmark dataset that takes ghost bodies into
account. While the results of the study are not generalizable, the measured
difference in recognition accuracy still points to the the necessity of looking
deeper into the phenomenon of ghost bodies within action recognition.



Sammanfattning

Minsklig rorelseigenkédnning (en. human action recognition) ar forskningsom-
rddet dgnat at att kéinna igen ménskliga rorelser fran videodata. For att kunna
jamfora olika algoritmer inom omradet forekommer ofta ett standardiserat da-
tasetet, NTU-RGB+D, som bland annat innehdller skelettrepresentationer av
manniskor som utfor rorelser. Trots datasetets vida anviandning inom rorelsei-
genkédnning innehéller det vad som i denna uppsats benimns spokkroppar (en.
ghost bodies). Dessa artefakter i datasetet dr skelettrepresentationer som fel-
aktigt klassats som att de tillhor en méanniskokropp nér de i sjidlva verket utgor
nigot annat icke-ménskligt objekt i videodatan. Experimentet som redogors
for i denna uppsats har dgnats at att undersoka hur dessa spokkroppar paver-
kar rorelseigenkédnningsprecisionen (en. action recognition accuracy) hos ett
nutida riktad-graf-baserat neuralt nitverk (en. directed graph neural network,
DGNN). Resultaten visar att igenkdnningsprecisionen tycks 6ka med 1,79 pro-
centenheter nér grafnétverket trinas utan forekomster av spokkroppar. Resul-
taten bor dock tolkas med forsiktighet da den igenkénningsprecision som rap-
porterats for grafnitverket i originalexperimentet inte kunde replikeras. Trots
detta utgdr NTU ett sd pass viktigt dataset for forskning inom rorelseigenkin-
ning, att vidare analys och forbéttring av datasetet med avseende pa spokkrop-
parna ir att rekommendera. Aven om resultaten inte kan generaliseras bort-
om det grafnétverk som experimentet utfordes med, pekar dnda den uppmitta
skillnaden i igenkdnningsprecision pa vikten av vidare analys vad giller spok-
kroppars inverkan pad moderna algoritmer inom rorelseigenkénning.
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Chapter 1

Introduction

Computer science can be seen as the research area where one is aiming to
understand the capabilities of computers. However, with the advent of arti-
ficial intelligence, much attention within computer science has been devoted
to finding algorithms and methods for computers to understand humans rather
than us understanding them. To interpret humans, a computer must be able to
listen, comprehend human feelings and see humans interact with each other
and the world around them.

There are many different research areas where efforts are made to replicate hu-
man abilities. Among them are the interpretation of human language (Natural
language processing), understanding human emotion (Sentiment analysis) as
well as giving computers the ability to see (Computer vision).

In the past decade, major breakthroughs have been made towards interpreting
images and understanding visual content with the help of deep learning algo-
rithms (see chapter 2). This has for example been used to classify and segment
different parts and objects of an image. Computer vision has also been natu-
rally extended to work with video data which have opened up the possibility
for a large array of applications and research areas. One such research area is
called video action recognition.

Video action recognition is the task of classifying, often human, physical ac-
tions in sequences of images [ |, 2]. The applications for human action recog-
nition are many including video surveillance and human-computer interac-
tion tasks [3]. The problem of action recognition is still subject to active re-
search and new approaches and improvements are proposed frequently [3, 4,

b ]'



2 CHAPTER 1. INTRODUCTION

There are several different approaches for recognizing actions from video data.
Recent work mainly revolves around so-called skeleton-based action recogni-
tion where joints and bone positions are extracted from images [3]. There have
also been different propositions on how to best use skeleton data in order to
recognize human actions. Firstly, sequence-based methods represent the hu-
man body as a sequence of joints. These are then trained using recurrent neural
networks, RNNs [7]. Other approaches involve convolutional neural networks
[8]. Lastly, graph neural networks, GNNs instead represent the body as joints
and bones where joints and bones can be seen as nodes and edges in a graph
respectively. Recent work within human action recognition leverage an ex-
tension of GNNSs. These are called directed graph neural networks which has
given remarkable results in contemporary studies. These different approaches
are explained further in chapter 2.

The common factors among different action recognition algorithms are many.
Perhaps the most important one revolves around how they are trained and eval-
uated. There are multiple datasets used for benchmarking these algorithms,
and one of the most frequently used is the NTU-RGB+D dataset [7]. It con-
tains, among other things, graph representations of human skeletons and in-
troduces a standardized separation of training and testing data that can be used
to compare the accuracy of different action recognition algorithms. However,
this dataset, like any other, is not perfect. The skeleton representations in the
dataset were created with the use of the Microsoft Kinect sensor. This sensor
is used to identify human joints in video data. However, sometimes the sensor
falsely detects human joints in other objects that are in fact not human. This
results in unwanted noise which could potentially affect the accuracy of action
recognition algorithms. An example of such noise can be seen in Figure 1.1,
where a chair has falsely been identified as a human.

As the quality of datasets is such an important factor when training any ma-
chine learning algorithm, it is interesting to dive deeper into how action recog-
nition algorithms might be affected by noise in the datasets they are trained
on.

1.1 Definitions and fundamentals

In order to understand the problem and research question that will be presented
in this thesis, some definitions and fundamental terms must first be understood.
Those fundamentals will be explored within this section.



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Example of samples with ghost bodies (see subsection 1.1.5)
where one or more chairs are inserted as skeletons

1.1.1 Learning algorithms

In order to understand contemporary action recognition algorithms, it is im-
portant to understand the concept of machine learning. Tom M. Mitchell [9]
coined the definition as "A computer program is said to learn from experience
E with respect to some class of task T and performance measure P. if its per-
formance at tasks in T, as measured by P, improves with experience E.". By
experience E it is possible to imagine a high variety of interpretations but most
commonly is some form of data. A task T, is harder to clarify considering a
task can take many forms and sometimes non-intuitive tasks like memorizing
data. But it is important to state that the T is not learning in itself. Rather,
T refers to the problem that the algorithm is aiming to solve. Some common
examples are classification, regression or machine translation. How well the
algorithm performs, P, is the quantified measurement of how the algorithm is
learning. Depending on the specific algorithm and what is interesting to mea-
sure, there are different ways of measuring P. For a classification task, it is
normal to aim for a P measured on unseen data and this is managed by split-
ting the data into a test and training dataset where the model learns from the
training data and evaluated on the test data.

1.1.2 Deep learning in action recognition

In the past couple of years action recognition using deep learning has increased
dramatically. There are many definitions of deep learning, but in short, it can
be described as a subset of machine learning where so-called artificial neural
networks, ANNSs, are employed to learn to infer from looking at data. More-
over, a deep neural net consists of several layers of artificial neurons that have
proven remarkably accurate when it comes to learning from data in complex
areas such as natural language processing and image recognition to name a
few. [10].
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Moreover, the majority of action recognition approaches today uses deep learn-
ing. However, these approaches differ in much of their implementation and
how they learn even though they all employ some form of deep learning to
recognize the action.

1.1.3 Graph-based action recognition

For human action recognition, many deep learning approaches use what is
called skeleton-based action recognition. Skeleton-based methods involve ex-
tracting a representation of the human skeleton from video data, and using it as
input for action recognition algorithms [3]. The skeleton-based action recog-
nition up until this point are divided into three different categories. Each of
these categories are explored in-depth in chapter 2.

1.1.4 The NTU-RGB+D dataset

The NTU-RGB+D [7] dataset is one of the most widely used datasets for ac-
tion recognition and therefore commonly used to benchmark new algorithms
against existing implementations. The dataset contains 60 action classes and
40 subjects where 11 of the classes involve two people. Some examples of
classes are take off a hat/cap, cheer up, phone call or point finger. The dataset
contains RGB data (red, green blue), depth data, skeleton data and infrared
data. However, within the confines of this thesis only the skeleton data will be
used. Skeleton data, often called joint data, simply consists of a set of 3D co-
ordinates marking the location of a human joint in space. Thus, a set of these
human joint coordinates can be seen as a representation of the entire human
body. For samples in the NTU-RGB+D dataset, these have been collected by
the Microsoft Kinect sensor that is described more in subsection 1.1.5. More-
over, the dataset uses three cameras put at the same height but shot from dif-
ferent horizontal angles (—45°,0°,45°) for every action. The original paper
about the NTU-RGB+D proposes to use two benchmarks for action recogni-
tion accuracy. Firstly, a setup called cross-subject (CS) where the person in
the training set is different from the person in the validation set. The second
setup is cross-view (CV) where instead the camera angle in the training and
test set are different from each other. We will throughout the remainder of this
thesis refer to the NTU-RGB+D dataset as the NTU dataset.
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1.1.5 Ghost body

Throughout the remainder of this thesis a common referred to term is ghost
body. This is a term coined in this thesis to describe occurrences of skeleton
data captured in video samples that are not human. In the NTU dataset the
ghost bodies come from oversensitivites in the Microsoft Kinect sensor, which
is the tool used to collect skeleton data in the dataset. An example of a ghost
body can be seen in Figure 1.1. In action recognition, ghost bodies are most
likely not desirable when they are a part of training human action recognition
algorithms.

1.2 Problem statement

In a recent implementation of a graph-based action recognition neural net, the
authors describe the issue of ghost bodies in the NTU dataset and how they
have accounted for them in training of their algorithm [3]. To the best of our
knowledge, neither this nor any other graph-based action recognition experi-
ment using the NTU dataset, has explored the impact of the ghost bodies. In
addition to not discussing how training might have been affected by ghost bod-
ies, the frequency of them in the NTU dataset has not been presented either. As
described in subsection 1.1.4, the NTU dataset is widely used for training and
evaluating action recognition algorithms which makes potential issues related
to ghost bodies all the more interesting.

1.3 Purpose

The purpose of this thesis will be to explore the impact of ghost bodies in
skeleton-based recognition algorithms. The aim will be to answer the follow-
ing research question:

How frequent are ghost bodies in the NTU dataset, and how is the action recog-
nition accuracy affected by training the model proposed in [3] without the
presence of ghost bodies?

1.4 Delimitations

To fully explore the impact of ghost bodies on skeleton-based recognition al-
gorithms, one would need to test several different implementations. However,
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due to time and computational limitations, this experiment will only be con-
ducted on one state-of-the-art action recognition model [3]. More specifically
an unofficial implementation of the algorithm will be used [11].

As training the algorithm is hardware and time intensive, only one of the two
setups in the NTU will be explored - namely the one called cross-subject, CS.
This represents a separation of the dataset where the persons differ in training
and testing datasets. This is opposed to cross-view, CV , where instead the
camera angle in the training and testing data are different.

1.5 Approach

In order to to measure the potential effect on action recognition accuracy caused
by ghost bodies in the NTU dataset, an existing state-of-the-art directed graph-
based neural network, DGNN [3, 11], will be trained on two different data
preparation setups. One where, in simple terms, the ghost bodies are included
in training and testing, and one where they are not. The measured difference in
action recognition accuracy, if any, between these two setups will serve as the
metric of the effect of ghost bodies. A deeper explanation of the experiment
and its assumptions are included in section 3.1.

1.6 Outline

In the remainder of this report an overview of the action recognition research
field will first be given in chapter 2. A deeper explanation of the experiment
and the approach to measure the effect of ghost bodies then follows under
chapter 3. Under chapter 4 the outcome of the experiment is presented and
explained. Lastly, the significance of the results, potential weaknesses and
suggestions on further work is explored in chapter 5.



Chapter 2

Related work

In this section different areas of action recognition will be explored. A brief
overview of previous approaches for human action recognition that does not
explicitly involve deep learning is first given. Thereafter contemporary deep
learning approaches are briefly explained. Lastly, the experiment that serves
as the stepping stone for this thesis is explained and explored in depth.

2.1 Anoverview of human action recognition

Human action recognition is the computer task of interpreting and labelling
human action from image or video data [!]. The task is not a trivial one as
there are large variations in how human actions take form. Consider for ex-
ample the task of walking. It may vary in speed, the stride length and even
the particularities of a certain person’s walking style may differ widely. Many
actions also involve more than one person and or interactions with the envi-
ronment which increase the complexity of recognizing actions even further.
Imperfections in the video data, such as occluded body parts is another obsta-
cle. Given these intricacies [ | ] suggests that a viable human action recognition
algorithm should be good at recognizing variations within one class of action
as well as be able to accurately make out the differences between different
classes of actions.
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2.2 Earlier approaches for action classifica-
tion

The most common method for recognizing actions has historically been and
still revolves around extracting features from images in video data in order to
assign them an action label [!]. However, there are different approaches to
representing the image data as there are many ways to encode and consider
the temporal dimension in an action. Given some input data representing an
action, the remaining task is to classify it. One type of approach for doing so
is called direct classification which means that the temporal information in a
video sequence is condensed into a single representation or that the classifica-
tion is carried out in each frame of a video sequence [1].

2.2.1 Indirect classification

In indirect classification principal component analysis, PCA, has often been
used to reduce the high dimensionality of image data []. This is done in order
to serve as better input data for classifiers in general and action recognition
classifiers in particular [1]. Given some condensed form of representation
in indirect action classification, one approach for performing the classifica-
tion involves the algorithm Nearest neighbour classification, NN classification,
which in layman’s terms compares a distance metric between an input image
and a class that the algorithm has been trained on.

The input is then classified as the class it is closest to measured by the dis-
tance metric. One issue when using NN classification in action recognition
is the high dimensionality of the image data [1]. This has led to implementa-
tions where principal component analysis has been used as a precursor to NN
classification [12]. The distance metric used in NN action classification has
also been subject to research and is important to consider in action recognition
using NN [1].

So-called support vector machines, SVMs have also been used in action recog-
nition [1]. In short, SVMs is a way to create vectors that mark the separation
of different classes. Relevance vector machine, a probabilistic implementation
of an SVM, has specifically been successfully used within action recognition

[15].
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2.2.2 Models encoding temporal information

In contrast to direct classification where the temporal information is not ex-
plicitly considered there are also so-called Temporal state-space models [ 1]
where different states of a model are connected by probability edges. A state,
when this kind of model is used in action recognition, represents the proba-
bility of an action at a given time in an action sequence. One implementation
of the temporal state-space model is the Hidden Markov Model, HMM. The
edges between two states in an HMM represents the probability that an action
in one state goes over to another state and as such takes in to account temporal
information. In more advanced implementations of HMM for action recogni-
tion, a state is not an entire image or body performing an action at a certain
time, but rather a certain body part’s information at a given time. These ap-
proaches have thus used one HMM per body part in a particular action which
has proved to simplify the training of the models as there are fewer combina-
tions to consider if only one body part is modelled, compared to all possible
states in an HMM that represents an entire body [1].

One weakness of HMMs in action recognition is that it assumes that states are
independent over time which is rarely true for human action [1]. As a means to
solve this discriminative models are employed, meaning that they are trained
to separate different classes rather than learning how to model a certain class
[1]. One implementation of such a discriminative model is called conditional
random fields, CRF. One study focusing on actions where temporal states of
the action are particularly correlated, proved to outperform HMM approaches
for classifying actions [ 14]. However, there is no research to support that CRFs
should be more accurate than HMMs for action recognition in general.

2.3 Actionrecognition using deep learning

In recent years the majority of action recognition algorithms leverages deep
learning. A brief overview of the different categories of deep learning ap-
proaches within action recognition are outlined in the following section.

2.3.1 Skeleton-based action recognition with RNNs

Previous to using graph neural networks for action recognition, employing
recurrent neural networks, RNNs, was the most accurate and widely used ap-
proach for skeleton-based action recognition [15]. One reason for how well
RNN approaches have worked for action recognition tasks is that it is a vari-
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ant of deep learning well suited for learning time-dependencies in sequential
data [15]. As action recognition requires interpretation of temporal as well as
spatial information, RNNs proves a good tool to use for this purpose. Further
extensions of RNN approaches applies so-called long- short-term memory,
LSTM, learning.

One approach leverages an LSTM approach to create what they call a Spatio-
temporal LSTM algorithm which both models the spatial dependencies of
the joints in the skeleton data, as well as the temporal information in the
movement between the frames of the video data[15]. Back in 2016 this ap-
proach performed on par with contemporary state-of-the-art algorithms and
achieved a 69.2 % (cross-subject) recognition accuracy on the NTU dataset
which was soon to be outperformed by the advent of CNN action recognition
approaches.

2.3.2 Skeleton-based action recognition with CNNs

One alternative approach for using a deep learning in skeleton-based action
recognition uses convolutional neural networks, CNNss, to classify and detect
action in video data. [3]. A convolutional neural network is otherwise a widely
used method for image object detection. When it comes to object detection, it
is usually employed on one single image, meaning that CNNs has generally not
been used to include temporal information. However, accounting for temporal
information is key when it comes to action recognition. To address this issue,
CNN approaches used in action recognition represent a skeleton action as a
so-called pseudo-image. A pseudo-image in this case refers to compressed
skeleton coordinates from several frames in a video sequence. This pseudo-
image is then fed to a convolutional neural net for classification. The temporal
data of an action is, using this approach thus condensed into a single image

[16].

One implementation of this approach was proposed as an alternative to the
more common RNN approaches at the time [ 16]. The authors of [16] achieved
an 83.2 % (cross-subject) action recognition accuracy on the NTU dataset
which at the time was the state of the art.
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2.3.3 Skeleton-based action recognition using graph-
based neural nets

The more recent advances in the action recognition field focus on so-called
graph-based neural networks, GNNs [3]. The key idea with GNNs lies in how
the input data is modelled using a graph. A human skeleton in this approach
is represented by vertices and edges where the vertices represent a joint in the
human body and where the edges between the joints model human bones [3].
Input data modeled in this way is argued to be a more intuitive approach since
the human body can naturally be seen as a graph rather than a sequence or
an image as in the RNN and CNN approaches described above. One of the
first attempts to apply a directed graph neural netowork, DGNN, for action
recognition occurred in 2019 [3]. As that experiment serves as the base for
the experiment that will be carried out in this thesis, its contents will now be
explored.

Firstly, the experiment argues the superiority of graph-based approaches as it
captures both joint and bones data. The authors suggest that for most actions,
a movement of a joint (vertex) is highly correlated with the movement of the
bone (edge) that is connected to that joint (vertex). Further, measuring and
training a neural network to recognize these correlations serves as the base
of the authors’ experiment. The authors leverage the graph representation in
two ways. Firstly, they extract bone and joint information from the video data
which is fed into the GNN for feature extraction. Note that this is done on a
per-frame basis meaning that the temporal aspect is not accounted for yet. The
authors call this the extraction of the spatial information of each frame. Sec-
ondly, they use differences between the graph representations in consecutive
frames to determine the movement of the graph from one frame to another.
This step serves as the temporal dimension or as they call it, the motion in-
formation of the action. Lastly, these two input data streams are fed into a
two-stream model as its training data.

The key for the model to extracting and capturing the dependencies between
joints and vertices lies in its directed graph network-block. The authors make
clever use of a directed graph where they firstly use two aggregate functions to
pool information from incoming and outgoing edges of a given vertex. Each
vertex in the graph is then updated using another function that takes the orig-
inal vertex and the aggregations from the previous step as its input. Similarly,
each edge is updated with a similar function, where the input data instead is the
edge and the aggregations from the previous step. The outputs from these two
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functions thus have modelled and captured a dependency between the joints
and bones which the model can then be trained on [3].

When the experiment was published in 2019, the two-stream approach for the
DGNN performed radically better than the contemporary state-of-the-art ex-
periments. On the NTU dataset, an action recognition accuracy of 89.9% was
measured (cross-subject).

As this paper serves as the base for the one carried out in our thesis, it is also
important to explore how the authors tackled the problem of ghost bodies.
Firstly, the authors claim that some of the samples in the NTU dataset con-
tain more than two bodies where some of them are not actually human bodies
but rather objects that are wrongly classified in the dataset. These are in fact
what is defined as ghost bodies within the confines of this thesis. To deal with
the issue of ghost bodies, the authors limit their input data to only contain
information about two bodies regardless of how many are actually in the sam-
ple. The heuristic for determining which two bodies (if there were more than
one in the sample) to extract was to simply look for the two largest sums of
joint movement from a presumed body and exclude the rest from the sample

[3].

2.3.4 Recent advances in graph-based action recog-
nition

There is more recent research improving on the DGNN [4, 17, 6] where several

approaches perform better on the NTU dataset [3]. However, to the best of our

knowledge, little or no research has been directed towards analyzing the NTU

training data with regards to ghost bodies. Neither has attention been devoted

to explore how action recognition could be affected by their presence when
training modern action recognition algorithms.



Chapter 3

Method

The Method will present the design of the experiment and its assumptions. A
detailed explanation of the approach is also described under section 3.2.

3.1 Experiment design

The approach of the experiment was designed around measuring how the ac-
tion recognition accuracy is affected by the occurrence of ghost bodies. It is
known that the NTU dataset only contains action classes where at most two
real human beings are participating. It was therefore assumed that if samples
in action classes with only one human in it, contains two or more skeleton data
instances, the additional skeletons are likely ghost bodies. It is important to
note that the above is an assumption and not a given fact about the data set.
However, the NTU is a dataset created in a controlled environment. This sug-
gests that it would be peculiar if the creators of the dataset chose to include
other humans than the one performing the action. This strengthens the choice
of that simplification. Given this assumption, two different training setups
were performed in order to isolate the effect of ghost bodies.

Firstly, the baseline for measuring the effect was to simply train the state-of-
the-art DGNN proposed in [3] on the original data, but with only one-person
classes. If there were ghost bodies in any of these one-person samples they
were thus included when training the algorithm.

Secondly, the action recognition accuracy was compared with that of the sec-
ond setup. The exact same samples, again only involving one-person classes,
was used in training , but with the important difference that the number of

13
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skeletons extracted from each frame in a sample was capped to only include
the one with the single most movement across the duration of the video se-
quence. Since the samples only involved one human, the extracted skeleton
in this setup would most likely also be the actual human. This was deemed to
be a reasonable assumption but potential weaknesses connected to this will be
discussed further in chapter 5.

The reason for limiting the dataset to only look at one-person classes was to
simplify the process of isolating the effect of ghost bodies. The input shape of
the data in the model depends on the number of expected bodies in the samples.
Thus, if the experiment were to include two-person classes, the minimum of
extracted skeletons would be two even for one-person classes. Therefore, one-
person classes would, in such a baseline setup include both an actual human,
and one ghost body. Without manually removing the ghost body skeleton from
this one-person action sample, the baseline would contain ghost bodies. Since
the purpose of the baseline is to only include actual humans, the issue above
would largely complicate the data preparation.

Note that since the data consists of sequences of images, ghost bodies could
potentially just have be present in some frames of a sample. A sample in the
NTU dataset is a sequence of images and it is therefore possible for a ghost
body to be part of some, but not necessarily all frames of it. Thus, in order to
measure the frequency of ghost bodies, a sample was defined as a ghost body
sample, if a ghost body could be found in at least one frame of it. Lastly, the
action recognition accuracies of the two setups described above was compared
on the NTU CS (cross-subject) setup.

3.2 Experiment approach

In the following section the procedure for the experiment will be explained.

3.2.1 The model

In order to modify the experiment in [3] existing implementations were re-
searched. As the official implementation was not available, the decision was
made to look for alternatives. A well documented unofficial PyTorch imple-
mentation was found and used for the entirety of the experiment [11]. This
implementation had the entire process documented including data preparation
steps, training and evaluation instructions. However, even though the imple-
mentation allowed to abstract from the finer details of the model, it is notewor-
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thy that this implementation proved to be video memory intense. In effect the
model required more then 12 GB of video memory to commence the original
training. For our experiments that meant modifying the training process so
that it could run on two or more Nvidia TitanX GPUs in parallel.

In order to make sure that this unofficial implementation was in fact a vi-
able replication of the original experiment in [3], the first issue was to en-
sure that the same action recognition could be measured. As such, the model
was trained without any modifications in either the NTU dataset or the model.
After 8 days of training on 4 TitanX GPU run in parallel, the training was
completed and the testing procedure commenced (which was considerably
faster).

3.2.2 Data preparation

The data preparation step was also included in the used implementation of the
model. The code for the data preparation was studied and with small modi-
fication, every sample used in training and testing could be modified to only
train on one body in each sample even though there were several skeletons
in it. This could be done due to the fact that each sample frame in the NTU
dataset contained a metric for the skeleton count in each frame of the sample,
as well as information about whether or not it was a one-person action sample.
As such, if first all multi-body actions were filtered out from dataset, but there
still proved to be frames containing more than one skeleton, it was considered
reasonable to assume that one of those were in fact a ghost body skeleton.
To assess this assumption a seven samples were plotted on the original video
sequence see Figure 1.1. In the reviewed cases one or more skeletons were
in fact found. For example, except for the actual human skeleton, things like
chairs and plants constituted the ghost body in question. The frequency and
some statistics of the ghost bodies were measured and documented before the
training experiment commenced.

3.2.3 Training and testing the model

Given the needed knowledge about the data set, two training sessions were
carried out. The first one served as the experiment baseline for comparing the
action recognition accuracy. The baseline was constructed so that the original
model was trained on all one-person action classes, but without any modifica-
tions to filtering out ghost bodies from the samples. In essence, this baseline
is exactly how the original experiment was carried out with the notable ex-
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ception that only one-person actions are included. This approach was chosen
in order to be able to better isolate the effect of training with the presence of
ghost bodies. If the original baseline would have been used, it stands to rea-
son that the effects of how well the model classifies two-person actions versus
one-person actions would also have been measured. This was outside of the
research question and would have weakened the significance the results.

The second training session was also carried out with only one-person classes,
but with the important difference that the maximum number of extracted skele-
tons in each sample frame was limited to one instead of two as in the original
experiment. As described under chapter 2, the original experiment extracted
(at most) the two skeletons with the most movement over the entire sample as
a heuristic to find the relevant human skeletons in the action. Note that this
rule was not modified in our experiment - only the number of extracted skele-
tons were. It is noteworthy that this rule might be too simple, as there is no
guarantee that the extracted skeleton is in fact a human skeleton. It could very
well, in some cases, be a ghost body. The potential impact of this heuristic is
discussed further under chapter 5.

Once both training sessions were finished, testing commenced. Based on lim-
itations of time and computational power, only cross-subject benchmark was
performed. The limitations of this is discussed in detail in the Conclusion. Fi-
nally, the action recognition accuracy were documented and analyzed.



Chapter 4

Results

Firstly, the frequency of ghost bodies in the NTU dataset are presented. Sec-
ondly, the action recognition accuracies from training the DGNN in [3] on the
two different data preparation setups are revealed and compared.

4.1 Ghostbody occurrencesinthe NTU dataset

Action class Count Share

1 person classes | 46231 81.7 %
2 person classes | 10347 18.3 %
Total 56578 100 %

Table 4.1: Two-person versus one-person action classes in NTU dataset

Firstly, as seen in Table 4.1, the NTU dataset was found to contain 46231 sam-
ples where the action only contains one human. This was opposed to the full
dataset with both one-person classes and two-person classes which counted
56578 samples in total. Thus, one-person actions stands for the majority of
the data with 81.7% of the samples in the dataset.

Secondly, out of the 46231 one-person class samples used in the NTU dataset
1799 of these were found to contain more than one person in one or more
frames of the action sample as seen in Table 4.2. This should, under the as-
sumptions described in chapter 3, be interpreted as the number of samples
containing ghost bodies since the action classes, if they do not contain ghost
bodies, only contains one single skeleton - namely the actual human. Note

17
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Type Count  Share

Samples with ghost bodies | 1799 3.9 %
Valid samples 44432 95.9 %

Total 46231 100 %

Table 4.2: Ghost body sample statistics for one-person classes in the NTU
dataset

again that our definition of a ghost body sample does not require all frames to
contain a ghost body. Rather, simply one single frame containing a ghost body
will suffice for it to be counted towards ghost body samples even though this
is rarely the case. The counting of ghost bodies was explained in detail under
chapter 3.

4.2 Action recognition accuracies

Dataset setup (Cross-Subject) Top 1 Top 5
Original dataset (reported in [3]) 89.9% -
Original dataset (unofficial implementation) 84.13% 96.10%

One-person classes with maximum of two skeletons | 84.09% 96.03%
One-person classes with maximum of one skeletons | 85.88% 96.93%

Table 4.3: Comparison of action recognition accuracy between different ex-
periment implementations and data preparation setups.

The prediction accuracies presented in Table 4.3 represents the results of the
two different data preparation setups. Note again that the accuracies are mea-
sured cross-subject (See subsection 1.1.4). The column, 7op I represents the
action recognition accuracy when the DGNN classifies the correct action as
its first choice. The Top 5 column instead measures the action recognition
accuracy when the model recognizes the correct action as one of its top five
choices.

As seen in Table 4.3, the action recognition accuracy is slightly higher when
ghost bodies are filtered out as there is a difference of 1.79 percentage points
in the two different data preparation setups when looking at the top 1 accu-
racy. The same difference for the top five accuracy measures 0.9 percentage
points.

The results of replicating the original experiment in [3] is also noteworthy.
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The original paper reports a 89.9 % action recognition, cross-subject on top 1
accuracy whereas the unofficial implementation used in our experiment only
achieves 84.13 %. The same measurement on top five accuracy is not reported
in [3] and thus cannot be compared. The reasons and implications of the dif-
ferences between the reported accuracy in the original DGNN and the one
measured in the unofficial implementation will be discussed further in chap-
ter 5.



Chapter 5

Conclusion

In the following section the results are discussed and concluded. After that
follows suggestions on further research. Finally an answer to the proposed
research question is given.

5.1 The significance of ghost bodies in the
NTU dataset

As seen in chapter 4, 3.9 % of all one-person action classes were found to
contain ghost bodies in the NTU dataset. To answer the research question, it
is important to discuss if that is to be considered a significant share.

Firstly, it is worth reiterating that the NTU dataset was created in a controlled
environment which means that data quality can be expected to be higher than
that of an in-the-wild dataset. In that sense, 3.9 % could be considered to be
a significant amount. Furthermore, much of the benefits of using a controlled
dataset like this one is to be able to compare different algorithms on differ-
ent aspects in regards to the action recognition accuracy. The key idea behind
comparability in datasets is of course to isolate the performance of the algo-
rithms rather than measure how different experiments prepare the data for its
algorithm. However, as seen in [3] the authors have come up with their own
way of, at least partially, account for ghost bodies. Other experiments using
the same dataset have not mentioned any such data preparation which should
suggest that they have not considered it. This could reveal that if different
experiments within action recognition use different heuristics for filtering the

20
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data before the actual training, that would partially weaken the comparability
of different algorithms.

On the other hand, it can be argued that other benefits of the NTU dataset,
such as the cross-view and cross-subject data preparation setups, are such im-
portant features for comparing action recognition performance. So much so
that noise such as ghost bodies is surmountable. Furthermore, given the rapid
development in the field over the past couple of years, recent action recogni-
tion research seems to be largely focused on discovering new approaches and
algorithms for action recognition rather than fine-tuning data preparation and
performance of existing ones. This would point to that, at least for the time
being, the occurrence of ghost bodies is not that important for the field and
that better data is something to consider when the frequency of breakthroughs
within the research field are less frequent.

However, to fully answer if the 3.9 % ghost body frequency is significant,
the effect their presence have on the action recognition accuracy must be ex-
plored.

5.2 The significance of ghost bodies on ac-
tion recognition accuracy

As stated in chapter 4, the top 1 (top 5) action recognition accuracy was found
to increase by 1.79 (0.9) percentage points when removing ghost bodies from
the data. This points to the fact that the presence ghost bodies seem to have
an effect on action recognition accuracy. As the top 1 accuracy is (expectedly
so) lower than the top 5 accuracies for action recognition in general, the higher
increase in top 1 accuracy, when looking at percentage point difference, comes
as no surprise.

The effect of ghost bodies could at first be considered quite small but there are
number of factors pointing to a 1.79 percentage point increase being a signifi-
cant difference. Firstly, bare in mind that 3.9 % of the samples contained ghost
bodies. In context, this is a rather small frequency that nevertheless seems to
have a measurable effect on the action recognition accuracy. It is of course
hard to speculate on what the action recognition would be if more samples
contained ghost bodies, but most likely it would be significantly lower.

Moreover, efforts to improve action recognition is likely an endeavor of dimin-
ishing returns. In simple terms, this suggests that an increase to the accuracy
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of 1.79 percentage points when the underlying model already achieves a 80 -
90 % accuracy, is more significant than the same increase where the underly-
ing model performs around a 20-50 % accuracy. The same phenomenon also
explains the lower absolute increase of 0.9 percentage points in the top 5 ac-
curacy as this metric is likely subject to even more diminishing improvements
than is the top 1 accuracy. It is also worth comparing the 1.79 percentage
point increase in action recognition accuracy with that of the improvements
seen from introducing new algorithms altogether. As mentioned in chapter 2,
contemporary RNN approaches achieved 69.2% in 2016, while CNN algo-
rithms achieved 83.2% in 2017 and lastly DGNNs with 89.9% in 2019. Thus,
considering an increase of 6,7 % percentage point increase between modern
CNN approaches and a DGNN approach, 1,79 % without changing the algo-
rithm, points to the significance of the results. Note however, that this is not a
perfectly comparable metric as these experiments also trained on two-person
classes which was not the case for our experiment. The comparison is made
merely to point out how much 1.79 % in fact is within this context.

At the very least, it can be concluded that the ghost bodies in the NTU dataset
introduces some measure of uncertainty for the DGNN, that makes it worse
at recognizing actions. This also points to the 3.9 % ghost body frequency
in one-person classes on the NTU dataset to having a significant effect on
the accuracy. There are however issues in the experiment that undermine the
strengths of the results. These will now be explored.

5.3 Weaknesses

The perhaps largest issue with the results is that the used unofficial implemen-
tation was not able to replicate the action recognition accuracy reported in the
original experiment [3]. There are a number of factors that could be the expla-
nation for this. According to closed issues reported in the code repository in
the unofficial implementation, the author blame hardware limitations, and that
certain hyper parameters were missing in the implementation for the measured
84.13 % action recognition accuracy as opposed to the 89.9 % presented in the
original paper. This radical difference suggests that no conclusion about the
effect of ghost bodies on the DGNN in the original paper [3] can be made.
However, it is regardless reasonable to claim that ghost bodies seem to have a
measurable effect on the accuracies of directed graph-based action recognition
algorithms while not the exact one proposed suggested in [3].

Another issue is that the results only include measurements on the cross-subject
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data preparation setup. As mentioned before this was a necessary limitation
due to training being resource and time intensive. If the difference in action
recognition could be measured on the cross-view data preparation setup, the
results would have been considerable stronger.

To truly understand the effect that ghost bodies have, it would also be nec-
essary to look deeper into the dataset and more specifically where the ghost
body samples lie. For example, it is possible that there is an uneven distribu-
tion of ghost bodies in the training set versus the test set, which could radically
affect the measured action recognition accuracy. A deeper analysis of which
samples the original model fails to recognize actions on would be needed. It
is otherwise possible that none or only a few of these samples actually con-
tain the ghost bodies. If that would be the case, the measured difference in
action recognition accuracy would not only or not at all be originating from
the occurrences of ghost bodies but rather some other phenomenon.

Lastly, an assumption to simplify measurements was made. As described in
section 3.1, any additional bodies in samples with one-person classes were
assumed to be ghost bodies rather than another human skeleton. Moreover,
when ghost bodies were removed from data samples, the skeleton with the
most movement was kept while the others were discarded. The first assump-
tion is reasonable as it is otherwise hard to understand why the creators of the
NTU dataset would add humans that are not performing an action to some of
their samples. The second assumption is also quite logical if one thinks about
what ghost bodies are. If they constitute static objects such as the chair seen in
Figure 1.1, the assumption would certainly be considered sensible. In contrast
however, it is also possible that there are ghost bodies with moving objects in
the background or flickering skeleton joints which would cause the assump-
tion to filter out the wrong skeleton data. A deeper analysis of the samples
containing presumed ghost bodies would be needed to give additional support
for the assumptions.

5.4 Further research

In order to fully address the proposed research question, the most obvious
suggestion on future research regarding ghost bodies would be to to redo the
exact same experiment as proposed in this thesis, but where the reported 89.9
% action recognition accuracy can be replicated. While such a replication still
cannot be used as a base for a general conclusion about the effect of ghost
bodies on graph-based action recognition algorithms, it nevertheless answers
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the question that was first laid forth within this thesis.

Except for such a replication as described in the previous paragraph, the search
for more general conclusions about ghost bodies in action recognition would
be desirable. Some suggestions would be to replicate this experiment for sev-
eral state-of-the-art graph-based algorithms. As testing the cross-view data
preparation setup was omitted from this experiment, measuring the results
on this setup would also be a suggestion on how to further generalize the re-
sults.

Lastly, despite all weaknesses clearly diminishing the results, the fact remains
that some phenomenon correlated with the ghost bodies seems to have been
found here. This points to the last suggestion on further research, which would
be to consider working on improvements on the NTU dataset. A version of the
dataset, rid of ghost bodies, could be created as a benchmark of how well algo-
rithms deal with the presence ghost bodies in training data. Given the impor-
tance of this dataset within the field of action recognition, such an endeavour
might be worthwhile in order to achieve better comparisons for present and
future action recognition algorithms.

5.5 Summary

In conclusion, 3.9 % of one-person class samples contain ghost bodies. More-
over, there is a measurable increase in action recognition accuracy when train-
ing a DGNN without the presence of ghost bodies. However, there are several
weaknesses in the experiment that needs to be addressed before a definitive
answer to the research question could be given. As the proposed question was
to explore the effects on the DGNN proposed in [3], the most important draw-
back to the results is that the experiment could not be fully replicated. Despite
this, findings suggests that the presence of ghost bodies in the NTU dataset
decreases action recognition accuracy for a graph-based action recognition al-
gorithm by 1.79 %. Given how widely used the NTU dataset is within the
field, further exploration of ghost bodies and their effects is both interesting
and important.



Bibliography

Ronald Poppe. “A survey on vision-based human action recognition”.
In: Image and Vision Computing (2010).

Samitha Herath, Mehrtash Harandi, and Fatih Porikli. “Going deeper
into action recognition: A survey”. In: Image and Vision Computing
(2017).

Lei Shi, Yifan Zhang amd Jian Cheng, and Hanqing Lu. “Skeleton-
based action recognition with directed graph neural networks”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2019).

Ziyu Liu et al. “Disentangling and unifying graph convolutions for skeleton-

based action recognition”. In: CoRR (2020).

D. Q. Huynh L. Wang and P. Koniusz. “A Comparative Review of Re-
cent Kinect-Based Action Recognition Algorithms”. In: IEEE Transac-
tions on Image Processing (2020).

Ke Cheng et al. “Skeleton-based action recognition with shift graph
convolutional network™. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2020), pp. 183—-192.

Amir Shahroudy et al. “NTU RGB+D: A Large Scale Dataset for 3D
Human Activity Analysis”. In: CoRR (2016).

Bo Li et al. “Skeleton based action recognition using translation-scale
invariant image mapping and multi-scale deep CNN”. In: /EEE Inter-
national Conference on Multimedia Expo Workshops (ICMEW) (2017).

Tom M. Mitchell. Machine Learning. 1997.

W.J. (Chris) Zhang et al. “On Definition of Deep Learning”. In: 2018
World Automation Congress (2018).

25



26

[11]

[12]

[13]

[14]

[15]

[16]

[17]

BIBLIOGRAPHY

Ziyu Liu (kenziyuliu). Unofficial DGNN-PyTorch. github.com, 2018.
(Visited on 2021).

Wang et al. “Learning and Matching of Dynamic Shape Manifolds for
Human Action Recognition”. In: IEEE Transactions on Image Process-
ing (2007).

Antonios Oikonomopoulos, loannis Patras, and Maja Pantic. “Spatiotem-
poral salient points for visual recognition of human actions”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

(20006).

M. Angeles Mendoza and Nicolds Pérez de 1a Blanca. “Applying Space
State Models in Human Action Recognition: A Comparative Study”.
In: International Conference on Articulated Motion and Deformable
Objects (2008).

Jun Liu et al. “Spatio-Temporal LSTM with Trust Gates for 3d Human
Action Recognition.” In: CoRR (2016).

Chao Li et al. “Skeleton-based Action Recognition with Convolutional
Neural Networks”. In: CoRR (2017).

Maosen Li et al. “Dynamic Multiscale Graph Neural Networks for 3D
Skeleton Based Human Motion Prediction”. In: CoRR (2020).






TRITA-EECS-EX-2021:483




	Introduction
	Definitions and fundamentals
	Learning algorithms
	Deep learning in action recognition
	Graph-based action recognition
	The NTU-RGB+D dataset
	Ghost body

	Problem statement
	Purpose
	Delimitations
	Approach
	Outline

	Related work
	An overview of human action recognition
	Earlier approaches for action classification
	Indirect classification
	Models encoding temporal information

	Action recognition using deep learning
	Skeleton-based action recognition with RNNs
	Skeleton-based action recognition with CNNs
	Skeleton-based action recognition using graph-based neural nets
	Recent advances in graph-based action recognition


	Method
	Experiment design
	Experiment approach
	The model
	Data preparation
	Training and testing the model


	Results
	Ghost body occurrences in the NTU dataset
	Action recognition accuracies

	Conclusion
	The significance of ghost bodies in the NTU dataset
	The significance of ghost bodies on action recognition accuracy
	Weaknesses
	Further research
	Summary

	Bibliography

