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An annotated heterogeneous 
ultrasound database
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Ultrasound is a primary diagnostic tool commonly used to evaluate internal body structures, including 
organs, blood vessels, the musculoskeletal system, and fetal development. Due to challenges such 
as operator dependence, noise, limited field of view, difficulty in imaging through bone and air, and 
variability across different systems, diagnosing abnormalities in ultrasound images is particularly 
challenging for less experienced clinicians. The development of artificial intelligence (AI) technology 
could assist in the diagnosis of ultrasound images. However, many databases are created using a single 
device type and collection site, limiting the generalizability of machine learning models. Therefore, we 
have collected a large, publicly accessible ultrasound challenge database that is intended to significantly 
enhance the performance of AI-assisted ultrasound diagnosis. This database is derived from publicly 
available data on the Internet and comprises a total of 1,833 distinct ultrasound data. It includes 13 
different ultrasound image anomalies, and all data have been anonymized. Our data-sharing program 
aims to support benchmark testing of ultrasound disease diagnosis in multi-center environments.

Background & Summary
Medical ultrasound, particularly ultrasound imaging, has been a well-established field of research and clinical 
practice since its widespread adoption in the 1960s. It plays a vital role in modern medicine, with billions of 
examinations performed annually, especially during pregnancy1. Its popularity stems from being non-invasive, 
cost-effective, and capable of providing real-time feedback.

However, there are challenges in ultrasound technology that restrict clinicians’ capacity to diagnose diseases 
precisely under complex circumstances. A major obstacle in ultrasound imaging is the suboptimal image quality, 
which is frequently marred by noise, visual artifacts, and poor contrast. Variations in operator skills and device 
setups, like transducer choice and equipment config, also cause image differences and inaccuracies. Additional 
factors such as respiratory motion, subcutaneous fat in obese patients, obtaining standard sections, and various 
organ sizes complicate the process2. Advanced automated ultrasound image analysis methods are thereby indis-
pensable for attaining more objective and accurate diagnosis, evaluation, and image-guided interventions in the 
realm of ultrasound clinical applications3.

Nevertheless, despite the widespread use of medical ultrasound, its image analysis techniques lag behind 
those of CT and MRI. Although machine learning offers promising improvements in ultrasound image analysis 
for computer-aided diagnosis, most machine learning research in ultrasound image analysis relies on small 
databases, typically a few hundred to a few thousand images4,5. This limited data size hinders the development of 
machine learning models and further limits the robustness of developed models or computer-aided diagnoses.

Additionally, many ultrasound databases are generated from a single device type and collected at a single site6, 
which limits the diversity of the data. This lack of diversity also diminishes the effectiveness of machine learning 
models across different environments, making them less reliable in varied clinical settings. Furthermore, much 
of the current research in ultrasound imaging concentrates on specific tasks like segmentation or diagnosis7. 
This narrow focus means that models are often designed for single-task excellence but may face challenges when 
integrated into clinical diagnostic systems that need to address comprehensive tasks6. Therefore, to advance the 
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overall progress of machine learning applications in ultrasound imaging, there is an urgent need to develop a 
heterogeneous public dataset that can be thoroughly explored.

Currently, no such large size and heterogeneous publicly available ultrasound dataset exists8. Fortunately, 
with the development of social media, an increasing number of physicians publicly share anonymized data online 
to promote discussion and education. Such data is frequently particularly challenging or related to rare diseases, 
which renders it highly valuable for machine learning. Additionally, the majority of the data is in video format, 
providing more abundant semantic details, such as crucial temporal information for cardiac examinations9.

Therefore, with the creator’s permission, we extensively gathered a large amount of publicly available ultra-
sound data online and conducted analysis, screening, and diagnosis. All the data we obtained can only be used 
for research purposes, with no other uses permitted. We included the URLs of all data sources in the data disclo-
sure section to facilitate easy access. This dataset primarily comes from 31 video creators affiliated with hospitals 
across 16 provinces in China. The data includes ultrasound videos/images of various organs, such as the heart, 
thyroid, abdomen, kidneys, and lungs. Online comments, video titles, and content associated with each video 
were also collected and initially used to generate labels. Subsequently, professional doctors were invited for 
secondary verification. After excluding all disputed and clearly unusable data, we obtained a dataset with 1,833 
valid data samples and 13 disease categories.

Our dataset has several notable features and advantages compared to existing datasets like those of Hou  
et al.10, PSFHS11, BUSI12, and POCUS13 presented in Table 1. Firstly, in terms of sample size, our dataset consists 
of 1,833 samples. It surpasses the sample sizes of all the previously reported datasets by a significant margin. 
This larger sample size allows it to offer a more extensive range of clinical coverage, which is crucial for compre-
hensive analysis and model training. Secondly, regarding data types, while most resources concentrate only on 
static images, our dataset stands out as it includes both video and image data. This enables us to conduct richer 
temporal analysis, as the video data captures changes over time. Moreover, it helps enhance the robustness of the 
models trained with this dataset, making them more adaptable and reliable in various scenarios. Thirdly, consid-
ering the data source, our database comes from public online platforms. This acquisition method brings greater 
diversity and reflects real-world complexity. The heterogeneous nature of the data has the potential to foster the 
development of disease diagnosis models that can span different devices and data sources. It also facilitates the 
training of an ultrasound imaging-assisted diagnostic model that is suitable for diverse clinical environments. 
Furthermore, the raw data we have released includes a wealth of information, such as patient clinical symptoms, 
providing significant value for both deep learning models and clinical research. Finally, to verify the robustness 
of our dataset, we carried out tests using a well-known machine learning model.

Methods
Ethical Approval.  All data used in this study were obtained from publicly available sources on the Internet 
and were anonymized. The acquisition and use of the data were communicated to the creators, and their per-
mission was obtained. All data were securely managed and de-identified to ensure the rights and privacy of the 
participants. This dataset is secondary and contains no information that could identify individuals.

The study was approved by the Biomedical Ethics Committee of Anhui University (approval no. 
BECAHU-2024-023) and conducted in accordance with the 1964 Helsinki Declaration and its later amendments 
or comparable ethical standards. As the study utilized publicly available data without involving direct interaction 
or identifiable personal information, informed consent was waived by the Institutional Review Board.

Data Collection.  Our data was collected from publicly available video/image-sets data on the Internet, pri-
marily from the Douyin (DY) platform: www.douyin.com. DY is a short video and music video-sharing mobile 
application, which was launched in the fall of 2016. It allows users to create and browse short video clips ranging 
from 15 seconds to one minute in duration. DY boasts over 500 million global monthly active users and more 
than 250 million daily active users in China14. Therefore, all these videos are voluntarily uploaded by the creators 
in compliance with the regulations of the DY platform. The creators in our study of these videos mainly include 
researchers and medical imaging professionals who upload the data to exchange knowledge and share case stud-
ies. Consequently, the uploaded video data are complex and challenging, including multiple concurrent symp-
toms and rare diseases, making accurate diagnosis difficult.

Based on Article 10.2 of the DY platform’s user service agreement, which states that “The intellectual prop-
erty rights of the content you upload or publish through Douyin belong to you or the original copyright holder”, 
it implies that for the legal usage of such data, permission from the creators is the sole requirement. We have 
taken the necessary step of notifying each of the 31 creators and have successfully obtained their permission. 
Finally, a total of 1,833 video clips and image sets have been collected, and the URLs of all the data sources have 
been properly recorded.

Dataset Name Task Number Data Format Data Type

Hou et al.10 Thyroid Nodule 842 Image Set Clinical Cases

PSFHS11 Segmentation 1124 Image/Image Set Clinical Cases

BUSI12 Segmentation 780 Image Clinical Cases

POCUS13 COVID Detection 261 Video/Image Various Public 
Sources

Ours Diagnosis 1833 Video/Image Set Public Online

Table 1.  Comparison of Ultrasound Datasets.
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Data Characteristics.  Our dataset exhibits significant heterogeneity, which is crucial for current machine 
learning applications15. Notably, the 31 video creators in our dataset represent different hospitals across 16 prov-
inces in China, as shown in Fig. 1. Consequently, the ultrasound equipment used varies, and the imaging out-
comes are influenced by the operational practices of different physicians during ultrasound examinations. This 
diversity enhances the generalization capability of deep learning models, overcoming the limitations of data 
sourced from a single hospital16. Moreover, the subjects of the ultrasound examinations are diverse, including 
newborns, adolescents, pregnant women, and the elderly. The anatomical areas examined also vary, with common 
sites such as the heart, thyroid, and kidneys being frequently scanned. Importantly, all the ultrasound videos in 
our dataset contain pathological findings, excluding those from routine check-ups. These pathological images 
are especially valuable for machine learning, as even a small number of such images can lead to excellent results 
in disease diagnosis through techniques like transfer learning, thereby providing stronger support for diagnostic 
assistance17. Additionally, unlike most existing medical ultrasound datasets, ours includes a comprehensive set 
of video/image data. Videos provide rich temporal data, capturing dynamic changes, such as cardiac blood flow 
throughout the cardiac cycle. As the ultrasound probe is repositioned, the videos also reveal pathological features 
from different angles. These aspects are challenging to capture in image-only datasets but are crucial for deep 
learning models, making them extremely valuable3.

Data Filtering.  Since data obtained from publicly available online sources contain significant noise, rigor-
ous data filtering is crucial18. The filtering process consists of three steps: Initial Ultrasound Sorting, Manual 
Unusable Data Inspection and Disagreements Elimination in Annotation.

Initial Ultrasound Sorting: We found that some creators upload a variety of content. They not only publish 
videos related to ultrasound examinations but also include daily life videos. Given our focus on ultrasound data, 
we excluded these daily life videos.

Manual Unusable Data Inspection: Subsequently, we carried out a manual inspection of the remaining videos 
by carefully reviewing them. The aim was to filter out unusable data. The videos that were excluded during this 
process had one or more of the following issues: 

•	 They contained a substantial amount of content that had no connection to ultrasound examinations.
•	 It was difficult to identify symptoms from the information presented in them.
•	 The ultrasound images within them were extremely unclear, making it hard to extract useful details.
•	 They lacked proper and strict anonymization of patient information, which could raise ethical and privacy  

concerns.

Fig. 1  The Chinese provinces where the dataset is sourced.

https://doi.org/10.1038/s41597-025-04464-4
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Disagreements Elimination in Annotation: During the annotation process, preliminary labels were first 
assigned to the data, followed by independent review and labeling by three professional clinicians. The following 
types of data were discarded during this process: 

•	 At least one clinician considered the data ambiguous or unusable.
•	 At least two clinicians were unable to reach a consensus on the classification or characteristics of a par-

ticular piece of data.
•	 The clinicians’ labels did not align with the preliminary labels assigned during the initial annotation 

phase.
•	  After implementing this comprehensive and rigorous filtering process, we were successful in obtaining 

1,833 pieces of valid data. This valid dataset is composed of 140 image sets and 1,693 videos.

Data Annotation.  Proper annotation is crucial to effectively applying the data to machine learning. An over-
view of our data annotation process can be seen in the Fig. 2. The data annotation process can be divided into 
three main stages.

In Stage 1, we conducted an in-depth analysis on the information available from the videos and the online 
platform, focusing on three key aspects: 

•	 Comments on the videos were analyzed. Since these videos were posted on a public platform, the com-
ment sections were open to discussion and analysis by online professional physicians and learners. All 
comments were recorded, as they often contained insights from medical professionals, especially those 
made or endorsed by the video creators, who directly interact with the patients, making their comments 
more reliable.

•	 Descriptions accompanying each video were documented. On DY platform, these descriptions often 
serve as video titles and frequently include details about pathology or clinical symptoms, which aids in 
symptom identification and is valuable for machine learning.

•	 The content of the videos was reviewed. These videos usually contained textual symptom information that 
was crucial for accurately assigning data labels.

•	  By combining these three sources, each sample was carefully assigned one reliable label.

In Stage 2, three experienced physicians from two different institutions independently annotated the data 
and provided feedback on whether to include or exclude the data, as well as the corresponding labels. Each phy-
sician evaluated the data based on two key questions: 1) Is this data valuable? 2) What should the label for this 
data be? During the annotation process, multiple labels were allowed.

In Stage 3, to ensure the validity of our labels, we applied the triangulation method19. Any data deemed 
non-valuable by any physician, or any data for which at least one physician suggested a different label, was 
excluded. This process served as a quality control measure to maintain consistency and accuracy in the annota-
tions. After this rigorous validation, we categorized the 1,833 data samples into 13 distinct symptoms: Tumor, Cyst, 
Inflammation, Stone, Nodule, Injury, Calcification, Occupancy, Hernia, Vascular, Polyp, Ectopic, and Anomalies.

Fig. 2  A flowchart of the annotation process.

https://doi.org/10.1038/s41597-025-04464-4
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It is important to note that one sample may exhibit multiple symptoms. For example, Tumor, Cyst, and Stone 
frequently occur together. In cases where multiple labels were applied to the dataset, we adopted a multi-label 
strategy. Specifically, if imaging clearly showed the presence of both Tumor and Stone, Tumor was prioritized 
in the initial label assignment. Only when all clinicians agreed that both conditions were independently present 
and assigned individual labels, was the sample classified as multi-labeled.

On the other hand, appendicitis often involves the co-occurrence of Inflammation and Stone, with feca-
liths commonly regarded as complications of Inflammation. In such cases, the more prominent symptom, 
Inflammation, was selected as the final label. Appendicitis was treated as a single-label condition because 
Inflammation is the primary manifestation, while accompanying conditions like fecaliths are considered sec-
ondary and not independently present. As a result, such cases were categorized under the single-label strategy.

Furthermore, we observed that the occurrence frequency of the 13 different symptoms in this dataset follows 
a long-tail distribution, which is in line with expectations. The details are presented in Fig. 3. It is worth noting 
that although this distribution is commonly seen in nature, it presents a significant challenge for deep learning 
models20. In a nutshell, through the above steps, we ensure that the labels have as little noise as possible. Even if 
there is some label noise, deep learning models can adapt to such noise21,22.

Data Preprocessing.  Data preprocessing is crucial for deep learning23. Our data preprocessing process 
mainly consists of three major steps, which are illustrated in Fig. 4.

First, we applied a frame extraction approach to the video data24. By extracting one frame every ten frames 
as key frames, we reduced the data volume and converted the videos into image sets, thereby lowering compu-
tational costs and reducing model complexity. We also included the original data, as the reinforcement learning 
method proposed by Huang et al.25 for obtaining key frames can optimize model performance and reduce com-
plexity. Therefore, thoroughly extracting valuable information from video data proved highly beneficial.

Second, in a complete video, there are often segments that display content unrelated to ultrasound or that 
contain data that cannot be directly utilized. To address this, we conducted Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) analysis on all data within each image set26. To more effectively eliminate 
noise, we considered a cluster to be valid only if the number of data samples in that cluster exceeded half of 
the total number of images in the set. In other words, there was at most one valid cluster, corresponding to the 
ultrasound images in each image set.

Finally, after unifying the data format and filtering out noisy data, we resized all images to 224  × 224 pixels 
and uniformly converted them into .jpg files.

Fig. 3  The data distribution of our ultrasound dataset.

Fig. 4  A flowchart of the data preprocessing.

https://doi.org/10.1038/s41597-025-04464-4


6Scientific Data |          (2025) 12:148  | https://doi.org/10.1038/s41597-025-04464-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data Records
All raw data, filtered data, and processed data are provided at Figshare27.

Raw Data.  The raw data consists of the initial, unprocessed data, which includes videos or images before 
being filtered. The comments associated with each video are included as well. The structure of this data can be 
seen in Fig. 5(a). This raw data mainly consists of three levels of folders. The first-level folders are named accord-
ing to the 31 different creators. The second-level folders are named after each video from each creator. The third 
level contains two or more files, which consist of either a video or multiple images and a table file. The table 
file contains the online comments associated with each video. Indented entries in the table denote responses to 
comments. Additionally, whether the creator liked the comment was recorded, and creator comments were high-
lighted for easy identification. To enhance data robustness, we have renamed all files using encoded formats and 
saved the mapping between the original and corresponding paths in rename.xlsx.

Filtered Data.  The naming and formatting of the filtered data have been standardized. The folder structure 
of this data is illustrated in Fig. 5(b). The main folder contains 1,833 files, with their naming format standardized 
as Photos/Video_Number_Label.

Processed Data.  The folder structure of processed data is illustrated in Fig. 5(c). The structure consists 
of two levels of folders. At the first level, there are 1,833 data samples with a standardized naming format as 
Number_Label. Additionally, the absolute paths of noise data identified through clustering analysis are listed 
in the noise_files.txt file. To facilitate the usage of this dataset, we have also provided code on GitHub 
for processing different file paths. The second-level folders contain varying numbers of .jpg files, each storing 
resized images in a uniform size, which can be directly used for analysis.

Technical Validation
Data Collection and Annotation.  During the data collection and annotation process, we received 
cross-validation support from medical professionals at Wuhan Third Hospital/Tongren Hospital of Wuhan 
University, the School of Medicine at Anhui University of Science and Technology, and the First Hospital of 
Anhui University of Science and Technology. The detailed cross-validation annotation is detailed in the Data 
annotation section.

Utility Validation for Deep Learning.  To illustrate the potential utility of our heterogeneous dataset in 
deep learning-based ultrasound video diagnosis tasks, we employed the Recurrent Vision Transformer (RViT) 
model28, originally designed for video processing task, for disease diagnosis based on the Ultrasound data.

We quantitatively assessed diagnosis performance using three metrics: Top-1 accuracy (ACC), Top-3 accu-
racy, and Top-5 accuracy. Given the multi-symptom nature of many ultrasound images, we prioritized Top-3 

Fig. 5  The structure of the data is visually represented. (a) Structure of raw data.  (b) Structure of filtered 
data.  (c) Structure of processed data.

https://doi.org/10.1038/s41597-025-04464-4
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accuracy as the primary metric, as it aligns with the characteristics of our data and offers a balanced perspective 
on the network’s predictive performance.

Because RViT is limited to single-label classification, we consistently assigned each image a label correspond-
ing to its most prominent feature. This approach enables a fair and consistent evaluation, particularly when 
using the Top-3 ACC metric, which we hypothesize provides a more robust assessment of prediction outcomes 
under the multi-symptom conditions present in our dataset. The experimental results Table 2 indicate that, 
regardless of whether pre-trained weights were utilized, the Top-3 ACC metric exceeded 68.49%, albeit without 
achieving exceptionally high accuracy. These findings underscore the significant challenges posed by the hetero-
geneous nature of our dataset and the complexity of applying such data to disease diagnosis tasks. Furthermore, 
the results reveal notable differences between the diagnosis of intricate ultrasound pathological images and 
traditional human action recognition tasks.

This case study highlights the challenges and opportunities associated with developing diagnostic models 
for ultrasound medical imaging. While not a comprehensive evaluation, it provides a meaningful baseline and 
emphasizes the potential of our dataset to inspire future advancements in machine learning for medical ultra-
sound diagnostics.

Usage Notes
Deep learning methods have witnessed remarkable progress in handling medical image data. There are several 
effective techniques that have been developed, including key frame extraction via reinforcement learning29, 
more efficient data annotation using active learning30, learning from noisy data31, few-shot learning32, video 
temporal analysis within a cardiac cycle33, and enhancing model performance through the incorporation of clin-
ical information34. To facilitate a comprehensive exploration of the dataset value, we have supplied the raw data.

The data is sourced from public collections and has been published on social media, with the video crea-
tors retaining ownership of the data. Meanwhile, the use of the dataset must comply with the CC BY license. 
Additionally, all URLs of the video creators mentioned in the database are publicly available at: https://github.
com/Bean-Young/AHU-Database/tree/URLs. If there is a need to use data beyond what we have provided, per-
mission must be obtained from the video creators via direct communication. The data presented in this manu-
script also forms part of the 2024 iFLYTEK A.I. Developer Competition: https://challenge.xfyun.cn/competition.

Code availability
All the code used in our processing workflow and validation is publicly available at: https://github.com/Bean-
Young/AHU-Database. The project documentation provides detailed instructions on how to use the code, 
facilitating the easy reproduction of our results.
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