
Fine-tuning Behavioral Cloning Policies with Preference-Based Reinforcement Learning

Fine-tuning Behavioral Cloning Policies with
Preference-Based Reinforcement Learning

Maël Macuglia1, Paul Friedrich1,2, Giorgia Ramponi1,2

mael.macuglia@icloud.com, {paul.friedrich, giorgia.ramponi}@uzh.ch

1Department of Informatics, University of Zurich, Switzerland
2ETH AI Center, Zurich, Switzerland

Abstract

Deploying reinforcement-learning (RL) controllers in robotics, industry, and health care
is blocked by two coupled obstacles: reward misspecification (informal goals are hard to
encode as a safe numeric signal) and data-hungry exploration. We tackle these issues with
a two-stage framework that begins from a reward-free dataset of expert demonstrations
and refines the policy online using preference-based human feedback. We give the first
principled analysis of this two-stage paradigm. In our work, we formulate a unified
algorithm that (i) clones demonstrations offline to obtain a safe warm-start policy and
(ii) fine-tunes it online with preference-based RL, integrating the two signals through
an uncertainty-weighted objective. Then, we derive regret bounds that shrink with the
demonstration counts and reflect reduced uncertainty.

1 Introduction

Deploying reinforcement-learning (RL) (Sutton & Barto, 2018) systems on physical robots, industrial
processes, and health-care problems remains notoriously difficult for two intertwined reasons. First,
reward misspecification: even experienced domain experts often find it hard to translate informal
task goals into a numeric signal that is simultaneously accurate and safe (Leike et al., 2018). Second,
exploration is both risky and data-hungry (Dulac-Arnold et al., 2019): a policy that begins from
scratch can damage hardware, or user trust, long before it gathers enough experience to learn anything
useful. Recent applied works (Nair et al., 2020; Kostrikov et al., 2022; Tang et al., 2025; Park et al.,
2024; Tirinzoni et al., 2025) alleviate these issues by pre-training policies offline and fine-tuning
them with online RL, but such methods assume direct access to (or observation of) the true reward, an
assumption that rarely holds in practice. A more realistic strategy is to start with a reward-free corpus
of expert behavior and allow the experts to refine that behavior online. The refinement signal can
take several forms: explicit numeric rewards from an operator, pairwise comparisons of trajectories,
or scalar ratings that train a reward model for RL from human feedback (RLHF). Variants of this idea
already power modern dialogue agents such as ChatGPT, which first imitate curated demonstrations
of desirable responses and are then fine-tuned via RLHF on preference-derived rewards (Ouyang et al.,
2022). Similar approaches reach near-expert scores in Atari and MuJoCo by combining brief expert
play with thousands of comparison queries (Christiano et al., 2017), or recover usable rewards for real-
robot manipulation by ranking tele-operated clips before on-hardware fine-tuning (Brown et al., 2020).

This paper formalizes a principled two-stage procedure: offline demonstrations supply a safe warm
start, while lightweight online feedback repairs the blind spots of the behavioral-cloning policy.
Merging these two information sources yields both higher sample efficiency and stronger safety
guarantees. Demonstrations guide the agent away from dangerous or hard-to-reach regions of state
space, so exploration seldom visits unsafe states. Theoretically, when the offline data already explain
many state–action pairs, regret bounds shrink because the set of plausible optimal policies is greatly
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reduced. Pragmatically, preference queries remain easy to elicit even when explicit rewards are not,
which lets non-technical stakeholders participate in the corrective loop. We conclude by detailing our
contributions:

• We develop a novel policy confidence set framework based on Hellinger distances between trajectory
distributions. By separating the policy and transition components of the MLE objective, we extend
Foster et al. (2024)’s framework to obtain distribution-level guarantees. This confidence set
(Theorem 4) is geometrically interpretable as a Hellinger ball in trajectory distribution space while
providing a corresponding constraint on allowable policies. Its radius decreases with the offline
sample size, effectively leveraging demonstration data to restrict the policy search space. The
approach generalizes to various policy and transition model classes through appropriate covering
number arguments.

• We adapt the online preference-based learning framework to leverage our offline estimation
components, resulting in BRIDGE (Algorithm 1). By constraining policy comparisons to our
confidence set and initializing with the MLE transition estimate, our analysis yields a regret bound
(Theorem 8) that exhibits optimal

√
T dependence while demonstrating how offline data reduces

online regret. The bound contains terms that explicitly diminish with increasing offline sample
size n, and importantly, for any fixed horizon T , as n → ∞, the regret approaches zero. This
theoretical result confirms that high-quality offline demonstrations can dramatically improve online
learning efficiency, creating a principled bridge between imitation learning and preference-based
fine-tuning.

2 Related work

Behavioral Cloning (BC). BC reformulates RL as supervised learning on expert (state, action) pairs,
pioneered by road-following systems like ALVINN (Pomerleau, 1988). Recent theoretical advances
by Foster et al. (2024) establish horizon-free sample complexity bounds under deterministic policies
and sparse rewards. Other algorithms such as DAgger (Ross et al., 2011) mitigate the covariate
shift during deployment through iterative expert corrections, achieving no-regret guarantees (Ross
et al., 2011). Our method inherits BC’s simplicity but circumvents DAgger’s need for ongoing expert
availability through preference-based refinement.

Online RL with Offline datasets. The paradigm of initializing policies through offline pre-training
followed by online fine-tuning has gained considerable traction, mirroring successes in supervised
learning. Early contributions in this domain include model-based algorithms tailored for hybrid
settings, such as the work by Ross & Bagnell (2012). After that, Xie et al. (2021) studied this hybrid
RL setting and showing that offline data does not yield statistical improvements in tabular MDPs.
This is different from our result, due to our expert’s data. Recently, empirical RL algorithms designed
to be effective in both offline and online contexts have been proposed, aiming to facilitate seamless
offline-to-online fine-tuning (Rajeswaran et al., 2017; Hester et al., 2018; Nair et al., 2018; Vecerik
et al., 2017; Lee et al., 2022; Ball et al., 2023). On the more theoretical side Song et al. (2023);
Wagenmaker & Pacchiano (2023); Tang et al. (2023) proposes statistical approaches to efficiently
combine offline and online datasets. Although these methods are related to our work, they assume
access to numeric rewards during fine-tuning. Our approach eliminates this, assuming access to an
expert trajectories dataset and preference-based online feedback.

Prior imitation-only approaches lack robustness outside the demonstration manifold; offline RL
fine-tuning usually demands ground-truth rewards. Our work bridges these gaps by (i) proving that
demonstration coverage plus a modest preference-query budget yields sharper high-probability regret
bounds, and (ii) showing empirically that preference-guided exploration fixes blind spots with far
fewer risky interactions than pure online RL.
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3 Problem formulation

We address the challenge of learning optimal policies by combining information from two com-
plementary sources: offline expert demonstrations and online preference feedback. In this hybrid
learning paradigm, we first leverage a dataset D of trajectories collected from an expert policy to
establish strong priors over the policy space. Then, we strategically utilize these priors to guide
an online preference-based learning process, where an expert provides binary feedback comparing
pairs of trajectories. This framework enables us to efficiently narrow the search space using offline
demonstrations while refining our understanding of the expert’s underlying preference model through
targeted online queries. We aim to quantify how knowledge from offline demonstrations translates to
improved regret bounds in the online preference learning phase.

Finite MDP setting (reward-free). Consider a finite-horizon Markov Decision Process (MDP)
defined by the tupleM = (S,A, P,H), where S is a finite state space, A is a finite action space,
H ∈ N is the horizon length, and P = {Ph}h∈[H] represents the time-dependent transition dynamics,
with Ph(·|s, a) denoting the probability distribution over next states given state-action pair (s, a)
at step h. A policy π = {πh}h∈[H] consists of a collection of mappings πh : S → ∆(A), where
∆(A) is the probability simplex over actions. A trajectory τ = {(sh, ah)}h∈[H] is a sequence of
state-action pairs generated by executing a policy π in the environment following dynamics P . We
denote the space of all possible trajectories as T . We assume the trajectories have a continuous
distribution with respect to counting or Lebesgue measure. For ease of notation, we will write Pπ

P for
the density function of the trajectory distribution induced by policy π and dynamics P .

Offline demonstrations. We assume access to an offline dataset DH
n = {τi}i∈[n] consisting of n

independent trajectories of length H , where each τi ∼ Pπ∗

P∗ . This represents an imitation learn-
ing framework where trajectories are generated by an expert policy π∗ interacting with the true
environment dynamics P ∗.

Online preference queries. We formalize preference-based learning through feature embeddings
and a probabilistic preference model (Christiano et al., 2017; Saha et al., 2023). For each trajectory
τ ∈ T , we assume the existence of a trajectory embedding function ϕ : T → Rd that is known
to the learner. This creates a natural complementarity between our learning phases: while offline
demonstrations provide raw trajectories that directly capture expert behavior, the embedding function
transforms these complex sequences into a structured representation space that facilitates preference
learning. The trajectory embedding function ϕ serves a critical purpose in our framework by enabling
meaningful preference comparisons that would be difficult to perform on raw trajectories. This
embedding approach provides a versatile framework that can accommodate various types of trajectory
information. The flexibility of this representation allows our method to adapt to different domains and
preference structures without changing the underlying learning algorithm. A policy π and dynamics
P induce a distribution over trajectories, allowing us to define the policy embedding as the expected
feature representation: ϕP (π) = Eτ∼Pπ

P
[ϕ(τ)].

In our work, we adopt two commonly used assumptions, bounded trajectory embeddings (Saha et al.,
2023; Parker-Holder et al., 2020b) and bounded weight vectors (Filippi et al., 2010; Faury et al.,
2020),

Assumption 3.1 (Bounded features). For all τ ∈ T , the feature embeddings are bounded: ∥ϕ(τ)∥2 ≤
B for some known constant B <∞.

Assumption 3.2 (Bounded weights). There exists an unknown weight vector w∗ ∈ {v ∈ Rd :
∥v∥2 ≤W} where the bound W <∞ is known.

Definition 1. We measure the degree of non-linearity of the sigmoid σ over the parameter space
(where σ′ is the first derivative of σ) with

κ := sup
x∈BB(d),w∈BS(d)

1

σ′(w⊤x)
.
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We model the preference feedback through a Bradley-Terry model. Given two trajectories τ1 and τ2,
the binary preference outcome o1,2 ∼ Ber(P ) is modeled as:

P(τ1 ≻ τ2) = P(o1,2 = 1|τ1, τ2) = σ(⟨ϕ(τ1)− ϕ(τ2),w
∗⟩),

where σ(x) = (1 + e−x)−1 is the logistic function. This formulation corresponds to a latent utility
model where the inner product ⟨ϕ(τ),w∗⟩ represents the utility of trajectory τ .

From this model, we derive a score function for trajectories s(τ) = ⟨ϕ(τ),w∗⟩ and extend it to
policies as sP (π) = Eτ∼Pπ

P∗ [s(τ)], where P ∗ are the true transition dynamics. The preference
between two policies π1 and π2 can now be written as follows: P(π1 ≻ π2) = σ(⟨ϕP (π1) −
ϕP (π2),w

∗⟩). This represents an expected preference over the distribution of trajectories, and
captures the average preference when comparing behaviors induced by different policies.

Offline estimation quality. For the offline phase, we measure the quality of estimation using
distributional distance metrics in the space of trajectory distributions. Specifically, we will construct
confidence sets in the form of Hellinger balls around our estimated density policy and dynamics.
Notably, the Hellinger distance relates directly to the L2 norm between square-root densities, enabling
a geometric interpretation of our confidence sets as Euclidean balls in the space of density embeddings,
with computational advantages over alternative divergences. The precise construction of these
confidence sets and their properties will be detailed in the Section 4.

Online regret. We quantify our online learning phase’s performance through regret measurement. In
each round t ∈ [T ] of online learning, the agent selects policies π1

t and π2
t , receives binary preference

feedback ot ∈ {0, 1}, and accumulates regret measured against the optimal policy. We specifically
use the pseudo-regret with respect to the policy class Π as in Saha et al. (2023):

Rpsr
T := max

π∈Π

T∑
t=1

[2ϕP∗
(π)− ϕP∗

(π1
t )− ϕP∗

(π2
t )]

⊤w∗

2
=

T∑
t=1

2sP
∗
(π∗)− (sP

∗
(π1

t ) + sP
∗
(π2

t ))

2
,

where π∗ := argmaxπ∈Π s(π).1 All our performance guarantees will be expressed in terms of the
MDP parameters (state space size |S|, action space size |A|, horizon length H), offline data quantity
n, online interaction rounds T , and confidence level δ of the offline estimation – establishing a direct
connection between offline data quality and online learning efficiency.

Notation. We denote [H] = {1, . . . ,H} for H ∈ N. For probability distributions P,Q, H2(P,Q) is
the squared Hellinger distance and TV(P,Q) the total variation distance. We denote Bd

2(R) := {x ∈
Rd : ∥x∥2 ≤ R} for the Euclidean ball of radius R, and for any x ∈ Rd, we define x⊗2 := xx⊤ as
the outer product.

4 Bridging offline behavioral cloning and online preference-based feedback

Our framework leverages offline expert demonstrations to improve the efficiency of online preference
learning. The key insight is that we can use maximum likelihood estimation (MLE) on the offline
dataset DH

n to construct confidence sets in the policy space that likely contain the expert policy. This
approach has two important features: First, by using the Hellinger distance, we obtain confidence
sets that correspond to Euclidean norm balls in the space of square-root densities, providing a
geometrically intuitive interpretation. The radius of this ball shrinks at a rate of O(1/

√
n) with

offline sample size, establishing a quantifiable relationship between offline data quantity and online
learning efficiency. Second, we develop a technique to make this confidence set computable using
only observed data, despite the theoretical formulation involving unknowns.

When we restrict the online phase of BRIDGE to sample only policies from this confidence set, we
significantly reduce the number of expert preference queries needed compared to algorithms without

1Saha et al. (2023) showed that the standard preference-based regret formulation is equivalent up to constant factors, when
B,W ≤ 1.
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Expert PreferencesHellinger ball around Pπ̂

P̂
in P(T ) −→ confidence set Πoffline in Π

P(T ) = {Pπ
P }π∈Π,P∈P Π

Offline Estimation Online Preference Learning

Πoffline

π∗

Πoffline

π∗ π1

π2

π1 ≻ π2

Figure 1: Overview of BRIDGE framework. Offline estimation derives estimators π̂ and P̂ using the
dataset DH

n and constructs a confidence set in trajectory distribution space P(T ) as a Hellinger ball
(left), which translates to the offline policy confidence set Πoffline in policy space Π likely to contain
π∗ (middle). The confidence set Πoffline is then handed to the online preference learning phase (right),
where policies are sampled from within this set and presented to the expert for preference feedback.

offline data access. This hybrid approach effectively trades offline demonstrations for reduced online
expert interaction. Geometrically, our confidence set has a clear interpretation as a Hellinger ball in
the space of trajectory distributions. However, when mapped to the policy space, it forms a more
complex shape due to the nonlinearity of the inverse functional mapping from distribution metrics to
policy parameters. Figure 1 explains the relation between these quantities. In the rest of this section,
we formally explain how BRIDGE uses offline behavioral cloning data to warm-start an online
preference-based learning process.

4.1 Offline behavioral cloning and uncertainty estimators

We apply maximum likelihood estimation (MLE) on the offline dataset DH
n of expert trajectories to

obtain separate estimators π̂, P̂ for the optimal policy and transition model respectively. We then
derive a confidence set around the estimated optimal policy π̂, which constrains the policy search
space in the second, online preference-based learning part of our method. Relevant corollaries and
their proofs are presented in Appendix B. We start by making a standard realizability assumption.

Assumption 4.1 (Realizability). The optimal policy belongs to the policy class, π∗ ∈ Π, and the true
transition function belongs to the transition class, P ∗ ∈ P .

Policy estimation via log-loss Behavior Cloning. We define the log-loss behavioral cloning
estimator as

π̂ = argmax
π∈Π

∑
i∈[n]

∑
h∈[H]

log(πh(a
i
h|sih)). (1)

We characterize the estimation error in terms of the Hellinger distance between trajectory distributions
in Corollary 19 in Appendix B.3, using concentration results by (Foster et al., 2024), cf. Appendix B.1.

Transition model estimation via Maximum Likelihood Estimation (MLE). Similarly, we define
the MLE transition estimator as

P̂ = argmax
P∈P

∑
i∈[n]

∑
h∈[H]

(
log[P (sih+1|sih, aih)]

)
. (2)

We describe the transition estimation quality in Corollary 23 in Appendix B.3.2, using maximum
density likelihood concentration results by Foster et al. (2024).2

2Note that while we present results specifically for tabular, stochastic and stationary transitions, our framework readily
adapts to other transition model classes by deriving appropriate covering number bounds using the general results in
Appendix B.
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Policy confidence set construction. We start by defining the concentrability coefficient, commonly
encountered in offline RL literature (Chen & Jiang, 2019), as:

C(π̂, π∗) = sup
t∈[H]

sup
(s,a)∈S×A:dπ∗,t

P∗ (s,a)>0

dπ̂,tP∗(s, a)

dπ
∗,t

P∗ (s, a)
.

Intuitively, this coefficient measures how much the state-action visitation distribution of policy π̂ can
deviate from that of the expert policy π∗ under the true dynamics P ∗. To bound this quantity, we
make the following standard assumption (Levine et al., 2020; Chen & Jiang, 2019) about minimum
state-action visitation:

Assumption 4.2 (Minimum Visitation Probability). There exists a constant γmin > 0 such that if a
state-action-time tuple has a non-zero visitation probability under the optimal policy, that probability
is bigger than this constant:

min
(s,a,t):dπ∗,t

P∗ (s,a)>0

dπ
∗,t

P∗ (s, a) ≥ γmin. (3)

Given this assumption, we can derive a deterministic bound on the concentrability coefficient:

Lemma 2 (Concentrability Coefficient Bound). Consider a policy estimator π̂ satisfying

H2(Pπ̂
P∗ ,Pπ∗

P∗) ≤ R.

Then, under Assumption 4.2, the concentration coefficient is bounded by

C(π̂, π∗) ≤ 1 +
2
√
R

γmin
.

This bound is key to our approach: it allows us to replace the unknown concentrability coefficient with
a deterministic upper bound that depends only on our policy estimation error and the minimum vis-
itation probability. We can now construct a practical confidence set as shown in the following lemma:

Lemma 3 (Offline Policy Confidence Set). Assume the following events hold:

E1 :=

{
H2(Pπ̂

P∗ ,Pπ∗

P∗) ≤ R1(δ1)

}
, such that Prob(E1) ≥ 1− δ1,

E2 :=

{
H2(Pπ∗

P̂
,Pπ∗

P∗) ≤ R2(δ2)

}
, such that Prob(E2) ≥ 1− δ2.

Then, under Assumption 4.2, the policy set

Πoffline
1−δ :=

{
π :
√
H2(Pπ

P̂
,Pπ̂

P̂
) ≤

√
R1 +

√
R2 ·

(
1 +

√(
1 +

2
√
R1

γmin

)
·H
)}

is a confidence set of level 1− δ = 1− (δ1 + δ2), i.e.,

Prob(π∗ ∈ Πoffline
1−δ ) ≥ 1− (δ1 + δ2).

The key insight is that the concentrability coefficient now appears as a deterministic term in the
confidence set radius, allowing us to construct a practical confidence region using only quantities that
can be computed from offline data, along with our domain knowledge about the minimum visitation
probability. This confidence set will be central to our online learning phase, providing a principled
way to constrain the policy search space. By combining our tabular setting results from Corollaries 19
and 23 with the concentrability coefficient bound under Assumption 4.2, we can derive an explicit
formula for the confidence set radius:
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Theorem 4 (Offline Confidence Set Radius). Under the setting described above and Assumption 4.2,
with δ1 = δ2 = δ/2 and defining

α :=
√
4 · |S| · log(|A| · 2/δ),

β :=
√
4 · |S|2 · |A| · log(nH · 2/δ).

The policy set

Πoffline
1−δ :=

{
π :
√
H2(Pπ

P̂
,Pπ̂

P̂
) ≤ Radius

}
,

is a confidence set of level 1− δ containing π∗ with probability at least 1− δ, where

Radius =
α√
n
+

β√
n
·

(
1 +

√
H ·

(
1 +

2α

γmin ·
√
n

))
.

This result provides the fundamental connection between offline data and online learning efficiency:
the confidence set radius scales as O(1/

√
n) with the offline sample size n. This inverse square root

dependence means that as we collect more offline expert demonstrations, the confidence set shrinks,
constraining the online policy search space more tightly. Since our online regret bounds will directly
depend on the size of this confidence set, this establishes a quantifiable trade-off between offline data
collection and online preference query efficiency, a key contribution of our work.

4.2 Online preference-based learning

In this section, we present how BRIDGE uses behavioral cloning estimation to guide online
preference-based learning. Although we adapted the algorithm from Saha et al. (2023), our offline-to-
online approach can be applied to other preference-based RL algorithms beyond BRIDGE.

Our online preference learning follows Saha et al. (2023), who adapted generalized linear models
from parametric bandits (Filippi et al., 2010; Faury et al., 2020) to the preference-based RL setting.
As in Saha et al. (2023) we compute a regularized maximum likelihood estimator wMLE

t to learn
the preference weight vector w∗ from pairwise comparisons. However, since wMLE

t may not satisfy
assumption 3.2, as in Saha et al. (2023) we define the data matrix Vt, which approximates the Fisher
Information Matrix (the negative expected Hessian of the log-likelihood):

Vt = κλId +
t−1∑
ℓ=1

(ϕ(τ1ℓ )− ϕ(τ2ℓ ))
⊗2, gt(w) =

t−1∑
l=1

σ
(
⟨ϕ(τ1l )− ϕ(τ2l ),w⟩

) (
ϕ(τ1l )− ϕ(τ2l )

)
+ λw.

Then, the projected parameter, a constrained version of wMLE
t , is given by

wproj
t = arg min

w∈W
∥gt(w)− gt(w

MLE
t )∥V−1

t
. (4)

This matrix Vt serves two purposes: First, defining a confidence ellipsoid

Ct(δ) = {w : ∥w −wproj
t ∥Vt

≤ 2κβt(δ)}

containing w∗ with high probability that is shaped by the likelihood curvature. Second, guiding
exploration by quantifying uncertainty through ∥·∥V−1

t
, prioritizing directions with sparse information.

This approach can be further strengthened by relating the empirical norm ∥ · ∥Vt
to an expected

norm ∥ · ∥Vt
, where Vt = κλId +

∑t−1
ℓ=1(ϕ

P̂t(π1
ℓ ) − ϕP̂t(π2

ℓ ))
⊗2. It can be shown that ∥ · ∥Vt

is
approximately equivalent to ∥ · ∥Vt

up to terms depending on the confidence bonus.

Our key contribution consists of connecting the offline estimation with the online learning process
through two mechanisms: (i) leveraging the offline data to make a first estimation of the transition
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model, and (ii) constructing an initial dataset of policies that are plausible with the expert data. We
refer the reader to (Appendix C) for a detailed explanation of the likelihood-based mechanisms
inspired by online binary bandits that underpin this approach.

Transition Model Integration. We leverage our offline MLE transition estimate as the initialization
for online learning. In the tabular setting, the MLE for transition probabilities from Eq. (2) is
equivalent to a count-based estimator. As we collect online data, we update this estimator to combine
both offline and online counts:

P̂t(s
′|s, a) = Noff(s

′, s, a) +Nt(s
′, s, a)

Noff(s, a) +Nt(s, a)
,

where Noff(s
′, s, a) counts transitions from state-action pair (s, a) to state s′ in the offline dataset,

Noff(s, a) counts visits to (s, a), and Nt(s
′, s, a) and Nt(s, a) are the corresponding counts from the

first t rounds of online interaction. We define our adapted bonus incorporating both offline and online
data as:

B̂t(π, η, δ) = Eτ∼Pπ
P̂t

 ∑
h∈[H]

min

(
2η, 4η

√
Uh

Noff(sh, ah) +Nt(sh, ah)

) ,

where Uh = H log(|S||A|)+log
(

6 log(Noff(sh,ah)+Nt(sh,ah))
δ

)
. This adapts the bonus structure from

Chatterji et al. (2021) to leverage our combined offline-online transition estimator.

Remark 5. This integration approach, while effective, has potential for further improvement. First,
it does not fully leverage the independence structure of the offline dataset, which could lead to tighter
concentration bounds. Second, potential distribution shifts between offline and online phases are not
explicitly modeled. These refinements represent promising directions for future research, though our
primary focus remains on policy fine-tuning rather than optimal transition modeling.

Algorithm 1 BRIDGE: Bounded Regret with Imitation Data and Guided Exploration

1: Input: offline dataset DH
n , no. of iterations T

2: Estimate transitions P̂ via MLE (Eqn. (2)) and compute confidence set Πoffline
1−δ (Thm. 4)

3: Initialize P̂1 ← P̂ , V1 ← λId ▷ Initialize model and data matrix
4: for t = 1, . . . , T do
5: Compute wproj

t via constrained MLE (Eqn. (4))
6: Define policy set Πt based on Πoffline

1−δ and wproj
t (Lemma 7)

7: (π1
t , π

2
t )← argmaxπ1,π2∈Πt

{γt · ∥ϕP̂t(π1)− ϕP̂t(π2)∥
V

−1
t

+ B̂t(π
1, 2WB, δonline) + B̂t(π

2, 2WB, δonline)}
8: Sample trajectories τ1t ∼ Pπ1

t

P̂t
, τ2t ∼ Pπ2

t

P̂t
and obtain preference ot = I(τ1t ≻ τ2t )

9: Update matrix Vt+1 ← Vt + (ϕP̂t(π1
t )− ϕP̂t(π2

t ))
⊗2 and model P̂t+1

10: end for
11: return Best policy from ΠT using final weight estimate wproj

t

Feature Moment Bounds. We constrain policy selection to our offline-derived confidence set
Πoffline

1−δ (Π). This enables us to bound the difference between expected feature representations of
policies, which directly impacts the uncertainty quantification in our online learning phase.

Lemma 6 (Feature Moment Bounds). Let X be a random variable on measurable space (X , X̃ )
and f : X → Rd be a bounded function such that ∥f(x)∥2 ≤ B < ∞ for all x ∈ X . For
probability distributions P,Q that are absolutely continuous with respect to the Lebesgue measure, if
H2(P,Q) ≤ R, then

∥EX∼P [f(X)]− EX∼Q[f(X)]∥2 ≤ 2
√
2 ·B ·

√
R.
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This lemma provides a crucial connection between the Hellinger distance of trajectory distributions
and the distance between their expected feature representations (embeddings) by setting f = ϕ. In
our preference-based learning framework, we apply this result to bound the elements of the expected
feature covariance matrix Vt. The trace tr(Vt) =

∑
t′<t ∥ϕ(πt′

1 )−ϕ(πt′

2 )∥22 represents total variance,
which Lemma 6 controls via our confidence set construction.

At the start of our online learning process (t = 0), for policies π1
0 and π2

0 that belong to our offline-
derived confidence set Πoffline

1−δ from Theorem 4, the Hellinger distance between their induced trajectory
distributions is bounded by the confidence set radius. Applying Lemma 6 with f = ϕ, our trajectory
embedding function, we obtain:

∥ϕP̂0(π1
0)− ϕP̂0(π2

0)∥2 ≤ 4
√
2 ·B · O

(
1√
n

)
.

This result has profound implications for our regret analysis. By constraining policies to our
confidence set, we effectively control the variance of feature differences, allowing us to replace the
naive bound ∥ϕP̂t(πt

1) − ϕP̂t(πt
2)∥2 ≤ 2B with our tighter bound that decreases with the offline

sample size n. As online learning progresses, the transition model P̂t improves through additional
data collection. Importantly, this improvement in the transition model only strengthens our bound.
The exact form of this improvement depends on the concentration properties of the online estimator
and is formalized in our final regret proof.

Based on these bounds, we can now define a policy confidence set that contains the optimal policy π∗

with high probability while accounting for both estimation uncertainty and exploration bonuses:

Lemma 7 (Online Policy Confidence Set). Let Πt be the set of policies defined as

Πt :=
{
π ∈ Πoffline

1−δ

∣∣ ∀π′ ∈ Πoffline
1−δ :〈

ϕP̂t(π)− ϕP̂t(π′),wproj
t

〉
+ γt · ∥ϕP̂t(π)− ϕP̂t(π′)∥

V
−1
t

+ B̂t(π, 2WB, δ′) + B̂t(π
′, 2WB, δ′) ≥ 0

}
,

where δ′ = δonline

2|A||S| . With probability at least 1 − δonline, the optimal policy π∗ remains in Πt

for all t ∈ [T ], where δonline has been scaled appropriately via union bound to account for the
separate probabilistic events in the offline confidence set, transition model estimation, and parameter
estimation components. The definition of the confidence radius multiplier γt is provided in ??.

The complete algorithm is described in Algorithm 1.

4.3 Theoretical guarantees

We can now state the following regret bound for BRIDGE. The proof is shown in Appendix D.

Theorem 8 (Regret Bound with Offline-Enhanced Exploration). Let n be the number of offline
demonstrations with minimum visitation probability γmin > 0 for state-action pairs. With probability
at least 1− δ, the regret of BRIDGE is bounded by

RT ≤ 2 · γT︸︷︷︸
Term 1

·

√√√√√
T · log

(
1 +

Õ
(
B2 ·H · |S|2 ·min

{
T
n , log(T )

}
+

T ·|S|·B2·
√

|A|·H
√
n·γmin

)
d

)
︸ ︷︷ ︸

Term 2

+ Õ

(
H|S|

√
|A|TH
n · γmin

+
H5/2WB

√
T

√
n · γmin

+H2WB ·
√
T · |S|

1/2|A|1/4

n1/4

)
︸ ︷︷ ︸

Term 3

,
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where

γT = Õ

(
(κ+BW )

√
d log(T ) +H2WB|S| ·

√
min

{
log(T ),

T

n · γmin

}
+
√
H2WB

)
,

we have set ϵ = 1
T to optimize the bound and we omit logarithmic factors (excluding T ’s) in Õ.

From this regret bound we can observe that as n→∞ with fixed γmin > 0: (i) Term 1 approaches
Õ((κ + BW )

√
d log(T ) +

√
HWB); (ii) Term 2, the logarithm, approaches log(1) = 0; (iii) in

Term 3, all components approach zero. The overall regret bound exhibits a
√
T dependence as in

Saha et al. (2023). However, this results in a regret bound that can be made arbitrarily small with
sufficiently high-quality offline data, changing the complexity of regret analysis without having
access to an offline expert dataset. This result helps in closing the gap between empirical results in
applying RL in real-world scenarios and theoretical works.

4.4 Numerical simulations

Figure 2: Performance comparison
of our new algorithm with offline
BC (Foster et al., 2024) and online
PbRL Saha et al. (2023). The dot-
ted red and green lines are the ex-
pected return of the optimal and BC
policies respectively.

We provide initial simulation results based on a practical im-
plementation of our algorithm. As baselines we used Foster
et al. (2024)’s behavioral cloning (BC) and Saha et al. (2023)’s
PbRL algorithms (for which no implementations are publicly
available). We used the StarMDP and Gridworld environ-
ments described in Pace et al. (2024). Appendix F gives more
details on our experiments. Figure 2 shows that with as little
as 2 offline, optimal trajectories, BRIDGE prunes the policy set
and converges to the optimal policy faster than PbRL.

5 Conclusions

We present BRIDGE3, a novel algorithm for fine-tuning BC
policies using online PbRL. Our approach is motivated by the
practical challenges of deploying RL in real-world settings,
where reward specification is difficult and exploration is risky.
By combining these two feedbacks, we construct confidence
sets that constrain the policy space and guide safe, sample-
efficient learning. We provide the first theoretical regret bound
for this hybrid learning paradigm, showing that offline data
reduces regret through a shrinking uncertainty radius. Our anal-
ysis builds on recent advances in BC and PbRL, and crucially
integrates them into a unified regret framework with provable
benefits. Our work opens new directions for interactive learn-
ing systems that can safely and efficiently improve with human
input, even in the absence of explicit reward signals.

3Code available on https://github.com/pfriedric/bridge.

https://github.com/pfriedric/bridge
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A Simplified Setup for Understanding Regret Analysis

Offline Estimation

Lemma 9: Offline Policy Confi-
dence Set
- Defines the set of policies ΠOffline

1−δ

- Corollary 19 =⇒ Contains true
policy π∗ with probability 1− δ

Online Estimation

Lemma 10: Optimal Policy Con-
tainment
- Ellipsoid CI Lemma 29
- Change of norm Lemma 30
- Conditioned on Lemma 9
=⇒

- Ensures π∗ ∈ Πt for all rounds t
- Combines offline confidence with

online estimation

Algorithm 2: BRIDGE (Known
Model)
- Starts with offline confidence set
- Computes policy set Πt at each
round
- Selects maximally informative pol-
icy pairs

Regret Analysis

Lemma 12: Feature Difference
Bound
- Leverage Distributional Dist.
Lemma 48

Theorem 13: Regret Analysis
- Final bound:

Õ(Γ ·
√

log(1 + T ·|S|
n·d ))

Key Insight:
- Algorithm leverages offline data to reduce explo-
ration cost
- With sufficient offline data, regret becomes con-
stant
- Feature dimension d amplifies offline data value
- Bridges gap between offline imitation and online
preference learning
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In this section, we propose an analysis of the regret under a simplified setting: The underlying
dynamic P ∗ is known. This idea is to help the reader understand how the construction of the
confidence set over the policies from the offline learning estimation helps to reduce the number of
policies to draw from in the online learning setting, without being overwhelmed by the estimation of
the transitions. In this setting, it is then clear what part of our methods applies to the policies. The
goal is to prepare the reader for the proof of our algorithm BRIDGE in Appendix D.

A.1 Setup for Known Dynamics

A.1.1 Offline Estimation with Known Dynamics

Assume we get the offline data DH
n = {τi}i∈[n]. The underlying object describing the trajectories

is a Finite MDP Reward Free setting as in the main paper. Assume that the set of possible policies
is stationary and deterministic. Then under the fact that the underlying dynamic is known, the
confidence set from Theorem 4 reduces to the following, by direct application of Corollary 19, i.e.,
setting the radius around the MLE estimate πMLE from Equation (7).

We formalize this into the following lemma:

Lemma 9 (Offline Policy Confidence Set under Known Dynamics). Let π̂ be the log-loss BC
estimator defined in Equation (7).
The policy set

ΠOffline
1−δ :=

{
π : H(Pπ

P∗ ,Pπ̂
P∗) ≤

√
6 · |S| · log(|A| · δ−1)

n

}
contains π∗ with probability at least 1− δ.

Proof. Note that by symmetry

H(Pπ∗

P∗ ,Pπ̂
P∗) = H(Pπ̂

P∗ ,Pπ∗

P∗)

Then the result follows from Corollary 19.

A.1.2 Online Learning with Known Dynamics

Here we adapt our algorithm BRIDGE to the setting with known dynamics. This means we adapt
the approach from Saha et al. (2023) under known dynamics to constrain the set of policies to choose
from to our confidence set described in the previous section.

First, since the transitions are known, we define for this section:

ϕP∗
(π) := ϕ(π) = Eτ∼Pπ

P∗ [ϕ(τ)]

We also define the expected data matrix V
P∗

t under the true transition dynamics P ∗ as follows (see
Appendix C for an overview of results about data matrices):

V
P∗

t = κλId +

t−1∑
ℓ=1

(
ϕ(π1

ℓ )− ϕ(π2
ℓ )
)(
ϕ(π1

ℓ )− ϕ(π2
ℓ )
)⊤

Then we define the set of policies to draw from as:

Πt :=
{
π ∈ ΠOffline

1−δ

∣∣ ∀π′ ∈ ΠOffline
1−δ :〈

ϕ(π)− ϕ(π′),wproj
t

〉
+ γt · ∥ϕ(π)− ϕ(π′)∥

(V
P∗
t )−1 ≥ 0

}
where γt := 2κβt(δ) + αd,T (δ) and αd,T (δ) is defined as in Lemma 30.
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Lemma 10 (Optimal Policy Containment). Conditioned on Ew∗ ∩ E
V

P∗
T

∩ Eoffline where:

• Ew∗ is the event defined in Lemma 29

• E
V

P∗
T

is the event defined in Lemma 30

• Eoffline := {π∗ ∈ ΠOffline
1−δ }

then

π∗ ∈ Πt ∀t ∈ [T ]

Proof. This follows directly from Lemma 2 in Saha et al. (2023). We adapt the probability parameter
δ to account for the additional condition that π∗ ∈ ΠOffline

1−δ , which holds with probability at least 1− δ
according to Lemma 27.

We now present the adapted version of BRIDGE for the known transition model:

Algorithm 2 BRIDGE: Bounded Regret with Imitation Data and Guided Exploration (Known
Model)

1: Input: Offline dataset DH
n , time horizon T , true dynamics P ∗

2: Compute confidence set ΠOffline
1−δ using Lemma 9

3: Initialize V
P∗

1 ← κλId ▷ Initialize data matrix
4: for t = 1, . . . , T do
5: Compute wproj

t via constrained MLE (Equation (4))
6: Define policy set Πt based on ΠOffline

1−δ and wproj
t

7: (π1
t , π

2
t )← argmaxπ1,π2∈Πt

{∥ϕ(π1)− ϕ(π2)∥
(V

P∗
t )−1}

8: Sample trajectories τ1t ∼ Pπ1
t

P∗ , τ2t ∼ Pπ2
t

P∗ and obtain preference ot = I(τ1t ≻ τ2t )

9: Update matrix: V
P∗

t+1 ← V
P∗

t + (ϕ(π1
t )− ϕ(π2

t ))(ϕ(π
1
t )− ϕ(π2

t ))
⊤

10: end for
11: return Best policy from ΠT using final weight estimate wproj

T

A.2 Regret Analysis: BRIDGE (Known Model)

We now present a regret analysis of the BRIDGE algorithm under known transition. We start by
stating the following lemma:
Lemma 11. The regret of BRIDGE under known dynamic is upper bounded as follow:

RT ≤ 4 · (βT (δ) + αT,d(δ)) ·
∑
t∈[T ]

∥ϕ(π1
t )− ϕ(π2

t )∥(V P∗
t )−1

Proof. For ease of notation we define δ∗,1ϕ := ϕ(π∗) − ϕ(π1). First we bound the instantenous
regret

2rt = ⟨δ∗,1ϕ,w∗⟩+ ⟨δ∗,2ϕ,w∗⟩

≤ ⟨δ∗,1ϕ,wproj
t ⟩+ ⟨δ∗,2ϕ,w

proj
t ⟩+ ∥w∗ −wproj

t ∥V P∗
t

(
∥δ∗,1ϕ∥

(V
P∗
t )−1 + ∥δ∗,2ϕ∥(V P∗

t )−1

)
≤︸︷︷︸

Lemma 30

⟨δ∗,1ϕ,wproj
t ⟩+ ⟨δ∗,2ϕ,w

proj
t ⟩+ (2κβt(δ) + αT,d(δ)) ·

(
∥δ∗,1ϕ∥

(V
P∗
t )−1 + ∥δ∗,2ϕ∥(V P∗

t )−1

)
Then notice that choosing π1

t , π
2
t as argmax together with the fact that π∗ ∈ Πt Lemma 10 yield

2rt ≤ ⟨δ∗,1ϕ,wproj
t ⟩+ ⟨δ∗,2ϕ,w

proj
t ⟩+ (2κβt(δ) + αT,d(δ)) ·

(
∥δ1,2ϕ∥

(V
P∗
t )−1

)
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Next using the fact that π1
t , π

2
t , π

∗ ∈ Πt we have the following constraints

⟨δi,∗ϕ,wproj
t ⟩+ γt∥δ∗,iϕ∥(V P∗

t )−1 ≥ 0 i ∈ {1, 2}

⇔ ⟨δ∗,iϕ,wproj
t ⟩ ≤ γt∥δ∗,iϕ∥(V P∗

t )−1 i ∈ {1, 2}

yielding

2rt ≤ (2κβt(δ) + αT,d(δ))∥δ1,2ϕ∥(V P∗
t )−1 ≤ 4(2κβT (δ) + αT,d(δ)) · ∥δ1,2ϕ∥(V P∗

t )−1

Hence

RT =
∑
t∈[T ]

rt ≤ 2 · βT (δ) + αT,d(δ)) ·
∑
t∈[T ]

∥δ1,2ϕ∥
(V

P∗
t )−1

The remaining step in our analysis is to bound the term:

∑
t∈[T ]

∥ϕ(π1
t )− ϕ(π2

t )∥(V P∗
t )−1 =

∑
t∈[T ]

∥∥∥∥Eτ∼Pπ1
t

P∗
[ϕ(τ)]− E

τ∼Pπ2
t

P∗
[ϕ(τ)]

∥∥∥∥
(V

P∗
t )−1

A simple approach would be to use ??, which states that the feature map ϕ is bounded in ℓ2-norm by
B. However, our offline confidence set construction in Lemma 9 provides a more powerful result:
policies in our set have distributions that are close not only in Hellinger distance but also in the
resulting feature expectations.

This is precisely why we formulated our confidence set constraint using the square root of the squared
Hellinger distance - it yields a bound on the L2 norm of distribution differences. Through Lemma 48,
we can translate bounds on Hellinger distance into bounds on the difference of feature expectations
in the ℓ2-norm.

We formalize this connection in the following lemma:

Lemma 12 (Feature Difference Bound Under Offline Constraints - Corrected). For policies π1
t , π

2
t ∈

ΠOffline
1−δ selected by our algorithm at each round t ∈ [T ], the sum of feature differences measured in

the data matrix norm is bounded as:

∑
t∈[T ]

∥ϕ(π1
t )− ϕ(π2

t )∥(V P∗
t )−1 ≤

√
2d · log

(
1 +

192B2T |S| log(|A| · δ−1)

n · d · λ

)

where d is the feature dimension, B is the feature norm bound, |S| and |A| are the state and action
space sizes, and n is the number of offline samples.

Proof. First note

∑
t∈[T ]

∥ϕ(π1
t )− ϕ(π2

t )∥(V P∗
t )−1 ≤

√
T ·

∑
t∈[T ]

∥ϕ(π1
t )− ϕ(π2

t )∥2
(V

P∗
t )−1

then notice the inequality

u ≤ 2 log(1 + u) u ≥ 1 =⇒
∑
t∈[T ]

∥δ1,2ϕ∥2
(V

P∗
t )−1

≤ 2 ·
∑
t∈[T ]

log(1 + ∥δ1,2ϕ∥2
(V

P∗
t )−1

)
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Using the definition of V
P∗

t , we have

V
P∗

t+1 = λ · Id×d +
∑
i∈[t]

(ϕ(π1
i )− ϕ(π2

i ))(ϕ(π
1
i )− ϕ(π2

i ))
T

= V
P∗

t + (ϕ(π1
t )− ϕ(π2

t ))(ϕ(π
1
t )− ϕ(π2

t ))
T

= (V
P∗

t )1/2
(
I + (V

P∗

t )−1/2(ϕ(π1
t )− ϕ(π2

t ))(ϕ(π
1
t )− ϕ(π2

t ))
T (V

P∗

t )−1/2

)
(V

P∗

t )1/2

Using properties of determinant:

det(V
P∗

t+1) = det(V
P∗

t ) · det(I + (V
P∗

t )−1/2(ϕ(π1
t )− ϕ(π2

t ))(ϕ(π
1
t )− ϕ(π2

t ))
T (V

P∗

t )−1/2)

= det(V
P∗

t ) · (1 + ∥ϕ(π1
t )− ϕ(π2

t )∥2(V P∗
t )−1

)

= det(V0) ·
∏
s∈[t]

(1 + ∥ϕ(π1
s)− ϕ(π2

s)∥2(V P∗
s )−1

)

⇔

log

[
det(V

P∗

t+1)

det(V0)

]
=
∑
s∈[t]

log(1 + ∥ϕ(π1
s)− ϕ(π2

s)∥2(V P∗
s )−1

)

We have for the determinant:

det(V
P∗

t+1) =
∏
i∈[d]

λi ≤
(
1

d
· Tr{V P∗

t+1}
)d

Using linearity of trace:

Tr{V P∗

t+1} = Tr{λI}+
∑
s∈[t]

Tr{(ϕ(π1
s)− ϕ(π2

s))(ϕ(π
1
s)− ϕ(π2

s))
T }

= d · λ+
∑
s∈[t]

∥ϕ(π1
s)− ϕ(π2

s)∥22

Applying the corrected bound from Lemma 48:

∥ϕ(π1
t )− ϕ(π2

t )∥22 ≤ (2
√
2 ·B ·

√
H2(Pπ1

t

P∗ ,Pπ2
t

P∗))
2

≤ 8B2 · 24 · |S| · log(|A| · δ
−1)

n

=
192B2|S| log(|A| · δ−1)

n

Using this tighter bound in our trace calculation:

Tr{V P∗

t+1} ≤ d · λ+ t · 192B
2|S| log(|A| · δ−1)

n

= dλ

(
1 +

192B2t|S| log(|A| · δ−1)

n · d · λ

)
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Hence:

log

[
det(V

P∗

t+1)

det(V0)

]
≤ d · log

(
Tr{V P∗

t+1}
d

)
= d · log

(
λ

(
1 +

192B2t|S| log(|A| · δ−1)

n · d · λ

))
= d · log(λ) + d · log

(
1 +

192B2t|S| log(|A| · δ−1)

n · d · λ

)

Since det(V0) = λd, the first logarithmic term cancels out:

log

[
det(V

P∗

t+1)

det(V0)

]
= d · log

(
1 +

192B2t|S| log(|A| · δ−1)

n · d · λ

)

Therefore:

∑
t∈[T ]

∥ϕ(π1
t )− ϕ(π2

t )∥2(V P∗
t )−1

≤ 2 · log
[
det(V

P∗

T+1)

det(V0)

]

≤ 2d · log
(
1 +

192B2T |S| log(|A| · δ−1)

n · d · λ

)

Taking the square root:

∑
t∈[T ]

∥ϕ(π1
t )− ϕ(π2

t )∥(V P∗
t )−1 ≤

√
2d · log

(
1 +

192B2T |S| log(|A| · δ−1)

n · d · λ

)

Theorem 13 (Regret Analysis for BRIDGE under Known Model). Let δ ≤ 1/e and λ ≥ B
κ . Then,

with probability at least 1− δ, the expected regret of Algorithm 2 is bounded by:

RT ≤ (2κβT (δ) + αd,T (δ))

√
2d · log

(
1 +

192B2T |S| log(|A| · δ−1)

n · d · λ

)
In asymptotic notation, this becomes:

RT = O

((
W
√
κB +WB

)
d log(TB/κδ)

√
log

(
1 +

T |S|
n · d

))

where the probability parameter δ accounts for the events

Ew∗ → Lemma 29

E
V

P∗
T

→ Lemma 30

Eoffline := {π∗ ∈ ΠOffline
1−δ } → Lemma 9

Remark 14. This result demonstrates a significant improvement over Saha et al. (2023)’s bound

of O
((

W
√
κB +WB

)
d log(TB/κδ)

√
T
)

. The key advantage lies in the term
√
log(1 + T |S|

n ),
which approaches zero as n→∞, potentially yielding constant regret.
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A.3 Practical Regret Analysis with Fixed Offline Data

For a fixed offline dataset of size n, our regret bound scales with horizon T as:

RT = O

(
Γ ·

√
log

(
1 +

CT |S|
n · d

))

where Γ = (W
√
κB +WB)d log(TB/κδ). This bound reveals three distinct regimes:

1. Small T Regime (T |S| ≪ n · d): Using log(1 + x) ≈ x for small x:

RT = O

(
Γ ·
√

T |S|
n · d

)
= O

(
Γ ·
√
T · |S|

1/2

√
n · d

)

2. Transition Regime (T |S| ≈ n · d):

RT = O(Γ) = O
(
(W
√
κB +WB)d log(TB/κδ)

)
3. Large T Regime (T |S| ≫ n · d):

RT = O
(
Γ ·
√
log(T )

)
These regimes highlight two key insights: (1) with sufficient offline data (n = Ω(T |S|

d )), regret
dramatically improves from O(

√
log(T )) to O(1) in the dependence on T ; and (2) feature dimension

d amplifies the value of offline data, allowing the same regret reduction with
√
d times less data. This

explains why high-dimensional problems may benefit more significantly from offline data.

As n increases, regret transitions from logarithmic (O(log(T ))) to sublinear (O(
√

T/n)) and even-
tually approaches O(1) when n≫ T |S|

d . In the limiting case where n→∞, exploration becomes
unnecessary, and regret is bounded only by statistical error in the offline estimation.

B Offline estimation

B.1 Maximum Likelihood for Density Estimation

In this section, we present Maximum Likelihood Estimation (MLE) for density estimation that forms
the foundation of our concentration results. While these results are presented more extensively in
Foster et al. (2024), we include them here for completeness and readability.

The analysis of MLE relies on standard concentration techniques following the well-established work
of van de Geer (2000) and Zhang (2006), enhanced by new Freedman-type concentration inequalities
developed in Foster et al. (2024) (Appendix B).

The key proof strategy connects MLE analysis to information-theoretic measures via Rényi
divergence of order 1/2. Specifically, the approach bounds expressions of the form −n ·
log(Ez∼g∗ [e

1
2 log(g(z)/g∗(z))]), which equals n

2 ·D1/2(g∥g∗). This term is bounded using Freedman-
type inequalities for adapted sequences, which provide high-probability bounds of the form∑T ′

t=1− log(Et−1[e
−Xt ]) ≤

∑T ′

t=1 Xt + log(δ−1). When combined with union bounds over ε-
nets, this yields tight concentration results for the entire function class. The approach also leverages
connections to Hellinger distance through the identity H2(g, g∗) = 1−

∫ √
g(z)g∗(z)dz, providing

geometrically interpretable guarantees.

To handle infinite classes, we introduce a tailored notion of covering number for log-loss:
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Definition 15 (Log-Covering Number). For a class G ⊂ ∆(X ), the class G′ ⊂ X is an ϵ−cover if
for all g ∈ G, there exists g′ ∈ G′ such that ∀x ∈ X

log(g(x)/g′(x)) ≤ ϵ

The size of such cover is defined by Nlog(G, ϵ).

Consider the data Dn = {xi}i∈[n] consisting of i.i.d copies of x ∼ g∗ where g∗ ∈ ∆(X ). We have a
class G ⊆ ∆(X ) that may or may not contain g∗. The density MLE estimator is defined as

ĝ = argmax
g∈G

∑
i∈[n]

log(g(xi)) (5)

Lemma 16 (Maximum Likelihood Estimator Bound). The maximum likelihood estimator in Eq. Equa-
tion (5) has that with probability at least 1− δ,

H2(ĝ, g∗) ≤ inf
ε>0

{
6 log(2Nlog(G, ε)/δ−1)

n
+ 4ε

}
+ 2 inf

g∈G
log(1 +Dχ2(g∗∥g))

In particular, if G is finite, the maximum likelihood estimator satisfies

H2(ĝ, g∗) ≤ 6 log(2|G|/δ−1)

n
+ 2 inf

g∈G
log(1 +Dχ2(g∗∥g))

Note that the term infg∈G log(1 +Dχ2(g∗∥g)) corresponds to misspecification error, and is zero if
g∗ ∈ G.

B.2 MLE Objective of Dataset of Independent Trajectories

Given a data set of reward free trajectories DH
n = {τi}i∈[H] of n trajectories of length H where

{τi} ∼i.i.d τ ∼ Pπ∗

P∗ . The distribution Pπ∗

P∗ is assumed to be continuous w.r.t to Lebesque measure.
It is characterized by the policy density π = {πi}i∈[H] ∈ Π and the stationary transition density
P = P where Π,P characterize the policy and transition density spaces. The log-likelihood of the
set with for a policy π and a transition P reads:

ln(π, P ) =
1

n

∑
i∈[n]

log
[
P (si1) · π1(a

i
1, s

i
1)

∏
1<j≤H

P (sij |sij−1, a
i
j−1)πj(a

i
j |sij)

]
The maximum likelihood objective over the density class {Pπ

P }π∈Π,P∈P for the dataset DH
n

arg max
π∈Π,P∈P

∑
i∈[n]

∑
j∈[H]

(
log[πi(a

i
j |sij ])

)
+
∑
i∈[n]

H∑
j=0

(
log[P (sij+1|sij , aij)]

)
(6)

B.3 Concentration Bounds

In this section we provide concentration bounds for the MLE estimators of the policies and the
transition model, as well as for our notion of concentrability coefficient. The important takeaway
is that the control of the error, i.e., the decay of these concentration bounds depends only on values
known to the user, which will allow us to compute confidence policy sets based on these bounds.

B.3.1 Policy estimation

Define the log-loss behavioral cloning estimator for dataset DH
n as described in B.2 as

π̂ = argmax
π∈Π

∑
i∈[n]

∑
h∈[H]

log(πh(a
i
h|sih)) (7)

which is from Equation (6) equivalent to performing maximum density estimation over the density
class {Pπ

P∗}π∈Π. Similar to definition 15 (Foster et al., 2024) define the following
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Definition 17 (Policy Covering Number). For a class Π ⊂ {πh : S → ∆(A)}, we say that
Π′ ⊂ {πh : S → ∆(A)} is an ϵ−cover if for all π ∈ Π there exists π′ ∈ Π′ such that

log

(
πh(a|s)
π′
h(a|s)

)
≤ ϵ ∀(s, a, h) ∈ S ×A× [H]

We denote the size of the smallest such cover as Npol(Π, ϵ)

We state the following theorem from (Foster et al., 2024, Appendix C):

Theorem 18 (Generalization bound for logloss-BC). The Logloss BC estimator Eq:7 satisfies with
probability ≥ 1− δ

H2(Pπ̂
P∗ ,Pπ∗

P∗) ≤ inf
ϵ

{
6 log(2Npol(Π, ϵ/H)δ−1)

n
+ ϵ

}
in particular, if Π is finite

H2(Pπ̂
P∗ ,Pπ∗

P∗) ≤
6 · log(2 · |Π| · δ−1)

n

Proof. See (Foster et al., 2024, Appendix C).

Corollary 19 (Deterministic Stationary Tabular Policies). If Π = ΠD
S i.e the set of deterministic

tabular policies the log-loss BC estimator Eq 7 has that with probability at least 1− δ

H2(Pπ̂
P∗ ,Pπ∗

P∗) ≤
6 · |S| · log(|A| · δ−1)

n

Proof. We have |ΠD
S | = |A||S|

In the case we don’t have deterministic but stochastic policies, we need to determine log(Npol(ΠS , ϵ)).
This can be accomplished using a discretization argument, where we create a finite ϵ-net that
approximates the continuous space of stochastic policies within the desired error tolerance.

B.3.2 Transition model estimation

Here we can give a similar argument as for the policy log loss BC estimator. We define the following
estimator

P̂ = argmax
P∈P

∑
i∈[n]

H∑
j=0

(
log[P (sij+1|sij , aij)]

)
(8)

which is from Eq. 6 equivalent to performing maximum density estimation over the density class
{Pπ∗

P }P∈P . Similarly, we define the following notion of covering

Definition 20 (Stationary Transition Log Covering Number). For a class of stationary transition
probability functions P ⊂ {P : S ×A → ∆(S)} we define that P ′ ⊂ {P : S ×A → ∆(S)} is an
ϵ-cover if for all P ∈ P there exists P ′ ∈ P ′ such that

log

(
P (s′|s, a)
P ′(s′|s, a)

)
≤ ϵ ∀(s′, s) ∈ S, a ∈ A

We denote the smallest such cover by Ntrans(P, ϵ)
Assumption B.1 (Realisability of Transition). We assume the true transition density to be in the
model class i.e P ∗ ∈ P
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We can now give a similar guarantee as for the log loss policy estimate but for the transition estimate

Theorem 21 (Generalisation Bound for MLE Transition Estimator). The MLE transition estimator
of Eq 8 satisfies with probability at least 1− δ

H2(Pπ∗

P̂
,Pπ∗

P∗) ≤ inf
ϵ

{
6 log(2Ntrans(Π, ϵ/H)δ−1)

n
+ ϵ

}
Proof. Given a valid ϵ-cover of P from definition 20 we have

log

(
Pπ
P

Pπ
P ′

)
=

H∑
h=1

log

(
P (sh+1|sh, ah)
P ′(sh+1|sh, ah)

)
≤ ϵ ·H

this means that we get a valid ϵ ·H cover for the trajectory density class. The bound follow be a
direct application of Lemma 16.

Lemma 22 (Transition Covering Number: Stationary Tabular Stochastic Transitions). For a class of
stationary transition probability functions P ⊂ {P : S ×A → ∆(S) where |S ×A| is finite (tabular
MDP), the ϵ-cover from Definition 20 satatisfies:

log(Ntrans(P, ϵ)) ≤ |S| · |A| · (|S| − 1) · log
(
1

ϵ
+ 1

)
Proof. The proof follow a standard geometric discretization argument for finite class of function (see
Chapter 5 Wainwright (2019)) . For a given ϵ > 0 we construct a geometric grid:

Gϵ =
{
δ, δ · exp(ϵ/2), δ exp(ϵ), δ exp(3ϵ/2), . . . , δ exp(kϵ/2)

}
where δ > 0 is the minimum probability and k is chosen such that the grid represents a discretization
of the continuous interval [0, 1] i.e

δ exp(kϵ/2) =⇒ k ≥ 2 log(1/δ)

ϵ

Thus the grid size is at most:

|Gϵ| ≤
⌈
2 log(1/δ)

ϵ

⌉
+ 1

For each state action pairs (a, s) define P (si|s, a) = pi for i ∈ |S|. Note that for the first 1, . . . , |S|−1
there exist qi := P ′(si|s, a) ∈ Gϵ that satisfies by construction

exp(−ϵ/2) ≤ pi
qi
≤ exp(ϵ/2)

For the last state i = |S|, we need to determine q|S| close enough to p|S|.
Let define Sq :=

∑|S−1|
i qi and Sp :=

∑|S−1|
i pi we have the constraint

p|S| = 1− Sp

q|S| = 1− S − q

From the bound on the first 1− |S| elements we have

Sq exp(−ϵ/2) ≤ Sp ≤ Sq exp(ϵ/2)

For the ratio of the last probability

p|S|

q|S|
=

1− Sp

1− Sq
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we have the following condition such that we have p|S|
q|S|
≥ exp(−ϵ)

Sq ≤
1− exp(−ϵ)

exp(ϵ/2)− exp(−ϵ)

Similarly for the upper bound we have the condition

Sq ≤
exp(ϵ)− 1

exp(ϵ)− exp(−ϵ/2)

Combining both constraints we have

Sq ≤ min

{
exp(ϵ)− 1

exp(ϵ)− exp(−ϵ/2)
,

exp(ϵ)− 1

exp(ϵ)− exp(−ϵ/2)

}
By Taylor approximation this boils down to

Sq ≤
2

3

Hence we select only the combination of points that satisfies

2

3
≤ Sq ≤ 1− δ

It remains to count the number of point we have in our cover i.e the first |S − 1| that satisfies our
constrains

(number of grid points)|S−1| ≤ |Gϵ||S|−1 ≤
(⌈

2 log(1/δ)

ϵ

⌉
+ 1

)|S|−1

Across all state action pair and taking the logarithm

log(Ntrans(P, ϵ)) ≤ |S||A|(S − 1) log

(⌈
2 log(1/δ)

ϵ

⌉
+ 1

)
choosing δ = O(ϵ) yield the result.

Corollary 23 (Stochastic, stationary, tabular transition setting). For finite |S × A| (tabular setting)
and assuming the transition density class to be stochastic and stationary we have with probability at
least 1− δ

H2(Pπ∗

P̂
,Pπ∗

P∗) ≤ O
(
|S|2|A| log(nHδ−1)

n

)
where for the theoretical optimal constant Ctheory ≈ 6

Proof. From our lemma on the covering number of transition functions, we have:

logNtrans(P, ε/H) ≤ |S||A|(|S| − 1) log

(
H

ε
+ 1

)

For large H
ε , we can approximate:

log

(
H

ε
+ 1

)
≈ log

(
H

ε

)
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Substituting this into our bound:

H2(Pπ∗

P̂
,Pπ∗

P∗) ≤ inf
ε>0

{
6 log(2) + 6|S||A|(|S| − 1) log

(
H
ε

)
+ 6 log(δ−1)

n
+ ε

}

= inf
ε>0

{
6 log(2) + 6D log(H)− 6D log(ε) + 6 log(δ−1)

n
+ ε

}
where D = |S||A|(|S| − 1) for brevity.

To find the optimal ε, we differentiate with respect to ε and set to zero:

d

dε

[
6 log(2) + 6D log(H)− 6D log(ε) + 6 log(δ−1)

n
+ ε

]
= −6D

nε
+ 1 = 0

⇒ εopt =
6D

n
=

6|S||A|(|S| − 1)

n

Substituting this optimal value back:

H2(Pπ∗

P̂
,Pπ∗

P∗) ≤
6 log(2) + 6D log(H)− 6D log

(
6D
n

)
+ 6 log(δ−1)

n
+

6D

n

=
6 log(2) + 6D log(H)− 6D log(6D) + 6D log(n) + 6 log(δ−1) + 6D

n

=
6 log(2) + 6 log(δ−1) + 6D log

(
nH
6D

)
+ 6D

n

For large state spaces where |S| − 1 ≈ |S|, and defining D̃ = |S|2|A|, this becomes:

H2(Pπ∗

P̂
,Pπ∗

P∗) ≤
6 log(2) + 6 log(δ−1) + 6D̃ log

(
nH
6D̃

)
+ 6D̃

n

For large n and D̃, the dominant term is 6D̃ log(nH)
n , and we can combine the logarithmic terms to

get:

H2(Pπ∗

P̂
,Pπ∗

P∗) = O

(
|S|2|A| log(nHδ−1)

n

)
Note that the constant 6 appears in the full derivation. This completes the proof.

B.3.3 Concentrability Coefficient Upper Bound

Definition 24 (Concentrability Coefficient). We define the following quantity as the "concentrability
coefficient":

C(π̂, π∗) = sup
t∈[H]

sup
(s,a)∈S×A:dπ∗,t

P∗ (s,a)>0

dπ,tP∗(s, a)

dπ
∗,t

P∗ (s, a)

which measures the maximum ratio between the state-action distributions induced by policies π̂ and
π∗ under the true dynamics P ∗.

Assumption B.2 (Minimum Visitation Probability). There exists a constant γmin > 0 such that for
all state-action-time tuples with non-zero probability under the optimal policy:

min
(s,a,t):dπ∗,t

P∗ (s,a)>0

dπ
∗,t

P∗ (s, a) ≥ γmin
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Lemma 25 (Concentrability Coefficient Bound). Consider a policy estimator π̂ satisfying

H2(Pπ̂
P∗ ,Pπ∗

P∗) ≤ R

Then, under Assumption 4.2, the concentration coefficient is bounded by:

C(π̂, π∗) ≤ 1 +
2
√
R

γmin

Proof. We will proceed by upper bounding the numerator using the condition on the Hellinger
distance followed by lower bounding with concentration the denominator.
For the upper bound note that

sup
a,s
|dπ̂,tP∗ − dπ

∗,t
P∗ | = 2 · TV (dπ̂,tP∗ , d

π∗,t
P∗ )

Recalling that the state-action distribution dπ,tP∗(s, a) is the marginal distribution of the trajectory
distribution at time step t. Explictly:

dπ,tP∗(s, a) =

∫
τ−t

Pπ
P∗(τ) dτ−t =: Pπ

P∗(st = s, at = a)

where τ−t denotes all time steps in the trajectory except for time t, and Pπ
P∗(τ) is the probability of

trajectory τ under policy π and dynamics P ∗.
Hence

TV (dπ̂,tP∗ , d
π∗,t
P∗ ) = 2 · TV (Pπ̂

P∗(st = s, at = a),Pπ∗

P∗(st = s, at = a))

≤ 2 · TV (Pπ̂
P∗ ,Pπ∗

P∗)

≤ 2 ·
√

H2(Pπ̂
P∗ ,Pπ∗

P∗) ≤ 2
√
R

together with

By Assumption 1, we have a lower bound on the minimum state-action visitation probability:

min
(s,a,t):dπ∗,t

P∗ (s,a)>0

dπ
∗,t

P∗ (s, a) ≥ γmin

Finally, we combine the upper bound on the numerator and the lower bound from Assumption 1 to
get ∀(a, s, t) s.t dπ

∗,t
P∗ (a, s) > 0:

C(π̂, π∗) = 1 +
supa,s,t |d

π̂,t
P∗(s, a)− dπ

∗,t
P∗ (s, a)|

infa,s,t d
π∗,t
P∗ (s, a)

≤ 1 +
2
√
R

infa,s,t d
π∗,t
P∗ (s, a)

≤ 1 +
2
√
R

γmin

This completes the proof, giving us a deterministic bound on the concentration coefficient that depends
on the Hellinger distance between trajectory distributions and the minimum visitation probability of
the optimal policy.
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B.3.4 Confidence Set Construction

In this section we will derive a distributional confidence set on the trajectory space in the form of a
hellinger ball, accounting for the error of the MLE density estimates π̂ and P̂ . We start by presenting
the following in between result

Lemma 26 (Technical Results). Assume finite state and action pair: S ×A . The following upper
bound is true ∀π ∈ Π with π∗ being the true policy and P ∗, P̂ being the true and estimated transition
models:

H2(Pπ
P̂
,Pπ

P∗) ≤ H · C(π, π∗) ·H2(Pπ∗

P̂
,Pπ∗

P∗)

where

C(π, π∗) = sup
t∈[H]

sup
(s,a)∈S×A:dπ∗,t

P∗ (s,a)>0

dπ,tP∗(s, a)

dπ
∗,t

P∗ (s, a)

Proof. We derive the proof in three steps:

Step 1.

H2(Pπ
P̂
,Pπ

P∗) ≤
∑

t∈[H−1]

E(st,at)∼dπ,t
P∗

[
H2

(
P̂ (·|st, at), P ∗(·|st, at)

)]

Step 2.

E(st,at)∼dπ,t
P∗

[
H2

(
P̂ (·|st, at), P ∗(·|st, at)

)]
≤ C(π, π∗) · E

(st,at)∼dπ∗,t
P∗

[
H2

(
P̂ (·|st, at), P ∗(·|st, at)

)]
Step 3.

H2(Pπ∗

P̂
,Pπ∗

P∗) ≥
1

H
· E

(st,at)∼dπ∗,t
P∗

[
H2

(
P̂ (·|st, at), P ∗(·|st, at)

)]
Proof Step 1:

H2(Pπ
P̂
,Pπ

P∗) = 1−
∫
T
1− µ0(s0)

H−1∏
t=0

π(at|st)
√
P̂ (st+1|at, st)P ∗(st+1|st, at)dτ

= 1−
∫
T
pπP∗(τ) ·

µ0(s0)
∏H−1

t=0 π(at|st)
√
P̂ (st+1|at, st)P ∗(st+1|st, at)

µ0(s0)
∏H−1

t=0 π(at|st)P ∗(st+1|st, at)
dτ

= 1−
∫
T
pπP∗(τ) ·

H−1∏
t=0

√
P̂ (st+1|st, at)
P ∗(st+1, st, at)

dτ

Next define for ease of notation :

αt(st+1, at, st) :=

√
P̂ (st+1|st, at)
P ∗(st+1, st, at)

γt(st, at) :=

∫
s′

√
P̂ (st+1|st, at)P ∗(st+1, st, at)ds

′ =

∫
s′
P ∗(s′|st, at) · αt(s

′, st, at)ds
′

Notice that γt is a BC coefficient i.e

1− γt(st, at) = H2
(
P̂ (·|st, at), P ∗(·|st, at)

)



Reinforcement Learning Journal 2025

Using notation above:

H2(Pπ
P̂
,Pπ

P∗) = 1− Eτ∼Pπ
P∗

[H−1∏
t=0

αt(st+1, st, at)

]
Using conditional expectation (law of iterated expectation) we change the distribution in the expecta-
tion from Pπ

P∗ to the so called state-action distribution dπ,tP∗ . To show this argument we show it for
state action pair (a0, s0, s1). The rest follows by using the same idea:

Eτ∼Pπ
P∗

[H−1∏
t=0

αt(st+1, st, at)

]
= Es0,a0

[
Es1|s0,a0

[
α0(s1, s0, a0)

]
· Ea1∪τ[2:H−1]|s1

[H−1∏
t=1

αt(st+1, st, at)

]]
=

∫
s0,a0

µ0(s0) · π1(a0|s0)
∫
s1

P ∗(s1|s0, a0) · α0(s1, s0, a0)

· Ea1∪τ[2:H−1]|s1

[H−1∏
t=1

αt(st+1, st, at)

]
=

∫
s0,a0

µ0(s0) · π1(a0|s0) · γ0(s0, a0) ·
[
””

]
Notice that

µ0(s0) · π1(a0|s0) =
∫

pπP∗dτ[1:H−1] =: dπ,0P∗ (s0, a0) Marginal over (s0, a0)

Hence using a recursiv argument we have

H2(Pπ
P̂
,Pπ

P∗) = 1− Eτ∼Pπ
P∗

[H−1∏
t=0

αt(st+1, st, at)

]

= 1−
H−1∏
t=0

Edπ,t
P∗

[
γt(st, at)

]
Usinge the fact that

1−
∏
i

xi ≤
∑
i

(1− xi) ∀xi ∈ [0, 1]

and by the fact that γt ∈ [0, 1]∀t we have

H2(Pπ
P̂
,Pπ

P∗) ≤
H−1∑
t=0

Edπ,t
P∗

(1− γt(st, at))

=

H−1∑
t=0

Edπ,t
P∗

[
H2
(
P̂ (·|st, at), P ∗(·|st, at)

)]

Proof Step 2:

E(st,at)∼dπ,t
P∗

[H2(P̂ (·|st, at), P ∗(·|st, at))] =
∑
s,a

dπ,tP∗(s, a) ·H2(P̂ (·|s, a), P ∗(·|s, a))

=
∑
s,a

dπ,tP∗(s, a)

dπ
∗,t

P∗ (s, a)
· dπ

∗,t
P∗ (s, a) ·H2(P̂ (·|s, a), P ∗(·|s, a))

=
∑
s,a

dπ,tP∗(s, a)

dπ
∗,t

P∗ (s, a)
· dπ

∗,t
P∗ (s, a) ·H2(P̂ (·|s, a), P ∗(·|s, a))
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By definition of the concentrability coefficient:

C(π, π∗) = sup
t∈[H]

sup
(s,a)∈S×A:dπ∗,t

P∗ (s,a)>0

dπ,tP∗(s, a)

dπ
∗,t

P∗ (s, a)

Therefore:

dπ,tP∗(s, a)

dπ
∗,t

P∗ (s, a)
≤ C(π, π∗) ∀t ∀(s, a) where dπ

∗,t
P∗ ≥ 0

Proof Step 3:
Starting from our previous expression:

H2(Pπ∗

P̂
,Pπ∗

P∗) = 1−
H−1∏
t=0

E
dπ∗,t
P∗

[γt(st, at)]

Let’s denote

xi := 1− γi(si, ai) = H2(P̂ (·|si, ai), P ∗(·|si, ai))

Using the fact that (1− x) ≤ e−x for all x, we have:

H∏
i=1

(1− xi) ≤ exp

(
−

H∑
i=1

xi

)

By the second-order Taylor expansion of the exponential function:

exp

(
−

H∑
i=1

xi

)
≤ 1−

H∑
i=1

xi +
1

2

(
H∑
i=1

xi

)2

Since xi ≤ 1 for all i, we know that
∑H

i=1 xi ≤ H , which gives us:

1

2

(
H∑
i=1

xi

)2

≤ H

2

H∑
i=1

xi

Therefore:

H2(Pπ∗

P̂
,Pπ∗

P∗) ≥
H∑
i=1

xi −
1

2

(
H∑
i=1

xi

)2

≥
H∑
i=1

xi −
H

2

H∑
i=1

xi

=

(
1− H

2

) H∑
i=1

xi

For the bound H2(Pπ∗

P̂
,Pπ∗

P∗) ≥ 1
H

∑H
i=1 xi to hold, we need:

(
1− H

2

) H∑
i=1

xi ≥
1

H

H∑
i=1

xi
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This is satisfied when:

H∑
i=1

xi ≤
2(H − 1)

H

This condition is typically met for good estimators where Hellinger distances are small. For large H ,
the bound approaches 2.

Under this condition, we can establish:

H2(Pπ∗

P̂
,Pπ∗

P∗) ≥
1

H

H−1∑
t=0

E
(st,at)∼dπ∗,t

P∗
[H2(P̂ (·|st, at), P ∗(·|st, at))]

Lemma 27 (Policy Density Confidence Set). Assume the following events hold:

E1 :=

{
H2(Pπ̂

P∗ ,Pπ∗

P∗) ≤ R1(δ1)

}
, such that P (E1) ≥ 1− δ1,

E2 :=

{
H2(Pπ∗

P̂
,Pπ∗

P∗) ≤ R2(δ2)

}
, such that P (E2) ≥ 1− δ2,

where π̂ and P̂ are estimators of the policy and the transition dynamics, respectively.

Then, under Assumption 4.2, the policy set

C1−δ :=

{
π :
√
H2(Pπ

P̂
,Pπ̂

P̂
) ≤

√
R1 +

√
R2 ·

(
1 +

√(
1 +

2
√
R1

γmin

)
·H
)}

is a confidence set of level 1− δ = 1− (δ1 + δ2), i.e.,

P (π∗ ∈ Πoffline
1−δ ) ≥ 1− (δ1 + δ2).

Proof. For ease of notation, let us define:√
H2(Pπ1

P1
,Pπ2

P2
) =: ∥(π1, P1)− (π2, P2)∥

with ∥ · ∥ := ∥ · ∥L2(µ(R))

We can then decompose by the triangle inequality:

∥(π∗, P̂ )− (π̂, P̂ )∥ ≤ ∥(π∗, P̂ )− (π∗, P ∗)∥+ ∥(π∗, P ∗)− (π̂, P ∗)∥+ ∥(π̂, P ∗)− (π̂, P̂ )∥

From Lemma 26, we have:

∥(π̂, P ∗)− (π̂, P̂ )∥ ≤
√

C(π̂, π∗) ·H · ∥(π∗, P̂ )− (π∗, P ∗)∥

From Assumption 4.2 and our concentrability coefficient bound, we have:

C(π̂, π∗) ≤ 1 +
2
√
R1

γmin

From event E1, we have:

∥(π∗, P ∗)− (π̂, P ∗)∥ ≤
√

R1
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From event E2, we have:

∥(π∗, P̂ )− (π∗, P ∗)∥ ≤
√

R2

Then, assuming events E1 ∩ E2 hold jointly, with probability at least 1− (δ1 + δ2), we have:

∥(π∗, P̂ )− (π̂, P̂ )∥ ≤
√

R1 +
√
R2 ·

(
1 +

√(
1 +

2
√
R1

γmin

)
·H
)

Hence, by construction, the set:

Πoffline
1−δ (Π) :=

{
π ∈ Π : ∥(π, P̂ )− (π̂, P̂ )∥ ≤

√
R1 +

√
R2 ·

(
1 +

√(
1 +

2
√
R1

γmin

)
·H
)}

contains π∗ with probability at least 1− (δ1 + δ2).

B.4 Performance Guarantees

We apply our method of constructing confidence sets based on distributional guarantees for maximum
likelihood density estimation to the tabular reinforcement learning setting with state space S and
action space A. We consider deterministic stationary tabular policies (Π = ΠD

S ) and stochastic
stationary tabular transitions, though the method is versatile to other settings with appropriate
adaptation of the corresponding covering numbers (cf. Definitions 17 and 20).

Let π̂ be the log-loss BC estimator (Equation (1)) of the true policy π∗, and P̂ be the MLE estimator
(Equation (2)) of the true transition model P ∗. The concentration bounds for these estimators are,
with probability at least 1− δ1 and 1− δ2 respectively:

H2(Pπ̂
P∗ ,Pπ∗

P∗) ≤ R1 =
4 · |S| · log(|A| · δ−1

1 )

n
(Corollary 19)

H2(Pπ∗

P̂
,Pπ∗

P∗) ≤ R2 =
4 · |S|2 · |A| · log(nHδ−1

2 )

n
(Corollary 23)

Additionally, we make the following assumption about the minimum visitation probability under the
optimal policy:

Assumption B.3 (Minimum Visitation Probability). There exists a constant γmin > 0 such that for
all state-action-time tuples with non-zero probability under the optimal policy:

min
(s,a,t):dπ∗,t

P∗ (s,a)>0

dπ
∗,t

P∗ (s, a) ≥ γmin

Under this assumption, the concentrability coefficient is bounded by:

C(π̂, π∗) ≤ 1 +
2 ·
√
R1

γmin

Theorem 28 (Policy Confidence Set). Under the setting described above and Assumption B.3, with
δ1 = δ2 = δ/2 and defining

α :=
√
4 · |S| · log(|A| · 2/δ)

β :=
√

4 · |S|2 · |A| · log(nH · 2/δ)

The policy set

Πoffline
1−δ :=

{
π :
√
H2(Pπ

P̂
,Pπ̂

P̂
) ≤

√
R1 +

√
R2 ·

(
1 +

√(
1 +

2
√
R1

γmin

)
·H
)}
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is a confidence set of level 1 − δ containing π∗ with probability at least 1 − δ. The radius of this
confidence set is explicitly:

Radius =
α√
n
+

β√
n
·

(
1 +

√
H ·

(
1 +

2α

γmin ·
√
n

))

Proof. The proof follows directly from Lemma 27 by applying our bounds on H2(Pπ̂
P∗ ,Pπ∗

P∗) and
H2(Pπ∗

P̂
,Pπ∗

P∗), along with our bound on the concentrability coefficient from Assumption B.3. Setting
δ1 = δ2 = δ/2 and substituting the appropriate values gives us the result.

C Online Estimation

The underlying setting is described in the Section Problem Setup

C.1 Elliptical Confidence Set

For completeness and to make our paper self-contained, we provide a brief overview of the online
preference-based learning approach used in our method. The formulation presented in this section
closely follows the work of Saha et al. (2023) and Faury et al. (2020), with adaptations to our
specific setting. We include this background to help the reader understand the elliptical confidence
set construction that forms a foundation for our theoretical analysis.

In the logistic model, a natural way of computing an estimator wt of w∗ given trajectory pairs
{(τ1ℓ , τ2ℓ )}

t−1
ℓ=1 and preference feedback values {oℓ}t−1

ℓ=1 is via maximum likelihood estimation. At
time t the regularized log-likelihood (or negative cross-entropy loss) of a parameter w can be written
as:

Lλ
t (w) =

t−1∑
ℓ=1

(
oℓ log(σ(⟨ϕ(τ1ℓ )− ϕ(τ2ℓ )⟩,w⟩))−

λ

2
∥w∥22

+(1− oℓ) log
(
1− σ(⟨ϕ(τ1ℓ )− ϕ(τ2ℓ ),w⟩)

)
,

where λ > 0 is a regularization parameter. The function Lλ
t is strictly concave for λ > 0. The max-

imum likelihood estimator ŵMLE
t can be written as ŵMLE

t = argmaxw∈Rd Lλ
t (w). Unfortunately,

ŵMLE
t may not satisfy the boundedness Assumption 1, so we instead make use of a projected version

of ŵMLE
t . Following Faury et al. (2020), and recalling Assumption 1, we define a data matrix and a

transformation of ŵMLE
t given by

Vt = κλId +

t−1∑
ℓ=1

(
ϕ(τ1ℓ )− ϕ(τ2ℓ )

)(
ϕ(τ1ℓ )− ϕ(τ2ℓ )

)⊤
gt(w) =

t−1∑
ℓ=1

σ(⟨ϕ(τ1ℓ )− ϕ(τ2ℓ ),w⟩)
(
ϕ(τ1ℓ )− ϕ(τ2ℓ )

)
+ λw

Then, the projected parameter, along with its confidence set, is given by

wProj
t = argmin

w s.t. ∥w∥≤W

∥gt(w)− gt(ŵ
MLE
t )∥V−1

t

Ct(δ) = {w s.t. ∥w −wP
t ∥Vt

≤ 2κβt(δ)}

where βt(δ) =
√
λW +

√
log(1/δ) + 2d log

(
1 + tB2

κλd

)
. We restate a bound by Faury et al. (2020)

that shows the probability of w∗ being in Ct(δ) for all t ≥ 1 can be lower bounded.
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Lemma 29 (Confidence Set Coverage). Let δ ∈ (0, 1] and define the event that w∗ is in the confidence
interval Ct(δ) for all t ∈ N:

Ew∗ = {∀t ≥ 1,w∗ ∈ Ct(δ)}.

Then P(Ew∗) ≥ 1− δ.

Proof. This follows from Faury et al. (2020) with a slight modification to account for our bounded
feature assumption.

This elliptical confidence set construction, which has its roots in generalized linear bandits (Filippi
et al., 2010; Faury et al., 2020), forms a critical component of our online learning algorithm. By
maintaining and updating these confidence sets as new preference data is collected, our algorithm can
efficiently balance exploration and exploitation to identify the optimal policy. The confidence bounds
ensure that with high probability, the true reward parameter lies within our constructed set throughout
the learning process, which is essential for the regret guarantees we derive in the following sections.

C.2 Norm Relation Between Data Matrices

For completeness, we restate key results from Saha et al. (2023) concerning the relationships between
various data matrices that arise in our analysis. These results are included to ensure the appendix is
self-contained and to provide context for our subsequent analysis. The full proofs of these results can
be found in the original paper.

Saha et al. (2023) establishes relationships between three key matrices:

• Vt - The empirical data matrix constructed from observed trajectories

• V
P∗

t - The expected data matrix under the true transition dynamics P ∗

• V t - The expected data matrix under the estimated transition dynamics P̂t

These matrices are defined as follows:

Vt = κλId +

t−1∑
ℓ=1

(
ϕ(τ1ℓ )− ϕ(τ2ℓ )

)(
ϕ(τ1ℓ )− ϕ(τ2ℓ )

)⊤
V

P∗

t = κλId +

t−1∑
ℓ=1

(
ϕ(π1

ℓ )− ϕ(π2
ℓ )
)(
ϕ(π1

ℓ )− ϕ(π2
ℓ )
)⊤

V t = κλId +

t−1∑
ℓ=1

(
ϕP̂ℓ(π1

ℓ )− ϕP̂ℓ(π2
ℓ )
)(
ϕP̂ℓ(π1

ℓ )− ϕP̂ℓ(π2
ℓ )
)⊤

Where ϕ(π) represents the expected feature vector under policy π and the true transition dynamics
P ∗, while ϕP̂t(π) represents the expected feature vector under policy π and the estimated transition
dynamics P̂t.

Saha et al. (2023) introduces a precision event that relates the empirical matrix VT to the expected
matrix V

P∗

T :

E
V

P∗
T

= {V P∗

T ⪯ 2VT + 84B2d log((1 + 2T )/δ)Id}

Under this event, they establish the following bound:
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Lemma 30 (Adapted from Saha et al. (2023) Corollary 1). Under Assumption 1, conditioned on
event Ew∗ ∩ E

V
P∗
T

, for any t ∈ [T ]

∥w∗ −wL
t ∥V P∗

t

≤ 4κβt(δ) + αd,T (δ),

where αd,T (δ) = 20BW
√
d log(T (1 + 2T )/δ). Furthermore, if δ ≤ 1/e, then P(Ew∗ ∩E

V
P∗
T

) ≥
1− δ − δ log2 T .

Additionally, Saha et al. (2023) relates norms based on the matrix V
P∗

t with those based on V t:

Lemma 31 (Adapted from Saha et al. (2023) Lemma 3). Let E0 be the event that for all t ∈ N,

∥wproj
t −w∗∥V t

≤
√
2∥wproj

t −w∗∥V P∗
t

+

√√√√t−1∑
ℓ=1

4

(
B̂ℓ

(
π, 2WB,

δ′

8ℓ3|A||S|

))2

+
1

t

where δ′ = δ
(1+4W )d

and ϵ = 1
2κλ+4B2tα . Then P

(
E0
)
≥ 1− δ.

Note that the bonus function B̂ is defined in Lemma 32
These norm relations from Saha et al. (2023) are essential in our regret analysis, as they allow us to
relate confidence bounds across different probability spaces and to bound the regret of our algorithm.

C.3 Transition Estimation and Bonus Terms

Note that the offline estimator of the transition probabilities based on the log-loss MLE in Equation (2),
when the state-action space is discrete, is equivalent to the following count-based estimator (derivable
using a simple Lagrange multiplier argument):

P̂offline(s
′|s, a) = Noffline(s

′|s, a)
Noffline(s, a)

where

Noffline(s, a) :=
∑
i∈[n]

∑
h∈[H]

I{sih = s, aih = a}

Noffline(s
′|s, a) :=

∑
i∈[n]

∑
h∈[H]

I{sih+1 = s′, sih = s, aih = a}

This equivalence allows us to initialize the online estimation process with the count estimator from
the offline data (see line 3 in Algorithm 1), yielding the combined estimator for the transition model:

P̂t(s
′|s, a) := Noffline(s

′|s, a) +Nt(s
′|s, a)

Noffline(s, a) +Nt(s, a)
(9)

From this estimator, we adapt two key lemmas from Chatterji et al. (2021) that will define our notion
of bonus terms.

Lemma 32 (Moment Transition Difference Error). Consider the transition count estimator P̂t from
Equation (9). Further assume the trajectory data follows a martingale structure adapted to the
natural filtration of the problem. For any fixed policy π ∈ Π and any scalar function f : T → R
such that |f(τ)| < η, with probability at least 1− δ for all t ∈ N:

EPπ
P∗ [f(τ)]− EPπ

P̂t

[f(τ)] ≤ EPπ
P̂t

 ∑
h∈[H]

ξtsh,ah
(η, δ)

 =: B̂t(π, η, δ)
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where

ξtsh,ah
(η, δ) := min

2η, 4η

√√√√H log(|S| · |A|) + log
(

6 log(Nt(sh,ah)+Noffline(sh,ah))
δ

)
Nt(sh, ah) +Noffline(sh, ah)


The term B̂t(π, η, δ) serves as our "bonus" term.

Proof. Our combined estimator incorporates both online data (adapted to the natural filtration) and
offline data (assumed i.i.d.). We can artificially treat the offline data as though it were adapted to the
natural filtration as well, by considering it as "past" observations. This allows us to directly apply the
proof methodology from Chatterji et al. (2021) (Lemma B.1) to our combined count estimator.

The key insight is that the martingale structure of the estimation error is preserved when combining
offline and online counts, with the benefit of reduced variance due to the increased denominator
(Nt(sh, ah) + Noffline(sh, ah)). This directly translates to tighter confidence bounds compared to
using only online data.

We now present a stronger version of the lemma that holds uniformly for all policies π.

Lemma 33 (Uniform Moment Transition Difference Error). Consider the transition count estimator
P̂t from Equation (9). Further assume the trajectory data follows a martingale structure adapted to
the natural filtration of the problem. For any scalar function f : T → R such that |f(τ)| < η and
for any ϵ > 0, with probability at least 1− δ for all t ∈ N and all π ∈ Π:

EPπ
P̂t

[f(τ)]− EPπ
P∗ [f(τ)] ≤ EPπ

P∗

 ∑
h∈[H]

ξ
t

sh,ah
(η, δ, ϵ)


︸ ︷︷ ︸

=:Bt(π,η,δ,ϵ)

+ϵ

where

ξ
t

sh,ah
(η, δ, ϵ) := min

2η, 4η

√√√√H log(|S| · |A|) + |S| log
(⌈

4ηH
ϵ

⌉)
+ log

(
6 log(Nt(sh,ah)+Noffline(sh,ah))

δ

)
Nt(sh, ah) +Noffline(sh, ah)


Proof. The proof follows by applying similar techniques as in Lemma 32, but with additional care to
ensure uniformity across all policies.

As before, we can artificially treat the offline data as adapted to the natural filtration. The uniform
convergence over the policy class Π is achieved by applying a covering argument and the union
bound, following the methodology in Chatterji et al. (2021) (Lemma B.2). The additional term
|S| log

(⌈
4ηH
ϵ

⌉)
appears due to this covering, which introduces an ϵ-discretization of the policy

space.

The combined offline and online counts in the denominator (Nt(sh, ah) +Noffline(sh, ah)) provide
tighter uniform confidence bounds compared to using online data alone.

To provide further intuition, we elaborate on the meaning and significance of the terms B̂t and Bt

introduced in the previous lemmas. In reinforcement learning literature, these would be referred to as
the "empirical bonus" and "true bonus," respectively. Both terms quantify the concentration of our
estimators around their true values.

The empirical bonus B̂t(π, η, δ) represents the expected sum of state-action-level uncertainty terms
ξtsh,ah

(η, δ) under the estimated transition model P̂t. Importantly, this term can be directly computed
from observed data.
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In contrast, the true bonus Bt(π, η, δ, ϵ) represents the expected sum of uncertainty terms
ξ
t

sh,ah
(η, δ, ϵ) under the true transition model P ∗. This term cannot be directly computed as it

depends on the unknown true model.

For our regret analysis, we need to relate these two quantities. The following lemma provides a
crucial connection, showing that the empirical bonus B̂t can be bounded in terms of the true bonus
Bt uniformly across all policies π.

Lemma 34 (Relationship Between Empirical and True Bonus Terms). Let η, ϵ > 0. For all policies
π ∈ Π simultaneously and for all t ∈ N, with probability at least 1− δ:

B̂t(π, η, δ) ≤ 2Bt(π, 2Hη, δ, ϵ) + ϵ

Proof. Define the function f : T → R as:

f(τ) :=
∑

h∈[H]

ξtsh,ah
(η, δ)

By construction, B̂t(π, η, δ) = EPπ
P̂t

[f(τ)]. Since ξtsh,ah
(η, δ) ≤ 2η for all state-action pairs, we

have |f(τ)| ≤ 2ηH .

Applying Lemma 33 with this f(τ) and the bound 2ηH:

EPπ
P̂t

[f(τ)]− EPπ
P∗ [f(τ)] ≤ EPπ

P∗

 ∑
h∈[H]

ξ
t

sh,ah
(2ηH, δ, ϵ)

+ ϵ

By definition, the right-hand side equals Bt(π, 2Hη, δ, ϵ) + ϵ. Therefore:

B̂t(π, η, δ) = EPπ
P̂t

[f(τ)]

≤ EPπ
P∗ [f(τ)] +Bt(π, 2Hη, δ, ϵ) + ϵ

From Lemma 32, we know that:

EPπ
P∗ [f(τ)] ≤ EPπ

P̂t

[f(τ)] + B̂t(π, η, δ) = B̂t(π, η, δ) + B̂t(π, η, δ) = 2B̂t(π, η, δ)

This gives us:

B̂t(π, η, δ) ≤ 2B̂t(π, η, δ) +Bt(π, 2Hη, δ, ϵ) + ϵ

⇒ −B̂t(π, η, δ) ≤ Bt(π, 2Hη, δ, ϵ) + ϵ

⇒ B̂t(π, η, δ) ≤ Bt(π, 2Hη, δ, ϵ) + ϵ

Therefore, the lemma statement follows.

This lemma is instrumental for our regret analysis as it allows us to work with Bt instead of B̂t. The
advantage is that Bt involves expectations with respect to the true transition model P ∗, which makes
it more amenable to theoretical analysis. By establishing this relationship, we effectively account for
the transition estimation error and can focus on controlling the difference between empirical and true
moments, which is a more tractable problem in our analytical framework.
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C.4 Policy Set Πt and Proof Lemma 7

Recall that we define the policy set Πt to draw from in line 7 of Algorithm 1 as

Πt :=
{
π ∈ Πoffline

1−δ

∣∣∀π′ ∈ Πoffline
1−δ :〈

ϕP̂t(π)− ϕP̂t(π′), wproj
t

〉
+ γt · ∥ϕP̂t(π)− ϕP̂t(π′)∥

V
−1
t

+ B̂t(π, 2WB, δ′) + B̂t(π
′, 2WB, δ′) ≥ 0

}
where Πoffline

1−δ is derived in Theorem 4. The radius γt is defined as

γt =
√
2(4κβt(δ) + αd,T (δ)) + 2

√√√√t−1∑
ℓ=1

(
B̂ℓ

(
π, 2WB,

δ′

8ℓ3|A||S|

))2

+
1

t

Then Lemma 7 state that with high probability, π∗ ∈ Πt ∀t ∈ [T ]

Proof of Lemma 7. We begin by conditioning on the following events:

• Eoffline = {π∗ ∈ Πoffline
1−δ } from Theorem 4

• Ew∗ from Lemma 30 (confidence set for w∗)

• E
V

P∗
T

from Lemma 30 (relation for data matrices)

• E0 from Lemma 31 (estimated norm relation)

• E3 from Lemma 32 (bounds on the bonus terms B̂t)

By the union bound, these five events hold simultaneously with probability at least 1− 5δ.

By the optimality condition, we have:

0 ≤ ⟨ϕ(π∗)− ϕ(π′), w∗⟩ = ⟨EPπ∗
P∗

ϕ(τ)− EPπ′
P∗

ϕ(τ), w∗⟩

Then, by event E3 and defining f(τ) := ⟨ϕ(τ), w∗⟩, we have from ?? that |f(τ)| ≤ 2WB, which
yields:

⟨ϕP̂t(π∗)− ϕP̂t(π′), w∗⟩+ B̂t(π
∗, 2WB, δ/|A||S|) + B̂t(π

′, 2WB, δ/|A||S|)

where the probability parameter accounts for any π′ ∈ Π, which covers the case of the offline
confidence set being the whole policy space (i.e., not having enough offline data for learning).

Next, we bound the term:

⟨ϕP̂t(π∗)− ϕP̂t(π′), w∗⟩ = ⟨ϕP̂t(π∗)− ϕP̂t(π′), wproj
t ⟩+ ⟨ϕP̂t(π∗)− ϕP̂t(π′), w∗ − wproj

t ⟩

≤ ⟨ϕP̂t(π∗)− ϕP̂t(π′), wproj
t ⟩+ ∥ϕP̂t(π∗)− ϕP̂t(π′)∥

V
−1
t
· ∥wproj

t − w∗∥V t

We can now use event E0:

∥wproj
t − w∗∥V t

≤
√
2∥wproj

t − w∗∥V P∗
t

+ 2

√√√√t−1∑
ℓ=1

(
B̂ℓ

(
π, 2WB,

δ′

8ℓ3|A||S|

))2

+
1

t

Using events Ew∗ ∩ E
V

P∗
T

, we get:

∥wproj
t − w∗∥V t

≤
√
2(4κβt(δ) + αd,T (δ)) + 2

√√√√t−1∑
ℓ=1

(
B̂ℓ

(
π, 2WB,

δ′

8ℓ3|A||S|

))2

+
1

t
=: γt
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Putting these results together yields that π∗ ∈ Πt for all t ∈ N under the event Eoffline.

The probability of this event is at least 1− 5δ by the union bound of all the events we conditioned on.
By rescaling δ 7→ δ/5, we obtain the desired result with probability at least 1− δ.

C.5 Regret Bound

In this section, we provide a lemma as an intermediate step toward the full proof of the regret analysis
of BRIDGE. This lemma separates the upper bound on the regret into three distinct terms, each of
which we further analyze in Appendix D.

Lemma 35 (Regret Analysis). Under the following events:

• Eoffline = {π∗ ∈ Πoffline
1−δ } from Theorem 4

• Ew∗ from Lemma 30 (confidence set for w∗)

• E
V

P∗
T

from Lemma 30 (relation for data matrices)

• E0 from Lemma 31 (estimated norm relation)

• E3 from Lemma 32 (bounds on the bonus terms B̂t)

the regret of BRIDGE Algorithm 1 is upper bounded by:

RT ≤ 2 · γT︸︷︷︸
Term 1

·
√
T
∑
t∈[T ]

∥ϕP̂t(π1
t )− ϕP̂t(π2

t )∥V −1
t︸ ︷︷ ︸

Term 2

+
∑

i∈{1,2}

∑
t∈[T ]

B̂t(π
i
t, 4WB, δ)

︸ ︷︷ ︸
Term 3

where

γT =
√
2(4κ · βT (δ) + αd,T (δ)) +

1

T
+ 4

√ ∑
i∈{1,2}

∑
t∈[T ]

BT (πi
t, 4HWB, δ, ϵ)2 + 96TϵHWB

and

• αd,T (δ) = 20BW
√

d log(T (1 + 2T )/δ)

• βT (δ) =
√
λW +

√
log(1/δ) + 2d log

(
1 + TB2

κλd

)
.

Proof. We start by writing

2rt = ⟨ϕ(π∗)− ϕ(π1
t ), w

∗⟩+ ⟨ϕ(π∗)− ϕ(π2
t ), w

∗⟩

= ⟨ϕP̂t(π∗)− ϕP̂t(π1
t ), w

∗⟩+ ⟨ϕP̂t(π∗)− ϕP̂t(π2
t ), w

∗⟩+ 2⟨ϕP̂t(π∗)− ϕ(π∗), w∗⟩

+ ⟨ϕP̂t(π1
t )− ϕ(π1

t ), w
∗⟩+ ⟨ϕP̂t(π2

t )− ϕ(π2
t ), w

∗⟩

Then, by Lemma 32, we have with probability at least 1− δ for each of the following:

2⟨ϕ(π∗)− ϕP̂t(π∗), w∗⟩ ≤ 2B̂t(π
∗, 4WB, δ)

⟨ϕP̂t(π1
t )− ϕ(π1

t ), w
∗⟩ ≤ B̂t(π

1
t , 4WB, δ)

⟨ϕP̂t(π2
t )− ϕ(π2

t ), w
∗⟩ ≤ B̂t(π

2
t , 4WB, δ)

By the union bound, with high probability:

2rt ≤ ⟨ϕP̂t(π∗)− ϕP̂t(π1
t ), w

∗⟩+ ⟨ϕP̂t(π∗)− ϕP̂t(π2
t ), w

∗⟩+ B̂t(π
1
t , 4WB, δ) + B̂t(π

2
t , 4WB, δ) + 2B̂t(π

∗, 4WB, δ)
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Next, we observe that:

⟨ϕP̂t(π∗)− ϕP̂t(π1
t ), w

∗⟩+ ⟨ϕP̂t(π∗)− ϕP̂t(π2
t ), w

∗⟩

≤ ⟨ϕP̂t(π∗)− ϕP̂t(π1
t ), w

proj
t ⟩+ ⟨ϕP̂t(π∗)− ϕP̂t(π2

t ), w
proj
t ⟩

+ ∥w∗ − wproj
t ∥V t

(
∥ϕP̂t(π∗)− ϕP̂t(π1

t )∥V −1
t

+ ∥ϕP̂t(π∗)− ϕP̂t(π2
t )∥V −1

t

)
Conditioning on the joint event E0 ∩ Ew∗ ∩ E

V
P∗
t

, we have with high probability:

⟨ϕP̂t(π∗)− ϕP̂t(π1
t ), w

∗⟩+ ⟨ϕP̂t(π∗)− ϕP̂t(π2
t ), w

∗⟩

≤ ⟨ϕP̂t(π∗)− ϕP̂t(π1
t ), w

proj
t ⟩+ ⟨ϕP̂t(π∗)− ϕP̂t(π2

t ), w
proj
t ⟩

+ γt ·
(
∥ϕP̂t(π∗)− ϕP̂t(π1

t )∥V −1
t

+ ∥ϕP̂t(π∗)− ϕP̂t(π2
t )∥V −1

t

)
Using Lemma 32 again, the following holds with high probability:

2⟨ϕ(π∗)− ϕP̂t(π∗), wproj
t ⟩ ≤ 2B̂t(π

∗, 4WB, δ)

⟨ϕP̂t(π1
t )− ϕ(π1

t ), w
proj
t ⟩ ≤ B̂t(π

1
t , 4WB, δ)

⟨ϕP̂t(π2
t )− ϕ(π2

t ), w
proj
t ⟩ ≤ B̂t(π

2
t , 4WB, δ)

Putting everything together yields:

2rt ≤ 2γt

(
∥ϕP̂t(π∗)− ϕP̂t(π1

t )∥V −1
t

+ ∥ϕP̂t(π∗)− ϕP̂t(π2
t )∥V −1

t

)
+ 2B̂t(π

1
t , 4WB, δ) + 2B̂t(π

2
t , 4WB, δ) + 4B̂t(π

∗, 4WB, δ)

Under the event π∗ ∈ Πt from Lemma 7 and using the fact that π1
t , π

2
t ∈ Πt, we have:

2rt ≤ γt∥ϕP̂t(π2
t )− ϕP̂t(π1

t )∥V −1
t

+ 4B̂t(π
1
t , 4WB, δ) + 4B̂t(π

2
t , 4WB, δ)

Hence, the regret is:

RT =
∑
t∈[T ]

2rt

≤
∑
t∈[T ]

(
γt∥ϕP̂t(π2

t )− ϕP̂t(π1
t )∥V −1

t
+ 4B̂t(π

1
t , 4WB, δ) + 4B̂t(π

2
t , 4WB, δ)

)
≤ γT

√
T
∑
t∈[T ]

∥ϕP̂t(π2
t )− ϕP̂t(π1

t )∥2V −1
t

+
∑
t∈[T ]

(
4B̂t(π

1
t , 4WB, δ) + 4B̂t(π

2
t , 4WB, δ)

)

Note that by Lemma 32, with high probability:

B̂t(π
i
l , 2WB, δ)2 ≤ 4Bt(π

i
l , 2HWB, δ, ϵ) + 24ϵHWB

Plugging this into γt yields:

γt ≤
√
2(4κβt(δ) + αd,T (δ)) +

1

t

+ 4

√√√√t−1∑
ℓ=1

B2
t (π

1
t , 4HSB, δ′t, ϵ) +B2

t (π
2
t , 4HSB, δ′t) + 96(t− 1)HWB ∀t

This completes the proof of the claimed result.
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D Regret Analysis: Theorem 8

In this section, we present the complete regret analysis of our BRIDGE algorithm. We recommend
that readers first review Appendix A, where we analyze a simplified setting in which the dynamics
are assumed to be known. This simplified case captures the core idea of our approach: constraining
the set of policies considered during online preference learning using a confidence interval derived
from offline behavioral cloning estimation (see ??).

The key difference in the present analysis is that we now incorporate the estimation of the transition
model. Specifically, we first estimate the transition model offline and then use this estimate as the
starting point for online transition estimation. This approach reduces the error due to transition
uncertainty by a factor ofO(1/

√
n), which is the same rate of improvement we achieve for the policy

estimation through behavioral cloning. As we will show, this allows our algorithm to effectively
leverage offline demonstrations to reduce both sources of uncertainty, resulting in substantially
improved regret bounds.

Theorem 36 (Regret Bound with Offline-Enhanced Exploration). Let n be the number of offline
demonstrations with minimum visitation probability γmin > 0 for state-action pairs. With probability
at least 1− δ, the regret of the algorithm is bounded by:

RT ≤ 2 · γT︸︷︷︸
Term 1

·

√√√√√
T · log

(
1 +

Õ

(
B2 ·H · |S|2 ·min

{
T
n , ln(T )

}
+

T ·|S|·B2·
√

|A|·H
√
n·γmin

)
d

)
︸ ︷︷ ︸

Term 2

+ Õ

(
H|S|

√
|A|TH
n · γmin

+
H5/2WB

√
T

√
n · γmin

+H2WB ·
√
T · |S|

1/2|A|1/4

n1/4

)
︸ ︷︷ ︸

Term 3

where

γT = Õ

(
(κ+BW )

√
d log(T ) +H2WB|S| ·

√
min

{
log(T ),

T

n · γmin

}
+
√
HWB

)

and we have set ϵ = 1
T to optimize the bound.

From Lemma 35, we analyze the three key terms in our regret bound: the confidence multiplier (Term
1), the logarithmic determinant ratio (Term 2), and the bonus function summation (Term 3). Each
term is examined in detail in the following subsections.

Term 1 = γT =
√
2(4κ · βT (δ) + αd,T (δ)) +

1

T
+ 4

√ ∑
i∈{1,2}

∑
t∈[T ]

BT (πi
t, 4HWB, δ, ϵ)2 + 96TϵHWB

Term 2 =

√
T
∑
t∈[T ]

∥ϕP̂t(π1
t )− ϕP̂t(π2

t )∥V −1
t

Term 3 =
∑

i∈{1,2}

∑
t∈[T ]

B̂t(π
i
t, 4WB, δ)

D.1 Term 1: Asymptotic bound

We derive an asymptotic bound for Term 1 in Theorem 36 via Lemma 37. The auxiliary lemmata
used in the proof of Lemma 37 are found in Appendix D.1.1.
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Lemma 37. The asymptotic bound on γT can be expressed as:

γT = Õ

(
(κ+BW )

√
d log(T ) +H2WB|S| ·

√
min

{
log(T ),

T

n · γmin

}
+
√
TϵHWB

)

Proof. We analyze each term in the expression for γT separately.

Step 1: Analyze
√
2(4κ · βT (δ) + αd,T (δ))

Given:

αd,T (δ) = 20BW
√
d log(T (1 + 2T )/δ)

βT (δ) =
√
λW +

√
log(1/δ) + 2d log

(
1 +

TB2

κλd

)

For αd,T (δ), we have:

αd,T (δ) = 20BW
√

d log(T (1 + 2T )/δ)

= 20BW
√

d log(T ) + d log(1 + 2T )− d log(δ)

= 20BW
√
d(log(T ) + log(1 + 2T )− log(δ))

= O(BW
√
d log(T/δ))

For βT (δ), we have:

βT (δ) =
√
λW +

√
log(1/δ) + 2d log

(
1 +

TB2

κλd

)

=
√
λW +

√
log(1/δ) + 2d log

(
κλd+ TB2

κλd

)

=
√
λW +

√
log(1/δ) + 2d log

(
1 +

TB2

κλd

)

≤
√
λW +

√
log(1/δ) + 2d log

(
2TB2

κλd

)
(for large enough T )

=
√
λW +

√
log(1/δ) + 2d log(T ) + 2d log

(
2B2

κλd

)
= O(

√
λW +

√
d log(T ) + log(1/δ))

Therefore, this term becomes:
√
2(4κ · βT (δ) + αd,T (δ)) = O(κ · (

√
λW +

√
d log(T ) + log(1/δ)) +BW

√
d log(T/δ))

= O(κ
√
λW + κ

√
d log(T ) + log(1/δ) +BW

√
d log(T/δ))

= O((κ+BW )
√
d log(T ) + κ

√
log(1/δ) +BW

√
d log(1/δ))

For a fixed confidence parameter δ, this simplifies to:
√
2(4κ · βT (δ) + αd,T (δ)) = O((κ+BW )

√
d log(T ))

Step 2: Analyze 1
T
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This term is O( 1
T ) and becomes negligible for large T compared to other terms.

Step 3: Analyze 4
√∑

i∈{1,2}
∑

t∈[T ] BT (πi
t, 4HWB, δ, ϵ)2 + 96TϵHWB

Using the provided lemma on the sum of squared bonus terms, Lemma 40:∑
i∈{1,2}

∑
t∈[T ]

BT (π
i
t, 4HWB, δ, ϵ)2 ≤ Õ

(
(4HWB)2H2|S|2 ·min

{
log(T ),

T

n · γmin

})

= Õ

(
16H2W 2B2 ·H2|S|2 ·min

{
log(T ),

T

n · γmin

})
= Õ

(
16H4W 2B2|S|2 ·min

{
log(T ),

T

n · γmin

})
For the second term inside the square root:

96TϵHWB = O(TϵHWB)

Therefore:

4

√ ∑
i∈{1,2}

∑
t∈[T ]

BT (πi
t, 4HWB, δ, ϵ)2 + 96TϵHWB

= 4

√
Õ

(
16H4W 2B2|S|2 ·min

{
log(T ),

T

n · γmin

})
+O(TϵHWB)

= Õ

(
4

√
16H4W 2B2|S|2 ·min

{
log(T ),

T

n · γmin

})
+O(4

√
TϵHWB)

= Õ

(
16H2WB|S| ·

√
min

{
log(T ),

T

n · γmin

})
+O(

√
TϵHWB)

= Õ

(
H2WB|S| ·

√
min

{
log(T ),

T

n · γmin

})
+O(

√
TϵHWB)

Step 4: Combine all terms

Combining all terms from Steps 1-3, we get:

γT = O((κ+BW )
√
d log(T )) +O

(
1

T

)
+ Õ

(
H2WB|S| ·

√
min

{
log(T ),

T

n · γmin

})
+O(

√
TϵHWB)

= O((κ+BW )
√
d log(T )) + Õ

(
H2WB|S| ·

√
min

{
log(T ),

T

n · γmin

})
+O(

√
TϵHWB) + o(1)

Expressing this with Õ notation to hide logarithmic factors:

γT = Õ

(
(κ+BW )

√
d log(T ) +H2WB|S| ·

√
min

{
log(T ),

T

n · γmin

}
+
√
TϵHWB

)

D.1.1 Term 1 asymptotic bound: auxiliary lemmata for Lemma 37

Lemma 38 (Offline-Enhanced Bonus Term Bound). Let n be the number of offline demonstrations,
with a minimum visitation probability γmin > 0 for state-action pairs visited by the expert policy π∗.
Then, with probability at least 1− 2δ′, the sum of squared bonus terms satisfies:
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∑
t∈[T ]

H−1∑
h=1

(
ξ(t)st,h,at,h

(ϵ, η, δ)
)2
≤ 32η2

(
H log(|S||A|H) + |S| log

(
4ηH

ϵ

)
+ log

(
6 log(HT )

δ′

))

·|Sreach| log
(
1 +

T

n · γmin

)

where |Sreach| is the number of state-action pairs with non-zero visitation probability under the expert
policy.

Proof. Step 1: Express Modified Bonus Terms with Offline Data. We define our modified bonus
term to incorporate offline data:

ξ(t)s,a(ϵ, η, δ) = min

(
2η, 4η

√
U

Noff(s, a) +Nt(s, a)

)

where U = H log(|S||A|H) + |S| log
(

4ηH
ϵ

)
+ log

(
6 log(t)

δ

)
Step 2: Express the Sum of Squared Bonus Terms. Following Pacchiano’s structure but with our
modified bonus terms:

∑
t∈[T ]

H−1∑
h=1

(
ξ(t)st,h,at,h

(ϵ, η, δ)
)2

=

∑
s∈S

∑
a∈A

NT+1(s,a)∑
t=1

min
(
4η2, 16η2

H log(|S||A|H) + |S| log
(

4ηH
ϵ

)
+ log

(
6 log(t)

δ

)
Noff(s, a) + t

)

Step 3: Rearrange to Account for Offline Data. The key insight: With offline data, we need to
adjust the indices of summation. For each state-action pair, we’ve already observed it Noff(s, a) times
in the offline dataset. Therefore:

∑
t∈[T ]

H−1∑
h=1

(
ξ(t)st,h,at,h

(ϵ, η, δ)
)2

=

∑
s∈S

∑
a∈A

Noff(s,a)+NT+1(s,a)∑
t′=Noff(s,a)+1

min
(
4η2, 16η2

H log(|S||A|H) + |S| log
(

4ηH
ϵ

)
+ log

(
6 log(t′)

δ

)
t′

)

where t′ represents the total count (offline + online).

Step 4: Simplify Using Common Term. For clarity and following Saha et al. (2023) approach, let’s
define:

V = H log(|S||A|H) + |S| log
(
4ηH

ϵ

)
+ log

(
6 log(HT )

δ′

)

For sufficiently large t′, the min is dominated by the second term:
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∑
s∈S

∑
a∈A

Noff(s,a)+NT+1(s,a)∑
t′=Noff(s,a)+1

16η2
V

t′
= 16η2 · V ·

∑
s∈S

∑
a∈A

Noff(s,a)+NT+1(s,a)∑
t′=Noff(s,a)+1

1

t′

Step 5: Use the Harmonic Sum Property. We know that
∑b

i=a+1
1
i ≤ log

(
b
a

)
. Therefore:

Noff(s,a)+NT+1(s,a)∑
t′=Noff(s,a)+1

1

t′
≤ log

(
Noff(s, a) +NT+1(s, a)

Noff(s, a)

)
= log

(
1 +

NT+1(s, a)

Noff(s, a)

)

Step 6: Apply the Minimum Visitation Probability. With our assumption that dπ
∗,t

P∗ (s, a) ≥ γmin

for all state-action pairs visited by the expert policy, we have:

Noff(s, a) ≥ n ·H · γmin ∀(s, a) ∈ Sreach

where Sreach is the set of state-action pairs with non-zero visitation probability under the expert policy.

Therefore:

log

(
1 +

NT+1(s, a)

Noff(s, a)

)
≤ log

(
1 +

NT+1(s, a)

n ·H · γmin

)
∀(s, a) ∈ Sreach

Step 7: Apply Jensen’s Inequality. We know
∑

s,a NT+1(s, a) = TH (total state-action visits in
online learning).

By Jensen’s inequality and the concavity of log(1 + x):

∑
(s,a)∈Sreach

log

(
1 +

NT+1(s, a)

n ·H · γmin

)
≤ |Sreach| · log

(
1 +

∑
(s,a)∈Sreach

NT+1(s, a)

|Sreach| · n ·H · γmin

)

Since
∑

(s,a)∈Sreach
NT+1(s, a) ≤ TH:

∑
(s,a)∈Sreach

log

(
1 +

NT+1(s, a)

n ·H · γmin

)
≤ |Sreach| · log

(
1 +

TH

|Sreach| · n ·H · γmin

)

Simplifying: ∑
(s,a)∈Sreach

log

(
1 +

NT+1(s, a)

n ·H · γmin

)
≤ |Sreach| · log

(
1 +

T

|Sreach| · n · γmin

)

For unreachable states, we can use Pacchiano’s original bound, but these contribute negligibly to
regret as optimal policies don’t visit them.

Step 8: Final Bound. Substituting back:

∑
t∈[T ]

H−1∑
h=1

(
ξ(t)st,h,at,h

(ϵ, η, δ)
)2
≤ 16η2 · V · |Sreach| · log

(
1 +

T

n · γmin

)
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Substituting V and accounting for approximation constants:

∑
t∈[T ]

H−1∑
h=1

(
ξ(t)st,h,at,h

(ϵ, η, δ)
)2
≤ 32η2

(
H log(|S||A|H) + |S| log

(
4ηH

ϵ

)
+ log

(
6 log(HT )

δ′

))

·|Sreach| log
(
1 +

T

n · γmin

)

This completes our proof, showing explicitly how offline data (through n) and minimum visitation
probability γmin reduce the bound on bonus terms, thereby reducing regret.

Lemma 39 (Offline-Enhanced Squared Bonus Term Bound). Let η, ϵ > 0 and δ, δ′ ∈ (0, 1). Let n be
the number of offline demonstrations with minimum visitation probability γmin > 0 for state-action
pairs visited by the expert policy. Define E5(δ′) be the event that for all t ∈ N and i ∈ {1, 2}:

∑
i∈{1,2}

t−1∑
ℓ=1

(
Bℓ(π

i
ℓ, η, δ/ℓ

3, ϵ)
)2 ≤ 12η2H2

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln

5.2

δ′
+ 1

)

+ 64η2H|Sreach| log
(
1 +

T

n · γmin

)
·
(
H log(|S||A|H) + |S| log

(⌈
4ηH

ϵ

⌉)
+ log

(
6 log(HT )

δ

))

Then P(E5(δ′)) ≥ 1− 2δ′.

Proof. We follow Saha et al. (2023) proof structure, beginning with the martingale analysis and then
applying our offline-enhanced bounds.

Observe that the bonus terms can be expressed as:

(
Bℓ(π

1
ℓ , η,

δ

ℓ3
, ϵ)

)2

+

(
Bℓ(π

2
ℓ , η,

δ

ℓ3
, ϵ)

)2

=

(
E
s11∼ρ,τ∼P

π1
ℓ

P̂ℓ
(·|s11)

[
H−1∑
h=1

ξ
(ℓ)

s1h,a
1
h
(ϵ, η,

δ

ℓ3
)

])2

+

(
E
s21∼ρ,τ∼P

π2
ℓ

P̂ℓ
(·|s21)

[
H−1∑
h=1

ξ
(ℓ)

s2h,a
2
h
(ϵ, η,

δ

ℓ3
)

])2

Using Jensen’s inequality (as in the original proof):(
E
si1∼ρ,τ∼P

πi
ℓ

P̂ℓ
(·|si1)

[
H−1∑
h=1

ξ
(ℓ)

sih,a
i
h

(ϵ, η,
δ

ℓ3
)

])2

≤ HE
si1∼ρ,τ∼P

πi
ℓ

P̂ℓ
(·|si1)

[
H−1∑
h=1

(
ξ
(ℓ)

sih,a
i
h

(ϵ, η,
δ

ℓ3
)

)2
]

Following the martingale analysis of Pacchiano, we define:

D
(i)
ℓ = E

si1∼ρ,τ∼P
πi
ℓ

P̂ℓ
(·|si1)

[
H−1∑
h=1

(
ξ
(ℓ)

sih,a
i
h

(ϵ, η, δ)
)2]
−

H−1∑
h=1

(
ξ
(ℓ)

sih,a
i
h

(ϵ, η, δ)
)2

Since ξ
(ℓ)
s,a(ϵ, η, δ) ≤ 2η, we have |D(i)

ℓ | ≤ 8η2H and Var(i)ℓ

(∑H−1
h=1

(
ξ
(ℓ)

sih,a
i
h

(ϵ, η, δ)
)2)

≤

16η4H2.
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Applying the Uniform Empirical Bernstein Bound (as in the original proof), we get:

t−1∑
ℓ=1

D
(i)
ℓ ≤

1

2
E
si1∼ρ,τ∼P

πi
ℓ

P̂ℓ
(·|si1)

[
H−1∑
h=1

(
ξ
(ℓ)

sih,a
i
h

(ϵ, η, δ)
)2]

+ 6η2H

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln

5.2

δ′

)

Therefore, with high probability for i ∈ {1, 2}:

E
si1∼ρ,τ∼P

πi
ℓ

P̂ℓ
(·|si1)

[
H−1∑
h=1

(
ξ
(ℓ)

sih,a
i
h

(ϵ, η, δ)
)2]
≤ 2

t−1∑
ℓ=1

H−1∑
h=1

(
ξ
(ℓ)

sih,a
i
h

(ϵ, η, δ)
)2

+ 4η2H

+ 6η2H

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln

5.2

δ′

)

Combining for both policies, with probability 1− 2δ′:

∑
i∈{1,2}

t−1∑
ℓ=1

(
Bℓ(π

i
ℓ, η, δ/ℓ

3)
)2 ≤ 2H

∑
i∈{1,2}

t−1∑
ℓ=1

H−1∑
h=1

(
ξ(ℓ,i)sh,ah

(ϵ, η, δ)
)2

+ 12η2H2

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln

5.2

δ′
+ 1

)

Now, using Lemma 38, we have:

t−1∑
ℓ=1

H−1∑
h=1

(
ξ(ℓ,i)sh,ah

(ϵ, η, δ)
)2
≤ 16η2V · |Sreach| · log

(
1 +

T

n · γmin

)

where V = H log(|S||A|H) + |S| log
(⌈

4ηH
ϵ

⌉)
+ log

(
6 log(HT )

δ

)
.

Substituting this bound and combining terms:

∑
i∈{1,2}

t−1∑
ℓ=1

(
Bℓ(π

i
ℓ, η, δ/ℓ

3)
)2 ≤ 12η2H2

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln

5.2

δ′
+ 1

)

+ 64η2HV · |Sreach| · log
(
1 +

T

n · γmin

)

Expanding V :

∑
i∈{1,2}

t−1∑
ℓ=1

(
Bℓ(π

i
ℓ, η, δ/ℓ

3)
)2 ≤ 12η2H2

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln

5.2

δ′
+ 1

)

+ 64η2H · |Sreach| log
(
1 +

T

n · γmin

)
·(

H log(|S||A|H) + |S| log
(⌈

4ηH

ϵ

⌉)
+ log

(
6 log(HT )

δ

))

Lemma 40 (Asymptotic Bound for Offline-Enhanced Squared Bonus Terms). With n offline demon-
strations and minimum visitation probability γmin, the sum of squared bonus terms is bounded
as:
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∑
i∈{1,2}

t−1∑
ℓ=1

(
Bℓ(π

i
ℓ, η, δ/ℓ

3, ϵ)
)2 ≤ Õ

(
η2H2|S|2 ·min

{
log(T ),

T

n · γmin

})

where Õ(·) hides logarithmic factors in H , |S|, |A|, δ−1, and ϵ−1, as well as constant factors.

Proof. We start from the detailed bound of Lemma 39:

∑
i∈{1,2}

t−1∑
ℓ=1

(
Bℓ(π

i
ℓ, η, δ/ℓ

3)
)2 ≤ 12η2H2

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln

5.2

δ′
+ 1

)

+ 64η2H

(
H log(|S||A|H) + |S| log

(⌈
4ηH

ϵ

⌉)
+ log

(
6 log(HT )

δ

))
|Sreach| log

(
1 +

T

n · γmin

)

Analyzing each term:

Step 1: First term analysis. The first term is:

12η2H2

(
1.4 ln ln

(
2
(
max

(
4η2Ht, 1

)))
+ ln

5.2

δ′
+ 1

)
= O(η2H2 log log(T ))

Since log log(T ) grows extremely slowly, and we’re using Õ notation which hides logarithmic factors,
this term is dominated by Õ(η2H2).

Step 2: Second term analysis. For the second term, we have:

C · η2H · V · |Sreach| · log
(
1 +

T

n · γmin

)

where C is a constant and V =
(
H log(|S||A|H) + |S| log

(⌈
4ηH
ϵ

⌉)
+ log

(
6 log(HT )

δ

))
.

Within the factor V , the dominant term is |S| log
(⌈

4ηH
ϵ

⌉)
since it scales with |S|. Therefore,

asymptotically:

V = Õ(|S|)

Upper bounding |Sreach| ≤ |S| as requested, the second term becomes:

Õ

(
η2H2|S|2 · log

(
1 +

T

n · γmin

))

Step 3: Analysis of log
(
1 + T

n·γmin

)
. We need to consider different regimes for this logarithmic

term:

Case 1: Small offline dataset (n · γmin ≪ T )

log

(
1 +

T

n · γmin

)
≈ log

(
T

n · γmin

)
= log(T )− log(n · γmin)

= O(log(T ))



Reinforcement Learning Journal 2025

Case 2: Balanced regime (n · γmin ≈ T )

log

(
1 +

T

n · γmin

)
≈ log

(
1 +

1

γmin

)
= O(1)

Case 3: Large offline dataset (n · γmin ≫ T )
Here we can use the approximation log(1 + x) ≈ x for small x:

log

(
1 +

T

n · γmin

)
≈ T

n · γmin
= O

(
T

n · γmin

)

Combining these cases, we can express the behavior of this term as:

log

(
1 +

T

n · γmin

)
= O

(
min

{
log(T ),

T

n · γmin

})

Step 4: Combining all terms. The first term Õ(η2H2) is dominated by the second term when
|S| > 1 and T is non-trivial. Therefore, our final asymptotic bound is:

∑
i∈{1,2}

t−1∑
ℓ=1

(
Bℓ(π

i
ℓ, η, δ/ℓ

3)
)2 ≤ Õ

(
η2H2|S|2 ·min

{
log(T ),

T

n · γmin

})

This bound correctly captures how the offline data affects the regret across different regimes. For
small n relative to T , we recover a bound similar to the standard one with log(T ). For large enough
n, the bound improves to T

n·γmin
, showing a linear reduction in the bound as n increases.

D.2 Term 2: Asymptotic bound

We derive an asymptotic bound for Term 2 in Theorem 36 via Lemma 41. The auxiliary lemma used
in the proof of Lemma 41 is found in Appendix D.2.1.

Lemma 41 (Upper Bound on Term 2). The term 2 has the following asymptotic result

√
T
∑
t∈[T ]

∥ϕP̂t(π1
t )− ϕP̂t(π2

t )∥V −1
t
≤

√√√√√
T log

(
1 +

Õ

(
B2 ·H · |S|2 ·min

{
T
n , ln(T )

}
+

T ·|S|·B2·
√

|A|·H
√
n·γmin

)
d

)

with the most important part, as n→∞ i.e the offline data set goes to∞ the asymptotic regret is
log(1) = 0

Proof. We follow standard argument from Lattimore & Szepesvári (2020).
We start with the inequality

u ≤ 2 log(1 + u) u ≥ 1 =⇒
∑
t∈[T ]

∥δπt∥22 ≤ 2 ·
∑
t∈[T ]

log(1 + ∥δπt∥22)

Using the definition of V̄t we have

V̄t+1 = λ · Id×d +
∑
i∈[t]

δπ⊗2
i = V̄t + δπtδπ

T
t = V̄ 1/2

(
I + V̄ −1/2δπtδπ

T
t V̄

−1/2

)
V̄ 1/2
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Using properties of determinant:

det(V̄t+1) = det(V̄t) · det(I + V̄ −1/2δπtδπ
T
t V̄

−1/2) = det(V̄t) · (1 + ∥δπt∥2V̄ −1
t

) = det(V0) ·
∏
s∈[t]

(1 + ∥δπs∥2V̄ −1
t

)

⇔

log

[
det(V̄t+1)

det(V0)

]
=
∑
s∈[t]

(1 + ∥δπs∥2V̄ −1
t

)

We have for

det(V̄t+1) =
∏
i∈[d]

λi ≤
(1
d
· Tr

{
V̄t+1

})d
where using linearity of trace

Tr
{
V̄t+1

}
= Tr

{
λI
}
+
∑
s∈[t]

Tr
{
δπ⊗2

s

}
= d · λ+

∑
s∈[t]

∥δπs∥22

We notice that

∥δπs∥22 = ∥ϕP̂t(π1
t )− ϕP̂t(π2

t )∥22
= ∥ϕP̂t(π1

t )− ϕP̂0(π1
t ) + ϕP̂0(π1

t )− ϕP̂0(π2
t ) + ϕP̂t(π2

t )− ϕP̂0(π2
t )∥22

≤ 2∥ϕP̂t(πt)− ϕP̂0(πt)∥22 + ∥ϕP̂0(π1
t )− ϕP̂0(π2

t )∥22

we can control

∥ϕP̂0(π1
t )− ϕP̂0(π2

t )∥22 ≤ 4 ·R ·B2

from lemma 48 linking the hellinger ball with the contraint moments, together with lemma 42 for the
tabular setting yield

R = Radius =
α√
n
+

β√
n
·

(
1 +

√
H ·

(
1 +

2α

γmin ·
√
n

))
α :=

√
4 · |S| · log(|A| · 2/δ)

β :=
√
4 · |S|2 · |A| · log(nH · 2/δ)

Now with result Lemma 42 we have

∥ϕP̂t(π)− ϕP̂0(π)∥22 ≤ O

(
B2 ·H · |S|2 · log(|S||A|/δ) · CT (FT , π, π

∗)2 ·
(

t

(n+ t)2
+

t2

(n+ t)2 · n

))
Hence in asymptotic notation

2∥ϕP̂t(πt)− ϕP̂0(πt)∥22 + ∥ϕP̂0(π1
t )− ϕP̂0(π2

t )∥22
≤ 2∥ϕP̂t(πt)− ϕP̂0(πt)∥22 + ∥ϕP̂0(π1

t )− ϕP̂0(π2
t )∥22

≤ Õ

(
B2 ·H · |S|2 · t

n(n+ t)
+
|S| ·B2 ·

√
|A| ·H

√
n · γmin

)

Note that we need to sum over t ∈ [T ] hence
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∑
t∈[T ]

(
2∥ϕP̂t(πt)− ϕP̂0(πt)∥22 + ∥ϕP̂0(π1

t )− ϕP̂0(π2
t )∥22

)

≤ Õ

(
B2 ·H · |S|2 ·min

{
T

n
, ln(T )

}
+

T · |S| ·B2 ·
√
|A| ·H

√
n · γmin

)

by using

T∑
t=1

t

n(n+ t)
≈ T

n
− ln

(
1 +

T

n

)

This expression behaves differently depending on the relationship between T and n:

1. When T ≪ n: Using ln(1 + x) ≈ x for small x, we get

T∑
t=1

t

n(n+ t)
≈ T

n
− T

n

= O(1)

2. When T ≫ n: We have ln
(
1 + T

n

)
≈ ln

(
T
n

)
, so the sum is dominated by T

n

A unified bound that works across all regimes is:

T∑
t=1

t

n(n+ t)
= O

(
min

{
T

n
, ln(T )

})

Hence the final bound yields√
T
∑
t∈[T ]

∥ϕP̂t(π1
t )− ϕP̂t(π2

t )∥V −1
t

≤

√√√√√
T log

(
1 +

Õ

(
B2 ·H · |S|2 ·min

{
T
n , ln(T )

}
+

T ·|S|·B2·
√

|A|·H
√
n·γmin

)
d

)

D.2.1 Term 2 asymptotic bound: auxiliary Lemma for Lemma 41

Lemma 42 (Bound on Feature Expectation Difference). Let ϕ : T → Rd with maxτ ∥ϕ(τ)∥ ≤ B be
a feature map, P̂0 be the count-based estimator from n offline trajectories following policy π∗ under
dynamics P ∗, and P̂t be the combined estimator after t additional online interactions. Then, with
probability at least 1− δ:

∥ϕP̂t(π)− ϕP̂0(π)∥22 ≤ O

(
B2 ·H · |S|2 · log(|S||A|/δ) · CT (FT , π, π

∗)2 ·
(

t

(n+ t)2
+

t2

(n+ t)2 · n

))
where CT (FT , π, π

∗) is the concentration coefficient accounting for distribution shift.

Furthermore, when combined with an additional error term of O
(
1
n

)
, the overall bound simplifies to

O
(
1
n

)
for all practical regimes.
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Proof. We divide the proof into several steps:

Step 1: Martingale Structure and Concentration Bounds. Let Fi be the σ-algebra generated by
all information available after i interactions. For each state-action-next-state triplet (s, a, s′), define:

Xi(s, a, s
′) = I{si = s, ai = a, si+1 = s′} − P ∗(s′|s, a) · I{si = s, ai = a}

This forms a martingale difference sequence with respect to filtration {Fi}ti=1:

E[Xi(s, a, s
′)|Fi−1] = 0

The offline estimator can be expressed as:

P̂0(s
′|s, a)− P ∗(s′|s, a) = 1

Noffline(s, a)

∑
i∈offline

Xi(s, a, s
′)

By Hoeffding-Azuma inequality, for any (s, a) with Noffline(s, a) > 0, with probability at least
1− δ

2|S|2|A| :

|P̂0(s
′|s, a)− P ∗(s′|s, a)| ≤

√
2 log(4|S|2|A|/δ)
Noffline(s, a)

Similarly, for the online-only estimator P̂ online
t (s′|s, a) = Nt(s

′|s,a)
Nt(s,a)

, with probability at least
1− δ

2|S|2|A| :

|P̂ online
t (s′|s, a)− P ∗(s′|s, a)| ≤

√
2 log(4|S|2|A|/δ)

Nt(s, a)

Step 2: Bounds on Total Variation Distance. By union bound over all next states, with probability
at least 1− δ

2|S||A| :

∥P̂0(·|s, a)− P ∗(·|s, a)∥1 =
∑
s′

|P̂0(s
′|s, a)− P ∗(s′|s, a)|

≤ |S| ·

√
2 log(4|S|2|A|/δ)
Noffline(s, a)

Similarly for the online estimator:

∥P̂ online
t (·|s, a)− P ∗(·|s, a)∥1 ≤ |S| ·

√
2 log(4|S|2|A|/δ)

Nt(s, a)

Using triangle inequality:

∥P̂ online
t (·|s, a)− P̂0(·|s, a)∥1 ≤ ∥P̂ online

t (·|s, a)− P ∗(·|s, a)∥1 + ∥P ∗(·|s, a)− P̂0(·|s, a)∥1

≤ |S| ·

√
2 log(4|S|2|A|/δ)

Nt(s, a)
+ |S| ·

√
2 log(4|S|2|A|/δ)
Noffline(s, a)

Step 3: Combined Estimator Analysis. The combined estimator can be expressed as:

P̂t(s
′|s, a) = Noffline(s

′|s, a) +Nt(s
′|s, a)

Noffline(s, a) +Nt(s, a)

=
Noffline(s, a)

Noffline(s, a) +Nt(s, a)
· Noffline(s

′|s, a)
Noffline(s, a)

+
Nt(s, a)

Noffline(s, a) +Nt(s, a)
· Nt(s

′|s, a)
Nt(s, a)

= (1− αt(s, a)) · P̂0(s
′|s, a) + αt(s, a) · P̂ online

t (s′|s, a)
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Where αt(s, a) =
Nt(s,a)

Noffline(s,a)+Nt(s,a)
. Thus:

P̂t(s
′|s, a)− P̂0(s

′|s, a) = (1− αt(s, a)) · P̂0(s
′|s, a) + αt(s, a) · P̂ online

t (s′|s, a)− P̂0(s
′|s, a)

= αt(s, a) · (P̂ online
t (s′|s, a)− P̂0(s

′|s, a))

Therefore:

∥P̂t(·|s, a)− P̂0(·|s, a)∥1 = αt(s, a) · ∥P̂ online
t (·|s, a)− P̂0(·|s, a)∥1

≤ αt(s, a) ·

(
|S| ·

√
2 log(4|S|2|A|/δ)

Nt(s, a)
+ |S| ·

√
2 log(4|S|2|A|/δ)
Noffline(s, a)

)

Step 4: Accounting for Visitation Distributions. For precise analysis, we express the counts in
terms of visitation frequencies:

Noffline(s, a) = n · µπ∗

offline(s, a) ·H
Nt(s, a) = t · µπt

online(s, a) ·H

Where µπ∗

offline(s, a) and µπt

online(s, a) are the average state-action visitation frequencies. This gives:

αt(s, a) =
t · µπt

online(s, a)

n · µπ∗
offline(s, a) + t · µπt

online(s, a)

Assuming the states in the support of policy π have visitation frequencies lower-bounded by some
constant c > 0 for both offline and online regimes:

∥P̂t(·|s, a)− P̂0(·|s, a)∥1 ≤
t · c

n · c+ t · c
· |S| ·

√
2 log(4|S|2|A|/δ)

c ·H
·
(

1√
t
+

1√
n

)
=

t

n+ t
· |S| ·

√
2 log(4|S|2|A|/δ)

c ·H
·
(

1√
t
+

1√
n

)
= O

(
|S| ·

√
log(|S||A|/δ)

H
· t

n+ t
·
(

1√
t
+

1√
n

))

Step 5: Feature Expectation Difference. We begin with the telescoping decomposition:

∥ϕP̂t(π)− ϕP̂0(π)∥2 = ∥Eτ∼Pπ
P̂t

[ϕ(τ)]− Eτ∼Pπ
P̂0

[ϕ(τ)]∥2

≤ B ·H · E(s,a)∼dπ
P̂t

[
∥P̂t(·|s, a)− P̂0(·|s, a)∥1

]
To handle the distribution shift, we use the concentration coefficient:

CT (FT , π, π
∗) =

√√√√√E(s,a)∼µπ∗
offline

( dπ
P̂t
(s, a)

µπ∗
offline(s, a)

)2


By Cauchy-Schwarz inequality:

E(s,a)∼dπ
P̂t

[f(s, a)] ≤ CT (FT , π, π
∗) ·
√
E(s,a)∼µπ∗

offline
[f(s, a)2]
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Applying this to our bound:

∥ϕP̂t(π)− ϕP̂0(π)∥2 ≤ B ·H · CT (FT , π, π
∗) ·
√

E(s,a)∼µπ∗
offline

[
∥P̂t(·|s, a)− P̂0(·|s, a)∥21

]
From Step 4, we have:

∥P̂t(·|s, a)− P̂0(·|s, a)∥21 ≤ O

(
|S|2 · log(|S||A|/δ)

H
·
(

t

n+ t

)2

·
(

1√
t
+

1√
n

)2
)

= O

(
|S|2 · log(|S||A|/δ)

H
·
(

t

n+ t

)2

·
(
1

t
+

2√
tn

+
1

n

))

= O

(
|S|2 · log(|S||A|/δ)

H
·
(

t

(n+ t)2
+

2t

(n+ t)2
√
tn

+
t2

(n+ t)2n

))
For large n and t, the middle term is dominated by the other two, so:

∥P̂t(·|s, a)− P̂0(·|s, a)∥21 ≤ O

(
|S|2 · log(|S||A|/δ)

H
·
(

t

(n+ t)2
+

t2

(n+ t)2n

))
Substituting back:

∥ϕP̂t(π)− ϕP̂0(π)∥22 ≤ B2 ·H2 · CT (FT , π, π
∗)2 ·O

(
|S|2 · log(|S||A|/δ)

H
·
(

t

(n+ t)2
+

t2

(n+ t)2n

))
= O

(
B2 ·H · |S|2 · log(|S||A|/δ) · CT (FT , π, π

∗)2 ·
(

t

(n+ t)2
+

t2

(n+ t)2 · n

))
Step 6: Analysis for Different Regimes. Let’s examine the bound for different regimes:

When n≫ t (dominant offline data):

∥ϕP̂t(π)− ϕP̂0(π)∥22 ≤ O

(
B2 ·H · |S|2 · log(|S||A|/δ) · CT (FT , π, π

∗)2 · t

n2

)
When t≫ n (dominant online data):

∥ϕP̂t(π)− ϕP̂0(π)∥22 ≤ O

(
B2 ·H · |S|2 · log(|S||A|/δ) · CT (FT , π, π

∗)2 · 1
t

)
Step 7: Combined with Additional Error Term. When combined with an additional error term of
O
(
1
n

)
, we analyze the combined bound by comparing the orders:

When t≪ n (early online learning):

t

(n+ t)2
≈ t

n2
≪ 1

n

t2

(n+ t)2 · n
≈ t2

n3
≪ 1

n

Therefore, O
(
1
n

)
dominates.

When t ≈ n (balanced regime):

t

(n+ t)2
≈ n

4n2
=

1

4n
= O

(
1

n

)
t2

(n+ t)2 · n
≈ n2

4n2 · n
=

1

4n
= O

(
1

n

)



Reinforcement Learning Journal 2025

Both terms are O
(
1
n

)
.

When t≫ n (predominantly online learning):

t

(n+ t)2
≈ t

t2
=

1

t

t2

(n+ t)2 · n
≈ t2

t2 · n
=

1

n

Since t ≫ n, we have 1
t ≪

1
n , so the second term 1

n dominates our derived expression. When
combined with an additional error term of O

(
1
n

)
, both terms are of the same order, giving an overall

bound of O
(
1
n

)
.

D.3 Term 3: Asymptotic bound

We derive an asymptotic bound for Term 3 in Theorem 36 via Lemma 43. The auxiliary lemmata
used in the proof of Lemma 43 are found in Appendix D.3.1.

Lemma 43 (Asymptotic Bound for Offline-Enhanced Bonus Terms). Let E3 be the event from
Lemma 44, which occurs with probability at least 1 − 2δ. Then, by setting ϵ = 1

T , the following
asymptotic bound holds:∑

t∈[T ]

4B̂t(π
1
t , 4SB, δ) + 4B̂t(π

2
t , 4SB, δ)

≤ Õ

(
H|S|

√
|A|TH
n · γmin

+
H5/2SB

√
T

√
n · γmin

+H2SB · T ·
√

log(T ) · |S|
1/2|A|1/4

n1/4

)

Proof. Starting with the bound from E3:∑
t∈[T ]

4B̂t(π
1
t , 4SB, δ) + 4B̂t(π

2
t , 4SB, δ) ≤ ϵT +

∑
t∈[T ]

8Bt(π
1
t , 8HSB, δ, ϵ) + 8Bt(π

2
t , 8HSB, δ, ϵ)

From Lemma 44, we have:∑
t∈[T ]

8Bt(π
1
t , 8HSB, δ, ϵ) + 8Bt(π

2
t , 8HSB, δ, ϵ)

≤ Õ

(
H|S|

√
|A|TH
n · γmin

+
H5/2SB

√
T

√
n · γmin

+H2SB · T ·
√

log(T ) · |S|
1/2|A|1/4

n1/4

)

We set ϵ = 1
T to optimize the bound, which makes ϵT = 1 = O(1). This constant term is dominated

by the other terms for large T .

Additionally, setting ϵ = 1
T affects the log

(
32H2SB

ϵ

)
= log(32H2SB · T ) term inside the bound.

This adds a log(T ) factor, which is already absorbed in the Õ notation.

Therefore, our final asymptotic bound is:∑
t∈[T ]

4B̂t(π
1
t , 4SB, δ) + 4B̂t(π

2
t , 4SB, δ)

≤ Õ

(
H|S|

√
|A|TH
n · γmin

+
H5/2SB

√
T

√
n · γmin

+H2SB · T ·
√

log(T ) · |S|
1/2|A|1/4

n1/4

)

This bound shows three distinct terms scaling with offline data:
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1. The first term scales as 1√
n

and represents the primary benefit of offline data for covered regions

2. The second term also scales as 1√
n

and captures the improved martingale concentration

3. The third term scales as 1
n1/4 and accounts for the diminishing probability of encountering

uncovered regions

For sufficiently large n, the bound improves, but it’s important to note that the third term has a direct
linear dependence on T (modulo logarithmic factors). This term dominates for large T unless n
scales appropriately with T . Specifically, with n = Θ(T 4), the third term becomes O(1), and with
n = Θ(T 2), the overall bound becomes O(

√
T log(T )), which is near-optimal.

This demonstrates that with sufficient high-quality offline data scaling appropriately with the horizon
T , the sum of bonus terms can be made arbitrarily small, fundamentally improving the regret
bound.

D.3.1 Term 3 asymptotic bound: auxiliary lemmata for Lemma 43

Lemma 44 (Offline-Enhanced Bonus Term Summation Bound). Let E3 from Lemma 45 be the event
that for all T ∈ N:∑
t∈[T ]

4B̂t(π
1
t , 4WB, δ) + 4B̂t(π

2
t , 4WB, δ) ≤ ϵT +

∑
t∈[T ]

8Bt(π
1
t , 8HWB, δ, ϵ) + 8Bt(π

2
t , 8HWB, δ, ϵ)

Let n be the number of offline demonstrations with minimum visitation probability γmin > 0 for
state-action pairs visited by the expert policy. Then, invoking Lemma 45 and Theorem 46, E3 occurs
with probability at least 1− 2δ, and:

∑
t∈[T ]

8Bt(π
1
t , 8HWB, δ, ϵ) + 8Bt(π

2
t , 8HWB, δ, ϵ)

≤ 8
∑
t∈[T ]

(
H−1∑
h=1

ξ
(t)

s1t,h,a
1
t,h

(ϵ, 8HWB, δ) +

H−1∑
h=1

ξ
(t)

s2t,h,a
2
t,h

(ϵ, 8HWB, δ)

)
+ I

where I incorporates the benefit of offline data:

I = Õ

(
H5/2WB

√
T

√
n · γmin

+H2WB ·
√
T · |S|

1/2|A|1/4

n1/4

)

with P (Ec) = O

(
TH ·

√
|S|2|A| log(n)

n

)
representing the probability that at least one state-action

pair encountered during online learning lacks good offline coverage.

Furthermore, with probability at least 1− 2δ:

∑
t∈[T ]

8Bt(π
1
t , 8HWB, δ, ϵ) + 8Bt(π

2
t , 8HWB, δ, ϵ)

≤ 2048HWB

√
H log(|S||A|H) + |S| log

(
32H2WB

ϵ

)
+ log

(
6 log(HT )

δ

)
· |Sreach| ·

√
T

n · γmin

+ Õ

(
H5/2WB

√
T

√
n · γmin

+H2WB ·
√
T · |S|

1/2|A|1/4

n1/4

)
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Using Õ notation to hide logarithmic factors and simplifying:∑
t∈[T ]

8Bt(π
1
t , 8HWB, δ, ϵ) + 8Bt(π

2
t , 8HWB, δ, ϵ)

≤ Õ

(
H|S|

√
|A|TH
n · γmin

+
H5/2WB

√
T

√
n · γmin

+H2WB ·
√
T · |S|

1/2|A|1/4

n1/4

)

This bound demonstrates how offline data benefits reinforcement learning through three mechanisms:

1. Reducing exploration needs for well-covered regions (first term)

2. Improving martingale concentration for covered state-action pairs (second term)

3. Decreasing the probability of encountering poorly-covered regions (third term)

All terms approach zero as n→∞, though at different rates: the first two terms scale as 1√
n

while
the third term scales as 1

n1/4 . This confirms that with sufficient high-quality offline data, the entire
bound can be made arbitrarily small, fundamentally improving sample complexity in reinforcement
learning.

Proof. We follow the structure of the original proof, adapting it to incorporate our offline-enhanced
bounds.

Step 1: Set up the martingale difference sequences. Consider the martingale difference sequences:

{Bt(π
1
t , 8HWB, δ, ϵ)−

H−1∑
h=1

ξ
(t)

s1t,h,a
1
t,h

(ϵ, 8HWB, δ)}∞t=1

and

{Bt(π
2
t , 8HWB, δ, ϵ)−

H−1∑
h=1

ξ
(t)

s2t,h,a
2
t,h

(ϵ, 8HWB, δ)}∞t=1

Each has norm upper bound 32H2WB, since ξs,a(ϵ, η, δ) ≤ 2η and therefore
∑

h ξsh,ah
(ϵ, η, δ) ≤

2Hη.

Step 2: Apply anytime Hoeffding inequality with improved bounds. Consider the martingale
difference sequences:

{Bt(π
1
t , 8HWB, δ, ϵ)−

H−1∑
h=1

ξ
(t)

s1t,h,a
1
t,h

(ϵ, 8HWB, δ)}∞t=1

and

{Bt(π
2
t , 8HWB, δ, ϵ)−

H−1∑
h=1

ξ
(t)

s2t,h,a
2
t,h

(ϵ, 8HWB, δ)}∞t=1

By Lemma 47, which accounts for both covered and uncovered state-action pairs, with probability at
least 1− δ for all T ∈ N simultaneously:

∑
t∈[T ]

8Bt(π
1
t , 8HWB, δ, ϵ) + 8Bt(π

2
t , 8HWB, δ, ϵ)

≤ 8
∑
t∈[T ]

(
H−1∑
h=1

ξ
(t)

s1t,h,a
1
t,h

(ϵ, 8HWB, δ) +

H−1∑
h=1

ξ
(t)

s2t,h,a
2
t,h

(ϵ, 8HWB, δ)

)
+ I
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where I incorporates our rigorous analysis of martingale concentration with offline data from Lemma
47:

I = Õ

(
H5/2WB

√
T

√
n · γmin

+H2WB ·
√
T · |S|

1/2|A|1/4

n1/4

)

The second term accounts for the probability P (Ec) = O

(
TH ·

√
|S|2|A| log(n)

n

)
that at least one

state-action pair encountered during online learning lacks good offline coverage, while maintaining
the proper

√
T scaling in the regret bound.

Step 3: Apply our offline-enhanced bound. Now, to bound the remaining empirical error terms, we
apply Theorem 46. For each policy πi

t, i ∈ {1, 2}:∑
t∈[T ]

H−1∑
h=1

ξ
(t)

sit,h,a
i
t,h

(ϵ, 8HWB, δ)

≤ 64HWB

√
H log(|S||A|H) + |S| log

(
32H2WB

ϵ

)
+ log

(
6 log(HT )

δ

)

· |Sreach| · 2

√
T

n · γmin

Step 4: Combine the bounds. Summing over both policies:

8
∑
t∈[T ]

(
H−1∑
h=1

ξ
(t)

s1t,h,a
1
t,h

(ϵ, 8HWB, δ) +

H−1∑
h=1

ξ
(t)

s2t,h,a
2
t,h

(ϵ, 8HWB, δ)

)

≤ 8 · 2 · 64HWB

√
H log(|S||A|H) + |S| log

(
32H2WB

ϵ

)
+ log

(
6 log(HT )

δ

)
· |Sreach| · 2

√
T

n · γmin

= 2048HWB

√
H log(|S||A|H) + |S| log

(
32H2WB

ϵ

)
+ log

(
6 log(HT )

δ

)
· |Sreach| ·

√
T

n · γmin

Step 5: Express the complete bound. Therefore, with probability at least 1− 2δ:∑
t∈[T ]

8Bt(π
1
t , 8HWB, δ, ϵ) + 8Bt(π

2
t , 8HWB, δ, ϵ)

≤ 2048HWB

√
H log(|S||A|H) + |S| log

(
32H2WB

ϵ

)
+ log

(
6 log(HT )

δ

)
· |Sreach| ·

√
T

n · γmin

+ Õ

(
H5/2WB

√
T

√
n · γmin

+H2WB ·
√
T · |S|

1/2|A|1/4

n1/4

)

Using Õ notation to hide logarithmic factors and simplifying:∑
t∈[T ]

8Bt(π
1
t , 8HWB, δ, ϵ) + 8Bt(π

2
t , 8HWB, δ, ϵ)

≤ Õ

(
H|S|

√
|A|TH
n · γmin

+
H5/2WB

√
T

√
n · γmin

+H2WB ·
√
T · |S|

1/2|A|1/4

n1/4

)

This bound demonstrates several key insights:
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1. Sublinear Regret: All terms scale as
√
T , maintaining the crucial sublinear dependence on the

horizon. This ensures that our regret doesn’t grow linearly with T .

2. Offline Data Benefits: All terms decrease as n increases, but at different rates:

• The first two terms decrease at rate 1√
n

and capture the direct benefit of offline data for state-action
pairs with good coverage

• The third term decreases at the slower rate of 1
n1/4 and accounts for the diminishing probability of

encountering poorly-covered state-action pairs

3. Complete Dependence on Offline Data: Unlike traditional online-only bounds, our analysis
shows that all components of the regret can be reduced with sufficient offline data.

With sufficient high-quality offline data (n → ∞ with fixed γmin > 0), all terms approach zero,
confirming that offline data can fundamentally change the sample complexity of reinforcement
learning.

Lemma 45. Let η, ϵ > 0. For all π simultaneously and for all t ∈ N, with probability 1− δ,

B̂t(π, η, δ) ≤ 2Bt(π, 2Hη, δ, ϵ) + ϵ

Proof. Recall that,

B̂t(π, η, δ) = Es1∼ρ,τ∼Pπ
P̂t

(·|s1)

[
H−1∑
h=1

ξ(t)sh,ah
(η, δ)

]
.

Let f : Γ→ R be defined as,

f(τ) =

H−1∑
h=1

ξ(t)sh,ah
(η).

It is easy to see that f(τ) ∈ (0, 2ηH] for all τ ∈ Γ. Therefore, a direct application of Lemma 13 in
Saha et al. (2023) implies that with probability at least 1− δ and simultaneously for all π, and t ∈ N,

B̂t(π, η, δ) ≤ Es1∼ρ,τ∼Pπ(·|s1)

[
H−1∑
h=1

ξ(t)sh,ah
(η, δ)

]
+Bt(π, 2Hη, δ, ϵ) + ϵ

Since ξ
(t)
s,a(ϵ, η, δ) ≥ ξ

(t)
s,a(η, δ) for all ϵ > 0, s, a ∈ S × A and ξ

(t)
s,a(ϵ, η, δ) is monotonic in η we

conclude that,

Es1∼ρ,τ∼Pπ(·|s1)

[
H−1∑
h=1

ξ(t)sh,ah
(η, δ)

]
≤ Es1∼ρ,τ∼Pπ(·|s1)

[
H−1∑
h=1

ξ(t)sh,ah
(ϵ, η, δ)

]

≤ Es1∼ρ,τ∼Pπ(·|s1)

[
H−1∑
h=1

ξ(t)sh,ah
(ϵ, 2Hη, δ)

]
= Bt(π, 2Hη, δ, ϵ)

Combining these inequalities the result follows.

Lemma 46 (Offline-Enhanced Non-Squared Bonus Term Bound). Let n be the number of offline
demonstrations with minimum visitation probability γmin > 0 for state-action pairs visited by the
expert policy. Then, with probability at least 1− δ:

∑
t∈[T ]

H−1∑
h=1

ξ(t)st,h,at,h
(ϵ, 8HSB, δ) ≤ 64HSB

√
H log(|S||A|H) + |S| log

(
32H2SB

ϵ

)
+ log

(
6 log(HT )

δ

)
·

|Sreach| · 2

√
T

n · γmin
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Proof. We follow the approach shown in the provided image, adapting it to incorporate offline data.
Starting with our modified definition of bonus terms that incorporate offline data:

ξ(t)s,a(ϵ, η, δ) = min

(
2η, 4η

√
U

Noff(s, a) +Nt(s, a)

)

where U = H log(|S||A|H) + |S| log
(

32H2SB
ϵ

)
+ log

(
6 log(t)

δ

)
. Rewriting the sum by grouping

state-action pairs:

∑
t∈[T ]

H−1∑
h=1

ξ(t)st,h,at,h
(ϵ, 8HSB, δ) =

∑
s∈S

∑
a∈A

NT+1(s,a)∑
t=1

min

(
16HSB, 32HSB

√
U

Noff(s, a) + t

)

For sufficiently large values of Noff(s, a) + t, the minimum is dominated by the second term:

∑
s∈S

∑
a∈A

NT+1(s,a)∑
t=1

32HSB

√
U

Noff(s, a) + t
= 32HSB

√
U ·
∑
s∈S

∑
a∈A

NT+1(s,a)∑
t=1

1√
Noff(s, a) + t

The key adaptation now is to reindex the sum to account for offline visits:

∑
s∈S

∑
a∈A

NT+1(s,a)∑
t=1

1√
Noff(s, a) + t

=
∑
s∈S

∑
a∈A

Noff(s,a)+NT+1(s,a)∑
t′=Noff(s,a)+1

1√
t′

where t′ represents the total count (offline + online). Using the property of the sum of inverse square
roots and the minimum visitation assumption:

Noff(s,a)+NT+1(s,a)∑
t′=Noff(s,a)+1

1√
t′
≤ 2
√
Noff(s, a) +NT+1(s, a)− 2

√
Noff(s, a)

≤ 2
√
Noff(s, a) +NT+1(s, a)

≤ 2

√
NT+1(s, a)

Noff(s, a)
·
√

Noff(s, a)

≤ 2

√
NT+1(s, a)

n ·H · γmin
·
√

Noff(s, a) ∀(s, a) ∈ Sreach

Applying Jensen’s inequality:

∑
(s,a)∈Sreach

2

√
NT+1(s, a)

n ·H · γmin
·
√
Noff(s, a) ≤ 2 · |Sreach| ·

√∑
(s,a)∈Sreach

NT+1(s, a)

n ·H · γmin

≤ 2 · |Sreach| ·

√
TH

n ·H · γmin

= 2 · |Sreach| ·

√
T

n · γmin

Substituting back:

∑
t∈[T ]

H−1∑
h=1

ξ(t)st,h,at,h
(ϵ, 8HSB, δ) ≤ 32HSB

√
U · 2 · |Sreach| ·

√
T

n · γmin

= 64HSB
√
U · |Sreach| ·

√
T

n · γmin
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Expanding U :

∑
t∈[T ]

H−1∑
h=1

ξ(t)st,h,at,h
(ϵ, 8HSB, δ)

≤ 64HSB

√
H log(|S||A|H) + |S| log

(
32H2SB

ϵ

)
+ log

(
6 log(HT )

δ

)
· |Sreach| · 2

√
T

n · γmin

This completes the proof.

Lemma 47 (Martingale Concentration with Offline Data). Let {Xt}Tt=1 be the martingale difference
sequence defined as:

Xt = Bt(π
i
t, 8HWB, δ, ϵ)−

H−1∑
h=1

ξ
(t)

sit,h,a
i
t,h

(ϵ, 8HWB, δ)

Let n be the number of offline trajectories with minimum visitation probability γmin for state-action
pairs visited by the expert policy. Then, with probability at least 1− δ:

∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ ≤ Õ

(
H5/2 ·WB ·

√
T

√
n · γmin

+H2WB ·
√
T · |S|

1/2|A|1/4

n1/4

)

where the first term captures the direct benefit of offline data for state-action pairs with good coverage,

and the second term accounts for the diminishing probability P (Ec) = O

(
TH ·

√
|S|2|A| log(n)

n

)
of encountering state-action pairs with insufficient offline coverage.

Proof. We introduce a novel approach that substantially improves upon standard martingale concen-
tration bounds by leveraging offline data. We begin by comparing our approach with the standard
method used by Pacchiano.

Saha et al. (2023)’s Approach (Standard Method): The conventional approach uniformly bounds
each element of the martingale difference sequence:

|Xt| =

∣∣∣∣∣Bt(π
i
t, 8HWB, δ, ϵ)−

H−1∑
h=1

ξ
(t)

sit,h,a
i
t,h

(ϵ, 8HWB, δ)

∣∣∣∣∣ ≤ 32H2WB

This bound is derived by noting that ξs,a(ϵ, η, δ) ≤ 2η, yielding
∑

h ξsh,ah
(ϵ, η, δ) ≤ 2Hη, and

applying triangle inequality. This leads to a martingale concentration term in the regret bound that is
O(H2WB

√
T ) and, crucially, does not improve with offline data.

Our Improved Approach: We recognize that with offline data, we can obtain substantially tighter
bounds by conditioning on appropriate events. This leads to a martingale concentration term that
explicitly decreases with offline data, approaching zero as n→∞.

Step 1: Define data-dependent events and calculate their probabilities.

We define two complementary events:

• Event E: "All state-action pairs encountered in all T episodes have good offline coverage" (i.e.,
Noff(s, a) ≥ c · n · γmin for some constant c > 0)

• Event Ec: "At least one state-action pair encountered lacks good offline coverage"
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To calculate P (Ec), we leverage our MLE concentration bound for transition models (Corollary 23):

H2(Pπ∗

P̂
,Pπ∗

P∗) ≤ O
(
|S|2|A| log(nHδ−1)

n

)

The crucial insight is that we can relate this Hellinger distance to the probability of encountering
state-action pairs with insufficient offline data. Using the relationship between Hellinger distance,
total variation distance, and event probabilities:

1. Hellinger distance bounds total variation: TV(P,Q) ≤
√
2 ·H(P,Q) 2. Total variation bounds

event probability differences: |P (A)−Q(A)| ≤ TV(P,Q)

Let As,a be the event "state-action pair (s, a) has insufficient offline data coverage." Under the true
model P ∗ and with enough offline data sampled from a policy close to π∗, the probability Pπ∗

P∗(As,a)
is negligible. Therefore:

Pπ∗

P̂
(As,a) ≤ Pπ∗

P∗(As,a) + TV(Pπ∗

P̂
,Pπ∗

P∗) ≤ O(H(Pπ∗

P̂
,Pπ∗

P∗))

Using our Hellinger distance bound:

Pπ∗

P̂
(As,a) ≤ O

(√
|S|2|A| log(nHδ−1)

n

)
= pn

By union bound across all T · (H − 1) state-action pairs encountered:

P (Ec) ≤ T · (H − 1) · pn = O

(
TH ·

√
|S|2|A| log(n)

n

)

Key Insight 1: The probability of encountering any state-action pair with insufficient offline coverage
decreases as n increases, at a rate of approximately 1√

n
.

Step 2: Establish conditional bounds on martingale differences.

Case 1: Under Event E (Good Offline Coverage). When all state-action pairs have good offline
coverage:

ξ(t)s,a(ϵ, η, δ) = min

(
2η, 4η

√
U

Noff(s, a) +Nt(s, a)

)

≤ min

(
2η, 4η

√
U

c · n · γmin

)

For sufficiently large n, the second term in the min dominates:

ξ(t)s,a(ϵ, η, δ) ≤ 4η

√
U

c · n · γmin

= O

(
η ·
√
H · log(|S||A|) + log(1/δ)

√
n · γmin

)
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Therefore, for η = 8HWB:

|Xt| |E =

∣∣∣∣∣Bt(π
i
t, 8HWB, δ, ϵ)−

H−1∑
h=1

ξ
(t)

sit,h,a
i
t,h

(ϵ, 8HWB, δ)

∣∣∣∣∣ ∣∣∣E
≤ E

τ∼Pπi
t

P̂t

[
H−1∑
h=1

ξ(t)sh,ah

]
+

H−1∑
h=1

ξ
(t)

sit,h,a
i
t,h

≤ 2 ·H ·O

(
HWB ·

√
H · log(|S||A|) + log(1/δ)
√
n · γmin

)

= O

(
H2WB ·

√
H · log(|S||A|) + log(1/δ)
√
n · γmin

)
= Mn

Case 2: Under Event Ec (At Least One Poorly Covered State-Action). Here, we revert to
Pacchiano’s standard bound:

|Xt| |Ec ≤ 32H2WB = M

Key Insight 2: Under event E (which occurs with high probability for large n), the martingale
differences are much smaller than Pacchiano’s uniform bound, specifically by a factor of 1√

n·γmin
.

Key Innovation: By conditioning on events E and Ec, we can precisely quantify how the martingale
concentration improves with offline data through two mechanisms:

1. The magnitude of martingale differences under E scales as 1√
n·γmin

2. The probability of event Ec decreases as n increases, at a rate of approximately 1√
n

This conditional analysis is fundamentally different from Pacchiano’s approach, which uses a single
worst-case bound regardless of offline data. Our approach precisely captures how offline data reduces
both the magnitude of exploration bonuses and the probability of encountering state-action pairs that
require large exploration.

Step 3: Apply Azuma-Hoeffding inequality conditionally.

The Azuma-Hoeffding inequality for bounded martingale differences states that for a martingale
difference sequence {Xt}Tt=1 with |Xt| ≤ ct almost surely:

P

(∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
− λ2

2
∑T

t=1 c
2
t

)

Applying this conditionally on event E, where |Xt| ≤Mn for all t:

P

(∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ ≥ λ

∣∣∣∣∣E
)
≤ 2 exp

(
− λ2

2 · T ·M2
n

)

Similarly, conditionally on event Ec, where |Xt| ≤M :

P

(∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ ≥ λ

∣∣∣∣∣Ec

)
≤ 2 exp

(
− λ2

2 · T ·M2

)

Step 4: Apply the law of total probability.
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By the law of total probability:

P

(∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ ≥ λ

)
= P

(∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ ≥ λ

∣∣∣∣∣E
)
· P (E) + P

(∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ ≥ λ

∣∣∣∣∣Ec

)
· P (Ec)

≤ 2 exp

(
− λ2

2 · T ·M2
n

)
· P (E) + 2 exp

(
− λ2

2 · T ·M2

)
· P (Ec)

To obtain an overall bound of δ, we allocate δ/2 to each term.

For the first term:

2 exp

(
− λ2

2 · T ·M2
n

)
· P (E) ≤ δ

2

⇒ exp

(
− λ2

2 · T ·M2
n

)
≤ δ

2 · P (E)

⇒ λ2

2 · T ·M2
n

≥ log

(
2 · P (E)

δ

)
⇒ λ ≥Mn ·

√
2 · T · log

(
2 · P (E)

δ

)

For the second term:

2 exp

(
− λ2

2 · T ·M2

)
· P (Ec) ≤ δ

2

⇒ exp

(
− λ2

2 · T ·M2

)
≤ δ

2 · P (Ec)

⇒ λ ≥M ·

√
2 · T · log

(
2 · P (Ec)

δ

)

Step 5: Derive the combined bound.

For the bound to hold with probability at least 1− δ, we need:

λ ≥ max

(
Mn ·

√
2 · T · log

(
2 · P (E)

δ

)
,M ·

√
2 · T · log

(
2 · P (Ec)

δ

))

≤Mn ·

√
2 · T · log

(
2

δ

)
+M ·

√
2 · T · log

(
2 · P (Ec)

δ

)

Substituting our expressions for Mn and M :

λ ≤ O

(
H2WB ·

√
H · log(|S||A|) · T · log(1/δ)
√
n · γmin

)
+O

(
H2WB ·

√
T · log

(
P (Ec)

δ

))

Using our bound on P (Ec):

λ ≤ O

(
H2WB ·

√
H · log(|S||A|) · T · log(1/δ)
√
n · γmin

)
+

O

H2WB ·

√√√√√T · log

TH ·
√

|S|2|A| log(nHδ−1)
n

δ



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Step 6: Analyze the asymptotic behavior.

Starting with the second term of our bound:

O

H2WB ·

√√√√√T · log

TH ·
√

|S|2|A| log(nHδ−1)
n

δ




Step 6.1: Expand the logarithm inside the second term.

log

TH ·
√

|S|2|A| log(nHδ−1)
n

δ

 = log

(
TH

δ

)
+ log

(√
|S|2|A| log(nHδ−1)

n

)

= log

(
TH

δ

)
+

1

2
log

(
|S|2|A| log(nHδ−1)

n

)

Step 6.2: Extract
√
T from the square root.

H2WB ·

√
T ·
[
log

(
TH

δ

)
+

1

2
log

(
|S|2|A| log(nHδ−1)

n

)]

= H2WB ·
√
T ·

√
log

(
TH

δ

)
+

1

2
log

(
|S|2|A| log(nHδ−1)

n

)

Step 6.3: Analyze the behavior for large n. For large n, the term log
(

|S|2|A| log(nHδ−1)
n

)
becomes negative because n grows faster than the logarithmic term.

Therefore: √
log

(
TH

δ

)
+

1

2
log

(
|S|2|A| log(nHδ−1)

n

)

<

√
log

(
TH

δ

)
= O(

√
log(T ))

This gives us:

H2WB ·
√
T ·O(

√
log(T )) = Õ(H2WB ·

√
T )

Step 6.4: Incorporate P (Ec) correctly. We know that P (Ec) = O

(
TH ·

√
|S|2|A| log(n)

n

)
To properly account for this probability in the bound, we can express the term as:

H2WB ·
√
T ·

√
log

(
TH

δ

)
·
√√√√ P (Ec)

TH ·
√

|S|2|A| log(n)
n

·

√√
|S|2|A| log(n)

n

= H2WB ·
√
T · Õ(1) · |S|

1/2|A|1/4

n1/4

= Õ

(
H2WB ·

√
T · |S|

1/2|A|1/4

n1/4

)
Step 7: Combine these results for our final bound.
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We now have two key terms in our bound for martingale concentration:

λ ≤ O

(
H2WB ·

√
H · log(|S||A|) · T · log(1/δ)
√
n · γmin

)
+

Õ

(
H2WB ·

√
T · |S|

1/2|A|1/4

n1/4

)

Simplifying the first term and using Õ notation to hide logarithmic factors:

λ ≤ Õ

(
H5/2WB ·

√
T

√
n · γmin

)
+ Õ

(
H2WB ·

√
T · |S|

1/2|A|1/4

n1/4

)

Therefore, with probability at least 1− δ:

∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ ≤ Õ

(
H5/2 ·WB ·

√
T

√
n · γmin

+H2WB ·
√
T · |S|

1/2|A|1/4

n1/4

)

This bound reveals several key insights:

1. Sublinear Regret: Both terms scale as
√
T , maintaining the crucial sublinear dependence on the

horizon. This ensures that our regret doesn’t grow linearly with T .

2. Offline Data Benefits: Both terms decrease as n increases, but at different rates:

• The first term decreases at rate 1√
n

and captures the direct benefit of offline data for state-action
pairs with good coverage

• The second term decreases at the slower rate of 1
n1/4 and accounts for the diminishing probability

of encountering poorly-covered state-action pairs

3. Complete Dependence on Offline Data: Unlike Saha et al. (2023)’s bound, which has an
irreducible term independent of offline data, our bound shows that all components of martingale
concentration can be reduced with sufficient offline data.

4. Different Decay Rates: The different decay rates ( 1√
n

vs. 1
n1/4 ) suggest that the second term will

eventually dominate for very large n, setting the ultimate rate at which offline data can improve
performance.

This confirms that with sufficient high-quality offline data (n→∞ with fixed γmin > 0), the entire
martingale concentration bound approaches zero, eliminating this component of regret entirely.

E Auxiliary Mathematical Results

E.1 Bridging Offline Confidence Sets and Online Constraints

Lemma 48 (Hellinger Ball to Moment Constraints: Linear Embedding). Define a random variable
X on (A, Ã).
Assume f : A → Rd and ∥f∥∞ ≤ B <∞.
Consider two distributions P,Q with densities that are continuous with respect to Lebesgue measure.
Further assume:

H2(P∥Q) ≤ R
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Then

∥EP f(X)− EQf(X)∥2 ≤ 2
√
2 ·B ·

√
d ·R

and

∥CovP (f(X))− CovQ(f(X))∥op ≤ 6 · d ·B2 ·
√
2 ·R

Proof. For the squared norm on first moment, the following holds true

∥EP f − EQf∥2 = ∥
∫
A
f(x)(p(x)− q(x))dx∥2

≤
∫
A
∥f(x)∥2|p(x)− q(x)|dx

≤
√
d ·B ·

∫
|p(x)− q(x)|dx︸ ︷︷ ︸
=2TV (P,Q)

Using the classical result Sason & Verdú (2016) together with our constraint

TV (P,Q) ≤
√
2H2(P ||Q) ≤

√
2R

yield the first result.

For the covariance we follow a similar approach only for matrices. Define g(x) := f(x)f(x)T then

∥EP g(x)− EQg(x)∥op = ∥
∫

g(x)(p(x)− q(x))dx∥op

= sup
∥v∥2=1

|vT
(∫

g(x)(p(x)− q(x))dx

)
v|

= sup
∥v∥2=1

∣∣∣∣ ∫ vT f(x)f(x)T v(p(x)− q(x))dx

∣∣∣∣
≤∆−inequ. sup

∥v∥2=1

∫ ∣∣⟨v, f(x)⟩2∣∣ · ∣∣p(x)− q(x)
∣∣dx

≤ sup
∥v∥2=1

∫
∥f(x)2∥ ·

∣∣p(x)− q(x)
∣∣dx

≤ 2 · d ·B2 · TV (P,Q) ≤ 2 · d ·B2 ·
√
2 ·R

Using definition of covariance matrix we have

∥CovP (f)− CovQ(f)∥op = ∥EP [ff
T ]− EQ[ff

T ] + EP fEP f
T − EQfEQf

T ∥op
≤ ∥EP [ff

T ]− EQ[ff
T ]∥op + ∥EP fEP f

T − EQfEQf
T ∥op

≤ 2 · d ·B2 ·
√
2 ·R+ ∥EP fEP f

T − EQfEQf
T ∥op

in order to bound the last term we have

∥EP fEP f
T − EQfEQf

T ∥op = ∥EP fEP f
T − EP fEQf

T + EP fEQf
T − EQfEQf

T ∥op
≤ ∥EP f(EP f

T − EQf
T )∥op + ∥(EP f − EQf)EQf

T ∥op
≤ ∥EP f∥2 · ∥EP f − EQf∥2 + ∥EQf∥2 · ∥EP f − EQf∥2
≤ 2 ·

√
d ·B · ∥EP f − EQf∥2

≤ 4 · d ·B2 ·
√
2 ·R
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F Experiments

We compare our algorithm with the log-loss behavioral cloning method of Foster et al. (2024) and the
preference-based online learning algorithm of Saha et al. (2023). We could not find publicly available
implementations for either of the two, so we made adaptions to achieve a computable implementation.

All experiments were run on an M1 Max CPU with 32GB of RAM, with a wall-clock time of roughly
4 seconds per iteration of the online loop. The main computational bottleneck in this implementation
is the simulation of trajectories for approximating the expectation within ϕ(π), so runtime does not
vary significantly between the different environments, if normalized for episode length. Throughout,
we use deterministic, tabular policies, i.e., they are represented by a matrix of size S × A, where
each row is a one-hot vector defining the deterministic action taken in that state. The figures shown
display results averaged over 30 seeds, with thick lines representing the average and shaded areas the
results contained within one standard deviation to either side of the average.

Our figures contain two plots. The first displays the (sub)optimality of the current best policy
chosen by each online algorithm at each iteration. At the end of an iteration, this policy is chosen
as the one from the offline confidence set Πoffline

1−δ which maximizes the learned score function
sP (π) = Eτ∼Pπ

P∗ [⟨ϕ(τ),w
proj
t ⟩]. Its expected reward is simulated and compared to the optimal

policy’s in percentage terms. The second plot illustrates the speed at which the algorithms pare down
the size of the policy confidence set Πt – once the set contains only a single element, we consider the
algorithm converged, as that element is the algorithm’s estimate of the optimal policy π∗.

We had to make certain pragmatic adaptations when implementing the algorithms. For BRIDGE,
we construct Πoffline

1−δ by taking the offline behavioral cloning policy π̂, and obtaining 100 additional
candidate policies via adding noise to π̂’s distribution in a way that ensures the candidate stays
within a Hellinger distance of R to π̂. The purely online PbRL baseline instead starts with a Πoffline

1−δ

containing 100 random policies.

F.1 Environments

s1

s4 R = 10

s2

R = 6

s3 R = −1

s0

a0

a1

a0

a1a
3a

2
a
2

a
3

Figure 3: Star MDP. Transition probabilities are 0.7 for all solid arrows, otherwise the action takes
the agent randomly to one of the other states.

StarMDP. We illustrate the transition dynamics underlying the Star MDP in Figure 3. This
environment features 5 states and 4 actions a0, a1, a2, a3 that correspond to right, left, up and
down respectively. Actions have a probability of 0.7 of success, with an agent being moved to a
different, random state with a probability of 0.3. Taking an “impossible” action such as going left
in state s4 will result in not moving with probability 1. Episodes have length H = 8 and start from
s0. The offline expert’s dataset consists of 2 trajectories.
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Figure 4: Gridworld environment. Rewards at every state are indicated if non-zero. Transition probabilities are 0.9. Thick
lines indicate an obstacle, through which state transitions have probability zero.

Gridworld. We illustrate the gridworld environment in Figure 4. The environment consists of a
4× 4 grid with states associated with different rewards, including a negative-reward region in the
top-right corner, a high-reward but unreachable state, and a moderate-reward goal state at the bottom
right corner. Each episode has length H = 10 and starts in the top-left corner. Each of the four
actions (up, left, down, right) has a success probability of 0.8, whereas with probability
0.2 a randomly chosen different action is executed. Action stay remains in the current state with
probability 1. Transitions beyond the grid limits or through obstacles have probability zero, with the
remainder of the probability mass for each action being distributed among other directions equally.
The offline dataset consists of 10 expert trajectories.

F.2 Additional result on Gridworld

We run an experiment in the vein of Figure 2 comparing BRIDGE with Saha et al. (2023) in the
more complex Gridworld environment. We measure the degree of optimality of the algorithm
at each iteration by comparing the expected reward of the currently selected ‘best’ policy with the
expected reward of the true optimal policy (red dotted line). The green dotted line is the expected
reward of the BC cloning policy estimated using Foster et al. (2024). Our algorithm leads to a much
faster convergence using the information from the expert’s trajectory dataset.

Figure 5: Comparing BRIDGE to Saha et al. (2023) and Foster et al. (2024) in the Gridworld
environment.

F.3 Embeddings

The choice of embedding function ϕ has implications on computational complexity and learning
speed. Concretely, both a small dimension d and upper bound B for the norm of embedded trajectories
are desirable. In the experiments shown we use two embeddings that strike a good balance between di-
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mension, norm bound, and expressiveness. The StarMDP experiments use the identity-short
embedding. It is defined as ϕ(τ) :=

∑
t≤H(st, at), has a norm upper bound of B =

√
2H and

dimension d = |S|+ |A|. States and actions are represented as one-hot vectors. The Gridworld
experiments use the state-counts embedding. It is defined as ϕ(τ) :=

∑
t≤H(st), has a norm

upper bound of B = H and dimension d = |S|. States are represented as one-hot vectors.

Cf. Pacchiano et al. (2020) and Parker-Holder et al. (2020a) for more possible embedding functions
and analyses of their performance in different RL tasks.

F.4 Notes on the practical implementation

Offline learning For both our testing environments StarMDP and Gridworld, we obtain the
(tabular) optimal policy π∗ by solving a linear program using cvxopt. We sample trajectories from
this policy to create a dataset of offline trajectories DH

n . The learned transition models are trained on
the offline trajectory dataset. The model for StarMDP is a Maximum Likelihood Estimator (MLE)
based on the state visitation counts, while Gridworld is a 2-layer MLP with a hidden dimension
of 32 trained to predict next states with a cross-entropy loss. We estimate the optimal policy on the
offline dataset with log-loss Behavioral Cloning (LogLossBC in Foster et al. (2024)) using Adam,
resulting in π̂.

Online, preference-based learning In the online loop, to estimate ϕ(π) = Eτ∼PP∗ [ϕ(τ)] for any
π, we sample 100 trajectories τ and average the returned embeddings. To start the online loop, we
initialize wproj

0 as a vector of random normal values with mean 0 and variance 1. In subsequent
iterations t, wMLE

t is initialized as a normalized vector of ones (this does improve convergence
compared to random initialization) and trained on all online trajectories observed so far using a
regularized binary cross-entropy loss (as in Saha et al. (2023), Section 3.1) and Adam for 10 episodes.
After preferences have been collected, we update the learned transition model, obtaining P̂t+1 by
retraining from scratch the same models and losses as described in the offline part on all online
trajectories observed so far. At the end of each iteration, we find the policy with the highest predicted
score ⟨ϕ(π),wproj

t ⟩ and calculate its average reward as well as the true optimal policy π∗’s over
1000 sampled trajectories under the true transitions, which are used in our optimality plots.


