ROBOOMNI: ACTIONS ARE JUST ANOTHER MODALITY FOR YOUR VISION-LANGUAGE MODELS

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

020

021

024

025

026

027

028

029

031

032

034

037

038

040

041

042

043

044

047

048

051

052

ABSTRACT

Integrating Vision-Language-Models (VLMs) into robotics has enabled building generalizable Vision-Language Action (VLA) models for robotic manipulation. While decoupled designs with an separate action expert, often outperform unified frameworks, the latter (e.g., OpenVLA (Kim et al., 2024)) present an appealing, conceptually integrated architecture. Nevertheless, current unified approaches typically suffer from poor historical context integration and distribution shift given their incapability of predicting action chunking. We introduce RoboOmni, a unified multi-modal next-token prediction framework for robotic manipulation designed to overcome these issues. Compared with decoupled approaches, RoboOmni unifies the multi-modal representations and minimizes the distribution gap between vision-language pretraining and action finetuning. Besides, in contrast to prior unified approaches, RoboOmni brings in the action chunking mechanism by Multi-Token Action Prediction (MTAP) that supports both FAST and Bin tokenizers, and crucially alleviates the action distribution shift issue when training with noisy real-world data. Specifically, by preserving the original VLM training pipeline, RoboOmni naturally support co-training with multi-modal information and various VLM optimization techniques, e.g., fast inference optimization, which significantly improves the generalization capabilities and extensibility of RoboOmni. We conduct extensive experiments on both the CALVIN benchmark and a real-world robot, demonstrating state-of-the-art (SOTA) performance. Our MTAP implementation with the FAST tokenizer achieves a 94.4% average success rate on CALVIN. Furthermore, we show that our Bin tokenizer implementation, deployed with existing VLM serving frameworks like SGLang (Zheng et al., 2024a), achieves a 27x inference time speedup compared with OpenVLA.

1 Introduction

The integration of powerful foundation models, especially Vision-Language Models (VLMs), into robotics is paving the way for Vision-Language-Action (VLA) systems capable of complex multimodal understanding and physical interaction (Zitkovich et al., 2023; Li et al., 2023). These models hold the promise of creating generalist robots that perform diverse manipulation tasks and generalize robustly across varied settings (Team et al., 2025). However, a critical challenge has emerged: while built upon highly capable VLMs, many current VLA implementations struggle to retain the broad generalization abilities inherent in their parent models. Instead, they often overfit significantly to the specific robotic datasets and environments seen during training (Li et al., 2024; Kim et al., 2024), losing the zero-shot or few-shot adaptability expected from foundation models and requiring costly retraining for new scenarios (Peng et al., 2023; Touvron et al., 2023).

The generalization gap between the VLM backbone and the downstream VLA is tied with the underlying architectural design and training paradigm. Most VLAs applies VLMs as their feature extractors and feed representations into a *decoupled* continuous policy head, e.g., diffusion or flow policies (Team et al., 2024; Liu et al., 2024b), for action prediction. Although being effective for modeling continuous spaces, the decoupled approach separates action generation from core VLM reasoning and deviates from the pretrained internet-scale data.

In this paper, we argue that actions are just another modality for VLMs, and an unified next-token prediction framework captures the most underlying dependencies across all modalities, including actions. Prior approaches have explored this formulation (Kim et al., 2024; Pertsch et al., 2025), but

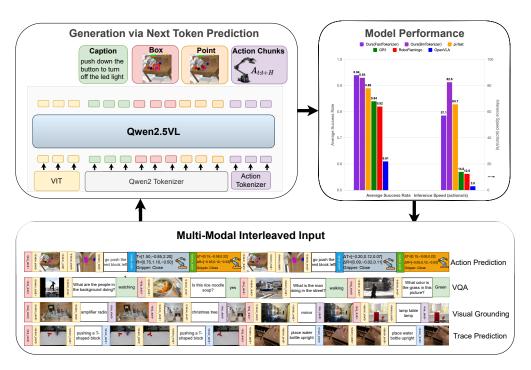


Figure 1: Overview of the RoboOmni framework and its performance. The bottom section illustrates the multi-modal interleaved data input. The top-left section details the model architecture, which processes multi-modal interleaved inputs to produce various outputs. The right section displays SOTA performance of RoboOmni on the CALVIN benchmark and its inference speed. RoboOmni is approximately 27x faster than the unified approach OpenVLA and 6.6x faster than the decoupled approach RoboFlamingo.

their performance struggles compared with the decoupled approaches. The root cause lies with the fundamental auto-regressive training paradigm: the single-step action token generation causes severe compounding error during inference in a Markov Decision Process (MDP), and it further slows the inference speed compared with decoupled approaches, where an action chunk consisting of multi-step actions is being generated in a single forward pass. As a result, unified approaches often runs with a single-step history, and fails to fully utilize the rich information of past observations and actions.

We present RoboOmni, a VLM-like VLA that preserves all VLM capabilities and achieves the SOTA performances. Our key insight is that by preserving the original VLM structure, RoboOmni can directly apply advanced optimization techniques widely used in the multi-modal training literature. Specifically, RoboOmni systematically address the aforementioned limitations as follows. To tackle the inability of performing action chunking, we introduce a novel Multi-Token Action Prediction (MTAP) strategy. Drawing inspiration from (Gloeckle et al., 2024; Liu et al., 2024a), MTAP performs parallel decoding of H actions by repeating the last layer only for action tokens. We observe MTAP achieves a perfect balance minimizing modifications to VLM structures and maximizing the action prediction accuracy. However, when incorporating history into the action generation process, the inference speed still decreases given longer context. Fortunately, given a consistent architecture, RoboOmni naturally benefits from the advanced optimization techniques from the VLM serving pipelines, e.g., effective KV-caching, RadixAttention (Zheng et al., 2024a), etc. As shown in Figure 1, RoboOmni achieves a fast inference speed of 82.6 Hz with an action chunk size 10, and a history length of 5, outperforming OpenVLA (Kim et al., 2024) by 27x. Besides, RoboOmni naturally supports multi-modal co-training with various tasks, including visual grounding, question answering, point trace prediction, etc., which is crucial for the out-of-distribution generalization of RoboOmni.

Extensive experiments conducted on the challenging CALVIN (Mees et al., 2022b) manipulation benchmark validate the effectiveness of RoboOmni. Our results demonstrate that by integrating these advancements, RoboOmni achieves state-of-the-art performance and exhibits strong zero-shot generalization capabilities, which are further corroborated by successful deployments on a real-world robotic platform. This confirms that a sophisticated implementation of the unified next-token

prediction paradigm can surpass baseline discrete models and compete effectively with or exceed contemporary diffusion-based VLAs, delivering both high performance and adaptability.

2 Related Work

Z KELAIE

2.1 VISION-LANGUAGE-ACTION MODELS

Existing VLA models, designed for multimodal understanding and robotic interaction, can be categorized along several axes related to data processing. Key distinctions include whether models utilize temporal history (Li et al., 2023) or operate on single frames (Intelligence et al., 2025), how actions are represented (discrete tokens (Zitkovich et al., 2023; Kim et al., 2024) vs. continuous vectors (Liu et al., 2024b; Team et al., 2024)), and whether they predict actions step-by-step or employ action chunking (Zhao et al., 2023).

Architecturally, diverse training paradigms are employed. Some models are built on diffusion policies, either trained specifically for robotics like Octo (Team et al., 2024) or integrated within larger systems like RDT-1B (Liu et al., 2024b). A dominant approach adapts powerful pre-trained VLMs as backbones, finetuning them with robotics data, as seen in RT-2 (Zitkovich et al., 2023), RoboFlamingo (Li et al., 2023), and OpenVLA (Kim et al., 2024). Hybrid strategies also exist, such as π_0 (Black et al., 2024), which combines VLM encoding with diffusion-based action decoding.

Analyses like RoboVLMs (Li et al., 2024) often suggest that continuous action representations, processed with historical context via separate decoder heads, yield optimal results, reinforcing the view that action generation is primarily a regression task ill-suited for the next-token prediction common in language modeling. However, we demonstrate that RoboOmni, by integrating the advanced optimization techniques from VLMs, not only unifies the modalities, but provides stronger performances than decoupled models, comparably fast inference speed, and better scalability.

2.2 ACTION CO-TRAINING WITH VISION-LANGUAGE TASKS

Beyond optimizing the core action generation process, enhancing VLA capabilities through cotraining with auxiliary vision-language (VL) tasks has become a significant research thrust. This strategy aims to imbue VLAs with richer semantic understanding, improved reasoning, and better generalization by exposing them to related, non-robotic objectives during training. Early evidence highlighted the benefits of general VL dataset co-training alongside discrete action prediction, with RT-2 demonstrating improved adaptation to novel objects through this approach (Zitkovich et al., 2023). Subsequent studies have investigated incorporating intermediate representations that bridge vision and action more explicitly. VLAs such as LLaRVA (Zhang et al., 2023), Hamster (Li et al., 2025), and TraceVLA (Zheng et al., 2024b) utilize future visual trace prediction as an auxiliary objective to foster better vision-action alignment. An alternative direction involves learning latent action representations from large-scale human video datasets, as pursued by LAPA (Ye et al., 2024), aiming to mitigate the domain gap between human demonstrations and robot execution. Further efforts targeting higher-level cognitive skills have seen models like $\pi_{0.5}$ (Intelligence et al., 2025) and Gemini Robotics (Team et al., 2025) integrating specific auxiliary objectives related to high-level task planning and object detection, explicitly enhancing planning capabilities and spatial understanding.

3 RoboOmni

RoboOmni fundamentally reconceptualizes the integration of action capabilities into VLMs. Our approach is driven by the objective to minimally alter established VLM architectures while seamlessly incorporating the action modality. We achieve this by structuring the input as multi-modal interleaved sequences of vision, language, state, and action tokens and using Multi-Token Action Prediction (MTAP) for action chunking. This allows the prediction of multiple future action steps without modifying the inherent causal attention mechanisms. We formalize the manipulation task as a sequence modeling problem. The policy π learns to generate a chunk of H future actions, $a_{t:t+H-1}$, to complete a task specified by a language instruction $l \in \mathcal{L}$. The policy's decision is conditioned on a history h_t that includes recent visual observations $o_t \in \mathcal{O}$, proprioceptive states $s_t \in \mathcal{S}$ (e.g., end-effector pose), and past actions from the action space \mathcal{A} . By tokenizing all modalities into

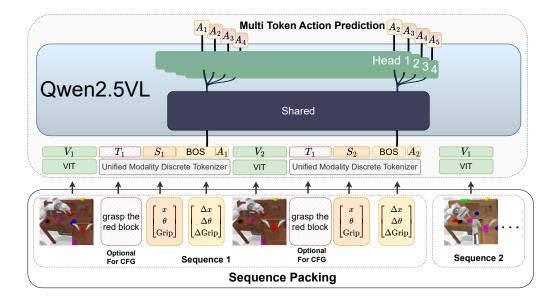


Figure 2: Architectural overview of RoboOmni. The model processes multi-modal interleaved input sequences comprising visual observations (V), text instructions (T), robot states (S), and actions (A). These sequences are packed for efficiency, where the text instructions (T) are optionally masked as part of Classifier-Free Guidance (CFG) training. RoboOmni supports MTAP through shared layers, followed by parallel heads, enabling the prediction of action chunks.

a unified sequence, we train the model using a standard causal, next-token prediction objective. This directly aligns with how contemporary VLMs are trained, enabling RoboOmni to benefit from VLM optimization techniques (e.g., inference optimizations, multimodal pre-training) to significantly improve generalization and efficiency.

3.1 MTAP FOR ACTION CHUNKING.

Action chunking, or predicting multiple future actions simultaneously, is a key technique for improving the performance and sample efficiency of robot policies (Zhao et al., 2023; Pertsch et al., 2025; Li et al., 2024). However, naive sequential prediction with causal transformers suffers from compounding errors, hindering true long-horizon anticipation. To overcome this, we introduce a versatile Multi-Token Action Prediction (MTAP) framework that adapts its prediction strategy to different action tokenization schemes. This adaptability allows our model to remain compatible with both simple and advanced tokenizers, enhancing its overall performance and flexibility. The following sections detail how MTAP is implemented for two distinct tokenizer archetypes.

Binning-based Action Tokenization. For tokenizers that discretize each action step independently, such as a standard binning tokenizer, we adapt the method from (Gloeckle et al., 2024). At each time step t, RoboOmni predicts an entire action chunk $p(a_{t:t+H-1} \mid l, o_{t-T:t}, s_{t-T:t}, a_{t-T:t-1})$. As illustrated in Figure 2, this is achieved by replicating the final transformer layer H times to create parallel output pathways. For a given input history, these pathways generate H distinct hidden state vectors $\{z_{0:H-1}\}$. Each state z_k is then passed through a *shared* language model head (LMHead) to produce logits for the corresponding future action a_{t+k} . This design enables parallel decoding of the action chunk from a single shared context, with the total loss aggregated across each prediction:

$$\mathcal{L} = \sum_{k=0}^{H-1} \mathcal{L}_{CE}(\text{LMHead}(z_k), a_{t+k}^*)$$
 (1)

where a_{t+k}^* represents the ground-truth token for action a_{t+k} . This parallel structure effectively mitigates the compounding error inherent in sequential decoding.

Frequency-space Action Sequence(FAST) Tokenization. Our framework also seamlessly supports advanced tokenization schemes like FAST (Pertsch et al., 2025), which transform an entire

action chunk from the time domain into a variable-length, frequency-domain token sequence. This transformation breaks the explicit, step-by-step temporal correspondence between the tokens and the physical actions. Consequently, we adapt our MTAP strategy to align with standard multi-token prediction (Liu et al., 2024a). The objective shifts from predicting corresponding parts of the **next action** to predicting the next H *tokens* in the sequence. For the hidden state z_j of an input token y_j , we still employ H parallel prediction layers. However, the k-th pathway is now trained to predict the token at position j+k+1, enabling direct, sequential prediction of the upcoming token stream. The loss function is updated to reflect this token-index-based objective:

$$\mathcal{L} = \sum_{j} \sum_{k=0}^{H-1} \mathcal{L}_{CE}(\text{LMHead}(z_{j,k}), y_{j+k+1}^*)$$
(2)

where $z_{j,k}$ is the k-th hidden state for token y_j and y_{j+k+1}^* is the ground-truth future token. This flexible implementation allows RoboOmni to leverage both time-aligned and holistic tokenizers, enhancing its versatility.

3.2 Multi-Modal Action Co-Training

To facilitate synergistic multi-modality co-training within a unified next-token prediction framework, we tokenize a comprehensive set of inputs. These include **Visual** inputs, **Text** inputs, **Bounding Box** and **Pixel Point** modalities, as well as **Robot State** and **Action** modalities. All are mapped into a shared representational space (see Appendix A for tokenization details of each modality). We incorporate several VL co-training tasks to enhance the capabilities of the model:

Visual Grounding. We include a visual grounding task to explicitly cultivate spatial understanding and object localization abilities in the model, which are critical for precise manipulation (Team et al., 2025). This auxiliary objective trains the model to associate textual references with specific image regions by predicting the discretized and text-tokenized bounding box coordinates of relevant objects. For this purpose, we utilize datasets such as COCO (Chen et al., 2015) and the blip3-grounding-50m dataset (Xue et al., 2024).

Point Trace Prediction. While visual grounding strengthens static spatial awareness, it often lacks the capacity for temporal reasoning over sequences of observations. To instill an understanding of short-term motion dynamics and generalizable physical priors, we introduce a 2D end-effector trace prediction task, inspired by (Li et al., 2025). This task encourages the model to learn underlying physical principles and motion intent. Specifically, it involves predicting the 2D pixel trajectories of the end-effector, which are derived by projecting the 3D gripper coordinates onto the 2D image plane and subsequently tokenizing these pixel locations. This approach significantly enhances the robot's spatial understanding by explicitly training the model on the visual manifestation of movement. The training employs a stochastic conditioning scheme on partially observed trajectories to promote robustness and imputation skills. Data for this task are sourced from Droid, RLBench, and Calvin.

Visual Question Answering(VQA). To further enhance the semantic understanding of interaction sequences and improve proficiency in adhering to language instructions, we integrate tasks that bolster high-level visual reasoning and generation. VQA training is incorporated to preserve and augment the core capabilities of the foundational VLM in image understanding and text generation. This objective ensures the model retains potent multimodal reasoning skills, instrumental for interpreting complex instructions and analyzing scenes effectively, utilizing established datasets such as CLEVR (Salewski et al., 2022) and general VQA benchmarks (Goyal et al., 2017).

3.3 TRAINING VLA AS VLM

One of the core advantages of RoboOmni is its unified representation of action and all other modalities, which allows for the seamless integration of VLM optimization techniques with VLA training. We employ several advanced training strategies designed to enhance the stability, efficiency, and predictive capabilities of the next-token prediction framework for robotics.

Optimize RoboOmni as VLMs. A significant limitation of VLA policies, particularly those employing discrete action tokenization (Kim et al., 2024; Zitkovich et al., 2023), is their reliance solely on the current observation o_t , thereby ignoring past history. Predicting actions with accumulating

history becomes increasingly computationally expensive. While prior methods often drastically modify the policy head, rendering them incompatible with advanced VLM optimization techniques, RoboOmni preserves the inherent VLM architecture. This preservation allows for the direct application of existing optimization techniques. Specifically, our history sequence incorporates tokenized representations of past observations $(o_{t-T:t})$, robot states $(s_{t-T:t})$, and actions $(a_{t-T:t-1})$ up to the current timestep t. During inference, we utilize modern LLM serving platforms, such as SGLang (Zheng et al., 2024a), to accelerate inference.

Classifier-Free Guidance Training. To enhance policy robustness and leverage diverse data sources, we incorporate principles from Classifier-Free Guidance (CFG) (Ho and Salimans, 2022) into our training regimen. During training, language instruction tokens l are randomly omitted from the input sequence with a predefined probability of 0.2. This strategy serves two main purposes: 1) It compels the model to predict action sequences based solely on the visuomotor context, thereby capturing the inherent continuity and dynamics within action trajectories, independent of language commands. 2) This approach enables the utilization of valuable trajectory data lacking corresponding language annotations. Training on these language-free demonstrations allows the model to learn more generalizable and stable motor skills from a broader data distribution, contributing to more robust and reliable action policies, particularly for complex, temporally extended behaviors.

Packed Sequences for Multi-Distribution Learning. Our multi-modal co-training paradigm sources data from diverse tasks, leading to token sequences of highly variable lengths. This variance can cause significant training inefficiency due to padding. To address this, we employ sequence packing (Krell et al., 2021) to concatenate multiple independent sub-trajectories into a single dense sequence, thereby maximizing GPU utilization. More importantly, we discovered that for action data, omitting the attention masks between packed samples yields substantial benefits. This allows a subsequent trajectory to attend to the context of a preceding, unrelated one within the same batch. We posit that this forces the model to more rapidly infer tasks and dynamics from immediate context rather than memorizing single trajectories. This encouragement of learning a robust, context-dependent policy (i.e., a multi-distribution) leads to faster convergence and a notable improvement in final model performance.

By jointly optimizing for these diverse objectives alongside the primary action prediction task, the model learns more robust and generalizable representations. (See details in Appendix B)

4 Experiment

4.1 EXPERIMENT SETUP ON CALVIN

CALVIN Benchmark. CALVIN (Mees et al., 2022b) is a simulation benchmark for multi-task tabletop manipulation. It comprises four scene splits (A, B, C, and D) covering 34 distinct manipulation tasks and contains 22,966 human-teleoperated demonstrations annotated with natural language instructions. Following prior work, we train on the ABCD splits and evaluate solely on split D with 1,000 rollouts per model. We report the success rates of achieving 1 through 5 consecutive tasks, as well as the average number of tasks completed per trial (Avg. Len.). Observations are captured from both a side-mounted camera and a wrist-mounted camera.

Baselines. We compare RoboOmni against a suite of baseline methods (see Table 1). For UP-VLA and RoboFlamingo, we report the performance figures directly from their respective papers. To ensure a controlled comparison, we conduct our own reproductions for OpenVLA and π_0 -FAST. OpenVLA (Kim et al., 2024) is an autoregressive vision-language-action (VLA) model that predicts discretized action tokens from a single frame, without historical context or vision-language co-training. In our reproduction, the model is trained exclusively on CALVIN data to align with the setting without VLM described in the original paper. RoboVLM (Li et al., 2024) represents a decoupled design where a VLM backbone feeds into a dedicated policy head for continuous action decoding. π_0 -FAST (Pertsch et al., 2025) combines a VLM with the FAST tokenizer. Our reproduction uses a PaliGemma-3B backbone and is trained with the identical data mixture as RoboOmni. Since it is a single-frame policy, we ensure fairness by controlling for an equivalent number of training samples. See Appendix D.2 for implementation details.

Table 1: Performance comparison on the **CALVIN** benchmark. The table evaluates models on two settings: in-distribution performance (Train: ABCD, Eval: D) and out-of-distribution generalization (Train: ABC, Eval: D). Our RoboOmni models, with both Bin and FAST tokenizers, establish new state-of-the-art (SOTA) results in both settings. **Bold** indicates the best performance, and <u>underline</u> indicates the second-best among all methods. The citation for Voltron (Karamcheti et al., 2023) is omitted owing to limited space.

Method	Train	Co	Avg.				
Nemou		1	2	3	4	5	Len.
MCIL (Lynch and Sermanet, 2020)		0.373	0.027	0.002	0.000	0.000	0.40
R3M (Frozen) (Nair et al., 2022)		0.085	0.005	0.001	0.000	0.000	0.10
Voltron (Frozen)		0.101	0.003	0.001	0.000	0.000	0.11
Voltron (Fine-tuned)	ABCD	0.837	0.566	0.352	0.208	0.115	2.08
RT-1 (Brohan et al., 2022)	ABCD	0.844	0.617	0.438	0.323	0.227	2.45
OpenVLA (Kim et al., 2024)		0.921	0.732	0.565	0.455	0.346	3.03
HULC (Mees et al., 2022a)		0.889	0.733	0.587	0.475	0.383	3.06
RoboFlamingo (Li et al., 2023)		0.964	0.896	0.824	0.740	0.662	4.09
GR-1 (Wu et al., 2023)		0.949	0.896	0.844	0.789	0.731	4.21
UP-VLA (Zhang et al., 2025)		0.962	0.921	0.879	0.842	0.812	4.42
RoboVlMs (Li et al., 2024)		0.967	0.930	0.899	0.865	0.826	4.49
π_0 -FAST (Pertsch et al., 2025)		0.974	0.936	0.892	0.848	0.803	4.45
RoboOmni(Bin)		0.997	0.973	0.940	0.895	<u>0.834</u>	<u>4.64</u>
RoboOmni(FAST)		0.997	0.982	0.951	0.918	0.881	4.73
Voltron (Frozen)		0.026	0.001	0.000	0.000	0.000	0.03
Voltron (Fine-tuned)		0.569	0.272	0.105	0.038	0.014	1.00
RT-1		0.533	0.222	0.094	0.038	0.013	0.90
HULC	ABC	0.418	0.165	0.057	0.019	0.011	0.67
GR-1	ABC	0.854	0.712	0.596	0.497	0.401	3.06
UP-VLA		0.928	0.865	0.815	0.769	0.699	4.08
RoboVlMs		0.980	0.936	0.854	0.778	0.704	4.25
RoboOmni(Bin)		0.988	0.933	0.860	0.795	0.721	<u>4.30</u>
RoboOmni(FAST)		0.992	0.941	0.882	0.804	0.735	4.35

4.2 EXPERIMENT RESULTS ON CALVIN

RoboOmni establishes a new state-of-the-art, demonstrating that a unified discrete-token framework can surpass decoupled continuous-action models. As shown in Table 1, our approach achieves state-of-the-art (SOTA) performance on the CALVIN benchmark. Specifically, RoboOmni(FAST) obtains the highest scores across all metrics on the standard ABCD→D split, with a 5-task success rate of 88.1% and an average task length of 4.73. This result significantly outperforms previous SOTA methods like RoboVlMs, which employs a decoupled policy head for continuous action decoding. This finding challenges the prevailing notion that continuous action spaces are inherently superior for manipulation, proving that a well-designed unified framework with discrete tokenization can be more effective.

The effectiveness of the core components of our framework is validated through controlled comparisons with key baselines. We first establish a control group by comparing RoboOmni(Bin) with our reproduced OpenVLA, as both utilize a binning tokenizer. RoboOmni(Bin) achieves a massive performance leap, improving the 5-task success rate from 34.6% to 83.4%. This stark contrast underscores the critical impact of our design choices—incorporating historical context, VLM co-training, and MTAP-based action chunking—over a simple, single-frame unified policy. In a second control group, we compare RoboOmni(FAST) with our reproduced π_0 -FAST, both leveraging a frequency-space tokenizer and the same data mixture. RoboOmni(FAST) again demonstrates superior performance (88.1% vs. 80.3% 5-task success rate), which we attribute to our framework's synergistic integration of historical context and the MTAP action chunking strategy. These architectural advantages, absent in the single-frame π_0 -FAST policy, enable more robust long-horizon planning and lead to the observed performance gain.

The FAST tokenizer boosts performance by alleviating temporal modeling pressure, and the framework demonstrates exceptional generalization. Within our framework, RoboOmni(FAST) consistently outperforms RoboOmni(Bin) across both the standard and the more challenging ABC \rightarrow D generalization splits. We hypothesize that this advantage arises because the FAST tokenizer's frequency-domain transformation provides a strong inductive bias for temporal relations, effectively offloading some of the complex temporal modeling pressure from the transformer backbone. While a sufficiently powerful model could theoretically learn these dependencies from scratch as required by the Bin tokenizer, the FAST approach appears to guide the model to a better-optimized solution, especially under real-world data constraints. This architectural advantage is further confirmed on the ABC \rightarrow D split, where both RoboOmni variants again set a new SOTA and exhibit robust generalization to an unseen environment, with RoboOmni(FAST) leading at a 73.5% 5-task success rate.

4.3 ABLATION STUDY

Table 2: Ablation study of MTAP and different tokenizers.

Se	ettings		Top K	Success	s Rate		Task Length	Inference Speed	
MTAP	Tokenizer	Top 1	Top 2	Top 3	Top 4	Top 5		(ms/action)	
√	FAST	0.997	0.982	0.951	0.918	0.881	4.73	17.5	
\checkmark	BIN	0.997	0.973	0.940	0.895	0.834	4.64	12.1	
×	FAST	0.990	0.961	0.909	0.860	0.801	4.52	24.2	
×	BIN	0.990	0.935	0.865	0.776	0.679	4.24	107	

We conduct a series of ablation studies to evaluate the contributions of key components in our framework. Unless otherwise specified, all experimental settings follow those detailed in Section 4.2.

Table 3: Ablation study on the number of bins for action discretization. All models are trained with MTAP. The default setting used in our main experiments is 256 bins.

Tokenizer	Bin Size	Top 1	Top 2	Top 3	Top 4	Top 5	Avg. Length
FAST	128	0.996	0.976	0.950	0.913	0.861	4.70
	256	0.997	0.982	0.951	0.918	0.881	4.73
	1024	0.990	0.968	0.940	0.916	0.871	4.68
BIN	128	0.989	0.955	0.920	0.890	0.837	4.59
	256	0.997	0.973	0.940	0.895	0.834	4.64
	1024	0.980	0.939	0.888	0.838	0.790	4.44

Impact of MTAP and Tokenizer. Our primary ablation, presented in Table 2, investigates the impact of Multi-Token Action Prediction (MTAP). The results clearly demonstrate that MTAP is broadly effective, providing a substantial performance boost for both tokenizer schemes. For the FAST tokenizer, enabling MTAP improves the 5-task success rate from 80.1% to 88.1%. The effect is even more pronounced for the Bin tokenizer, where MTAP elevates the success rate dramatically from 67.9% to 83.4%. Interestingly, MTAP also reverses the inference speed characteristics of the tokenizers. Without MTAP, the fully autoregressive Bin tokenizer is exceedingly slow (107 ms/action). By enabling parallel decoding over the action chunk, MTAP provides a near-linear speedup, slashing the inference time to just 12.1 ms/action. This not only makes the Bin tokenizer significantly more efficient but also faster than the MTAP-enabled FAST tokenizer (17.5 ms/action), presenting a compelling trade-off between peak performance and inference speed. We conducted extensive ablation studies on the CALVIN benchmark to systematically evaluate the contribution of each key design choice within the RoboOmni framework.

Impact of Action Bin Size. We investigate how the precision of action discretization affects policy performance. As detailed in Table 3, we evaluate bin sizes of 128, 256, and 1024 for both FAST and Bin tokenizers. For the FAST tokenizer, performance peaks with 256 bins, achieving a **88.1%** 5-task success rate. Using a coarser discretization of 128 bins leads to a slight decline (86.1%), suggesting a

potential loss of necessary precision for fine-grained movements. Conversely, a finer granularity of 1024 bins also results in a performance drop (87.1%), likely because it increases the complexity of the prediction task without a proportional benefit in control accuracy. A similar trend is observed for the Bin tokenizer, where performance is highest with 128 bins (83.7%) and 256 bins (83.4%), but degrades significantly when using 1024 bins (79.0%). This suggests that for both methods, 256 bins provides the best trade-off between expressive action representation and learnability.

Table 4: Ablation studies on window size, model size, and training strategies. The default setting is RoboOmni(Bin) with a window size of 5 and a 7B parameter model, trained with all components.

Setting	Top 1	Top 2	Top 3	Top 4	Top 5	Avg. Length
Default Configuration RoboOmni(Bin)	0.997	0.973	0.940	0.895	0.834	4.64
Ablation on Window Size Window Size = 1 Window Size = 10	0.973	0.932 0.955	0.897 0.914	0.871 0.870	0.813 0.824	4.49 4.55
Ablation on Model Size Qwen2-VL-2B Qwen2.5-VL-3B Qwen2-VL-7B	0.981 0.984 0.982	0.939 0.952 0.956	0.886 0.911 0.918	0.842 0.875 0.881	0.776 0.819 0.828	4.42 4.54 4.57
Ablation on Training Strategies Without VLM Dataset Without Sequence Packing Without CFG	0.991 0.983 0.987	0.962 0.934 0.947	0.911 0.897 0.897	0.855 0.853 0.852	0.806 0.791 0.795	4.53 4.46 4.48

Ablation on Architectural and Training Components. Based on its compelling trade-off between performance and efficiency, we use the RoboOmni(Bin) configuration as the default for our final ablation studies, presented in Table 4. Our analysis shows that each component is crucial for final performance. Ablating the history length reveals that increasing the window size from 1 to 5 yields a significant performance gain (81.3% to 83.4% 5-task success rate), while a further increase to 10 offers diminishing returns. We also observe a clear scaling trend with model size, where performance improves from 77.6% (2B) to 83.4% (7B). Finally, removing any of our core training strategies degrades performance. The exclusion of VLM data co-training, sequence packing, or Classifier-Free Guidance (CFG) all leads to a noticeable drop in task success, confirming that each strategy synergistically contributes to the robustness and capability of our final model.

5 REAL ROBOT EXPERIMENTS

To validate effectiveness of our framework in physical environments, we conducted extensive experiments on a real robot platform. RoboOmni demonstrated strong generalization across multiple challenging settings, including tasks with unseen objects, instructions, and distractors. For a comprehensive breakdown of the experimental setup, task list, and detailed quantitative results, please refer to Appendix E.

6 CONCLUSION

We introduced RoboOmni, a unified multi-modal framework that treats actions as just another modality for VLMs. Our novel MTAP strategy enhances historical context integration and mitigates action distribution shift. By preserving the core VLM architecture, RoboOmni seamlessly incorporates advanced optimizations and multi-modal co-training paradigms. Extensive evaluations on CALVIN and a real-world robot demonstrate state-of-the-art performance, proving a well-designed unified framework can outperform decoupled approaches. Future work will involve scaling our approach with larger VLM backbones, expanding co-training tasks to enhance physical reasoning, and investigating more sample-efficient adaptation to novel robotic platforms.

REFERENCES

- Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π₀: A vision-language-action flow model for general robot control, 2024. URL https://arxiv.org/abs/2410.24164.
 - Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.
 - Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv preprint arXiv:1504.00325*, 2015.
 - Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve. Better & faster large language models via multi-token prediction. *arXiv preprint arXiv:2404.19737*, 2024.
 - Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in VQA matter: Elevating the role of image understanding in Visual Question Answering. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.
 - Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*, 2022.
 - Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z. Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner, Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. $\pi_{0.5}$: a vision-language-action model with open-world generalization, 2025. URL https://arxiv.org/abs/2504.16054.
 - Siddharth Karamcheti, Suraj Nair, Annie S Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh, and Percy Liang. Language-driven representation learning for robotics. *arXiv preprint arXiv:2302.12766*, 2023.
 - Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. *arXiv preprint arXiv:2403.12945*, 2024.
 - Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.
 - Mario Michael Krell, Matej Kosec, Sergio P Perez, and Andrew Fitzgibbon. Efficient sequence packing without cross-contamination: Accelerating large language models without impacting performance. *arXiv preprint arXiv:2107.02027*, 2021.
 - Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang, Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot imitators. *arXiv preprint arXiv:2311.01378*, 2023.
- Xinghang Li, Peiyan Li, Minghuan Liu, Dong Wang, Jirong Liu, Bingyi Kang, Xiao Ma, Tao Kong, Hanbo Zhang, and Huaping Liu. Towards generalist robot policies: What matters in building vision-language-action models. *arXiv preprint arXiv:2412.14058*, 2024.

- Yi Li, Yuquan Deng, Jesse Zhang, Joel Jang, Marius Memmel, Raymond Yu, Caelan Reed Garrett,
 Fabio Ramos, Dieter Fox, Anqi Li, et al. Hamster: Hierarchical action models for open-world robot manipulation. arXiv preprint arXiv:2502.05485, 2025.
 - Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024a.
 - Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. *arXiv preprint arXiv:2410.07864*, 2024b.
 - Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured data. *arXiv preprint arXiv:2005.07648*, 2020.
 - Oier Mees, Lukas Hermann, and Wolfram Burgard. What matters in language conditioned robotic imitation learning over unstructured data. *IEEE Robotics and Automation Letters*, 7(4):11205–11212, 2022a.
 - Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for language-conditioned policy learning for long-horizon robot manipulation tasks. *IEEE Robotics and Automation Letters*, 7(3):7327–7334, 2022b.
 - Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal visual representation for robot manipulation. *arXiv preprint arXiv:2203.12601*, 2022.
 - Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei. Kosmos-2: Grounding multimodal large language models to the world. *arXiv preprint arXiv:2306.14824*, 2023.
 - Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees, Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action models. *arXiv preprint arXiv:2501.09747*, 2025.
 - Leonard Salewski, A. Sophia Koepke, Hendrik P. A. Lensch, and Zeynep Akata. *CLEVR-X: A Visual Reasoning Dataset for Natural Language Explanations*, page 69–88. Springer International Publishing, 2022. ISBN 9783031040832. doi: 10.1007/978-3-031-04083-2_5. URL http://dx.doi.org/10.1007/978-3-031-04083-2_5.
 - Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montserrat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza, Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. *arXiv preprint arXiv:2503.20020*, 2025.
 - Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot policy. *arXiv preprint arXiv:2405.12213*, 2024.
 - Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
 - Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need. *arXiv* preprint arXiv:2409.18869, 2024.
 - Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu, Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot manipulation. *arXiv preprint arXiv:2312.13139*, 2023.
 - Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu, Yutong Dai, Michael S Ryoo, et al. xgen-mm (blip-3): A family of open large multimodal models. *arXiv preprint arXiv:2408.08872*, 2024.

- Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo, Jianwei Yang, Baolin Peng, Ajay Mandlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos. *arXiv* preprint arXiv:2410.11758, 2024.
- Jianke Zhang, Yanjiang Guo, Yucheng Hu, Xiaoyu Chen, Xiang Zhu, and Jianyu Chen. Up-vla: A unified understanding and prediction model for embodied agent. *arXiv preprint arXiv:2501.18867*, 2025.
- Yanzhe Zhang, Ruiyi Zhang, Jiuxiang Gu, Yufan Zhou, Nedim Lipka, Diyi Yang, and Tong Sun. Llavar: Enhanced visual instruction tuning for text-rich image understanding. *arXiv preprint arXiv:2306.17107*, 2023.
- Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.
- Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured language model programs. *Advances in Neural Information Processing Systems*, 37: 62557–62583, 2024a.
- Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov, Furong Huang, and Jianwei Yang. Tracevla: Visual trace prompting enhances spatial-temporal awareness for generalist robotic policies. *arXiv preprint arXiv:2412.10345*, 2024b.
- Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart, Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. In *Conference on Robot Learning*, pages 2165–2183. PMLR, 2023.

A Unified Modality Representation

RoboOmni processes a diverse set of input modalities and is capable of generating various outputs, all within a unified next-token prediction framework. Inputs include visual information such as images and video streams, natural language instructions or captions, and proprioceptive robot states. The model can then generate sequences of actions for robotic manipulation, textual responses for tasks like Visual Question Answering (VQA), bounding boxes for visual grounding, and 2D point traces. To achieve this, all these relevant modalities—including language, vision, robot states, actions, points, and bounding boxes—are mapped into a shared discrete token sequence, as illustrated in Figure 3. This unification relies on the modality-specific tokenization schemes detailed below.

Figure 3: Overview of the unified modality tokenization pipeline in RoboOmni. Diverse inputs such as Image/Video, Text instructions, Point coordinates, Bounding Boxes (Box), Robot State, and Action commands are processed and converted into a shared discrete token sequence by the Qwen2.5-VL tokenizer. The figure shows schematic examples of raw inputs on the bottom row and their corresponding tokenized representations above them (e.g., point coordinates as text strings, states and actions as sequences of dedicated 'scode_X' and 'acode_X' tokens representing their discretized bin values).

Text Tokenizer: Natural language instructions or captions are processed using the standard text tokenizer provided with the Qwen2.5-VL model. This tokenizer is utilized for both encoding textual inputs and decoding textual outputs generated by RoboOmni.

Visual Representation: Input images are processed by the Vision Transformer (ViT) component of the Qwen2.5-VL model. A key feature of this ViT is its support for variable resolution inputs, enabling it to seamlessly handle both static images and dynamic video streams. Visual features undergo temporal compression by a factor of 2. For spatial feature resolution reduction, a patch size of 14×1 is employed, combined with a subsequent pooling factor of 2. This results in an overall spatial compression factor of 28×2 relative to the input image dimensions. The output of this process is a sequence of visual tokens, which are encapsulated by special marker tokens: $<viinn_start>$ at the beginning and $<viinn_end>$ at the end of the visual token sequence.

State and Action Tokenizer: Continuous robot states and actions (typically represented as delta states), both comprising 6 Degrees of Freedom (DoF) end-effector poses (XYZ, RPY) and a gripper state, are discretized into token sequences. Following the methodology of OpenVLA, each continuous dimension is independently mapped to one of 256 discrete bins. Normalization is performed using the 1st and 99th percentiles of the distribution of that dimension observed in the training dataset; this range is assigned to [-1,1] before the binning process. This robust normalization approach avoids undue sensitivity to outliers that can affect standard min-max normalization.

A crucial distinction in our approach is the handling of the new action and state tokens. Instead of replacing low-frequency words in the existing vocabulary of the Qwen2.5-VL tokenizer, we extend its vocabulary. Specifically, we add 256 unique state tokens (named 'scode_0' through 'scode_255', as exemplified for a sequence in Figure 3) and 256 unique action tokens (similarly, 'acode_0' through 'acode_255') to the vocabulary of the tokenizer. Each of these tokens corresponds to one of the discrete bin values. Critically, these new tokens are incorporated as *normal tokens* rather than *special tokens*. This design choice was informed by observations that the Qwen2.5-VL architecture applies specific internal processing to special tokens, which could introduce unintended complexities or instability during the training of the VLA model. The resulting sequences of these 'scode_X' (for state) or 'acode_X' (for action) tokens, one for each dimension of the state or action

vector, are then prefixed by their respective special start tokens, namely < |state_start | > and < |action_start | >.

The selection of 256 bins per dimension offers a fine-grained discretization that provides sufficient precision for typical robotic control tasks. For instance, considering a representative action scale where a 2 cm end-effector movement is functionally significant, the discretization error per dimension would be less than $2 \text{ cm}/256 \approx 0.078 \text{ mm}$. This level of error is considerably smaller than the inherent error margins of most low-level robot controllers and, as such, can be considered negligible for practical manipulation purposes.

Point and Bounding Box Tokenizer: Spatial coordinates, such as 2D points (x,y) on the image plane (e.g., for end-effector trace prediction), are first normalized from their original pixel coordinates (where $0 \le x < W$ and $0 \le y < H$, with W and H being the image width and height, respectively) to a fixed integer range of [0,1024). The resulting integer pair is then formatted as a string (e.g., "(99,102)" as shown in Figure 3) and subsequently tokenized using the aforementioned Qwen2-VL text tokenizer. Bounding boxes, used for tasks like visual grounding, are handled in a similar manner by tokenizing their top-left (x_1, y_1) and bottom-right (x_2, y_2) corner points as text (e.g., "(105,114),(156,162)" in Figure 3). Sequences of point tokens are prefixed by the special token < |point_start|>, and bounding box token sequences are prefixed by < |box_start|>.

This comprehensive tokenization strategy, visually summarized in Figure 3, transforms complex, multimodal interaction sequences into a unified linear sequence of discrete tokens. The model can then be trained end-to-end using a standard cross-entropy loss objective for causal next-token prediction, irrespective of originating modality. This architectural unification simplifies the training paradigm and allows RoboOmni to effectively leverage powerful sequence modeling techniques across all aspects of the Vision-Language-Action task.

B MULTI-MODALITY CO-TRAINING DATA

A key advantage of our unified modality representation is the ability to seamlessly integrate auxiliary training tasks alongside direct action prediction. By co-training on a diverse set of objectives using the same next-token prediction framework, we enable the model to develop richer representations and transfer knowledge across modalities, ultimately benefiting the primary manipulation task and enhancing generalization (Team et al., 2025). Figure 4 illustrates examples of how multi-modal interleaved inputs are structured for various co-training tasks. The primary and auxiliary tasks, their data organization, sources, and the capabilities they impart to RoboOmni are detailed below.

Multi-Modal Interleaved Input

Figure 4: Examples of multi-modal interleaved input sequences for different co-training tasks within RoboOmni. The top row depicts a sequence for Action Prediction, incorporating visual input, language instruction, robot state, and the predicted action. Subsequent rows illustrate input formats for Visual Question Answering (VQA), Visual Grounding, and Trace Prediction, Video Caption, showcasing the diverse data types processed by the unified framework.

B.1 ACTION PREDICTION

The Action Prediction task is central to the function of RoboOmni as a Vision-Language-Action (VLA) model. Data for this task is organized into interleaved sequences representing timesteps of a robotic manipulation trajectory, following a format such as $V_1, L_1, S_1, A_1, V_2, L_2, S_2, A_2, \ldots, V_T, L_T, S_T, A_T$. Here, V_t represents the visual observation (e.g.,

camera images), L_t is the tokenized language instruction (which may be a constant task-level goal repeated across timesteps or a more dynamic input), S_t is the proprioceptive state of the robot (e.g., joint angles, end-effector pose), and A_t is the action executed at timestep t. The model is trained to predict the action tokens A_t given the historical context of preceding vision, language, state, and action tokens. This data is primarily sourced from large-scale robotics datasets that provide expert demonstrations of manipulation tasks, including comprehensive collections like the Open X-Embodiment (OXE) dataset, as well as specific benchmarks such as Calvin (Mees et al., 2022b), RT-1 (Brohan et al., 2022), Droid (Khazatsky et al., 2024), and potentially custom-collected real-world robot interaction data. Training on this data endows RoboOmni with the core capability to perform physical interactions and manipulations in its environment, effectively learning a policy that maps multimodal sensory inputs and language commands to sequences of robot actions required to complete specified tasks.

B.2 VISUAL QUESTION ANSWERING (VQA)

For Visual Question Answering, the data is organized as triplets of (image, natural language question, natural language answer). The model receives an image and a question pertaining to its content and is trained to generate a concise and accurate textual answer. We utilize established VQA benchmarks for this objective, primarily the CLEVR dataset (Salewski et al., 2022) for its focus on compositional visual reasoning, and general VQA datasets like VQA v2 (Goyal et al., 2017) which cover a wider array of questions and visual concepts. Training on VQA preserves and enhances the core capabilities of the foundational Vision-Language Model (VLM) in sophisticated image understanding and nuanced text generation. This ensures RoboOmni retains strong multimodal reasoning skills crucial for interpreting complex instructions, analyzing scenes effectively, and potentially engaging in broader dialogue regarding its visual environment.

B.3 VISUAL GROUNDING (BOUNDING BOX PREDICTION)

In the Visual Grounding task, the model processes an image alongside a textual query or instruction that refers to one or more objects within that image, and it is trained to output the bounding box coordinates of the specified objects. These coordinates are discretized and then tokenized into a textual representation (as detailed in Appendix A), which the model predicts autoregressively. Data for this task is sourced from two main repositories: the COCO (Common Objects in Context) dataset (Chen et al., 2015), which provides extensive bounding box annotations for a wide variety of objects, and the blip3-grounding-50m dataset (Xue et al., 2024), specifically curated to enhance visual grounding capabilities. This training explicitly cultivates the spatial understanding of the model and object localization skills, which are critical for enabling precise robotic manipulation by allowing RoboOmni to accurately identify and locate objects relevant to the task or mentioned in instructions.

B.4 Trace Prediction

The Trace Prediction task aims to instill an understanding of short-term motion dynamics and generalizable physical priors by training the model to predict 2D end-effector trajectories. Input 3D gripper coordinates are projected to 2D pixel points using camera parameters and then tokenized into a text-based representation (see Appendix A). Each trajectory is conceptualized as an interleaved sequence: $[l, o_1, \operatorname{point}_1, o_2, \operatorname{point}_2, \dots, o_N, \operatorname{point}_N]$, containing the language instruction l, initial visual observation o_1 , and subsequent alternating visual observations o_i with their corresponding 2D points point_i . During training, the sequence S_{train} fed to the model is constructed by always preserving l and o_1 , but stochastically omitting subsequent visual observations o_i (for i>1) with a probability of 0.8, and similarly omitting point tokens point_i with a probability of 0.2; the objective of the model is to predict the retained point tokens. Data for this task is drawn from the RLBench, Droid (Khazatsky et al., 2024), and Calvin (Mees et al., 2025) datasets, offering diverse manipulation scenarios. This task, inspired by prior work (Team et al., 2025), enhances robustness and imputation skills due to the stochastic conditioning, while the 2D trace modality itself, offering a simplified and potentially cross-embodiment view of motion intent (Li et al., 2025), helps the model acquire broadly applicable physical principles.

B.5 VIDEO CAPTIONING

For the Video Captioning task, data is structured as pairs of video segments (sequences of visual frames representing a history of observations) and their corresponding natural language descriptions or task summaries. These textual annotations serve as the prediction target given the video input. We primarily utilize videos paired with their task instructions from the Open X-Embodiment (OXE) dataset and the Calvin dataset (Mees et al., 2022b). Co-training on video captioning encourages RoboOmni to develop a deeper semantic understanding of complex interaction sequences over time. This enhances its ability to comprehend and follow language instructions by maintaining and refining its inherent language generation capabilities, ensuring a strong connection between dynamic visual information and its textual interpretation.

By jointly optimizing for these diverse objectives alongside the main action prediction task, RoboOmni learns more robust and generalizable representations. This multi-task co-training approach allows the model to leverage synergistic relationships between different modalities and tasks, leading to improved performance on the core robotic manipulation challenges and better adaptation to novel scenarios.

C TRAINING PARADIGM

This section details the core training methodologies employed in RoboOmni, emphasizing the rationale behind our choices and how they address common challenges in developing robust Vision-Language-Action (VLA) models. We explore alternatives and highlight the advantages of our selected approaches, particularly in facilitating a unified and efficient learning framework.

C.1 INTERLEAVED INPUT FOR VARIABLE VISION AND ACTION HISTORY

RoboOmni utilizes an interleaved data format to naturally incorporate variable-length historical context, comprising visual observations, language instructions, robot states, and past actions (e.g., $V_1, L_1, S_1, A_1, V_2, L_2, S_2, A_2, \ldots$). This approach inherently supports sequences of varying lengths, reflecting the dynamic nature of robotic tasks and interactions. A key aspect of this formulation is that the loss computation can incorporate signals from multiple action predictions within a single packed sequence, allowing for efficient learning from entire sub-trajectories. This method of conditioning on rich historical context for action decision-making aligns with recent advancements in large Vision-Language Models (VLMs) that also leverage extensive multimodal histories for improved understanding and generation, such as Emu (Wang et al., 2024). By adopting this paradigm, RoboOmni benefits from a natural and powerful way to model temporal dependencies and make informed, context-aware action choices.

C.2 Classifier-Free Guidance for Vision-Motor Only Training

To enhance the robustness of the learned policies and enable training on trajectories that may lack explicit language annotations, we incorporate Classifier-Free Guidance (CFG) principles into our training regimen. During training, language instruction tokens are stochastically omitted from the input sequence with a predefined probability. This forces the model to learn to predict action sequences based solely on the visuomotor context (current and past visual observations and robot states). Such vision-motor only training helps the model to capture the inherent dynamics and continuity within action trajectories, independent of explicit language commands. Furthermore, this strategy allows us to leverage valuable demonstration data that may consist only of visual and state-action sequences, thereby broadening the effective training distribution and contributing to more generalizable and stable motor skills.

C.3 SEQUENCE PACKING FOR ENHANCED TRAINING EFFICIENCY AND MULTI-DISTRIBUTION LEARNING

We employ sequence packing to improve GPU utilization and expose the model to a more diverse set of behavioral patterns within a single forward pass. Multiple independent sub-trajectories, potentially

865

866

867

868

870

871

872

873

874

875

876

877 878

879 880

881

882

883

884

885

886

887

889

890

891

892

893

894

895

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

from different tasks or environments, are concatenated into a single long sequence, with appropriate padding and attention masking to prevent cross-contamination between distinct episodes. Unlike some sequence packing techniques in Large Language Models (LLMs) that might modify causal attention masks extensively to handle packed segments, our approach primarily relies on standard causal masking within each sub-trajectory, allowing the model to attend to all preceding tokens within its current episode. This design choice is partly inspired by findings, such as those in the DeepSeek-V3 technical report (Liu et al., 2024a), suggesting that simpler attention mechanisms in packed settings can yield strong performance. This method ensures that the computational benefits of Flash Attention mechanisms are maximally leveraged due to longer contiguous sequence processing. Moreover, training with packed sequences inherently promotes multi-distribution learning, as the model must infer the underlying task and dynamics from the immediate context within each packed segment. This capability is crucial for developing robust, context-dependent behaviors and lays a foundation for future work in few-shot adaptation, in-context learning (ICL), and chain-of-thought (CoT) reasoning within the robotics domain.

C.4 MULTI-TOKEN ACTION PREDICTION (MTAP) FOR ACTION CHUNKING

Predicting a chunk of multiple future actions at each step, rather than a single action, can improve policy smoothness and planning horizon. However, implementing action chunking effectively within an autoregressive framework presents several challenges. A purely causal approach, where each action in a chunk is predicted sequentially, often suffers from compounding errors, as inaccuracies in earlier predicted actions negatively impact subsequent ones. Additionally, actions predicted earlier in the chunk cannot attend to information from actions that are supposed to occur later within the same chunk, limiting the coherence of the predicted action sequence. Alternative methods like the FAST tokenizer (Pertsch et al., 2025) attempt to address this by encoding the entire action chunk in the frequency domain, allowing temporal information across the chunk to be captured without causal limitations during encoding. However, during generation, actions are still typically decoded token by token (or dimension by dimension for each action in the chunk), which can lead to slower inference times for generating a complete action chunk. For instance, observations indicate that π -FAST requires significantly more time for generation (e.g., 750 ms) compared to models like π_0 (e.g., 100 ms) that generate chunks more directly (Black et al., 2024; Pertsch et al., 2025). Another common strategy involves modifying the causal attention mask to allow tokens within an action chunk to attend to each other more freely, or even to allow all action tokens in a chunk to be predicted in parallel from a shared prefix. While this can enable fast, parallel generation of an action chunk, modifying the VLM's native causal attention structure can introduce complexities. Firstly, non-standard attention patterns can reduce the efficiency of attention computation mechanisms and, consequently, lower overall training throughput. Secondly, and more critically for our framework, such modifications often make it difficult to support variable-length interleaved data formats that include multiple historical (vision, state, action) timesteps. Models adopting this approach, such as OpenVLA-OFT (Kim et al., 2024), often revert to using only a single frame of observation as input to the policy, thereby losing the benefits of historical context, which numerous studies have shown to be crucial for robust policy performance (Brohan et al., 2022; Li et al., 2023).

To address these limitations, RoboOmni employs Multi-Token Action Prediction (MTAP) (Gloeckle et al., 2024; Liu et al., 2024a). In MTAP, for predicting an action chunk of size H, the model processes the input history once through its shared transformer backbone. Then, instead of a single output head, H parallel prediction heads (or a replicated final layer mechanism) are used, each dedicated to predicting one action step in the chunk. Specifically, from the final shared hidden state, H distinct transformations are applied to produce H sets of logits, one for each action a_{t+k} where $k \in [0, H-1)$. MTAP offers several advantages. Firstly, this non-causal approach to predicting the action chunk avoids the issue of error accumulation inherent in sequential causal prediction. Unlike modifying the global causal mask, MTAP preserves the standard causal processing for the historical interleaved input sequence, allowing it to natively support rich vision-action history. Secondly, because MTAP involves generating a fixed number of output tokens (e.g., 7 tokens per action if each action has 7 dimensions) in parallel via multiple heads, regardless of the chunk length H, it is highly amenable to VLM infrastructure optimizations such as model parallelism and efficient batching. This allows for very fast generation of action chunks, potentially outperforming methods like FAST tokenizer in terms of speed, and remaining competitive with single-step generation models like π_0 or OFT-style approaches, even when incorporating extensive historical context. Thirdly, these parallel

heads for action prediction do not interfere with the tokenization or prediction mechanisms for other modalities (text, vision features) or other co-training tasks (VQA, grounding), allowing RoboOmni to seamlessly benefit from diverse VL co-training. Finally, our experiments demonstrate that MTAP provides a significant performance uplift. The predicted action chunks can be effectively utilized with techniques such as receding horizon control and temporal ensembling to further enhance policy stability and task success rates.

C.5 MODEL BACKBONE AND TRAINING PARAMETERS

RoboOmni is built upon the Qwen2.5-VL-7B model as its foundational Vision-Language Model backbone. The original tokenizer of Qwen2.5-VL is expanded to include the necessary action tokens, state tokens, and special marker tokens as detailed in Appendix A. For training, we employ the AdamW optimizer with a learning rate of 1×10^{-4} . A cosine learning rate decay schedule is utilized, with a warm-up phase constituting 5% of the total training steps. A weight decay of 0.01 is applied to all trainable parameters to mitigate overfitting. The model is typically trained for a specified number of epochs depending on the dataset size and task complexity, with specific details provided in the main experimental sections of the paper. All training is conducted using mixed-precision (e.g., bfloat16) to optimize for speed and memory efficiency on modern GPU hardware.

D SIMULATION

This section outlines the configuration of the simulation benchmarks used for evaluating RoboOmni.

Table 5: Comprehensive experimental results and ablation studies on the CALVIN (ABCD→D) benchmark. This table aggregates all configurations evaluated in our study for a detailed comparison. The default configurations for **RoboOmni(Bin)** and **RoboOmni(FAST)** are highlighted in bold.

Configuration		Avg. Length				
Comiguration	Top 1	Top 2	Top 3	Top 4	Top 5	Trg. Length
Main Results: Baselines and Proposed	Models					
OpenVLA	0.921	0.732	0.565	0.455	0.346	3.03
π_0 -FAST (PaliGemma)	0.974	0.936	0.892	0.848	0.803	4.45
RoboOmni(Bin) (Default)	0.997	0.973	0.940	0.895	0.834	4.64
RoboOmni(FAST) (Default)	0.997	0.982	0.951	0.918	0.881	4.73
Ablation: Without MTAP						
Tokenizer: BIN	0.990	0.935	0.865	0.776	0.679	4.24
Tokenizer: FAST	0.990	0.961	0.909	0.860	0.801	4.52
Ablation: Bin Size (with MTAP)						
Bin Size = 128 (Tokenizer: BIN)	0.989	0.955	0.920	0.890	0.837	4.59
Bin Size = 1024 (Tokenizer: BIN)	0.980	0.939	0.888	0.838	0.790	4.44
Bin Size = 128 (Tokenizer: FAST)	0.996	0.976	0.950	0.913	0.861	4.70
Bin Size = 1024 (Tokenizer: FAST)	0.990	0.968	0.940	0.916	0.871	4.68
Ablation: Window Size (Default: Robot	Omni(Bin))				
Window Size = 1	0.973	0.932	0.897	0.871	0.813	4.49
Window Size = 10	0.985	0.955	0.914	0.870	0.824	4.55
Ablation: Model Size (Default: RoboOr	nni(Bin))					
Qwen2-VL-2B	0.981	0.939	0.886	0.842	0.776	4.42
Qwen2.5-VL-3B	0.984	0.952	0.911	0.875	0.819	4.54
Qwen2-VL-7B	0.982	0.956	0.918	0.881	0.828	4.57
Ablation: Training Strategies (Default:	RoboOm	ni(Bin))				
Without VLM Dataset	0.991	0.962	0.911	0.855	0.806	4.53
Without Sequence Packing	0.983	0.934	0.897	0.853	0.791	4.46
Without CFG	0.987	0.947	0.897	0.852	0.795	4.48

D.1 CALVIN

CALVIN (Composable Action Language and Vision) (Mees et al., 2022b) serves as a benchmark for evaluating long-horizon, language-conditioned robotic manipulation policies. It features a simulated tabletop environment where a Franka Emika Panda arm performs a variety of tasks. The benchmark includes a dataset of approximately 24,000 human-teleoperated demonstrations, each annotated with natural language instructions. These demonstrations cover 34 distinct, predefined basic skills, such as "rotate blue block right," "move slider left," and "turn on light bulb." Trajectories in CALVIN are relatively short, typically under 64 timesteps each. The dataset is structured into four scene splits (A, B, C, and D), which allow for evaluating generalization to different visual and physical configurations. Our experiments utilize the ABCD splits for training. For evaluation, policies are typically required to complete a sequence of multiple consecutive tasks, and performance is measured by the success rates in achieving these sequential goals and the average number of tasks successfully completed per trial. Visual input is provided from both a static third-person camera and a wrist-mounted camera on the robot.

D.2 IMPLEMENTATION DETAILS

Our model, RoboOmni, is built upon the Qwen2.5-VL-7B backbone. We evaluate two versions based on the action tokenization scheme: RoboOmni(Bin) using a standard binning tokenizer, and RoboOmni(FAST) employing the FAST tokenizer. During training, we use a weighted data mixture with sampling weights of 0.8 for the standard CALVIN dataset, 0.2 for the CALVIN dataset prepared for CFG, and 1.0 for general VLM datasets. The model is trained for 18,000 steps (approximately 2 epochs on CALVIN data) with a global batch size of 64. We use a history length of 5, an action chunk size of 10, and pack sequences to a maximum length of 2048. For optimization, we use the AdamW optimizer with a weight decay of 0.1, and employ a cosine learning rate schedule with a 1000-step warmup, a maximum learning rate of 1×10^{-4} , and a minimum of 1×10^{-7} .

E REAL ROBOT

To evaluate the performance of RoboOmni in the real world, we perform experiments on a real robot platform. The platform consists of a Kinova Gen-3 robot arm equipped with a Robotiq 2F-85 parallel-jaw gripper and two cameras, i.e., one static camera for capturing the workspace and another camera mounted on the end-effector. The training dataset consists of 18k human demonstrations across 37 tasks, which include 23 pick-and-place tasks and 14 non pick-and-place tasks such as pouring, flipping, and rotating.

We design four different settings to evaluate the model performance: Simple, Unseen Distractors, Unseen Instructions, and Unseen Objects.

- In **Simple**, the scene is set to be similar to those in the training data.
- In Unseen Distractors, unseen distractors are added to the scene.
- In **Unseen Instructions**, we follow [5] and use GPT-4 to generate unseen synonyms for the verbs in the instructions. For example, we replace "pick up" with "take", "cap" with "cover", and "stack" with "pile".
- In **Unseen Objects**, the robot is instructed to manipulate objects that were not included in the training dataset. And the language instructions are adjusted accordingly, i.e., the language instructions are also unseen.

In total, we evaluate 30 different tasks: 18 of which were seen during training, while the rest were unseen. See the appendix on the project page for the full list of training tasks and the 30 evaluated tasks. We compare the performance of RoboOmni with OpenVLA (Kim et al., 2024), Octo (Team et al., 2024), and GR-1 (Wu et al., 2023).

Generalization Capabilities RoboOmni demonstrates strong generalization to novel scenarios, a crucial attribute for practical robotic systems. In the "Unseen Objects" setting, where the robot was tasked with manipulating objects not encountered during training, RoboOmni achieved a success rate markedly superior to the compared baselines, as depicted in Figure. 5. For instance, while

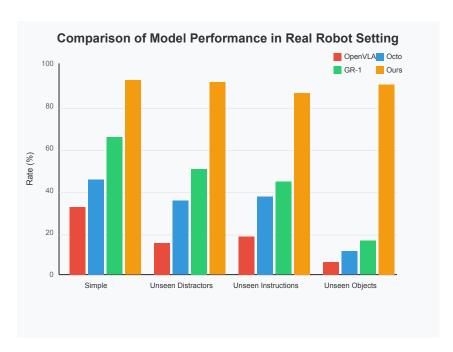


Figure 5: Comparison of success rates for OpenVLA, Octo, GR-1, and our proposed model RoboOmni across five different task categories in a real robot setting.

manipulating entirely new objects, RoboOmni maintained a considerable level of performance, whereas other models exhibited a more pronounced degradation. The detailed task breakdown in the Table 6 further corroborates this; for example, some tasks can be extremely challenging for models when dealing with unseen objects, yet Figure 5 shows RoboOmni (labeled as "Ours") achieving a success rate of 93.7% in the aggregate "Unseen Objects" category, substantially surpassing other baselines. This suggests that the unified modal representation and co-training strategies employed by RoboOmni contribute to a more abstract and transferable understanding of object properties and manipulation skills, rather than overfitting to specific training instances. Similarly, in the "Unseen Distractors" setting, RoboOmni maintained a high success rate (93.9%), significantly outperforming other methods when novel objects cluttered the scene. This indicates an ability to differentiate between target objects and irrelevant items, a key aspect of generalization in complex environments.

Instruction-Following Fidelity The ability to accurately interpret and execute commands based on varied linguistic inputs is paramount for Vision-Language-Action (VLA) models. The performance of RoboOmni in the "Unseen Instructions" setting, where synonyms or paraphrased commands were provided (e.g., replacing "pick up" with "take", or "cap" with "cover"), highlights its robust language understanding. Figure. 5 indicates that RoboOmni achieved a success rate of 89.4% under "Unseen Instructions", again leading the compared models. This level of performance suggests that RoboOmni is not merely memorizing command-action pairings but is developing a more nuanced semantic comprehension of the instructions. The high success rate in this category implies that the VLM backbone, enhanced by multi-modal co-training, effectively grounds novel linguistic expressions to corresponding robotic actions.

Robustness Overall robustness is evaluated by the model's ability to consistently perform across a range of challenging, unseen conditions. RoboOmni consistently outperformed other models across all "Unseen" categories (Distractors, Instructions, Objects), and consequently, in the "Unseen Average" success rate shown in Figure. 5 (**92.4**% for RoboOmni, compared to OpenVLA \sim 19%, Octo \sim 32%, GR-1 \sim 45%). Even in the "Simple" setting, designed to be similar to training data, RoboOmni achieved a very high success rate (**95.5**%), establishing a strong baseline. The detailed Table. 6 provides further evidence of this robustness. For instance, in the task "pick up the cucumber from the vegetable basket", RoboOmni achieved a 100% success rate in the "Basic" (Simple) and "Unseen Distractors" settings, while still maintaining a 66.7% success rate under both "Unseen

Prompts" and "Unseen Target Object" conditions. The consistent high performance, even when faced with novel objects, instructions, or distractors, underscores the stability and reliability of RoboOmni's learned policies. The Multi-Token Action Prediction (MTAP) strategy, combined with the comprehensive training paradigm including interleaved history and sequence packing, likely contributes to this enhanced robustness by enabling more coherent long-horizon reasoning and better adaptation to variations from the training distribution.

Table 6: Detailed success rates (%) of RoboOmni across various real-world manipulation tasks and settings. The 'Basic' setting refers to the standard task setup. 'Prompt', 'Distractor', and 'Target Object' refer to settings with unseen prompts, unseen distractors, and unseen target objects, respectively.

Task	Basic	Prompt	Distractor	Target Object
pour the black seasoning powder in the red bowl	100.0	83.3	50.0	N/A
press the toaster switch	100.0	100.0	100.0	N/A
close the drawer	100.0	100.0	100.0	N/A
open the drawer	83.3	50.0	50.0	N/A
close the oven	100.0	83.3	100.0	N/A
open the oven	83.3	83.3	33.3	N/A
pick up the cucumber from the vegetable basket; place the picked object on the cutting board	100.0	66.7	100.0	66.7
pick up the cucumber from the cutting board; place the picked object in the vegetable basket	83.3	83.3	100.0	100.0
pick up the potato from the vegetable basket; place the picked object on the cutting board	50.0	83.3	66.7	83.3
pick up the potato from the cutting board; place the picked object in the vegetable basket	100.0	66.7	83.3	83.3
pick up the eggplant from the red plate; place the picked object on the table	100.0	100.0	100.0	100.0
pick up the green bottle from the tray; place the picked object in the white box	100.0	100.0	100.0	100.0
pick up the knife from the right of the white plate	83.3	100.0	100.0	100.0
pick up the knife from the left of the white plate	83.3	83.3	83.3	83.3
pick up the eggplant from the red plate	100.0	100.0	100.0	100.0
pick up the eggplant from the green plate	100.0	100.0	100.0	100.0
pick up the mandarin from the green plate	100.0	100.0	100.0	100.0
pick up the mandarin from the red plate	100.0	100.0	100.0	83.3
pick up the red mug from the rack	100.0	83.3	100.0	100.0
pick up the green mug from the rack	100.0	100.0	100.0	100.0
pick up the green bottle from the white box pick up the green bottle from the tray	100.0 83.3	100.0 100.0	100.0 100.0	100.0 100.0

Figure 6: Real-world experimental setups for a variety of manipulation tasks. Each row illustrates a specific skill with a target object. The columns depict the same task under different experimental conditions.

Figure 7: Real-world experimental setups for a variety of manipulation tasks. Each row illustrates a specific skill with a target object. The columns depict the same task under different experimental conditions.

Figure 8: Qualitative results for basic setting.

Figure 9: Qualitative results for unseen prompt setting.

Figure 10: Qualitative results for unseen distractors setting

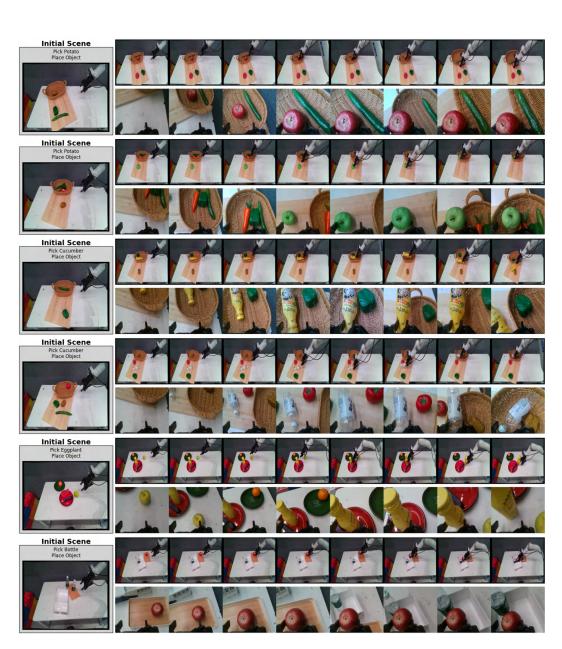


Figure 11: Qualitative results for unseen target object setting