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ABSTRACT

Integrating Vision-Language-Models (VLMs) into robotics has enabled building
generalizable Vision-Language Action (VLA) models for robotic manipulation.
While decoupled designs with an separate action expert, often outperform unified
frameworks, the latter (e.g., OpenVLA (Kim et al.,|2024)) present an appealing,
conceptually integrated architecture. Nevertheless, current unified approaches typi-
cally suffer from poor historical context integration and distribution shift given their
incapability of predicting action chunking. We introduce RoboOmn1i, a unified
multi-modal next-token prediction framework for robotic manipulation designed
to overcome these issues. Compared with decoupled approaches, RoboOmni uni-
fies the multi-modal representations and minimizes the distribution gap between
vision-language pretraining and action finetuning. Besides, in contrast to prior
unified approaches, RoboOmni brings in the action chunking mechanism by Multi-
Token Action Prediction (MTAP) that supports both FAST and Bin tokenizers,
and crucially alleviates the action distribution shift issue when training with noisy
real-world data. Specifically, by preserving the original VLM training pipeline,
RoboOmni naturally support co-training with multi-modal information and various
VLM optimization techniques, e.g., fast inference optimization, which significantly
improves the generalization capabilities and extensibility of RoboOmni. We con-
duct extensive experiments on both the CALVIN benchmark and a real-world
robot, demonstrating state-of-the-art (SOTA) performance. Our MTAP implemen-
tation with the FAST tokenizer achieves a 94.4% average success rate on CALVIN.
Furthermore, we show that our Bin tokenizer implementation, deployed with exist-
ing VLM serving frameworks like SGLang (Zheng et al.,|2024a), achieves a 27x
inference time speedup compared with OpenVLA.

1 INTRODUCTION

The integration of powerful foundation models, especially Vision-Language Models (VLMs), into
robotics is paving the way for Vision-Language-Action (VLA) systems capable of complex multi-
modal understanding and physical interaction (Zitkovich et al.| 2023} [Li et al., 2023). These models
hold the promise of creating generalist robots that perform diverse manipulation tasks and generalize
robustly across varied settings (Team et al.,|2025). However, a critical challenge has emerged: while
built upon highly capable VLMs, many current VLA implementations struggle to retain the broad
generalization abilities inherent in their parent models. Instead, they often overfit significantly to the
specific robotic datasets and environments seen during training (Li et al.,|2024; Kim et al., [2024),
losing the zero-shot or few-shot adaptability expected from foundation models and requiring costly
retraining for new scenarios (Peng et al.,|2023}; [Touvron et al.| |[2023)).

The generalization gap between the VLM backbone and the downstream VLA is tied with the
underlying architectural design and training paradigm. Most VLAs applies VLMs as their feature
extractors and feed representations into a decoupled continuous policy head, e.g., diffusion or flow
policies (Team et al., [2024; |Liu et al., 2024b)), for action prediction. Although being effective for
modeling continuous spaces, the decoupled approach separates action generation from core VLM
reasoning and deviates from the pretrained internet-scale data.

In this paper, we argue that actions are just another modality for VLMs, and an unified next-token
prediction framework captures the most underlying dependencies across all modalities, including
actions. Prior approaches have explored this formulation (Kim et al., 2024; Pertsch et al., 2025)), but
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Figure 1: Overview of the RoboOmni framework and its performance. The bottom section illustrates
the multi-modal interleaved data input. The top-left section details the model architecture, which
processes multi-modal interleaved inputs to produce various outputs. The right section displays
SOTA performance of RoboOmni on the CALVIN benchmark and its inference speed. RoboOmni is
approximately 27x faster than the unified approach OpenVLA and 6.6x faster than the decoupled
approach RoboFlamingo.

their performance struggles compared with the decoupled approaches. The root cause lies with the
fundamental auto-regressive training paradigm: the single-step action token generation causes severe
compounding error during inference in a Markov Decision Process (MDP), and it further slows the
inference speed compared with decoupled approaches, where an action chunk consisting of multi-step
actions is being generated in a single forward pass. As a result, unified approaches often runs with a
single-step history, and fails to fully utilize the rich information of past observations and actions.

We present RoboOmni, a VLM-like VLA that preserves all VLM capabilities and achieves the SOTA
performances. Our key insight is that by preserving the original VLM structure, RoboOmni can
directly apply advanced optimization techniques widely used in the multi-modal training literature.
Specifically, RoboOmni systematically address the aforementioned limitations as follows. To tackle
the inability of performing action chunking, we introduce a novel Multi-Token Action Prediction
(MTAP) strategy. Drawing inspiration from (Gloeckle et al., 2024; Liu et al.,|2024a), MTAP performs
parallel decoding of H actions by repeating the last layer only for action tokens. We observe MTAP
achieves a perfect balance minimizing modifications to VLM structures and maximizing the action
prediction accuracy. However, when incorporating history into the action generation process, the
inference speed still decreases given longer context. Fortunately, given a consistent architecture,
RoboOmni naturally benefits from the advanced optimization techniques from the VLM serving
pipelines, e.g., effective KV-caching, RadixAttention (Zheng et al.|[20244a), etc. As shown in Figurem
RoboOmni achieves a fast inference speed of 82.6 Hz with an action chunk size 10, and a history
length of 5, outperforming OpenVLA (Kim et al., [2024) by 27x. Besides, RoboOmni naturally
supports multi-modal co-training with various tasks, including visual grounding, question answering,
point trace prediction, etc., which is crucial for the out-of-distribution generalization of RoboOmni.

Extensive experiments conducted on the challenging CALVIN (Mees et al., 2022b) manipulation
benchmark validate the effectiveness of RoboOmni. Our results demonstrate that by integrating
these advancements, RoboOmni achieves state-of-the-art performance and exhibits strong zero-shot
generalization capabilities, which are further corroborated by successful deployments on a real-
world robotic platform. This confirms that a sophisticated implementation of the unified next-token
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prediction paradigm can surpass baseline discrete models and compete effectively with or exceed
contemporary diffusion-based VL As, delivering both high performance and adaptability.

2 RELATED WORK

2.1 VISION-LANGUAGE-ACTION MODELS

Existing VLA models, designed for multimodal understanding and robotic interaction, can be
categorized along several axes related to data processing. Key distinctions include whether models
utilize temporal history (Li et al.,|2023)) or operate on single frames (Intelligence et al.| [2025)), how
actions are represented (discrete tokens (Zitkovich et al., 2023} |Kim et al., 2024)) vs. continuous
vectors (Liu et al.,[2024b}; Team et al.,2024)), and whether they predict actions step-by-step or employ
action chunking (Zhao et al.| 2023)).

Architecturally, diverse training paradigms are employed. Some models are built on diffusion
policies, either trained specifically for robotics like Octo (Team et al., [2024)) or integrated within
larger systems like RDT-1B (Liu et al.,[2024b). A dominant approach adapts powerful pre-trained
VLMs as backbones, finetuning them with robotics data, as seen in RT-2 (Zitkovich et al., [2023)),
RoboFlamingo (Li et al.| 2023)), and OpenVLA (Kim et al., 2024)). Hybrid strategies also exist, such
as o (Black et al., [2024)), which combines VLM encoding with diffusion-based action decoding.

Analyses like RoboVLMs (Li et al., [2024) often suggest that continuous action representations,
processed with historical context via separate decoder heads, yield optimal results, reinforcing the
view that action generation is primarily a regression task ill-suited for the next-token prediction
common in language modeling. However, we demonstrate that RoboOmni, by integrating the
advanced optimization techniques from VLMs, not only unifies the modalities, but provides stronger
performances than decoupled models, comparably fast inference speed, and better scalability.

2.2 ACTION CO-TRAINING WITH VISION-LANGUAGE TASKS

Beyond optimizing the core action generation process, enhancing VLA capabilities through co-
training with auxiliary vision-language (VL) tasks has become a significant research thrust. This
strategy aims to imbue VLAs with richer semantic understanding, improved reasoning, and better
generalization by exposing them to related, non-robotic objectives during training. Early evidence
highlighted the benefits of general VL dataset co-training alongside discrete action prediction, with
RT-2 demonstrating improved adaptation to novel objects through this approach (Zitkovich et al.|
2023). Subsequent studies have investigated incorporating intermediate representations that bridge
vision and action more explicitly. VLAs such as LLaRVA (Zhang et al., [2023)), Hamster (L1 et al.,
2025)), and TraceVLA (Zheng et al.l [2024b) utilize future visual trace prediction as an auxiliary
objective to foster better vision-action alignment. An alternative direction involves learning latent
action representations from large-scale human video datasets, as pursued by LAPA (Ye et al., 2024)),
aiming to mitigate the domain gap between human demonstrations and robot execution. Further
efforts targeting higher-level cognitive skills have seen models like 7 5 (Intelligence et al.l 2025) and
Gemini Robotics (Team et al.| [2025)) integrating specific auxiliary objectives related to high-level task
planning and object detection, explicitly enhancing planning capabilities and spatial understanding.

3 ROBOOMNI

RoboOmni fundamentally reconceptualizes the integration of action capabilities into VLMs. Our
approach is driven by the objective to minimally alter established VLM architectures while seamlessly
incorporating the action modality. We achieve this by structuring the input as multi-modal interleaved
sequences of vision, language, state, and action tokens and using Multi-Token Action Prediction
(MTAP) for action chunking. This allows the prediction of multiple future action steps without
modifying the inherent causal attention mechanisms. We formalize the manipulation task as a
sequence modeling problem. The policy 7 learns to generate a chunk of H future actions, as.¢+p—1,
to complete a task specified by a language instruction [ € L. The policy’s decision is conditioned
on a history h, that includes recent visual observations o; € O, proprioceptive states s; € S (e.g.,
end-effector pose), and past actions from the action space A. By tokenizing all modalities into
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Figure 2: Architectural overview of RoboOmni. The model processes multi-modal interleaved input
sequences comprising visual observations (1), text instructions (1), robot states (.5), and actions (A).
These sequences are packed for efficiency, where the text instructions (7") are optionally masked as
part of Classifier-Free Guidance (CFG) training. RoboOmni supports MTAP through shared layers,
followed by parallel heads, enabling the prediction of action chunks.

a unified sequence, we train the model using a standard causal, next-token prediction objective.
This directly aligns with how contemporary VLMs are trained, enabling RoboOmni to benefit from
VLM optimization techniques (e.g., inference optimizations, multimodal pre-training) to significantly
improve generalization and efficiency.

3.1 MTAP FOR ACTION CHUNKING.

Action chunking, or predicting multiple future actions simultaneously, is a key technique for im-
proving the performance and sample efficiency of robot policies (Zhao et al., [2023} |[Pertsch et al.,
2025} |Li et al.| 2024). However, naive sequential prediction with causal transformers suffers from
compounding errors, hindering true long-horizon anticipation. To overcome this, we introduce a
versatile Multi-Token Action Prediction (MTAP) framework that adapts its prediction strategy to
different action tokenization schemes. This adaptability allows our model to remain compatible
with both simple and advanced tokenizers, enhancing its overall performance and flexibility. The
following sections detail how MTAP is implemented for two distinct tokenizer archetypes.

Binning-based Action Tokenization. For tokenizers that discretize each action step independently,
such as a standard binning tokenizer, we adapt the method from (Gloeckle et al., 2024)). At each
time step ¢, RoboOmni predicts an entire action chunk p(as.¢+g—1 | 1, 0t—T:t, St—T:t, Qt—T:¢—1)- AS
illustrated in Figure[2] this is achieved by replicating the final transformer layer H times to create
parallel output pathways. For a given input history, these pathways generate H distinct hidden state
vectors {zo.p7—1 }. Each state zy, is then passed through a shared language model head (LMHead) to
produce logits for the corresponding future action a; . This design enables parallel decoding of the
action chunk from a single shared context, with the total loss aggregated across each prediction:

H-1

L= Lop(LMHead(z), ;) (1)
k=0

where af, , represents the ground-truth token for action a1 . This parallel structure effectively
mitigates the compounding error inherent in sequential decoding.

Frequency-space Action Sequence(FAST) Tokenization. Our framework also seamlessly sup-
ports advanced tokenization schemes like FAST (Pertsch et al., 2025), which transform an entire
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action chunk from the time domain into a variable-length, frequency-domain token sequence. This
transformation breaks the explicit, step-by-step temporal correspondence between the tokens and
the physical actions. Consequently, we adapt our MTAP strategy to align with standard multi-token
prediction (Liu et al.,|20244a). The objective shifts from predicting corresponding parts of the next
action to predicting the next H *tokens* in the sequence. For the hidden state z; of an input token
4, we still employ H parallel prediction layers. However, the k-th pathway is now trained to predict
the token at position j + k£ + 1, enabling direct, sequential prediction of the upcoming token stream.
The loss function is updated to reflect this token-index-based objective:

H-1
£=) "> Lop(LMHead(zj k), ¥}y 41) 2
j k=0

where z; 1 is the k-th hidden state for token 7; and y;‘-‘ {41 18 the ground-truth future token. This
flexible implementation allows RoboOmni to leverage both time-aligned and holistic tokenizers,
enhancing its versatility.

3.2 MULTI-MODAL ACTION CO-TRAINING

To facilitate synergistic multi-modality co-training within a unified next-token prediction framework,
we tokenize a comprehensive set of inputs. These include Visual inputs, Text inputs, Bounding
Box and Pixel Point modalities, as well as Robot State and Action modalities. All are mapped
into a shared representational space (see Appendix [A]for tokenization details of each modality). We
incorporate several VL co-training tasks to enhance the capabilities of the model:

Visual Grounding. We include a visual grounding task to explicitly cultivate spatial understanding
and object localization abilities in the model, which are critical for precise manipulation (Team et al.|
2025). This auxiliary objective trains the model to associate textual references with specific image
regions by predicting the discretized and text-tokenized bounding box coordinates of relevant objects.
For this purpose, we utilize datasets such as COCO (Chen et al.,|2015)) and the blip3-grounding-50m
dataset (Xue et al., 2024]).

Point Trace Prediction. While visual grounding strengthens static spatial awareness, it often lacks
the capacity for temporal reasoning over sequences of observations. To instill an understanding of
short-term motion dynamics and generalizable physical priors, we introduce a 2D end-effector trace
prediction task, inspired by (Li et al. [2025). This task encourages the model to learn underlying
physical principles and motion intent. Specifically, it involves predicting the 2D pixel trajectories of
the end-effector, which are derived by projecting the 3D gripper coordinates onto the 2D image plane
and subsequently tokenizing these pixel locations. This approach significantly enhances the robot’s
spatial understanding by explicitly training the model on the visual manifestation of movement. The
training employs a stochastic conditioning scheme on partially observed trajectories to promote
robustness and imputation skills. Data for this task are sourced from Droid, RLBench, and Calvin.

Visual Question Answering(VQA). To further enhance the semantic understanding of interaction
sequences and improve proficiency in adhering to language instructions, we integrate tasks that bolster
high-level visual reasoning and generation. VQA training is incorporated to preserve and augment the
core capabilities of the foundational VLM in image understanding and text generation. This objective
ensures the model retains potent multimodal reasoning skills, instrumental for interpreting complex
instructions and analyzing scenes effectively, utilizing established datasets such as CLEVR (Salewski
et al.,[2022) and general VQA benchmarks (Goyal et al.,[2017)).

3.3 TRAINING VLA As VLM

One of the core advantages of RoboOmni is its unified representation of action and all other
modalities, which allows for the seamless integration of VLM optimization techniques with VLA
training. We employ several advanced training strategies designed to enhance the stability, efficiency,
and predictive capabilities of the next-token prediction framework for robotics.

Optimize RoboOmni as VLMs. A significant limitation of VLA policies, particularly those em-
ploying discrete action tokenization (Kim et al., [2024; |Zitkovich et al.,2023)), is their reliance solely
on the current observation oy, thereby ignoring past history. Predicting actions with accumulating
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history becomes increasingly computationally expensive. While prior methods often drastically
modify the policy head, rendering them incompatible with advanced VLM optimization techniques,
RoboOmni preserves the inherent VLM architecture. This preservation allows for the direct applica-
tion of existing optimization techniques. Specifically, our history sequence incorporates tokenized
representations of past observations (o;—7.¢), robot states (s;—7.¢), and actions (a;_7.t—1) up to the
current timestep ¢. During inference, we utilize modern LLM serving platforms, such as SGLang
(Zheng et al., [20244)), to accelerate inference.

Classifier-Free Guidance Training. To enhance policy robustness and leverage diverse data
sources, we incorporate principles from Classifier-Free Guidance (CFG) (Ho and Salimans, [2022))
into our training regimen. During training, language instruction tokens [ are randomly omitted from
the input sequence with a predefined probability of 0.2. This strategy serves two main purposes: 1)
It compels the model to predict action sequences based solely on the visuomotor context, thereby
capturing the inherent continuity and dynamics within action trajectories, independent of language
commands. 2) This approach enables the utilization of valuable trajectory data lacking corresponding
language annotations. Training on these language-free demonstrations allows the model to learn
more generalizable and stable motor skills from a broader data distribution, contributing to more
robust and reliable action policies, particularly for complex, temporally extended behaviors.

Packed Sequences for Multi-Distribution Learning. Our multi-modal co-training paradigm
sources data from diverse tasks, leading to token sequences of highly variable lengths. This variance
can cause significant training inefficiency due to padding. To address this, we employ sequence
packing (Krell et al.|[2021) to concatenate multiple independent sub-trajectories into a single dense
sequence, thereby maximizing GPU utilization. More importantly, we discovered that for action
data, omitting the attention masks between packed samples yields substantial benefits. This allows a
subsequent trajectory to attend to the context of a preceding, unrelated one within the same batch. We
posit that this forces the model to more rapidly infer tasks and dynamics from immediate context rather
than memorizing single trajectories. This encouragement of learning a robust, context-dependent
policy (i.e., a multi-distribution) leads to faster convergence and a notable improvement in final model
performance.

By jointly optimizing for these diverse objectives alongside the primary action prediction task, the
model learns more robust and generalizable representations. (See details in Appendix [B)

4 EXPERIMENT

4.1 EXPERIMENT SETUP ON CALVIN

CALVIN Benchmark. CALVIN (Mees et al., [2022b) is a simulation benchmark for multi-task
tabletop manipulation. It comprises four scene splits (A, B, C, and D) covering 34 distinct manipula-
tion tasks and contains 22,966 human-teleoperated demonstrations annotated with natural language
instructions. Following prior work, we train on the ABCD splits and evaluate solely on split D with
1,000 rollouts per model. We report the success rates of achieving 1 through 5 consecutive tasks, as
well as the average number of tasks completed per trial (Avg. Len.). Observations are captured from
both a side-mounted camera and a wrist-mounted camera.

Baselines. We compare RoboOmni against a suite of baseline methods (see Table[I)). For UP-VLA
and RoboFlamingo, we report the performance figures directly from their respective papers. To
ensure a controlled comparison, we conduct our own reproductions for OpenVLA and m-FAST.
OpenVLA (Kim et al.| 2024) is an autoregressive vision-language-action (VLA) model that predicts
discretized action tokens from a single frame, without historical context or vision-language co-training.
In our reproduction, the model is trained exclusively on CALVIN data to align with the setting without
VLM described in the original paper. RoboVLM (Li et al., [2024) represents a decoupled design
where a VLM backbone feeds into a dedicated policy head for continuous action decoding. -
FAST (Pertsch et al.,[2025)) combines a VLM with the FAST tokenizer. Our reproduction uses a
PaliGemma-3B backbone and is trained with the identical data mixture as RoboOmni. Since it is a
single-frame policy, we ensure fairness by controlling for an equivalent number of training samples.
See Appendix for implementation details.
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Table 1: Performance comparison on the CALVIN benchmark. The table evaluates models on two
settings: in-distribution performance (Train: ABCD, Eval: D) and out-of-distribution generalization
(Train: ABC, Eval: D). Our RoboOmni models, with both Bin and FAST tokenizers, establish new
state-of-the-art (SOTA) results in both settings. Bold indicates the best performance, and underline
indicates the second-best among all methods. The citation for Voltron (Karamcheti et al.| 2023)) is
omitted owing to limited space.

Method \ Train \ Consecutive tasks success rates \ ?vg.

| |1 2 3 4 5
MCIL (Lynch and Sermanet, 2020) 0.373 0.027 0.002 0.000 0.000 | 0.40
R3M (Frozen) (Nair et al.,[2022) 0.085 0.005 0.001 0.000 0.000 | 0.10
Voltron (Frozen) 0.101 0.003 0.001 0.000 0.000 | 0.11
Voltron (Fine-tuned) ABCD 0.837 0.566 0.352 0.208 0.115 | 2.08
RT-1 (Brohan et al.| 2022) 0.844 0.617 0438 0.323 0.227 | 245
OpenVLA (Kim et al.,[2024) 0921 0.732 0.565 0455 0346 | 3.03
HULC (Mees et al.| [2022al) 0.889 0.733 0.587 0475 0.383 | 3.06
RoboFlamingo (L1 et al., [2023) 0964 0.896 0.824 0.740 0.662 | 4.09
GR-1 (Wu et al.,[2023) 0.949 0.896 0.844 0.789 0.731 | 4.21
UP-VLA (Zhang et al., [2025)) 0962 0921 0.879 0.842 0.812 | 4.42
RoboVIMs (L1 et al.,[2024) 0.967 0930 0.899 0.865 0.826 | 4.49
mo-FAST (Pertsch et al.,|2025) 0974 0936 0.892 0.848 0.803 | 4.45
RoboOmni(Bin) 0.997 0973 0940 0.895 0.834 | 4.64
RoboOmni(FAST) 0.997 0982 0951 0918 0.881 | 4.73
Voltron (Frozen) 0.026 0.001 0.000 0.000 0.000 | 0.03
Voltron (Fine-tuned) 0.569 0.272 0.105 0.038 0.014 | 1.00
RT-1 0.533 0.222 0.094 0.038 0.013 | 0.90
HULC ABC 0418 0.165 0.057 0.019 0.011 | 0.67
GR-1 0.854 0.712 0596 0497 0.401 | 3.06
UP-VLA 0928 0.865 0.815 0.769 0.699 | 4.08
RoboVIMs 0.980 0936 0.854 0.778 0.704 | 4.25
RoboOmni(Bin) 0.988 0.933 0.860 0.795 0.721 | 4.30
RoboOmni(FAST) 0.992 0941 0.882 0.804 0.735 | 4.35

4.2 EXPERIMENT RESULTS ON CALVIN

RoboOmni establishes a new state-of-the-art, demonstrating that a unified discrete-token
framework can surpass decoupled continuous-action models. As shown in Table |1| our ap-
proach achieves state-of-the-art (SOTA) performance on the CALVIN benchmark. Specifically,
RoboOmni(FAST) obtains the highest scores across all metrics on the standard ABCD—D split,
with a 5-task success rate of 88.1% and an average task length of 4.73. This result significantly
outperforms previous SOTA methods like RoboVIMs, which employs a decoupled policy head for
continuous action decoding. This finding challenges the prevailing notion that continuous action
spaces are inherently superior for manipulation, proving that a well-designed unified framework with
discrete tokenization can be more effective.

The effectiveness of the core components of our framework is validated through controlled
comparisons with key baselines. We first establish a control group by comparing RoboOmni(Bin)
with our reproduced OpenVLA, as both utilize a binning tokenizer. RoboOmni(Bin) achieves a
massive performance leap, improving the 5-task success rate from 34.6% to 83.4%. This stark
contrast underscores the critical impact of our design choices—incorporating historical context, VLM
co-training, and MTAP-based action chunking—over a simple, single-frame unified policy. In a
second control group, we compare RoboOmni(FAST) with our reproduced my-FAST, both leveraging
a frequency-space tokenizer and the same data mixture. RoboOmni(FAST) again demonstrates
superior performance (88.1% vs. 80.3% 5-task success rate), which we attribute to our framework’s
synergistic integration of historical context and the MTAP action chunking strategy. These archi-
tectural advantages, absent in the single-frame my-FAST policy, enable more robust long-horizon
planning and lead to the observed performance gain.
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The FAST tokenizer boosts performance by alleviating temporal modeling pressure, and the
framework demonstrates exceptional generalization. Within our framework, RoboOmni(FAST)
consistently outperforms RoboOmni(Bin) across both the standard and the more challenging ABC—D
generalization splits. We hypothesize that this advantage arises because the FAST tokenizer’s
frequency-domain transformation provides a strong inductive bias for temporal relations, effectively
offloading some of the complex temporal modeling pressure from the transformer backbone. While a
sufficiently powerful model could theoretically learn these dependencies from scratch as required
by the Bin tokenizer, the FAST approach appears to guide the model to a better-optimized solution,
especially under real-world data constraints. This architectural advantage is further confirmed on the
ABC—D split, where both RoboOmni variants again set a new SOTA and exhibit robust generalization
to an unseen environment, with RoboOmni(FAST) leading at a 73.5% 5-task success rate.

4.3 ABLATION STUDY

Table 2: Ablation study of MTAP and different tokenizers.

Settings \ Top K Success Rate \ Task Lensth Inference Speed
. g (ms/action)
MTAP Tokenizer | Topl Top2 Top3 Top4 Top5 |
v FAST 0.997 0982 0951 0918 0.881 4.73 17.5
v BIN 0.997 0973 0940 0.895 0.834 4.64 12.1
X FAST 0.990 0961 0909 0.860 0.801 4.52 24.2
X BIN 0.990 0935 0865 0.776 0.679 4.24 107

We conduct a series of ablation studies to evaluate the contributions of key components in our
framework. Unless otherwise specified, all experimental settings follow those detailed in Section[4.2]

Table 3: Ablation study on the number of bins for action discretization. All models are trained with
MTAP. The default setting used in our main experiments is 256 bins.

Tokenizer BinSize | Topl Top2 Top3 Top4 Top5 | Avg. Length
128 0996 0976 0950 0913 0.861 4.70

FAST 256 0.997 0982 0951 0918 0.881 4.73
1024 0.990 0968 0940 0916 0.871 4.68

128 0.989 0955 0920 0.890 0.837 4.59

BIN 256 0.997 0973 0940 0.895 0.834 4.64
1024 0.980 0.939 0.888 0.838 0.790 4.44

Impact of MTAP and Tokenizer. Our primary ablation, presented in Table [2] investigates the
impact of Multi-Token Action Prediction (MTAP). The results clearly demonstrate that MTAP is
broadly effective, providing a substantial performance boost for both tokenizer schemes. For the
FAST tokenizer, enabling MTAP improves the 5-task success rate from 80.1% to 88.1%. The effect
is even more pronounced for the Bin tokenizer, where MTAP elevates the success rate dramatically
from 67.9% to 83.4%. Interestingly, MTAP also reverses the inference speed characteristics of
the tokenizers. Without MTAP, the fully autoregressive Bin tokenizer is exceedingly slow (107
ms/action). By enabling parallel decoding over the action chunk, MTAP provides a near-linear
speedup, slashing the inference time to just 12.1 ms/action. This not only makes the Bin tokenizer
significantly more efficient but also faster than the MTAP-enabled FAST tokenizer (17.5 ms/action),
presenting a compelling trade-off between peak performance and inference speed. We conducted
extensive ablation studies on the CALVIN benchmark to systematically evaluate the contribution of
each key design choice within the RoboOmni framework.

Impact of Action Bin Size. We investigate how the precision of action discretization affects policy
performance. As detailed in TableE], we evaluate bin sizes of 128, 256, and 1024 for both FAST and
Bin tokenizers. For the FAST tokenizer, performance peaks with 256 bins, achieving a 88.1% 5-task
success rate. Using a coarser discretization of 128 bins leads to a slight decline (86.1%), suggesting a
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potential loss of necessary precision for fine-grained movements. Conversely, a finer granularity of
1024 bins also results in a performance drop (87.1%), likely because it increases the complexity of
the prediction task without a proportional benefit in control accuracy. A similar trend is observed for
the Bin tokenizer, where performance is highest with 128 bins (83.7%) and 256 bins (83.4%), but
degrades significantly when using 1024 bins (79.0%). This suggests that for both methods, 256 bins
provides the best trade-off between expressive action representation and learnability.

Table 4: Ablation studies on window size, model size, and training strategies. The default setting is
RoboOmni(Bin) with a window size of 5 and a 7B parameter model, trained with all components.

Setting | Topl1 Top2 Top3 Top4 Top5 | Avg. Length
Default Configuration
RoboOmni(Bin) | 0997 0973 0940 0.895 0.834 | 4.64
Ablation on Window Size
Window Size =1 0973 0932 0.897 0.871 0.813 4.49
Window Size = 10 0985 0955 0914 0.870 0.824 4.55
Ablation on Model Size
Qwen2-VL-2B 0981 0939 0.886 0.842 0.776 4.42
Qwen2.5-VL-3B 0984 0952 0911 0.875 0.819 4.54
Qwen2-VL-7B 0982 0956 0918 0.881 0.828 4.57
Ablation on Training Strategies
Without VLM Dataset 0991 0962 0911 0.855 0.806 4.53
Without Sequence Packing | 0.983 0.934 0.897 0.853 0.791 4.46
Without CFG 0987 0947 0.897 0.852 0.795 4.48

Ablation on Architectural and Training Components. Based on its compelling trade-off between
performance and efficiency, we use the RoboOmni(Bin) configuration as the default for our final
ablation studies, presented in Table[d Our analysis shows that each component is crucial for final
performance. Ablating the history length reveals that increasing the window size from 1 to 5 yields
a significant performance gain (81.3% to 83.4% 5-task success rate), while a further increase to 10
offers diminishing returns. We also observe a clear scaling trend with model size, where performance
improves from 77.6% (2B) to 83.4% (7B). Finally, removing any of our core training strategies
degrades performance. The exclusion of VLM data co-training, sequence packing, or Classifier-
Free Guidance (CFG) all leads to a noticeable drop in task success, confirming that each strategy
synergistically contributes to the robustness and capability of our final model.

5 REAL ROBOT EXPERIMENTS

To validate effectiveness of our framework in physical environments, we conducted extensive ex-
periments on a real robot platform. RoboOmni demonstrated strong generalization across multiple
challenging settings, including tasks with unseen objects, instructions, and distractors. For a compre-
hensive breakdown of the experimental setup, task list, and detailed quantitative results, please refer

to Appendix

6 CONCLUSION

We introduced RoboOmni, a unified multi-modal framework that treats actions as just another
modality for VLMs. Our novel MTAP strategy enhances historical context integration and mitigates
action distribution shift. By preserving the core VLM architecture, RoboOmni seamlessly incorporates
advanced optimizations and multi-modal co-training paradigms. Extensive evaluations on CALVIN
and a real-world robot demonstrate state-of-the-art performance, proving a well-designed unified
framework can outperform decoupled approaches. Future work will involve scaling our approach with
larger VLM backbones, expanding co-training tasks to enhance physical reasoning, and investigating
more sample-efficient adaptation to novel robotic platforms.
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A UNIFIED MODALITY REPRESENTATION

RoboOmni processes a diverse set of input modalities and is capable of generating various outputs, all
within a unified next-token prediction framework. Inputs include visual information such as images
and video streams, natural language instructions or captions, and proprioceptive robot states. The
model can then generate sequences of actions for robotic manipulation, textual responses for tasks
like Visual Question Answering (VQA), bounding boxes for visual grounding, and 2D point traces.
To achieve this, all these relevant modalities—including language, vision, robot states, actions, points,
and bounding boxes—are mapped into a shared discrete token sequence, as illustrated in Figure[3]
This unification relies on the modality-specific tokenization schemes detailed below.

VIT Qwen2.5VL Tokenzier

[ "(99,102)" ] [ "(105,114),(156, 162)" ] [ "<scode_255><scode_1>..." ] [ "<acode_255><acode_1>..." ]

i '=[1.50,-0.85,2.20] ~(0.15,-0.08,
Pick up the AT=(0.15.-0.08,0.22]

( [R=[0.75,1.10,-0.50] 1AR={-0.05,0.10,-0.03]
Pink block

(Gripper: Close Gripper: Close

(image/Video| (  Text Point ( Box State (' Action

Figure 3: Overview of the unified modality tokenization pipeline in RoboOmni. Diverse inputs
such as Image/Video, Text instructions, Point coordinates, Bounding Boxes (Box), Robot State,
and Action commands are processed and converted into a shared discrete token sequence by the
Qwen2.5-VL tokenizer. The figure shows schematic examples of raw inputs on the bottom row and
their corresponding tokenized representations above them (e.g., point coordinates as text strings,
states and actions as sequences of dedicated ‘scode_X‘ and ‘acode_X°* tokens representing their
discretized bin values).

Text Tokenizer: Natural language instructions or captions are processed using the standard text
tokenizer provided with the Qwen2.5-VL model. This tokenizer is utilized for both encoding textual
inputs and decoding textual outputs generated by RoboOmni.

Visual Representation: Input images are processed by the Vision Transformer (ViT) component
of the Qwen2.5-VL model. A key feature of this ViT is its support for variable resolution inputs,
enabling it to seamlessly handle both static images and dynamic video streams. Visual features
undergo temporal compression by a factor of 2. For spatial feature resolution reduction, a patch size
of 14 x 1 is employed, combined with a subsequent pooling factor of 2. This results in an overall
spatial compression factor of 28 x 2 relative to the input image dimensions. The output of this process
is a sequence of visual tokens, which are encapsulated by special marker tokens: <vision_start>
at the beginning and <vision_end> at the end of the visual token sequence.

State and Action Tokenizer: Continuous robot states and actions (typically represented as delta
states), both comprising 6 Degrees of Freedom (DoF) end-effector poses (XYZ, RPY) and a gripper
state, are discretized into token sequences. Following the methodology of OpenVLA, each continuous
dimension is independently mapped to one of 256 discrete bins. Normalization is performed using
the Ist and 99th percentiles of the distribution of that dimension observed in the training dataset; this
range is assigned to [—1, 1] before the binning process. This robust normalization approach avoids
undue sensitivity to outliers that can affect standard min-max normalization.

A crucial distinction in our approach is the handling of the new action and state tokens. Instead
of replacing low-frequency words in the existing vocabulary of the Qwen2.5-VL tokenizer, we
extend its vocabulary. Specifically, we add 256 unique state tokens (named ‘scode_0° through
‘scode_255°¢, as exemplified for a sequence in Figure [3) and 256 unique action tokens (similarly,
‘acode_0° through ‘acode_255°) to the vocabulary of the tokenizer. Each of these tokens corresponds
to one of the discrete bin values. Critically, these new tokens are incorporated as normal tokens
rather than special tokens. This design choice was informed by observations that the Qwen2.5-VL
architecture applies specific internal processing to special tokens, which could introduce unintended
complexities or instability during the training of the VLA model. The resulting sequences of these
‘scode_X* (for state) or ‘acode_X* (for action) tokens, one for each dimension of the state or action
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vector, are then prefixed by their respective special start tokens, namely < | state_start |> and
<laction_start|>.

The selection of 256 bins per dimension offers a fine-grained discretization that provides sufficient
precision for typical robotic control tasks. For instance, considering a representative action scale
where a 2 cm end-effector movement is functionally significant, the discretization error per dimension
would be less than 2 cm/256 ~ 0.078 mm. This level of error is considerably smaller than the
inherent error margins of most low-level robot controllers and, as such, can be considered negligible
for practical manipulation purposes.

Point and Bounding Box Tokenizer: Spatial coordinates, such as 2D points (x, y) on the image
plane (e.g., for end-effector trace prediction), are first normalized from their original pixel coordinates
(where 0 <z < Wand 0 < y < H, with W and H being the image width and height, respectively)
to a fixed integer range of [0,1024). The resulting integer pair is then formatted as a string (e.g.,
(99,102)” as shown in Figure [3) and subsequently tokenized using the aforementioned Qwen2-
VL text tokenizer. Bounding boxes, used for tasks like visual grounding, are handled in a similar
manner by tokenizing their top-left (z_1,y_1) and bottom-right (z_2,y_2) corner points as text
(e.g., “(105,114),(156,162)” in Figure[3). Sequences of point tokens are prefixed by the special token
<|point_start | >, and bounding box token sequences are prefixed by < |box_start | >.

This comprehensive tokenization strategy, visually summarized in Figure 3] transforms complex,
multimodal interaction sequences into a unified linear sequence of discrete tokens. The model
can then be trained end-to-end using a standard cross-entropy loss objective for causal next-token
prediction, irrespective of originating modality. This architectural unification simplifies the training
paradigm and allows RoboOmni to effectively leverage powerful sequence modeling techniques
across all aspects of the Vision-Language-Action task.

B MULTI-MODALITY CO-TRAINING DATA

A key advantage of our unified modality representation is the ability to seamlessly integrate auxiliary
training tasks alongside direct action prediction. By co-training on a diverse set of objectives using
the same next-token prediction framework, we enable the model to develop richer representations
and transfer knowledge across modalities, ultimately benefiting the primary manipulation task and
enhancing generalization (Team et al., [2025). Figure []illustrates examples of how multi-modal
interleaved inputs are structured for various co-training tasks. The primary and auxiliary tasks, their
data organization, sources, and the capabilities they impart to RoboOmni are detailed below.

Multi-Modal Interleaved Input

2 =[1.50,-0.85,2.20] \T={0.15,-0.08,0.22]
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Figure 4: Examples of multi-modal interleaved input sequences for different co-training tasks within
RoboOmni. The top row depicts a sequence for Action Prediction, incorporating visual input,
language instruction, robot state, and the predicted action. Subsequent rows illustrate input formats
for Visual Question Answering (VQA), Visual Grounding, and Trace Prediction, Video Caption,
showcasing the diverse data types processed by the unified framework.

B.1 ACTION PREDICTION

The Action Prediction task is central to the function of RoboOmni as a Vision-Language-
Action (VLA) model. Data for this task is organized into interleaved sequences rep-
resenting timesteps of a robotic manipulation trajectory, following a format such as
Vi,L1,81,A1,Va, Lo, So, As, ..., Vp, L7, ST, Ap. Here, V; represents the visual observation (e.g.,
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camera images), L, is the tokenized language instruction (which may be a constant task-level goal
repeated across timesteps or a more dynamic input), S; is the proprioceptive state of the robot (e.g.,
joint angles, end-effector pose), and A, is the action executed at timestep ¢. The model is trained
to predict the action tokens A; given the historical context of preceding vision, language, state,
and action tokens. This data is primarily sourced from large-scale robotics datasets that provide
expert demonstrations of manipulation tasks, including comprehensive collections like the Open
X-Embodiment (OXE) dataset, as well as specific benchmarks such as Calvin (Mees et al., 2022b),
RT-1 (Brohan et al., 2022)), Droid (Khazatsky et al., [2024), and potentially custom-collected real-
world robot interaction data. Training on this data endows RoboOmni with the core capability to
perform physical interactions and manipulations in its environment, effectively learning a policy that
maps multimodal sensory inputs and language commands to sequences of robot actions required to
complete specified tasks.

B.2 VISUAL QUESTION ANSWERING (VQA)

For Visual Question Answering, the data is organized as triplets of (image, natural language question,
natural language answer). The model receives an image and a question pertaining to its content
and is trained to generate a concise and accurate textual answer. We utilize established VQA
benchmarks for this objective, primarily the CLEVR dataset (Salewski et al.,|2022) for its focus on
compositional visual reasoning, and general VQA datasets like VQA v2 (Goyal et al., [2017)) which
cover a wider array of questions and visual concepts. Training on VQA preserves and enhances
the core capabilities of the foundational Vision-Language Model (VLM) in sophisticated image
understanding and nuanced text generation. This ensures RoboOmni retains strong multimodal
reasoning skills crucial for interpreting complex instructions, analyzing scenes effectively, and
potentially engaging in broader dialogue regarding its visual environment.

B.3 VISUAL GROUNDING (BOUNDING BOX PREDICTION)

In the Visual Grounding task, the model processes an image alongside a textual query or instruction
that refers to one or more objects within that image, and it is trained to output the bounding box
coordinates of the specified objects. These coordinates are discretized and then tokenized into
a textual representation (as detailed in Appendix [A), which the model predicts autoregressively.
Data for this task is sourced from two main repositories: the COCO (Common Objects in Context)
dataset (Chen et al.l 2015), which provides extensive bounding box annotations for a wide variety of
objects, and the blip3-grounding-50m dataset (Xue et al.,|2024)), specifically curated to enhance visual
grounding capabilities. This training explicitly cultivates the spatial understanding of the model and
object localization skills, which are critical for enabling precise robotic manipulation by allowing
RoboOmni to accurately identify and locate objects relevant to the task or mentioned in instructions.

B.4 TRACE PREDICTION

The Trace Prediction task aims to instill an understanding of short-term motion dynamics and
generalizable physical priors by training the model to predict 2D end-effector trajectories. Input 3D
gripper coordinates are projected to 2D pixel points using camera parameters and then tokenized into
a text-based representation (see Appendix [A). Each trajectory is conceptualized as an interleaved
sequence: [l, 01, point,, 02, point,, ..., oy, point, |, containing the language instruction /, initial
visual observation o1, and subsequent alternating visual observations o; with their corresponding
2D points point,. During training, the sequence Si,in fed to the model is constructed by always
preserving [ and o7, but stochastically omitting subsequent visual observations o; (for ¢ > 1) with a
probability of 0.8, and similarly omitting point tokens point, with a probability of 0.2; the objective
of the model is to predict the retained point tokens. Data for this task is drawn from the RLBench,
Droid (Khazatsky et al.,2024), and Calvin (Mees et al., 2022b)) datasets, offering diverse manipulation
scenarios. This task, inspired by prior work (Team et al., 2025), enhances robustness and imputation
skills due to the stochastic conditioning, while the 2D trace modality itself, offering a simplified and
potentially cross-embodiment view of motion intent (Li et al.,[2025), helps the model acquire broadly
applicable physical principles.
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B.5 VIDEO CAPTIONING

For the Video Captioning task, data is structured as pairs of video segments (sequences of visual
frames representing a history of observations) and their corresponding natural language descriptions
or task summaries. These textual annotations serve as the prediction target given the video input.
We primarily utilize videos paired with their task instructions from the Open X-Embodiment (OXE)
dataset and the Calvin dataset (Mees et al., 2022b). Co-training on video captioning encourages
RoboOmni to develop a deeper semantic understanding of complex interaction sequences over time.
This enhances its ability to comprehend and follow language instructions by maintaining and refining
its inherent language generation capabilities, ensuring a strong connection between dynamic visual
information and its textual interpretation.

By jointly optimizing for these diverse objectives alongside the main action prediction task, Ro-
boOmni learns more robust and generalizable representations. This multi-task co-training approach
allows the model to leverage synergistic relationships between different modalities and tasks, leading
to improved performance on the core robotic manipulation challenges and better adaptation to novel
scenarios.

C TRAINING PARADIGM

This section details the core training methodologies employed in RoboOmni, emphasizing the
rationale behind our choices and how they address common challenges in developing robust Vision-
Language-Action (VLA) models. We explore alternatives and highlight the advantages of our selected
approaches, particularly in facilitating a unified and efficient learning framework.

C.1 INTERLEAVED INPUT FOR VARIABLE VISION AND ACTION HISTORY

RoboOmni utilizes an interleaved data format to naturally incorporate variable-length historical
context, comprising visual observations, language instructions, robot states, and past actions (e.g.,
Vi,L1,51,A1,Va, La, Sa, Aa, .. .). This approach inherently supports sequences of varying lengths,
reflecting the dynamic nature of robotic tasks and interactions. A key aspect of this formulation
is that the loss computation can incorporate signals from multiple action predictions within a sin-
gle packed sequence, allowing for efficient learning from entire sub-trajectories. This method of
conditioning on rich historical context for action decision-making aligns with recent advancements
in large Vision-Language Models (VLMs) that also leverage extensive multimodal histories for
improved understanding and generation, such as Emu (Wang et al.,2024). By adopting this paradigm,
RoboOmni benefits from a natural and powerful way to model temporal dependencies and make
informed, context-aware action choices.

C.2 CLASSIFIER-FREE GUIDANCE FOR VISION-MOTOR ONLY TRAINING

To enhance the robustness of the learned policies and enable training on trajectories that may lack
explicit language annotations, we incorporate Classifier-Free Guidance (CFG) principles into our
training regimen. During training, language instruction tokens are stochastically omitted from
the input sequence with a predefined probability. This forces the model to learn to predict action
sequences based solely on the visuomotor context (current and past visual observations and robot
states). Such vision-motor only training helps the model to capture the inherent dynamics and
continuity within action trajectories, independent of explicit language commands. Furthermore,
this strategy allows us to leverage valuable demonstration data that may consist only of visual and
state-action sequences, thereby broadening the effective training distribution and contributing to more
generalizable and stable motor skills.

C.3 SEQUENCE PACKING FOR ENHANCED TRAINING EFFICIENCY AND MULTI-DISTRIBUTION
LEARNING

We employ sequence packing to improve GPU utilization and expose the model to a more diverse set
of behavioral patterns within a single forward pass. Multiple independent sub-trajectories, potentially
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from different tasks or environments, are concatenated into a single long sequence, with appropriate
padding and attention masking to prevent cross-contamination between distinct episodes. Unlike
some sequence packing techniques in Large Language Models (LLMs) that might modify causal
attention masks extensively to handle packed segments, our approach primarily relies on standard
causal masking within each sub-trajectory, allowing the model to attend to all preceding tokens
within its current episode. This design choice is partly inspired by findings, such as those in the
DeepSeek-V3 technical report (Liu et al.l 2024a)), suggesting that simpler attention mechanisms in
packed settings can yield strong performance. This method ensures that the computational benefits of
Flash Attention mechanisms are maximally leveraged due to longer contiguous sequence processing.
Moreover, training with packed sequences inherently promotes multi-distribution learning, as the
model must infer the underlying task and dynamics from the immediate context within each packed
segment. This capability is crucial for developing robust, context-dependent behaviors and lays a
foundation for future work in few-shot adaptation, in-context learning (ICL), and chain-of-thought
(CoT) reasoning within the robotics domain.

C.4 MULTI-TOKEN ACTION PREDICTION (MTAP) FOR ACTION CHUNKING

Predicting a chunk of multiple future actions at each step, rather than a single action, can improve
policy smoothness and planning horizon. However, implementing action chunking effectively within
an autoregressive framework presents several challenges. A purely causal approach, where each
action in a chunk is predicted sequentially, often suffers from compounding errors, as inaccuracies in
earlier predicted actions negatively impact subsequent ones. Additionally, actions predicted earlier
in the chunk cannot attend to information from actions that are supposed to occur later within the
same chunk, limiting the coherence of the predicted action sequence. Alternative methods like the
FAST tokenizer (Pertsch et al.,[2025) attempt to address this by encoding the entire action chunk in
the frequency domain, allowing temporal information across the chunk to be captured without causal
limitations during encoding. However, during generation, actions are still typically decoded token by
token (or dimension by dimension for each action in the chunk), which can lead to slower inference
times for generating a complete action chunk. For instance, observations indicate that m-FAST
requires significantly more time for generation (e.g., 750 ms) compared to models like 7 (e.g., 100
ms) that generate chunks more directly (Black et al., 2024; [Pertsch et al.,|2025)). Another common
strategy involves modifying the causal attention mask to allow tokens within an action chunk to attend
to each other more freely, or even to allow all action tokens in a chunk to be predicted in parallel from
a shared prefix. While this can enable fast, parallel generation of an action chunk, modifying the
VLM’s native causal attention structure can introduce complexities. Firstly, non-standard attention
patterns can reduce the efficiency of attention computation mechanisms and, consequently, lower
overall training throughput. Secondly, and more critically for our framework, such modifications often
make it difficult to support variable-length interleaved data formats that include multiple historical
(vision, state, action) timesteps. Models adopting this approach, such as OpenVLA-OFT (Kim et al.|
2024), often revert to using only a single frame of observation as input to the policy, thereby losing
the benefits of historical context, which numerous studies have shown to be crucial for robust policy
performance (Brohan et al.||2022} Li et al.| 2023)).

To address these limitations, RoboOmni employs Multi-Token Action Prediction (MTAP) (Gloeckle
et al., [2024; [Liu et al., [2024a). In MTAP, for predicting an action chunk of size H, the model
processes the input history once through its shared transformer backbone. Then, instead of a single
output head, H parallel prediction heads (or a replicated final layer mechanism) are used, each
dedicated to predicting one action step in the chunk. Specifically, from the final shared hidden state,
H distinct transformations are applied to produce H sets of logits, one for each action a;; where
k € [0, H — 1). MTAP offers several advantages. Firstly, this non-causal approach to predicting the
action chunk avoids the issue of error accumulation inherent in sequential causal prediction. Unlike
modifying the global causal mask, MTAP preserves the standard causal processing for the historical
interleaved input sequence, allowing it to natively support rich vision-action history. Secondly,
because MTAP involves generating a fixed number of output tokens (e.g., 7 tokens per action if each
action has 7 dimensions) in parallel via multiple heads, regardless of the chunk length H, it is highly
amenable to VLM infrastructure optimizations such as model parallelism and efficient batching.
This allows for very fast generation of action chunks, potentially outperforming methods like FAST
tokenizer in terms of speed, and remaining competitive with single-step generation models like 7 or
OFT-style approaches, even when incorporating extensive historical context. Thirdly, these parallel
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heads for action prediction do not interfere with the tokenization or prediction mechanisms for other
modalities (text, vision features) or other co-training tasks (VQA, grounding), allowing RoboOmni to
seamlessly benefit from diverse VL co-training. Finally, our experiments demonstrate that MTAP
provides a significant performance uplift. The predicted action chunks can be effectively utilized
with techniques such as receding horizon control and temporal ensembling to further enhance policy
stability and task success rates.

C.5 MODEL BACKBONE AND TRAINING PARAMETERS

RoboOmni is built upon the Qwen2.5-VL-7B model as its foundational Vision-Language Model
backbone. The original tokenizer of Qwen2.5-VL is expanded to include the necessary action tokens,
state tokens, and special marker tokens as detailed in Appendix [A] For training, we employ the
AdamW optimizer with a learning rate of 1 x 10~4. A cosine learning rate decay schedule is utilized,
with a warm-up phase constituting 5% of the total training steps. A weight decay of 0.01 is applied
to all trainable parameters to mitigate overfitting. The model is typically trained for a specified
number of epochs depending on the dataset size and task complexity, with specific details provided in
the main experimental sections of the paper. All training is conducted using mixed-precision (e.g.,
bfloat16) to optimize for speed and memory efficiency on modern GPU hardware.

D SIMULATION
This section outlines the configuration of the simulation benchmarks used for evaluating RoboOmni.

Table 5: Comprehensive experimental results and ablation studies on the CALVIN (ABCD—D)
benchmark. This table aggregates all configurations evaluated in our study for a detailed comparison.
The default configurations for RoboOmni(Bin) and RoboOmni(FAST) are highlighted in bold.

\ Top K Success Rate

| Avg. Length
| Topl Top2 Top3 Top4 Top5 |

Main Results: Baselines and Proposed Models

Configuration

OpenVLA 0921 0.732 0565 0455 0.346 3.03

mo-FAST (PaliGemma) 0974 0936 0.892 0.848 0.803 4.45

RoboOmni(Bin) (Default) 0.997 0973 0940 0.895 0.834 4.64

RoboOmni(FAST) (Default) 0.997 0982 0951 0918 0.881 4.73
Ablation: Without MTAP

Tokenizer: BIN 0.990 0935 0865 0.776 0.679 4.24

Tokenizer: FAST 0.990 0961 0909 0.860 0.801 4.52
Ablation: Bin Size (with MTAP)

Bin Size = 128 (Tokenizer: BIN) 0.989 0955 0920 0.890 0.837 4.59

Bin Size = 1024 (Tokenizer: BIN) 0.980 0.939 0.888 0.838 0.790 4.44

Bin Size = 128 (Tokenizer: FAST) | 0.996 0976 0.950 0913 0.861 4.70

Bin Size = 1024 (Tokenizer: FAST) | 0.990 0.968 0.940 0916 0.871 4.68
Ablation: Window Size (Default: RoboOmni(Bin))

Window Size =1 0973 0932 0.897 0.871 0.813 4.49

Window Size = 10 0985 0955 0914 0.870 0.824 4.55
Ablation: Model Size (Default: RoboOmni(Bin))

Qwen2-VL-2B 0981 0939 0.886 0.842 0.776 4.42

Qwen2.5-VL-3B 0984 0952 0911 0.875 0.819 4.54

Qwen2-VL-7B 0982 0956 0918 0.881 0.828 4.57
Ablation: Training Strategies (Default: RoboOmni(Bin))

Without VLM Dataset 0991 0962 0911 0.855 0.806 4.53

Without Sequence Packing 0.983 0934 0.897 0.853 0.791 4.46

Without CFG 0987 0947 0.897 0.852 0.795 4.48
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D.1 CALVIN

CALVIN (Composable Action Language and Vision) (Mees et al., 2022b)) serves as a benchmark for
evaluating long-horizon, language-conditioned robotic manipulation policies. It features a simulated
tabletop environment where a Franka Emika Panda arm performs a variety of tasks. The benchmark
includes a dataset of approximately 24,000 human-teleoperated demonstrations, each annotated with
natural language instructions. These demonstrations cover 34 distinct, predefined basic skills, such as
“rotate blue block right,” “move slider left,” and “turn on light bulb.” Trajectories in CALVIN are
relatively short, typically under 64 timesteps each. The dataset is structured into four scene splits (A,
B, C, and D), which allow for evaluating generalization to different visual and physical configurations.
Our experiments utilize the ABCD splits for training. For evaluation, policies are typically required
to complete a sequence of multiple consecutive tasks, and performance is measured by the success
rates in achieving these sequential goals and the average number of tasks successfully completed per
trial. Visual input is provided from both a static third-person camera and a wrist-mounted camera on
the robot.

D.2 IMPLEMENTATION DETAILS

Our model, RoboOmni, is built upon the Qwen2.5-VL-7B backbone. We evaluate two versions
based on the action tokenization scheme: RoboOmni(Bin) using a standard binning tokenizer, and
RoboOmni(FAST) employing the FAST tokenizer. During training, we use a weighted data mixture
with sampling weights of 0.8 for the standard CALVIN dataset, 0.2 for the CALVIN dataset prepared
for CFG, and 1.0 for general VLM datasets. The model is trained for 18,000 steps (approximately
2 epochs on CALVIN data) with a global batch size of 64. We use a history length of 5, an action
chunk size of 10, and pack sequences to a maximum length of 2048. For optimization, we use the
AdamW optimizer with a weight decay of 0.1, and employ a cosine learning rate schedule with a
1000-step warmup, a maximum learning rate of 1 x 10~%, and a minimum of 1 x 10~7.

E REAL ROBOT

To evaluate the performance of RoboOmni in the real world, we perform experiments on a real
robot platform. The platform consists of a Kinova Gen-3 robot arm equipped with a Robotiq 2F-85
parallel-jaw gripper and two cameras, i.e., one static camera for capturing the workspace and another
camera mounted on the end-effector. The training dataset consists of 18k human demonstrations
across 37 tasks, which include 23 pick-and-place tasks and 14 non pick-and-place tasks such as
pouring, flipping, and rotating.

We design four different settings to evaluate the model performance: Simple, Unseen Distractors,
Unseen Instructions, and Unseen Objects.

* In Simple, the scene is set to be similar to those in the training data.
¢ In Unseen Distractors, unseen distractors are added to the scene.

* In Unseen Instructions, we follow [5] and use GPT-4 to generate unseen synonyms for
the verbs in the instructions. For example, we replace “pick up” with “take”, “cap” with
“cover”, and “stack” with “pile”.

* In Unseen Objects, the robot is instructed to manipulate objects that were not included
in the training dataset. And the language instructions are adjusted accordingly, i.e., the
language instructions are also unseen.

In total, we evaluate 30 different tasks: 18 of which were seen during training, while the rest were
unseen. See the appendix on the project page for the full list of training tasks and the 30 evaluated
tasks. We compare the performance of RoboOmni with OpenVLA (Kim et al.,2024), Octo (Team
et al., [2024), and GR-1 (Wu et al., [2023]).

Generalization Capabilities RoboOmni demonstrates strong generalization to novel scenarios, a
crucial attribute for practical robotic systems. In the “Unseen Objects” setting, where the robot was
tasked with manipulating objects not encountered during training, RoboOmni achieved a success
rate markedly superior to the compared baselines, as depicted in Figure. [5} For instance, while
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Comparison of Model Performance in Real Robot Setting

M OpenVLAM Octo

100
M GR-1 Ours

80

Rate (%)

Simple Unseen Distractors Unseen Instructions Unseen Objects

Figure 5: Comparison of success rates for OpenVLA, Octo, GR-1, and our proposed model RoboOmni
across five different task categories in a real robot setting.

manipulating entirely new objects, RoboOmni maintained a considerable level of performance,
whereas other models exhibited a more pronounced degradation. The detailed task breakdown in the
Table[6] further corroborates this; for example, some tasks can be extremely challenging for models
when dealing with unseen objects, yet Figure [5]shows RoboOmni (labeled as “Ours™) achieving a
success rate of 93.7% in the aggregate “Unseen Objects” category, substantially surpassing other
baselines. This suggests that the unified modal representation and co-training strategies employed
by RoboOmni contribute to a more abstract and transferable understanding of object properties and
manipulation skills, rather than overfitting to specific training instances. Similarly, in the “Unseen
Distractors” setting, RoboOmni maintained a high success rate (93.9%), significantly outperforming
other methods when novel objects cluttered the scene. This indicates an ability to differentiate
between target objects and irrelevant items, a key aspect of generalization in complex environments.

Instruction-Following Fidelity The ability to accurately interpret and execute commands based on
varied linguistic inputs is paramount for Vision-Language-Action (VLA) models. The performance
of RoboOmni in the “Unseen Instructions” setting, where synonyms or paraphrased commands were
provided (e.g., replacing “pick up” with “take”, or “cap” with “cover”), highlights its robust language
understanding. Figure. [5indicates that RoboOmni achieved a success rate of 89.4% under “Unseen
Instructions”, again leading the compared models. This level of performance suggests that RoboOmni
is not merely memorizing command-action pairings but is developing a more nuanced semantic
comprehension of the instructions. The high success rate in this category implies that the VLM
backbone, enhanced by multi-modal co-training, effectively grounds novel linguistic expressions to
corresponding robotic actions.

Robustness Overall robustness is evaluated by the model’s ability to consistently perform across
a range of challenging, unseen conditions. RoboOmni consistently outperformed other models
across all “Unseen” categories (Distractors, Instructions, Objects), and consequently, in the “Unseen
Average” success rate shown in Figure. [5](92.4% for RoboOmni, compared to OpenVLA ~19%,
Octo ~32%, GR-1 ~45%). Even in the “Simple” setting, designed to be similar to training data,
RoboOmni achieved a very high success rate (95.5%), establishing a strong baseline. The detailed
Table. [6] provides further evidence of this robustness. For instance, in the task “pick up the cucumber
from the vegetable basket”, RoboOmni achieved a 100% success rate in the “Basic” (Simple) and
“Unseen Distractors” settings, while still maintaining a 66.7% success rate under both “Unseen
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Prompts” and “Unseen Target Object” conditions. The consistent high performance, even when
faced with novel objects, instructions, or distractors, underscores the stability and reliability of
RoboOmni’s learned policies. The Multi-Token Action Prediction (MTAP) strategy, combined with
the comprehensive training paradigm including interleaved history and sequence packing, likely
contributes to this enhanced robustness by enabling more coherent long-horizon reasoning and better

adaptation to variations from the training distribution.

Table 6: Detailed success rates (%) of RoboOmni across various real-world manipulation tasks
and settings. The ‘Basic‘ setting refers to the standard task setup. ‘Prompt‘, ‘Distractor‘, and
‘Target Object® refer to settings with unseen prompts, unseen distractors, and unseen target objects,

respectively.
Task Basic Prompt Distractor 218t
as! asic omp stracto Object
pour the black seasoning powder in the red bowl 100.0 83.3 50.0 N/A
press the toaster switch 100.0 100.0 100.0 N/A
close the drawer 100.0 100.0 100.0 N/A
open the drawer 83.3 50.0 50.0 N/A
close the oven 100.0 83.3 100.0 N/A
open the oven 83.3 83.3 333 N/A
pick up the cucumber from the vegetable basket;
place the picked object on the cutting board 100.0 66.7 100.0 66.7
pick up the cucumber from the cutting board;
place the picked object in the vegetable basket 83.3 83.3 100.0 100.0
pick up the potato from the vegetable basket;
place the picked object on the cutting board 50.0 83.3 66.7 83.3
pick up the potato from the cutting board;
place the picked object in the vegetable basket 100.0 66.7 83.3 83.3
pick up the eggplant from the red plate;
place the picked object on the table 100.0 100.0 100.0 100.0
pick up the green bottle from the tray;
place the picked object in the white box 100.0 100.0 100.0 100.0
pick up the knife from the right of the white plate 83.3 100.0 100.0 100.0
pick up the knife from the left of the white plate 83.3 83.3 83.3 83.3
pick up the eggplant from the red plate 100.0 100.0 100.0 100.0
pick up the eggplant from the green plate 100.0 100.0 100.0 100.0
pick up the mandarin from the green plate 100.0 100.0 100.0 100.0
pick up the mandarin from the red plate 100.0 100.0 100.0 83.3
pick up the red mug from the rack 100.0 83.3 100.0 100.0
pick up the green mug from the rack 100.0 100.0 100.0 100.0
pick up the green bottle from the white box 100.0 100.0 100.0 100.0
pick up the green bottle from the tray 83.3 100.0 100.0 100.0
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Figure 6: Real-world experimental setups for a variety of manipulation tasks. Each row illustrates a
specific skill with a target object. The columns depict the same task under different experimental
conditions.
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Figure 7: Real-world experimental setups for a variety of manipulation tasks. Each row illustrates a
specific skill with a target object. The columns depict the same task under different experimental
conditions.
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Figure 8: Qualitative results for basic setting.
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Figure 9: Qualitative results for unseen prompt setting.
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Figure 10: Qualitative results for unseen distractors setting

26



Under review as a conference paper at ICLR 2026

Figure 11: Qualitative results for unseen target object setting
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