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Abstract

Differential privacy mechanisms such as the Gaus-
sian or Laplace mechanism have been widely used
in data analytics for preserving individual privacy.
However, they are mostly designed for continu-
ous outputs and are unsuitable for scenarios where
discrete values are necessary. Although various
quantization mechanisms were proposed recently
to generate discrete outputs under differential pri-
vacy, the outcomes are either biased or have an in-
ferior accuracy-privacy trade-off. In this paper, we
propose a family of quantization mechanisms that
is unbiased and differentially private. It has a high
degree of freedom and we show that some existing
mechanisms can be considered as special cases of
ours. To find the optimal mechanism, we formulate
a linear optimization that can be solved efficiently
using linear programming tools. Experiments show
that our proposed mechanism can attain a better
privacy-accuracy trade-off compared to baselines.

1 INTRODUCTION

Differential privacy (DP) has become a de facto standard for
preserving individual data privacy in data analysis, ranging
from simple tasks such as data collection and statistical anal-
ysis to complex machine learning tasks [Wang and Zhou,
2020, Jayaraman and Evans, 2019, Zhang et al., 2018a,b,
2019, 2022, Liu et al., 2021, Khalili et al., 2021b,a, Hopkins
et al., 2022]. It centers around the idea that the output of
a certain mechanism or computational procedure should
be statistically similar given singular changes to the input,
thereby preventing meaningful inference from observing
the output. Although many DP mechanisms such as Gaus-
sian mechanism [Dwork et al., 2014], Laplace mechanism
[Dwork et al., 2006], etc., have been proposed to date to pre-
serve individual privacy for different computational tasks,

they are mostly designed for continuous outputs over the
real numbers and are unsuitable for scenarios where discrete
outputs are necessary.

Indeed, keeping outputs discrete is desirable and even nec-
essary for many applications. For example, representing
real numbers on a finite computer requires data discretiza-
tion, but naively using finite-precision rounding may com-
promise privacy [Mironov, 2012]. Real-valued outputs can
induce high communication overheads, and compressing
the continuous inputs to discrete and bounded outputs may
be necessary for settings with bandwidth bottlenecks, e.g.,
federated learning [Reisizadeh et al., 2020, Jin et al., 2024].
Moreover, continuous outputs are incompatible with cryp-
tographic primitives such as secure aggregation [Bonawitz
et al., 2017]. It is thus essential to develop DP mechanisms
that generate discrete outputs while preserving privacy.

To tackle the challenges mentioned above, many discrete
DP mechanisms have been proposed, e.g., [Canonne et al.,
2020, Agarwal et al., 2021, Kairouz et al., 2021]. How-
ever, the outputs generated by these mechanisms may be
biased under truncation. Because in many applications such
as machine learning, survey data collection, etc., it is of-
ten crucial to maintain the unbiasedness of private outputs,
these approaches may not be desirable. For instance, when
differentially private gradients are used to update machine
learning models, keeping them unbiased helps the model
gets updated towards the optimal solution and converges
faster [Bottou et al., 2018].

To the best of our knowledge, only a few works proposed
mechanisms that can generate discrete unbiased outputs
under DP. This includes 1) Minimum Variance Mechanism
(MVU) [Chaudhuri et al., 2022], which samples outputs from
discrete alphabets and achieves the optimal utility by opti-
mizing both the sampling probabilities and output alphabets.
However, as the size of output alphabet increases, solving
this optimization problem can be particularly challenging
and the unbiasedness constraint must be relaxed; 2) Random-
ized Quantization Mechanism (RQM) [Youn et al., 2023]



which randomly maps inputs to closest pair of sampled bins.
However, RQM assumes uniformly distributed bins and has
only three hyperparameters that can be tuned, hence has
smaller search space for hyperparameters to achieve good
privacy-accuracy trade-off compared with MVU; 3) Pois-
son Binomial Mechanism (PBM) [Chen et al., 2022] which
generates unbiased estimators by mapping inputs to a dis-
crete distribution with bounded support. However, PBM has
inferior flexibility and utility-privacy trade-off than RQM be-
cause it has fewer hyperparameters; 4) other DP mechanisms
such as Distributed Discrete Gaussian Mechanism [Kairouz
et al., 2021] and Skellam Mechanism [Agarwal et al., 2021]
are unbiased on the unbounded support. However, they have
to be truncated when combined with secure aggregation
protocols, which will produce biased outputs.

This paper proposes a novel randomized quantization mech-
anism with discrete, unbiased outputs under DP guarantee.
Importantly, our mechanism ensures unbiasedness regard-
less of the number of output bits; it is a general framework
and the existing mechanism RQM can indeed be considered
as a special case of ours. Specifically, given a set of quanti-
zation bins B1 < B2 < · · · < Bm, discrete DP mechanism
maps the continuous input x to one of these bins. Our mech-
anism first samples two bins from the left and the right side
of the input based on a pre-defined selection distribution,
and then outputs one of the bins with unbiased expectation.
For an example where m = 4 and x ∈ [B2, B3). Our mech-
anism first randomly selects one bin on the left of x (e.g.,
B1) and another bin on the right (e.g., B3) according to a
selection distribution, then randomly outputs either B1 or
B3 while preserving unbiasedness. The key is to carefully
design selection distributions that maximize the accuracy of
quantized outputs subject to DP constraint. Although this
problem can be easily formulated as a non-linear constraint
optimization, we propose a method that turns such non-
linear optimization into a linear program that can be solved
efficiently using linear programming tools. Experiments on
both synthetic and real data validate the effectiveness of the
proposed method.

Our contribution can be summarized as follows:

1. We propose a family of differentially private quantization
mechanisms that generate discrete and unbiased outputs.

2. We theoretically quantify the privacy and accuracy of
the exponential randomized mechanism (ERM), a spe-
cial case of our proposed mechanism where selection
distribution is based on DP exponential mechanism.

3. We design a linear program to find the optimal selection
distribution of our mechanism, resulting in the optimal
randomized quantization mechanism (OPTM), which
attains a better accuracy-privacy trade-off.

4. We conduct experiments on various tasks to show our
mechanisms, including both ERM and OPTM, attain
superior performance than baselines.

2 RELATED WORKS

Discrete differential privacy. Various discrete DP mech-
anisms have been proposed for discrete inputs to make them
differentially private. For example, both Discrete Laplace
Mechanism [Ghosh et al., 2009] and Discrete Gaussian
Mechanism [Canonne et al., 2020] add noises to the inputs
sampled from discrete distributions, which are commonly
used for tasks when with discrete inputs [Abowd, 2018].
The Snapping Mechanism [Mironov, 2012] truncates and
rounds the inputs and Laplace noises based on floating-point
arithmetic, but it inevitably diminishes accuracy [Canonne
et al., 2020]. Communication-limited Local Differential Pri-
vacy (CLDP) mechanism [Girgis et al., 2021] works with
a trusted shuffler in federated learning to generate com-
pressed and private updates from clients. However, it cannot
be tuned to adopt different communication budgets. Skellam
Mechanism [Agarwal et al., 2021] add noises sampled from
Skellam distribution to achieve performance comparable
with the continuous Gaussian mechanism, but is subject to
biased output when combined with privacy-protection pro-
tocols in federated learning such as secure aggregation. In
contrast, Poisson Binomial Mechanism [Chen et al., 2022]
encodes the inputs inside the Binomial distribution to gener-
ate unbiased outputs, and it can achieve better privacy while
decreasing communication costs, and is also compatible
with secure aggregation.

Private quantization. Previous works have utilized data
compression methods such as quantization to compress the
data in applications with communication or bandwidth bot-
tlenecks. One example is federated learning where a central
server needs to repeatedly collect local model updates from
distributed clients for training the global model [Reisizadeh
et al., 2020, Hönig et al., 2022]. Another example is large
language models where the computation overheads may be
reduced by compressing the model parameters [Tao et al.,
2022, Bai et al., 2022]. By mapping the continuous inputs to
the closest discrete outputs within a finite set, the quantiza-
tion process can effectively represent the data with reduced
communication overhead.

While methods were proposed in prior works to quantize
data under a certain privacy constraint, they often treat pri-
vacy and quantization separately [Gandikota et al., 2021,
Kairouz et al., 2021], i.e., privatizing the data first and then
quantize the private data. Recent works attempt to design
discrete DP mechanisms leveraging quantization to simul-
taneously compress data and protect privacy. For instance,
Chaudhuri et al. [2022] proposed Minimum Variance Mech-
anism (MVU), which first quantizes inputs with discrete bins
and then maps the unbiased quantization results to output
alphabets according to a probability matrix. MVU optimizes
the probability matrix to minimize accuracy loss while pre-
serving privacy. I-MVU [Guo et al., 2023] extends MVU
by designing a new interpolation procedure to attain better



privacy for high-dimensional vectors. Youn et al. [2023] pro-
posed Randomized Quantization Mechanism (RQM), which
subsamples from uniformly distributed bins and performs
randomized quantization to output an unbiased result.

Compared to prior works, we propose a more general family
of quantization DP mechanisms that enables non-uniform
quantization. It has a high degree of freedom and the optimal
mechanism can be found efficiently by linear programming
tools. We also show theoretically and empirically that our
mechanism can attain a better privacy-accuracy trade-off.

3 PROBLEM FORMULATION

Consider a quantization mechanism

M : X → {B1, B2, · · · , Bm}

used for quantizing a scalar x ∈ [−c, c] := X , where

−c−∆ = B1 < B2 < · · · < Bm = c+∆,

m is the number of quantization bins, ∆ ≥ 0 extends the
range of output. Note that m bins here are not necessarily
uniformly distributed. Our goal is to designM (including
bin values B1, · · · , Bm and ∆) that is 1) differentially pri-
vate; 2) unbiased, i.e., E(M(x)) = x, ∀x; and 3) accurate
with the mean absolute error E(|M(X)−X|) minimized.
Let the capital letter X denote the random variable of input
and the small letter x the corresponding realization.

3.1 BACKGROUND: DIFFERENTIAL PRIVACY

Differential privacy [Dwork, 2006], a widely used notion of
privacy, ensures that no one by observing the computational
outcome can infer a particular individual’s data with high
confidence. Formally, we say a randomized algorithmM(·)
satisfies ϵ-differential privacy (DP) if for any two datasets D
and D′ that are different in at most one individual’s data and
for any set of possible outputs S ⊆ Range(M), we have,

Pr{M(D) ∈ S} ≤ exp{ϵ} · Pr{M(D′) ∈ S}.

where ϵ ∈ [0,∞) is called privacy loss and can serve as a
proxy for privacy leakage; the smaller ϵ implies a stronger
privacy guarantee. Intuitively, for sufficiently small ϵ, DP
implies that the distribution of output remains almost the
same if one individual’s data changes in the dataset, and an
attacker cannot reconstruct input data with high confidence
after observing the output of mechanismM.

Many mechanisms have been developed in the literature to
satisfy differential privacy. One that is commonly used for
scenarios with discrete outputs is exponential mechanism
[McSherry and Talwar, 2007], as defined below.

Definition 1 (Exponential Mechanism) Let the set of all
possible outcomes of mechanismM be O = {o1, · · · , on̂}.
Let v : O × D → R be a score function with a higher
value of v(oi, D) indicating output oi is more desirable un-
der dataset D. Let δ = maxi,D,D′ |v(oi, D) − v(oi, D

′)|
be the sensitivity of score function, where D and D′ are
two datasets differing in at most one individual’s data.
Then, exponential mechanismM : D → O that satisfies
ϵ-differential privacy selects oi ∈ O with probability

Pr{M(D) = oi} =
exp

{
ϵ · v(oi,D)

2δ

}
∑n̂

j=1 exp
{
ϵ · v(oj ,D)

2δ

} .

3.2 PROPOSED QUANTIZATION MECHANISM

Next, we present our mechanismM that quantizes input
with DP guarantee. Given a set of bins {B1, B2, · · · , Bm},
M takes the following steps to quantize a scalar x:

1. For any x, select two bins Bl, Br ∈ {B1, B2, · · · , Bm}
randomly based on a pre-defined selection distribution,
with Bl ≤ x located on the left side of x and Br > x
on the right side of x. In other words, if x ∈ [Bj , Bj+1),
then l ∈ {1, . . . , j} and r ∈ {j + 1, . . . ,m}.

2. Then,M randomly outputs either Bl or Br according to

M(x) =

{
Bl, with probability (w.p.) Br−x

Br−Bl
;

Br, with probability (w.p.) x−Bl

Br−Bl
.

(1)

Given (1), it is easy to verify that the mechanism M is
unbiased, i.e., E(M(x)) = x, ∀x. Our goal is to design
selection distribution in the first step such that the mean
absolute error E(|M(X)−X|) is minimized. In this paper,
we assume bin values {B1, · · · , Bm} are symmetric unless
otherwise stated, i.e., Bi = −Bm+1−i, ∀i ∈ [m].

Selection distribution. It determines the probability of
selecting one bin on the left (or right) of the input x in
the first step of our mechanism. Assume x ∈ [Bj , Bj+1),
then we will select the left index l ∈ {1, · · · , j} and the
right index r ∈ {j + 1, · · · ,m}. Let Lj and Rj be the
random variables associated with the left index l and right
index r, respectively, when input x ∈ [Bj , Bj+1). Since
the probability mass functions (PMF) of both Lj and Rj

depend on the value of j, we use the following two functions
qj , qm−j to denote their PMF:

Pr{Lj = i} := qj(i), i ∈ {1, · · · , j}
Pr{Rj = i} := qm−j(m+ 1− i), i ∈ {j + 1, . . . ,m}

Note that q1(1) = 1. See Figure 1 for the illustration.

Since both qj(·), j ∈ {1, 2, · · · ,m} and {B1, · · · , Bm} are
the parameters of mechanismM, we need to design them
carefully to minimize the absolute error while satisfying DP



Algorithm 1 Proposed quantization mechanismM
1: Input: bin values B1, · · · , Bm, input x ∈ [Bj , Bj+1),

PMF qj , qm−j of Lj and Rj .
2: l← i w.p. qj(i), i ∈ {1, · · · , j}.
3: r ← i w.p. qm−j(m+ 1− i), i ∈ {j + 1, · · · ,m}.
4: M(x)← Bl w.p. Br−x

Br−Bl
, and Br w.p. x−Bl

Br−Bl
.

5: OutputM(x)

constraint. We introduce details of finding these parameters
in Section 4. Given qj(·) and {B1, · · · , Bm}, Algorithm 1
summarizes our mechanismM.

𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 𝑩𝟔 𝑩𝟕 𝑩𝟖

𝒒𝟓(𝟏)

𝒒𝟓(𝟐)

𝒒𝟓(𝟑)

𝒒𝟓(𝟒)

𝒒𝟓(𝟓)

𝒒𝟑(𝟑)

𝒒𝟑(𝟐)

𝒒𝟑(𝟏)

𝒙𝒋 𝒋 + 𝟏

Figure 1: An example of selection distribution

3.3 SPECIAL CASES

Section 3.2 presents a general framework for quantization.
Indeed, some existing mechanisms proposed in prior works
can be regarded as a special case of ours, as detailed below.

Randomized Quantization Mechanism (RQM) . It is
proposed by Youn et al. [2023] and is a special case of ours.
Specifically, ∀x ∈ [−c, c], RQM randomly outputs one bin
from {B1, · · · , Bm} with

Bi = −∆− c+ (i− 1)
2c+ 2∆

m− 1
, i ∈ [m],

That is, interval [−c−∆, c+∆] is divided uniformly into m
bins. This differs from ours where we enable non-uniformly
distributed bins and the bin values are parameters to be
optimized (see details in Section 4).

To quantize x, RQM first selects a subset of bins: B1 and
Bm are selected with probability 1, while among the rest
m− 2 bins {B2, · · · , Bm−1}, each of them is selected in-
dependently with probability q < 1. Given the selected bins,
the one closest to x on the left (resp. right) side is denoted as
Bl (resp. Br). Finally, RQM selects either Bl or Br as the
output randomly based on Eq. (1). It turns out that RQM is a
special case of our mechanism where selection distribution
follows a Geometric distribution with parameter q, i.e.,

qj(i) =

{
(1− q)j−1, if i = 1

q(1− q)
j−i

, if 1 < i ≤ j.

Exponential Randomized Mechanism (ERM). Inspired
by the classic Exponential Mechanism (Definition 1), we
can propose ERM which outperforms RQM (see the com-
parison in Section 6) but can still be regarded as a special
case of our proposed mechanism. Under ERM, bins are sym-
metric and satisfy Bi = −Bm+1−i,∀i ∈ [m]. ERM uses a
distribution similar to the exponential mechanism for the se-
lection distribution. Specifically, for input x ∈ [Bj , Bj+1),
PMF Pr{Lj = i} = qj(i) in ERM depends on the distance
between bin Bi and Bj and Pr{Rj = i} = qm−j(m+1−i)
depends on the distance between bin Bi and Bj+1. In other
words, ERM uses the following selection distribution:

qj(i) =
exp

{
γ(Bi−Bj)
2(Bj−B1)

}
∑j

k=1 exp
{

γ(Bk−Bj)
2(Bj−B1)

} , (2)

where γ is a hyperparameter impacting both the privacy and
accuracy ofM. After obtaining the realizations of Lj and
Rj , ERM uses Eq. (1)to determine the final output.

Next, we provide privacy and accuracy analysis for ERM.
Theorem 1 below provides an upper bound for privacy loss.

Theorem 1 (Privacy loss of ERM) Assume the interval
[−c−∆, c+∆] is divided uniformly into m bins, i.e.,

Bi = −∆− c+ (i− 1)
2c+ 2∆

m− 1
, i ∈ [m].

Then ERM satisfies DP with privacy loss

ϵ < γ + log
2m(c+∆)

c
. (3)

The upper bound (3) implies that the privacy loss is an
increasing function in the number of bins m and parameter
γ. It is worth noting that according to [Youn et al., 2023],
the privacy loss of RQM is bounded by

log

(
2(1− q)2(c+∆)

∆

)
+m log

1

1− q
.

This shows that the privacy loss under RQM also increases
in m at the rate of O(m). In contrast, our ERM has a better
privacy loss that increases in m at the rate of O(logm).

The next theorem provides an upper bound for the expected
absolute error of ERM.

Theorem 2 (Error of ERM) Under the same bins as The-
orem 1, the expected absolute error of ERM is bounded:

E (|M(x)− x|) ≤ 4

γ
log (m) (c+∆) +

2c+ 2∆

m− 1
.

The bound implies that when the extended range ∆ increases
or the privacy budget parameter γ decreases (stricter privacy
protection), the performance loss will also increase.



4 OPTIMAL MECHANISM

Section 3.2 introduced the general framework of our quanti-
zation mechanism. With different bin values {B1, · · · , Bm}
and selection distributions qj , qm−j , we will end up with
different mechanisms and we discussed two special cases
in Section 3.3. In this section, we explore how to find the
optimal mechanism by tuning these parameters. We call the
quantization mechanism under the optimal parameter con-
figuration “OPTimal randomized quantization Mechanism
(OPTM)." Before introducing OPTM, we first quantify pri-
vacy loss and mean absolute error of our mechanism under a
given bin values {B1, · · · , Bm} and selection distributions.

4.1 PERFORMANCE MEASURE

Given bin values {B1, · · · , Bm} and selection distributions
qj , qm−j , we can find the output distribution Pr{M(x) =
i}, i ∈ [m] for any input x. Let p(x, i) := Pr{M(x) = i}
be the probability that the output of the mechanismM for
an input x is Bi. Then, the probability thatM outputs bin
Bl on the left of x can be calculated by the law of total
probability as follows,

p(x, l) = Pr{Lj = l}
∑

m≥r≥j+1

(
Pr{Rj = r} Br − x

Br −Bl

)
.

Similarly, for a bin Br on the right side of x, we have

p(x, r) = Pr{Rj = r}
∑

1≤l≤j

(
Pr{Lj = l} x−Bl

Br −Bl

)
.

Hence, the output probability of each bin Bi is given by:

p(x, i) =


qj(i)

∑
r∈[j+1,m]

(
qm−j(m− r + 1)

Br − x

Br −Bi

)
, if Bi ≤ x

qm−j(m+ 1− i)
∑

l∈[1,j]

(
qj(l)

x−Bl

Bi −Bl

)
, o.w.

(4)

Performance measure. With the output distribution com-
puted above, we can quantify the mean absolute error (MAE)
of a mechanismM as follows,

E (|M(X)−X|) = EX

 ∑
i∈[m]

p(X, i)|Bi −X|

 . (5)

To satisfy differential privacy, the output distribution with
bounded privacy loss ϵ should satisfy:

p(x, i)

p(x′, i)
≤ eϵ, ∀x, x′ ∈ [−c, c], i ∈ [m]. (6)

Our goal is to design parameters ofM, including ∆, bin
values {B1, · · · , Bm} and especially selection distributions
qj , qm−j , such that MAE is minimized subject to bounded
privacy loss ϵ. Note that since m determines the number of
bits for quantizing x (e.g., 2 bits equals m = 4), we assume
m is pre-defined and is not a variable to be optimized.

4.2 OPTM AS A LINEAR PROGRAM

The problem of finding the optimal parameters ofM can
be formulated as an optimization. Our goal is to simplify
the optimization as a linear program that can be efficiently
solved using linear programming tools. Next, we first derive
a linear upper bound of the objective function (5). Then, we
describe how to turn DP constraint (6) into linear constraints.
Finally, we show how to reduce the complexity when the
number of output bits is large with another set of constraints.

Linear upper bound for MAE. Eq. (5) shows that the
mean absolute error is a non-linear function of qj(i). How-
ever, we can find a linear upper bound of it and use it as a
proxy, as detailed below.

Lemma 1 For any input x ∈ [Bj , Bj+1), we have,

E (|M(x)− x|) ≤ 1

2

(
ζm−j + (Bj+1 −Bj) + ζj

)
,

where ζn =
∑

i∈[n] qn(i)(Bn −Bi).

If we know the distribution of X , we can use Lemma 1 to
further find a linear upper bound of E(|M(X)−X|). An
example for uniformly distributed X is given in Theorem 3.

Theorem 3 Suppose input x ∈ [−c, c] follows uniform dis-
tribution, E(|M(X)−X|) can be upper bounded by

min
qj(i)

∑
s≤n≤t+1

(
min(c,Bn)−max(−c,Bn−1)

)(
ζn−1 + ζm−n+1

)
, (7)

where ζn =
∑

i∈[n] qn(i)(Bn−Bi). Bs−1 ∈ [−c−∆,−c)
and Bt+1 ∈ (c, c+∆] are two bins fall in extended range,
Bs < Bt are bins in [−c, c] closest to−c and c, respectively.

For more general cases with partially known, non-uniformly,
and even asymmetric distributed input X , our mechanism
can still be adapted.

Specifically, we first change the original definition of selec-
tion distribution in Section 3.2 to the following:

Pr{Lj = i} := q
(l)
j (i), i ∈ {1, · · · , j}

Pr{Rj = i} := q
(r)
m−j(m+ 1− i), i ∈ {j + 1, . . . ,m}

Both q
(l)
j (·), q(r)m−j(·) for all possible j ∈ [m] are param-

eters that need to be tuned. Then we can derive a linear
upper bound of the mean absolute error (MAE) by extend-
ing Lemma 1 and Theorem 3. Theorem 4 below shows the
result for non-uniformly distributed X and asymmetric bins.

Theorem 4 Suppose input x ∈ [−c, c] follows any distribu-
tion, E(|M(X)−X|) can be upper bounded by

min
q
(l)
j (i),q

(r)
m−j(i)

t∑
i=s−1

(ζ
(r)
m−i +Bi+1 −Bi + ζ

(l)
i )

∫ min(Bi+1,c)

max(Bi,−c)

fX(x)dx, (8)



where ζ(r)m−j =
∑

i∈{j+1,...,m} q
(r)
m−j(m−i+1)(Bi−Bj+1),

ζ
(l)
j =

∑
i∈[j] q

(l)
j (i)(Bj − Bi). Bs−1 ∈ [−c − ∆,−c)

and Bt+1 ∈ (c, c+∆] are two bins fall in extended range,
Bs < Bt are bins in [−c, c] closest to−c and c, respectively.
fX(x) is the probability density function of X .

Note that the upper bound in Theorem 4 only depends on
density fX(x) through the integral Pr(Bi ≤ X < Bi+1) =∫ Bi+1

Bi
fX(x)dx, which is easier to know (compared to den-

sity itself) and can be estimated from samples.

Linear differential privacy constraint. To satisfy ϵ-DP,
constraint (6) can be equivalently written as

maxx p(x, i)

minx′ p(x′, i)
≤ eϵ, ∀i (9)

However, constraint (9) is non-linear and we need to convert
it to a linear constraint. To this end, we will first show
in Lemma 2 that for each i ∈ [m] and x ∈ [−c, c], both
maxx p(x, i) and minx p(x, i) can be found in a finite set.
Such property will then be leveraged to turn constraint (9)
into a set of linear constraints.

Lemma 2 Assume that ∀i, j ∈ [m], j ≥ i: qi(i) ≥ qj(i),
then for all input x ∈ [−c, c] and each i ∈ [m]:

maxx p(x, i) ∈ Si and minx p(x, i) ∈ Si,

where both Si and Si are finite sets defined below.

Si =


{qi(i), qm+1−i(m+ 1− i)}, if Bi ∈ [−c, c]
{p(−c, i)} ∪ {p(Bk, i)| − c ≤ Bk ≤ c}, if Bi < −c.
{p(c, i)} ∪ {p(Bk, i)| − c ≤ Bk ≤ c}, if Bi > c.

Si =


{p(−c, i), p(c, i)} ∪

{
lim

x→Bk

p(x, i)| − c ≤ Bk ≤ c
}
, if Bi ∈ [−c, c]

{p(c, i)} ∪
{

lim
x→Bk

p(x, i)| − c ≤ Bk ≤ c
}
, if Bi < −c.

{p(−c, i)} ∪
{

lim
x→Bk

p(x, i)| − c ≤ Bk ≤ c
}
, if Bi > c.

where limx→Bk
p(x, i) above is calculated as follows

lim
x→Bk

p(x, i) =


qk−1(i)

∑
r∈[k+1,m]

(
qm−k+1(m− r + 1)

Br −Bk

Br −Bi

)
, if Bi < Bk.

qm−k(m+ 1− i)
∑

l∈[1,k−1]

(
qk(l)

Bk −Bl

Bi −Bl

)
, if Bi > Bk.

Note that p(x, i) is discontinuous and limx→Bk
p(x, i) may

not equal to p(Bk, i). Lemma 2 shows that for each i ∈ [m],
there is only a finite number of possible values for both
maxx p(x, i) and minx p(x, i). Therefore, if we can ensure
s ≤ eϵ · s holds for any s ∈ Si and s ∈ Si, then privacy
constraint (9) is also guaranteed to hold. The monotonicity
of the output probability between each pair of bins ensures
that we can find a finite set of maximal and minimal prob-
abilities. Example 1 uses specific output distributions of
ERM to illustrate this.

Example 1 Figure 2 shows two probabilities p(x, 3) and
p(x, 6) of ERM when m = 8. Note that limx→B+

3
p(x, 3) =

p(B3, 3) = q3(3) and limx→B−
3
p(x, 3) = q6(6).

We have maxx p(x, i) ∈ {q3(3), q6(6)}. When x in-
creases from B3 to B4, or decreases from B3 to −c,
p(x, 3) decreases. When x increases from B4 to B5,
B5 to B6, B6 to c, p(x, 3) also decreases. Hence,
we have minx p(x, 3) ∈ {p(−c, 3), limx→B4

p(x, 3),
limx→B5

p(x, 3), limx→B6
p(x, 3), p(c, 3)}. The curve of

p(x, 3) is symmetric to p(x, 6) around 0. In Theorem 5,
we will use this property to get compact privacy constraints.
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Figure 2: An example of output distribution

However, limx→Bk
p(x, i) and p(x, i) are quadratic func-

tions in qj(i) (see Section 4.1). We still need to convert them
into linear forms. To this end, we further assume that each
probability qj(i) has a non-zero lower and upper bound, i.e.,

oj(i) ≤ qj(i) ≤ uj(i), i, j ∈ [m], i ≤ j,

where oj(i) and uj(i) are hyperparameters that can be found
by a grid search. Then, we can replace qj(i) with oj(i) or
uj(i) to get a lower bound w(x, i) or upper bound z(x, i)
of p(x, i). We illustrate this using an example.

Example 2 Consider the following constraint

p(Bk, i) ≤ eϵ · lim
x→Bk

p(x, i). (10)

where Bi < Bk, p(Bk, i) ∈ Si and limx→Bk
p(x, i) ∈

Si by Lemma 2. To make constraint (10) linear, we can
replace p(Bk, i) with upper bound z(Bk, i) and replace
limx→Bk

p(x, i) with a lower bound w(Bk, i). Specifically,
∀x ∈ [Bj , Bj+1),

z(x, i) = uj(i)
∑

r∈[j+1,m]

(
qm−j(m− r + 1)

Br − x

Br −Bi

)
(11)

w(x, i) =


oj(i)

∑
r∈[j+1,m]

(
qm−j(m− r + 1)

Br − x

Br −Bi

)
, if x = −c or c.

oj−1(i)
∑

r∈[j+1,m]

(
qm−j+1(m− r + 1)

Br −Bj

Br −Bi

)
, o.w.

(12)



Instead of using constraint (10), we use a stricter version

z(Bk, i) ≤ eϵ · w(Bk, i).

Similar to Example 2, for any s ∈ Si and s ∈ Si, we
can turn non-linear constraint s ≤ eϵ · s into a stricter
version that is linear. Besides, since the bins and the output
distribution are symmetric around 0, we only need to find
minx p(x, i) from x ∈ [Bi, c] instead of [−c, c]. This results
in the constraints detailed in Theorem 5.

Theorem 5 If the bins are symmetric, i.e., Bi = −Bm+1−i,
then privacy constraint (9) can be satisfied if the following
O(m3) linear constraints are satisfied.

• ∀i, k ∈ [m],−c ≤ Bi < Bk ≤ c :

qi(i) ≤ eϵ · w(Bk, i); qm+1−j(m+ 1− j) ≤ eϵ · w(Bk, i);

qi(i) ≤ eϵ · w(c, i); qm+1−j(m+ 1− j) ≤ eϵ · w(c, i);

• ∀i, k ∈ [m], Bi < −c < Bk :

z(Bk, i) ≤ eϵ · w(Bk, i); z(Bk, i) ≤ eϵ · w(c, i);

z(−c, i) ≤ eϵ · w(Bk, i); z(−c, i) ≤ eϵ · w(c, i);

• ∀i, j ∈ [m], i ≤ j, Bj ≤ c,Bj+1 > −c :

oj(i) ≤ qj(i) ≤ uj(i); qi(i) ≥ qj(i)

where w(·, ·) and z(·, ·) are specified in (12) and (11).

Complete optimization. Combining the above results,
we can formulate a linear program for the optimal mecha-
nism. Specifically, we minimize the upper bound of MAE
in Theorem 3 subject to 1) a set of linear constraints
in Theorem 5, and 2) constraint for distribution qj , i.e.,
0 ≤ qj(i) ≤ 1,

∑j
i=1 qj(i) = 1,∀i, j.

The complete procedure for finding the optimal mechanism
is shown in Algorithm 2. This optimization can be solved
by a linear programming tool denoted by LinProg(), which
takes the bin values {Bi}i∈[m], privacy parameter ϵ, lower
and upper bounds oj(i), uj(i), i, j ∈ [m], i ≤ j as inputs
and returns the optimal selection distribution qj(i).

Here we regard oj(i), uj(i) as hyperparameters and use grid
search to find the optimal ones. Although bin values {Bi}
are treated as inputs in Algorithm 2, we can find the optimal
bins {Bi} using techniques such as grid search to further
minimize MAE under a fixed privacy parameter ϵ.

Reduce complexity. As the number of bins m increases,
both the number of qj(i) and the choice of lower and upper
bounds oj(i), uj(i) increase. Since the optimal oj(i), uj(i)
are found via grid search, running Algorithm 2 can be com-
putationally expensive when m is large. Nonetheless, we can
formulate the original privacy constraint (9) as another set
of linear constraints, which are also stricter but significantly
reduce the number of oj(i) and uj(i) required to conduct
the grid search compared to constraints in Theorem 5.

Algorithm 2 OPTM: find optimal selection distribution

1: Input: bin values {B1, · · · , Bm}, privacy parameter ϵ
2: min_value =∞;
3: P = ∅;
4: for all possible oj(i), uj(i) pairs in grid search do
5: obj, {qj(i)} ← LinProg

(
{Bi}i∈[m], ϵ, oj(i), uj(i)

)
;

6: if obj ≤ min_value then
7: min_value← obj;
8: P ← {qj(i)};
9: end if

10: end for
11: Return: selection probabilities P

Theorem 6 If the bins are symmetric, i.e., Bi = −Bm+1−i,
then the privacy constraint (9) can be satisfied if the follow-
ing linear constraints are satisfied.

• ∀i, j ∈ [m], i ≤ j :

qj(i) ≥ qj+1(i); qj(i) ≤ qj(i+ 1);

• ∀i ∈ [m],−c ≤ B(i) ≤ c :

qi(i) ≥ qi+1(i+ 1);

• Let Bs < Bt be bins in [−c, c] closest to −c and c, respectively:

z(−c, s− 1) ≤ eϵ · w(Bt, 1); qs(s) ≤ eϵ · w(Bt, 1);

z(−c, s− 1) ≤ eϵ · w(c, 1); qs(s) ≤ eϵ · w(c, 1).

• ∀r, k ∈ [m], s ≤ k ≤ t, r > k + 1:

qm−k+1(m− r + 1)

Br −Bk+1
≥ qm−k(m− r + 1)

Br −Bk
;

qm−k(m− r + 1)

Br −Bk+1
≥ qm−k−1(m− r + 1)

Br −Bk
;

The constraints in Theorem 6 induces that

max
x,i

p(x, i) ∈ {p(−c, s− 1), qs(s)} ;

min
x,i

p(x, i) ∈
{

lim
x→Bt

p(x, 1), p(c, 1)

}
,

where s and t are as defined in Theorem 6. Under this set
of linear constraints, the upper bound uj(i) only appears
when calculating z(−c, s − 1), and the lower bound oj(i)
is only used for computing w(Bt, 1) and w(c, 1). Thus, we
can conduct a grid search over 3 variables, regardless of the
number of output bits.

5 DISCUSSION

Our proposed mechanisms can be generalized to broader
settings, including dynamic, high-dimensional, and biased
quantization. We discuss these extensions below.



Extension to high-dimensional quantization. Besides
entry-wise discretization, our method can also be extended
to higher-dimensional quantization with a similar method
as in [Chaudhuri et al., 2022]. Specifically, for any d-
dimensional input vector x = (x1, · · · , xd) with L2 norm
bounded by diameter B, we map the input vector x to
Md(x) = (M′(x1), · · · ,M′(xd)). Here, the mechanism
M′ quantize the scalar in each coordinate and needs to
satisfy ϵ-metric DP, a variant of ϵ-DP that requires the fol-
lowing holds for any two inputs x, x′ and any set of possible
outputs S ⊆ Range(M):

Pr(M′(x) ∈ S) ≤ eϵd(x,x
′) Pr(M′(x′) ∈ S),

where d(x, x′) = |x− x′|2. Since Lemma 6 in Chaudhuri
et al. [2022] has shown that the mechanismMd generated
by ϵ-metric DPM′ is ϵB2-DP and unbiased, we can directly
use our method to find the optimal parameters ofM′ (under
new privacy constraints specified by ϵ-metric DP).

Extension to biased quantization. Our unbiased mecha-
nism can be extended to biased quantization, finding a new
tradeoff between bias, deviation, and privacy. Instead of
randomly outputting either Bl or Br and enforcing unbi-
asedness according to Eq. (1) as defined in Section 3.2, we
can use the exponential mechanism to output either Bl or
Br, with score function being the negative distance between
the input and output bins. This mechanism induces biased
output but reduces privacy loss.

Extension to dynamic settings. Our method can also be
extended to dynamic quantization, where different inputs
require quantization mechanisms with different hyperpa-
rameters. One potential solution is to integrate the existing
dynamic quantization strategies, such as the optimal quan-
tization bit-width [Zhou et al., 2018], the clipping range
of activation values [So et al., 2024] in a quantized neural
network; both methods find hyperparameters (e.g., number
of bins, clipping range) during runtime. After these hyper-
parameters are decided and samples of inputs are collected,
we can directly use our algorithm to find the optimal quanti-
zation mechanism.

6 EXPERIMENTS

Next, we validate two proposed mechanisms: 1) optimal
randomized quantization mechanism (OPTM) proposed in
Section 4; 2) exponential randomized mechanism (ERM), a
special case of OPTM proposed in Section 3.3. We use grid
search to find bin values with the best performance.

We conduct three sets of experiments: (i) scalar input quan-
tization; (ii) vector input quantization; and (iii) quantization
in stochastic gradient descent (SGD). For each experiment,
we compare our mechanisms with two baselines:

• Randomized quantization mechanism (RQM) [Youn et al.,
2023]: a special case of OPTM with uniformly-distributed
bins as discussed in Section 3.3.

• Minimum variance unbiased (MVU) mechanism [Chaud-
huri et al., 2022]: a mechanism that uses optimized proba-
bility matrix and output alphabets to map the quantized
inputs to outputs. It finds the optimal bin values via a
non-linear optimization.

For each mechanism, we evaluate the privacy and accuracy
using the standard differential privacy (DP) and mean abso-
lute error (MAE) measures.

6.1 SCALAR INPUT

We first evaluate the performance of our algorithm and base-
lines on a scalar input. In our experiments, the time and
resources needed to find the optimal parameters for OPTM
are low. It takes about 300 seconds on a personal computer
(with Intel Core i5-10210U CPU and 16 GB RAM) to search
over all combinations of hyperparameters (10 optional ∆, 10
optional bin assignments, 100 optional lower/upper bounds
on probabilities), and find the parameters which can induce
the best performance.

We first consider a scenario where input x follows a uni-
form distribution over [−1, 1]. Table 1 compares the mean
absolute error EX(|M(X)−X|) at ϵ = 0.5, 1.0, 1.5 when
m = 4. As expected, our method OPTM improves privacy-
accuracy trade-off, and it has the lowest error compared
to baselines. The performance of ERM is also comparable
with RQM. It is worth mentioning that we could not find
valid hyperparameters for RQM and ERM when privacy
loss ϵ = 0.5 so we put "N/A" in Table 1. Figure 3 illus-
trates mean absolute error with higher granularity for each
input value x. The choice of parameters in each mechanism
are given in the Appendix B. We scale the input range of
MVU to [−1, 1] for a fair comparison and also scale the
output alphabets. The results show that ERM can achieve
similar and sometimes better utility than RQM. OPTM can
achieve lower error in most cases compared to RQM and
ERM, which indicates the effectiveness of the optimization
scheme.

We then consider a scenario where input x follows a trun-
cated Gaussian distribution and the distribution is not known
in advance. Specifically, the input is first sampled from Gaus-
sian distribution with µ = 0.5, σ = 0.1, 0.2, 0.3, and then
truncated by [−1, 1]. Table 2 compares the mean absolute
error when m = 4 and ϵ = 1. The results show that OPTM
can use asymmetric bins to better capture the pattern of
the underlying distribution. Specifically, for each optional
bin value, we use samples collected from the same input
distribution to estimate the density function, optimize for
the parameters with the objective function as stated in Theo-
rem 4, and find the bin values inducing the best performance.
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Figure 3: Comparison of mean absolute error under the same privacy on scalar inputs
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Figure 4: a) Average error of L1 bounded vectors , b) Average error of L2 bounded vectors, c) Training accuracy on breast
cancer dataset, d) Training accuracy on MNIST dataset

In comparison, MVU and RQM use uniformly distributed
bins for all inputs, hence inducing higher errors. The perfor-
mance gain brought by asymmetric bins is higher when the
distribution is more concentrated (i.e., with smaller σ).

Table 1: Minimal MAE of scalar inputs under uniform distri-
bution. OPTM attains higher accuracy than baselines. N/A
means that there are no valid hyperparameters for ERM and
RQM when ϵ = 0.5.

EX(|M(X)−X|) ϵ = 0.5 ϵ = 1 ϵ = 1.5

OPTM 3.904 1.882 1.179
MVU 3.959 1.930 1.254
RQM N/A 1.993 1.310
ERM N/A 2.216 1.304

6.2 VECTOR INPUT

We then compare the error of our mechanism with vector
inputs under privacy parameter ϵ. Hyperparameters of each
mechanism are given in the Appendix B. We use bounded
random vectors as inputs to simulate the clipped gradients
in DP-SGD [Abadi et al., 2016], i.e., differentially private
stochastic gradient descent commonly used for training pri-

Table 2: Minimal MAE of scalar inputs under truncated
Gaussian distribution. Our proposed OPTM attains higher
accuracy than baselines.

EX(|M(X)−X|) σ = 0.1 σ = 0.2 σ = 0.3

OPTM 1.778 1.836 1.972
MVU 2.053 2.052 2.002
RQM 2.028 2.010 2.000

vate machine learning models. Specifically, we generate
random vectors with dimension d = 10. Each coordinate
follows uniform distribution in [−1, 1], hence producing
vectors with bounded L1 norm.

For each ϵ, we fix bin values {B1, . . . , Bm} and find the
optimal parameters for each mechanism (e.g., selection prob-
ability in OPTM and parameter q for RQM). Then, we quan-
tize each coordinate independently. We measure the Eu-
clidean distance between the input and output vector as the
error, and repeat this process 10,000 times to calculate the
average error (see Figure 4a).

In another experiment (Figure 4b), we generate random vec-
tors v ∈ R100 with uniform distribution over ball ||v||2 ≤ 1
(this can be done through ball point picking [Barthe et al.,



2005]). We quantize the vector v and measure the error
based on Euclidean distance. Again we repeat the process
10,000 times to find the average error. We report both the
mean and the standard deviation of the error in Figure 4a
and 4b. In both cases, OPTM can achieve lower error com-
pared to RQM and MVU, indicating that our mechanism can
effectively reduce the loss when privatizing vector inputs.

6.3 DP STOCHASTIC GRADIENT DESCENT

We further measure the performance of our mechanisms on
downstream machine learning tasks by integrating them into
DP-SGD [Abadi et al., 2016] algorithms. Specifically, dur-
ing each epoch of the Stochastic Gradient Descent (SGD),
each coordinate of the gradient vector is clipped by a thresh-
old and then quantized by differentially private mechanisms.
The parameters of the experiments are given in the Ap-
pendix B. We also record the accuracy when gradients are
only clipped, without any privacy protection.

In our experiments, we first use DP-SGD to train a soft-
max regression model based on the UCI ML Breast Cancer
dataset [Wolberg,William, Mangasarian,Olvi, Street,Nick,
and Street,W., 1995] with 569 samples. We record the accu-
racy on the training set after training on each batch of data.
Results are shown in Figure 4c. We also train a softmax
regression model based on the MNIST dataset [LeCun et al.,
2010] with 60,000 images and record the training accu-
racy. Results are shown in Figure 4d. On the Breast Cancer
dataset, OPTM achieves a better convergence rate than RQM
and MVU, and achieves very close accuracy compared with
the non-private scheme. On MNIST dataset, OPTM has the
same performance as MVU and higher accuracy compared
to RQM. As errors brought by DP mechanisms can slow
down the convergence process, our mechanism can achieve
a better convergence rate compared to baselines.

7 CONCLUSION

This paper proposes a family of differential privacy mecha-
nisms with discrete and unbiased outputs, which is desirable
in many real applications such as federated learning. We
design an efficient linear programming algorithm to find
the optimal parameters for our mechanism. Experiments on
synthetic and real data show that the proposed mechanisms
can achieve a better accuracy-privacy trade-off compared
with existing discrete differential privacy mechanisms.

Our research raises several interesting topics for future re-
search: (i) Finding the optimal hyperparameters (e.g., num-
ber of bins, clipping range) automatically with an optimiza-
tion during runtime. In this paper, we assume that these
hyperparameters are either given in advance or are found
using grid search with the best performance. (ii) Privacy
analysis of OPTM. This paper only quantifies the privacy

loss of exponential randomized mechanism (ERM) in The-
orem 1, finding the privacy loss for the optimal OPTM is
important and allows us to better understand the relationship
between the privacy bound and mechanism parameters.
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A PROOFS

Proof 1 (of Theorem 1):

Assume that bins are uniformly distributed, i.e., Bi = −∆− c+ (i− 1) 2c+2∆
m−1 (i ∈ [m]), m ≥ 4, the selection probability

of ERM can be calculated as:

qj(i) =
exp{γ(Bi−Bj)

2(Bj−B1)
}∑j

k=1 exp{
γ(Bk−Bj)
2(Bj−B1)

}
=

exp{ γ(i−j)
2(j−1)}∑j

k=1 exp{
γ(k−j)
2(j−1) }

.

Take reciprocal of the probability, we have:

1

qj(i)
=

j∑
k=1

exp{γ(k − i)

2(j − 1)
} ≤ j exp{γ(j − 1)

2(j − 1)
} = j exp{γ

2
}.

Therefore we can find the lower bound of qj(i):

qj(i) ≥
1

j
exp{−γ

2
}.

Combining the lower bound with (4), we obtain a lower bound of p(x, i):

p(x, i) = qj(i)
∑

m≥r≥j+1

(
qm−j(m− r + 1)

Br − x

Br −Bi

)
≥

exp{−γ
2 }

j
·
exp{−γ

2 }
m− j

·
∑

m≥r≥j+1

(
Br − x

Br −Bi

)
≥ exp{−γ}

m2/4
·
∑

m≥r≥j+1

(
Br − x

Br −Bi

)
≥ 4 exp{−γ}

m2(Bm −B1)
·
∑

m≥r≥j+1
(Br −Bj+1)

≥ 4 exp{−γ}
m2(2c+ 2∆)

· 2c+ 2∆

m− 1
·
∑

m≥r≥j+1
(r − (j + 1)) =

4 exp{−γ}
m2(m− 1)

· (m− j − 1)(m− j)

2
.

Since x ∈ [−c, c] and x ∈ [Bj , Bj+1), we have:

(j − 1) · 2c+ 2∆

m− 1
< ∆ ≤ j · 2c+ 2∆

m− 1
,



which implies:

(m− 1)∆

2c+ 2∆
≤ j <

(m− 1)∆

2c+ 2∆
+ 1.

Hence we have:

p(x, i) ≥ 4 exp{−γ}
m2(m− 1)

· (m− j − 1)(m− j)

2
>

4 exp{−γ}
m2(m− 1)

·
(m− (m−1)∆

2c+2∆ − 2)(m− (m−1)∆
2c+2∆ − 1)

2

=
(2mc+m∆− 4c− 4∆)(2mc+m∆− 2c− 2∆) exp{−γ}

2m2(m− 1)(c+∆)
>

c exp{−γ}
2m(c+∆)

(m ≥ 4).

Let privacy loss eϵ = maxx,x′
p(x,i)
p(x′,i) , i ∈ [m], we have:

eϵ ≤ maxx,i p(x, i)

minx,i p(x, i)
≤ 1

c exp{−γ}
2m(c+∆)

=
2m(c+∆) exp γ

c
.

Hence we have an upper bound on ϵ:

ϵ ≤ γ + log
2m(c+∆)

c
.

Proof 2 (of Theorem 2):

For exponential mechanism with δ-sensitive score function f , privacy parameter γ, set of output Y , we have the following
inequality on the quality f(y) of the output y [Bassily et al., 2016]:

E(f(y)) ≥ maxy∈Y f(y)− 2δ log |Y|
γ

.

Assume x ∈ [Bj , Bj+1), Bi = −c−∆+(i− 1) 2c+2∆
m−1 . When selecting the left bin Bl with exponential mechanism (denote

as event Lj = l), we have f(l) = Bj −Bl, max f(l) = 0, sensitivity of the score function δ = Bj −B1, |Y| = j, hence we
have:

E(Bj −Bl) = −E(q(l)) ≤
2(Bj −B1) log j

γ
.

Similarly, when selecting the right bin Br, we have:

E(Br −Bj+1) ≤
(Bm −Bj+1) log(m− j)

γ
.

SinceM(x) ∈ {Bl, Br}, we can have an upper bound on the expected absolute error:

E(|M(x)− x|) = E(Br −Bj+1) + (Bj+1 −Bj) + E(Bj −Bl)

≤ 2(Bj −B1) log j

γ
+

2c+ 2∆

m− 1
+

(Bm −Bj+1) log(m− j)

γ

≤ 2 log(m)(2c+ 2∆)

γ
+

2c+ 2∆

m− 1
.



Proof 3 (of Lemma 1):

For each given x ∈ [Bj , Bj+1), the upper bound of its Mean Absolute Error can be derived as follows:

E(|M(x)− x|) =
∑
i≤j
k>j

Pr(Lj = i) Pr(Rj = k)
(
(
Bk − x

Bk −Bi
)(x−Bi) + (

x−Bi

Bk −Bi
)(Bk − x)

)

=
∑

i∈[1,j]
k∈[j+1,m]

Pr(Lj = i) Pr(Rj = k)(
2(x−Bi)(Bk − x)

Bk −Bi
)

≤
∑

i∈[1,j]
k∈[j+1,m]

Pr(Lj = i) Pr(Rj = k)(
Bk −Bi

2
)

=
1

2
E(Br −Bl)

=
1

2

(
E(Br −Bj+1) + E(Bj+1 −Bj) + E(Bj −Bl)

)
,

where Br is the random variable denoting the bin selected on the right, and Bl is the random variable denoting the bin
selected on the left.

Considering the process of selecting one bin from n bins: B1, B2, · · · , Bn according to the selection probability
qn(1), qn(2), · · · , qn(n). Denote the expected distance between the output bin Bi and Bn as ζj . ζn =

∑
i∈[1,n] qn(i)(Bn−

Bi), which is the linear combination of selection probabilities when the value of bins are fixed. We know that
E(Br −Bj+1) = ζm−j , and E(Bj −Bl) = ζj . Hence we obtain:

E(|M(x)− x|) ≤ 1

2

(
ζm−j + (Bj+1 −Bj) + ζj

)
.

Proof 4 (of Theorem 3):

Assume that the position of bins are given (either uniformly or non-uniformly distributed), and the input x ∈ [−c, c] follows
uniform distribution, and the probability density function of X is equal to fX(x) = 1

2c . Then, we find an upper bound for
E(|M(X)−X|) using Lemma 1 and law of total expectation as follows,

E(|M(X)−X|) =
∫ c

−c

1

2c
E(|M(x)− x|)dx

=

∫ Bs

−c

1

2c
E(|M(x)− x|)dx+

t−1∑
i=s

∫ Bi+1

Bi

1

2c
E(|M(x)− x|)dx+

∫ c

Bt

1

2c
E(|M(x)− x|)dx

≤ 1

2c

(
(Bs + c)(ζm−s+1 +Bs+1 −Bs + ζs−1) +

t−1∑
i=s

(Bi+1 −Bi)(ζm−i +Bi+1 −Bi + ζi) + (c−Bt)(ζm−t +Bt+1 −Bt + ζt)
)
,

where−c−∆ ≤ Bs−1 < −c ≤ Bs < Bt ≤ c < Bt+1 ≤ c+∆. Discarding the constant terms, we can have the following
objective function:

min
qj(i)

∑
s≤n≤t+1

(
min(c,Bn)−max(−c,Bn−1)

)(
ζn−1 + ζm−n+1

)
, (13)

where ζn is given in Lemma 1 and Theorem 3.

Proof 5 (of Lemma 2):

When −c ≤ Bi ≤ c and x ≥ Bi, according to (4), p(x, i) = qj(i)
∑

m≥r≥j+1

(
qm−j(m− r + 1) Br−x

Br−Bi

)
. Since

Br−x
Br−Bi

< 1, we obtain that:

p(x, i) ≤ qj(i)
∑

m≥r≥j+1
qm−j(m− r + 1) = qj(i).



∀j ∈ [m], j ≥ i, we assume qi(i) ≥ qj(i), hence we have qi(i) ∈ Si, where Si is as defined in Lemma 2. Similarly, we can
prove that when −c ≤ Bi ≤ c and x < Bi, qm+1−i(m+ 1− i) ∈ Si.

If Bi ≤ x, then ∀x, x′ ∈ [Bk, Bk+1), x ≤ x′, we have p(x, i) ≥ p(x′, i). This indicates that p(x, i) is monotonic between
each interval divided by bins (e.g., [−c,Bi), [Bi, Bi+1), or [Bi, c)), and is decreasing as x is moving farther from Bi. We
can also prove this when x < Bi. Hence if Bi < −c, max p(x, i) is achieved only when x = −c or x = Bk (−c ≤ Bk < c).
If Bi > c, then max p(x, i) is achieved only when x = c or x = Bk (−c ≤ Bk < c). Similarly, min p(x, i) is achieved only
when x is approaching the position of bins (Bk), or locating at the edge (c or −c) which is farther from Bi.

Proof 6 (of Theorem 6):

According to Lemma 2, when Bi ≤ −c, we have:

max
x

p(x, i) ∈ {p(−c, i)} ∪ {p(Bk, i)}(k ∈ [m],−c ≤ Bk ≤ c).

According to (4), when Bi ≤ x:

p(x, i) = qj(i)
∑

m≥r≥j+1

(
qm−j(m− r + 1)

Br − x

Br −Bi

)
.

Hence we can get:

p(Bk, i) = qk(i)
∑

m≥r≥k+1

(
qm−k(m− r + 1)

Br −Bk

Br −Bi

)
.

p(Bk+1, i) = qk+1(i)
∑

m≥r≥k+2

(
qm−k−1(m− r + 1)

Br −Bk+1

Br −Bi

)
.

Assume that ∀i, j ∈ [m], i ≤ j:

qj(i) ≥ qj+1(i), (14)

and ∀k, r ∈ [m], s ≤ k ≤ t, r > k + 1 (s and t are as defined in Theorem 3), we assume:

qm−k(m− r + 1) · (Br −Bk) ≥ qm−k−1(m− r + 1) · (Br −Bk+1),

then we get:

p(Bk, i) ≥ p(Bk+1, i). (15)

From (4), we can also know that:

p(x, i− 1) = qj(i− 1)
∑

m≥r≥j+1

(
qm−j(m− r + 1)

Br − x

Br −Bi−1

)
.

Assume that ∀i, j ∈ [m], i ≤ j, we have:
qj(i− 1) ≤ qj(i), (16)

hence we can know that:

p(x, i− 1) ≤ p(x, i). (17)



Through (15), (17), and Lemma 2, we can know that when Bi < −c, we have p(−c, s− 1) ∈ Si, where Si is as defined in
Lemma 2, s is as defined in Theorem 3.

When −c ≤ Bi ≤ c, we have maxx p(x, i) ∈ {qi(i), qm+1−i(m+ 1− i)}. Assume that ∀i ∈ [m], qi(i) ≥ qi+1(i+ 1), we
have qs(s) ∈ Si. Now we have Si = {p(−c, s− 1), qs(s)}.

According to Lemma 2 and (17), minx,i p(x, i) ∈ {limx→Bk
p(x, 1)| − c ≤ Bk ≤ c} ∪ {p(c, 1)}. We have:

lim
x→Bk

p(x, 1) = qk−1(1)
∑

r∈[k+1,m]

(
qm−k+1(m− r + 1)

Br −Bk

Br −B1

)
, (18)

lim
x→Bk+1

p(x, 1) = qk(1)
∑

r∈[k+2,m]

(
qm−k(m− r + 1)

Br −Bk+1

Br −B1

)
. (19)

According to (14), we have qk−1(j) ≥ qk(j), hence by requiring that for any r, k ∈ [m], s ≤ k ≤ t, r > k + 1:

qm−k+1(m− r + 1)(Br −Bk) ≥ qm−k(m− r + 1)(Br −Bk+1), (20)

we obtain:

lim
x→Bk

p(x, 1) > lim
x→Bk+1

p(x, 1). (21)

Combining (21) with Lemma 2, we can know that:

min
x

p(x, i) ∈ { lim
x→Bt

p(x, 1), p(c, 1)}. (22)

B EXPERIMENTAL DETAILS

The hyperparameters used in each experiment are given as follows.

Hyperparameter Value

OPTM bins [-6.00, -0.40, 0.40, 6.00]
MVU bins [-4.34, -3.60, 3.60, 4.34]

Table 3: Hyperparameters for
scalar inputs when ϵ = 0.5

Hyperparameter Value

OPTM bins [-3.00, -0.50, 0.50, 3.00]
MVU bins [-2.42, -1.69, 1.69, 2.42]

ERM γ 0.026
ERM bins [-5.10, -0.10, 0.10, 5.10]

RQM q 0.220
RQM bins [-2.70, -0.90, 0.90, 2.70]

Table 4: Hyperparameters for
scalar inputs when ϵ = 1.0

Hyperparameter Value

OPTM bins [-3.00, -0.50, 0.50, 3.00]
MVU bins [-1.83, -1.11, 1.11, 1.83]

ERM γ 0.043
ERM bins [-2.70, -0.40, 0.40, 2.70]

RQM q 0.498
RQM bins [-2.60, -0.87, 0.87, 2.60]

Table 5: Hyperparameters for
scalar inputs when ϵ = 1.5

Hyperparameter Value

OPTM bins [-4.00, 0.20, 0.60, 4.00]
MVU bins [-2.42, -1.69, 1.69, 2.42]

RQM q 0.220
RQM bins [-2.70, -0.90, 0.90, 2.70]

Table 6: Hyperparameters for
truncated Gaussian distribution

Hyperparameter Value

OPTM bins [-3, -0.5, 0.5, 3]
RQM bins [-3, -1, 1, 3]

Table 7: Hyperparameters for
vector inputs

Hyperparameter Value

Batch size 8
DP budget ϵ 1

Gradient norm clip 0.1
OPTM bins [-2.2, -0.4, 0.4, 2.2]
RQM bins [-2.7, -0.9, 0.9, 2.7]

RQM q 0.22

Table 8: Hyperparameters for
DP-SGD on Breast Cancer
dataset



Hyperparameter Value

Batch size 32
DP budget ϵ 1

Gradient norm clip 0.01
OPTM bins [-2.6, -0.4, 0.4, 2.6]
RQM bins [-2.7, -0.9, 0.9, 2.7]

RQM q 0.22

Table 9: Hyperparameters for
DP-SGD on MNIST
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