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Abstract

Synthetic data generation has emerged as a001
promising approach to enhance the reasoning002
capabilities of large language models. How-003
ever, existing methods remain hindered by high004
costs—either through expensive API access or005
additional intermediate training—and are lim-006
ited in their ability to generalize across different007
domains. To address these challenges, we pro-008
pose a multi-agent debate framework based on009
the Socratic questioning strategy, abbreviated010
as SoDa. Distinguished from previous methods011
that prioritize data quantity, we highlight the012
wisdom of Socratic questioning in augmenting013
reasoning quality by deepening the thinking014
process to encourage exploration and broaden-015
ing it to motivate self-reflection on each ques-016
tion. Combined with our efficient production017
pipeline, SoDa enables scaling while maintain-018
ing affordable costs. We use SoDa to gener-019
ate diverse datasets for mathematics and code020
generation tasks with the Qwen2.5-7B-Instruct021
model, successfully fine-tuning a range of foun-022
dation models, from general-purpose ones to023
OpenAI o1-like ones. For mathematics, the024
experimental results show that SoDa outper-025
forms the performance of existing datasets at026
the same scale, achieving improvements rang-027
ing from 1.3% to 13.5%. Remarkably, SoDa028
with 30K examples even surpasses the Scale-029
Quest dataset with 1000K samples, demonstrat-030
ing significant efficiency. Our findings high-031
light the potential of SoDa as a universal, scal-032
able, and cost-effective method for enhancing033
reasoning capabilities in large models across034
domains.035

1 Introduction036

The enhancement of reasoning capabilities in Large037

Language Models (LLMs) has become a recent re-038

search focus (Huang et al., 2024; Min et al., 2024).039

Recent studies have achieved notable progress040

by utilizing large language models to synthesize041

high-quality training data (Ding et al., 2024), re-042
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Figure 1: Performance of Qwen2-Math-7B fine-tuned
on SoDa-enhanced data (30K) vs. full-scale Numina-
Math (860K) and ScaleQuest (1000K) datasets on math-
ematical benchmarks.

sulting in substantial performance improvements 043

on mathematical reasoning benchmarks such as 044

GSM8K (Cobbe et al., 2021a) and Olympiad- 045

Bench (He et al., 2024a). However, these methods 046

depend on strong supervisory signals from two pri- 047

mary sources: i) powerful LLMs, which generally 048

incur high API costs (Yu et al., 2024), and ii) fine- 049

tuned smaller models, which demand extensive 050

training and struggle with domain adaptation (Ding 051

et al., 2024). These dependencies inherently con- 052

strain the scalability and flexibility of their data 053

generation processes. Furthermore, existing ap- 054

proaches are predominantly tailored to mathemat- 055

ics, with limited generalizability to other domains 056

such as code generation. Consequently, there is 057

an urgent need for a cost-effective and adaptable 058

method for generating high-quality data across di- 059

verse domains. 060

We draw inspiration from the Socratic ques- 061

tioning method (Qi et al., 2023), a systematic ap- 062

proach to critical thinking that uncovers under- 063

lying assumptions, clarifies concepts, and moti- 064

vates deeper understanding through iterative ques- 065
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tioning. This iterative process mirrors the pro-066

cess of human learning, which involves experienc-067

ing and exploring through trial-and-error (Song068

et al., 2024) interactions with the environment, ul-069

timately leading to improved solutions. If models070

can adopt this paradigm, it would enable a more071

natural extension of existing data-driven methods.072

This approach fundamentally differs from the di-073

rect answer-generation style of current Chain-of-074

thoughts (CoT) methods and offers several key ad-075

vantages. First, it does not rely heavily on advanced076

models, making it highly efficient for scaling. Sec-077

ond, it requires no additional training and instead078

relies solely on self-debating, allowing generaliza-079

tion across diverse domains and even real-world080

problem-solving scenarios. Ultimately, the trained081

models would demonstrate enhanced adaptability082

and robustness, paving the way for broader and083

more versatile applications.084

We propose the SoDa (Socratic Debate), a085

model debate framework based on the Socratic086

questioning strategy (Qi et al., 2023). For the087

Socratic component, we incorporate its principles088

to iteratively explore and reflect, while additional089

constraints ensure comprehensive generation of090

thoughts and answers. For the debate component,091

we simplify the process by reducing it to a fixed092

number of turns between two roles (i.e., the So-093

cratic and the student), enabling efficient execution094

without compromising quality. To further accel-095

erate scaling, we optimize the generation pipeline096

by leveraging the observation that in-context learn-097

ing (ICL) can effectively guide the debate process.098

This allows us to generate high-quality datasets099

using a 7B model, Qwen2.5-7B-Instruct (Yang100

et al., 2024b), which significantly reduces com-101

putational costs. Ultimately, our method achieves102

efficient dataset generation and maintains adaptabil-103

ity across diverse domains (see Table 1), facilitating104

broader applicability.105

Based on the proposed SoDa, we expanded ex-106

isting datasets by converting them into Socratic-107

dialogue formats. This includes three math108

datasets: DART-Math (Tong et al., 2024), Numi-109

naMath (Li et al., 2024), and ScaleQuest (Ding110

et al., 2024), as well as a code dataset McEval-111

Instruct (Chai et al., 2024). For math tasks, train-112

ing with the expanded dataset resulted in signif-113

icant performance improvements on LLaMa-3.1-114

8B (Dubey et al., 2024), with gains ranging from115

1.3% to 13.5%. These improvements were con-116

sistently observed across various models, such117

Methods Multiple
Domains

Synthesis
Model

Training
Free

MetaMath ✗ GPT-3.5 ✓
DART-Math ✗ DSMath (7B) ✓
NuminaMath ✗ GPT-4o ✓
ScaleQuest ✗ Qwen2-Math (7B) ✗

SoDa ✓ Qwen2.5 (7B) ✓

Table 1: Overview comparison between SoDa and re-
cent advanced synthetic data generation methods.

as Qwen2-Math-7B (Yang et al., 2024a), a math- 118

specific model, and Skywork-o1 (Skywork-o1, 119

2024), an o1-like model. Notably, utilizing 30K 120

SoDa-enhanced data achieves comparable or supe- 121

rior performance to full-scale datasets (see Figure 122

1). Additionally, our method achieved an average 123

2.7% improvement on code tasks. These results 124

suggest that our approach enhances CoT reason- 125

ing, making it a versatile and efficient method for 126

synthetic data generation across diverse domains.. 127

2 Related Work 128

2.1 Math Reasoning 129

OpenAI o1 (Jaech et al., 2024) has demonstrated 130

remarkable reasoning capabilities, primarily at- 131

tributed to its use of long chain-of-thought (CoT) 132

reasoning. This model has become a pivotal mile- 133

stone in the development of reasoning methods for 134

LLMs. Prior to o1, mathematical reasoning was 135

predominantly driven by diverse, heuristic-based 136

approaches, including prompting techniques (Chia 137

et al., 2023), instruction tuning techniques (Yue 138

et al., 2024), tool based methods (Wang et al., 2024) 139

and preferring tuning (Lai et al., 2024). Following 140

o1, the emphasis shifted toward long-form CoT pro- 141

cesses, which are now widely regarded as an effec- 142

tive strategy for enhancing reasoning capabilities. 143

Subsequent work, such as DeepSeekMath (Shao 144

et al., 2024) and Qwq (Team, 2024), has built upon 145

this paradigm, further refining the approach and 146

fostering deeper, more systematic reasoning. 147

2.2 Synthetic Data Generation for LLMs 148

In the process of replicating o1-like reasoning, 149

data synthesis has been recognized as a highly ef- 150

fective approach. Specifically, this involves ex- 151

panding a seed dataset by enriching its questions 152

or answers to generate larger and more diverse 153

datasets. For question-centric augmentation, com- 154

mon methods include increasing the complexity 155

of questions (Luo et al., 2023), modifying ques- 156
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tions to enhance diversity (Yu et al., 2024), or gen-157

erating high-quality questions through a trained158

model (Ding et al., 2024). While these methods are159

effective, high-quality models are often challenging160

to scale, and training-based approaches are difficult161

to generalize across domains. For answer-centric162

augmentation, existing work includes introducing163

additional knowledge into answers and improving164

their quality (Didolkar et al., 2024; Shah et al.,165

2024). Some approaches propose to enhance the166

quality of both questions and answers simultane-167

ously. For example, Numinamath (Li et al., 2024)168

incorporates real-world data to achieve this dual169

enhancement. However, these methods are special-170

ized for mathematics and struggle to generalize to171

other domains.172

3 Methods173

We present a general framework (see Figure 2)174

for efficiently generating synthetic conversational175

Socratic-style Chain-of-Thought (CoT) data, which176

includes two key components: the Socratic module,177

designed to generate insightful questions that stim-178

ulate critical thinking, and the multi-agent debate179

module, which extends the dialogue into multi-turn180

interactions for deeper exploration. To accelerate181

the data generation process, we propose an effi-182

cient pipeline leveraging in-context learning with183

meticulously curated high-quality demonstrations.184

3.1 Socratic Style Debate Framework185

Generally speaking, Socratic questioning is a186

method of exploration designed to inspire deeper187

thinking through thought-provoking questions. An188

intuitive way to do this is to mimic real-world con-189

versations between a teacher and a student, with190

additional constraints to ensure the teacher adheres191

to Socratic-style principles. The key mechanism192

behind our method is to enrich the thought process193

for each individual sample, in contrast to existing194

methods that primarily aim to automatically in-195

crease data quantity. This enables more efficient196

utilization of the available data. Next, we will detail197

the Socratic module and the debate module.198

Socratic Module. We begin with formalizing the199

data generation process in the context of instruction200

tuning. Typically, the training datasets consist of201

question-answer pairs, i.e., (q, a) ∈ Dseed, where202

Dseed denotes the seed dataset used for data synthe-203

sis. In this process, the LLM is prompted to adopt204

a Socratic role, generating new guiding questions205

Q based on the given questions. Specifically, the 206

prompts are split into two categories: Socratic prin- 207

ciples (PSo) and questioning requirements (PQ). 208

Then we generate the first guiding question at the 209

initial round (t = 0) as follows: 210

Q0 = LLM(q, a, PSo, PQ). (1) 211

For Socratic principles, we follow the study (Qi 212

et al., 2023) and incorporate the ten common guide- 213

lines of Socratic questioning (see Table 2). For 214

questioning requirements, we introduce three spe- 215

cific constraints to prevent irrelevant or endless 216

discussions. 217

• Ask questions only. The Socratic should avoid 218

providing direct answers, focusing instead on ask- 219

ing questions. This encourages the Student to think 220

independently and make more attempts to solve the 221

problem. 222

• Encourage exploration. The Socratic should 223

guide the Student to explore multiple possible solu- 224

tions, linking the problem to their existing knowl- 225

edge and broadening their thought process. 226

• Promote reflection. The Socratic should help 227

the Student reflect on each step to reduce uncer- 228

tainty and verify correctness. This ensures a solid 229

final solution and a deeper understanding of the 230

problem. 231

Following the application of these Socratic prin- 232

ciples, we analyze the distribution of the generated 233

Socratic-style question types, with the results pre- 234

sented in Table 2. Except for the principle “Prob- 235

ing Evidence & Reasons ”, which accounts for a 236

slightly larger proportion (20.8%), the other prin- 237

ciples are distributed relatively evenly. This result 238

aligns with our expectations, as Socratic question- 239

ing is designed to approach students from diverse 240

perspectives, facilitating broader exploration and 241

capturing a wider range of knowledge points. 242

Multi-Agent Debate. Building on the foundation 243

of Socratic principles, we extend our approach by 244

adopting a multi-agent debate framework inspired 245

by prior research (Liang et al., 2023). Specifically, 246

we design two agents as debaters: the Socratic 247

role RS and the Student role Ru, engaging in a 248

structured Socratic-style dialogue for a maximum 249

number of rounds, Tmax: 250

Q(t) = RS(q, a, PSo, PQ, {Qi, Ai}i<t
i=0), (2) 251

A(t) = Ru(PA, {Qi, Ai}i<t
i=0, Q

(t)), 252

where t ∈ {1, 2, · · · , Tmax − 1}, 253
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Figure 2: Overview of the SoDa framework.

Principles Ratio (%)

Clarification Questions 9.1
Probing Assumptions 9.8

Probing Evidence & Reasons 20.8
Exploring Alternative Perspectives 10.8

Examining Implications & Consequences 8.4
Questioning the Question 6.7
Encouraging Reflection 7.7

Challenging Logic 9.4
Exploring Causes & Effects 7.1

Summarizing & Synthesizing 10.1

Table 2: Basic principles and the ratio in our dataset.
Specific examples for each principle refer to Table 9 in
the Appendix.

where PA represents the prompts for the student254

roles to answer in a step-by-step manner and255

{Qi, Ai}i<t
i=0 refers to the dialogue history up to256

round t. For each interaction, the Socratic guides257

the student step by step through insightful ques-258

tions, while the student responds based on these259

prompts. This iterative structure allows for a pro-260

gressive and dynamic exploration of the input ques-261

tion, fostering deeper reasoning and broader explo-262

ration. Finally, the process progressively builds the263

final dataset in the first stage, i.e., SoDasta1.264

Different from existing methods (Liang et al.,265

2023) that rely on high-quality questions and a266

judge mechanism to guide and control debates,267

our method simplifies the process by removing the268

judge and adopting a fixed number of rounds. In269

this way, we focus solely on the core discussion pro-270

cess, enabling faster iterations and improved scala-271

Methods # Sample Dataset Olympiad
Bench

Base - - 16.6

Tuning ∼ 50K NuminaMath∗ 20.0

ICL
1 random 17.6
1 random SoDasta1 20.1
1 nearest SoDasta1 21.0

Table 3: Investivation of the ICL experiments on the
base model Qwen2-base. “SoDasta1” denotes the gen-
erate datasets using GPT-o1-mini as Socratic role. The
“NuminaMath∗” is the olympiad subset from the Numi-
naMath source.

bility. This emphasis on efficiency and simplicity 272

allows our approach to achieve effective Socratic- 273

style reasoning while remaining cost-effective and 274

practical for large-scale applications. 275

3.2 Efficient Pipeline with In-context 276

Learning 277

So far, we have established an initial debate frame- 278

work, but it still lacks the ability to scale efficiently. 279

Therefore, we explore an efficient data generation 280

approach that leverages small LLMs guided by 281

high-quality prompts. Our key observation is that 282

using high-quality data as prompts can effectively 283

steer the generation process toward producing high- 284

quality outputs. Building on this insight, we pro- 285

pose a clustering-based prompt generation strategy 286

to automate and accelerate the creation of a scal- 287

able, high-quality dataset. 288
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Observations. The previous framework has en-289

abled a rich expansion of reasoning processes with290

powerful LLMs in the Socratic debate framework.291

It is reasonable to assume that these reasoning pro-292

cesses overlap with new input queries. Leveraging293

this overlap, we hypothesize that such data can294

serve not only as training material but also as effec-295

tive prompts to guide the generation of new sam-296

ples. If this holds true, the value of high-quality297

data produced by powerful LLM can be signifi-298

cantly amplified, as each sample can serve as an299

independent prompt to guide the generation of a300

class of related queries using small LLMs.301

To validate these assumptions, we conducted302

an experiment where, for a given input query303

qinp, we randomly selected a high-quality sample304

< q, a, {Q(t), A(t)}i<Tmax
i=0 >∈ SoDasta1 to form305

a prompt. Then we evaluated the performance of306

the model on a downstream task using this prompt-307

based setup. The results are summarized in Table 3.308

We observe that randomly selected samples can ef-309

fectively serve as prompts, guiding small LLMs to310

solve challenging problems. Notably, the accuracy311

achieved with random SoDasta1 samples (20.1%)312

slightly surpasses that of fine-tuning with around313

50K CoT data (20.0%). Furthermore, accuracy im-314

proves when the prompt is selected based on its315

relatedness to the query by identifying the nearest316

sample (21.0%). These findings motivate the de-317

velopment of a clustering-based data generation318

pipeline to further enhance performance.319

Generation by ICL. Building on the obser-320

vations, we further explore how to systemati-321

cally identify the most suitable example for each322

given query. To achieve this, we propose a323

clustering-based approach that efficiently lever-324

ages high-quality data samples. Specifically, we325

first employ a K-means clustering method to326

group the high-quality dataset into N clusters,327

{c1, c2, · · · , cN}. Each cluster i is represented328

by a centroid ci and representative sample <329

qi, ai, {Q(t), A(t)}t<Tmax
t=0 >, which is the data330

point closest to the centroid. Second, for an input331

query qinp, we identify the most relevant cluster332

c∗ and form the corresponding example as prompt333

by locating the centroid closest to qinp based on a334

predefined distance metric d(·):335

c∗ = argmin
ci

d(qinp, ci). (3)336

This clustering-based selection not only automates337

the process of finding suitable prompts but also338

ensures that each new query is guided by the most 339

contextually appropriate example. The whole pro- 340

cess is summarized in the Algorithm 1. 341

Algorithm 1 Efficient generation pipeline.
Input: High-quality dataset in first stage, SoDasta1, input

seed dataset to process Dseed.
Output : Generated dataset for the second stage SoDasta2

K-means Clustering
1: Apply K-means clustering to the queries in high-quality

dataset SoDasta1, grouping the data into N clusters and
the representative samples {c1, c2, · · · , cN}
Generation

2: for qinp ∈ Dseed do
/* Find the closest cluster */

3: c∗ = argminci d(qinp, ci)
/* Select the representative sample as prompts Pc*/

4: Pc = {< q∗, a∗, {Q(t)∗, A(t)∗}Tmax
0 >}

5: for t = 0→ Tmax do
6: Q(t) = RS(q, a, PSo, PQ, Pc, {Qi, Ai}i<t

i=0)

7: A(t) = Ru(PA, {Qi, Ai}i<t
i=0, Q

(t))
8: end for
9: SoDasta2 ← {qinp, ainp, {Q(t), A(t)}Tmax

0 }
10: end for
11: return SoDasta2

4 Experiments 342

4.1 Experimental Setup 343

Data Synthesis. We evaluate our method on 344

mathematics and code tasks. In the mathematics 345

domain, data synthesis is performed using three 346

datasets: DART-Math (Tong et al., 2024), Numi- 347

naMath (Li et al., 2024), and ScaleQuest (Ding 348

et al., 2024). Code-oriented synthesis utilized the 349

McEval-Instruct dataset (Chai et al., 2024). For 350

each dataset, we randomly select 30,000 problem- 351

solution pairs as the source data. GPT-o1 is 352

used as the generator in SoDasta1 to synthesize 353

1,000 high-quality samples, with the clusters N 354

set to 50. Based on these samples, we em- 355

ploy Qwen2.5-7B-Instruct in SoDasta2 framework 356

to generate additional 29,000 samples. The fi- 357

nal synthesized datasets—comprising 30,000 sam- 358

ples each—were designated as SoDa-DART-Math, 359

SoDa-NuminaMath, SoDa-ScaleQuest, and SoDa- 360

MCEval, respectively. The fine-tuning configura- 361

tion is provided in the Appendix A.1. 362

Baseline Methods. We compare the data gen- 363

erated by SoDa with popular synthetic datasets, 364

including DART-Math (Tong et al., 2024), Numi- 365

naMath (Li et al., 2024), and ScaleQuest (Ding 366

et al., 2024). We additionally consider per- 367

formance comparisons with advanced models 368

such as GPT-4o, LLaMa-3.1-8B (Dubey et al., 369

2024), DeepSeekMath-7B-RL (Shao et al., 2024), 370
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Skywork-o1-open (Skywork-o1, 2024) and models371

of Qwen family (Yang et al., 2024a).372

For the mathematical evaluation, we consider373

four benchmarks: GSM8K (Cobbe et al., 2021b),374

MATH (Hendrycks et al., 2021), Olympiad-375

Bench (He et al., 2024b) and AIME-24 (Math-376

ematical Association of America, 2024). Code377

generation capabilities were evaluated on Hu-378

manEval (Chen et al., 2021), HumanEval+ (Liu379

et al., 2024), MBPP (Austin et al., 2021) and380

MBPP+ (Liu et al., 2024) problems. The zero-shot381

pass@1 accuracy is reported.382

4.2 Main Results383

Comparing with Synthetic Data Generation384

Methods. We fine-tune popular models using385

synthetic datasets and summarize the results in Ta-386

ble 4. At comparable dataset scales, SoDa-style387

datasets consistently outperform other methods,388

with improvements ranging from 1.3% on DART-389

Math data with Llama3.1-8b model to 13.5% on390

NuminaMath data with Llama3.1-8b model. Next,391

we examine the impact of seed datasets. Among392

the three datasets evaluated, ScaleQuest demon-393

strates the best average performance, followed by394

NuminaMath in second place. This trend is also395

observed in the SoDa-style datasets, highlighting396

the critical role of seed datasets in the synthetic397

data generation process. When analyzing differ-398

ent base models, we find that performance gains399

diminish as model complexity increases. For ex-400

ample, Skywork-o1-open, which targets o1-like401

abilities, shows limited improvement after fine-402

tuning with seed datasets. However, reasonable403

gains can still be observed in average metrics (58.8404

vs. 56.5). Notably, SoDa-ScaleQuest achieves a405

6.7% improvement (20.0 vs. 13.3) on AIME, fur-406

ther demonstrating the effectiveness of the SoDa407

approach. In Appendix Figure 4, we present the In-408

telligence Quality per Token (IQPT), calculated as409

average performance divided by number of tokens,410

for NuminaMath, ScaleQuest, SoDa-NuminaMath,411

and SoDa-ScaleQuest. As shown, our methods sig-412

nificantly improve IQPT, demonstrating that SoDa413

effectively enhances the information density.414

Comparison with Advanced Models. To415

demonstrate the advantages of our data-trained416

models in mathematical reasoning, we compare417

them with current state-of-the-art LLMs. Among418

frontier LLMs, the closed-source model GPT4o419

achieves the best overall performance. However,420

our trained model, Skywork-o1-SoDa, achieves 421

comparable average performance (58.5 vs. 58.9). 422

Notably, on more complex benchmarks, our 423

model outperforms GPT4o, with significant gains 424

observed on tasks such as AIME (20.0 vs. 16.7) 425

and OlympiadBench (44.9 vs. 43.3). These 426

results further validate the effectiveness of the 427

reasoning processes generated by our approach. It 428

is particularly noteworthy that our data generation 429

relied on a relatively simple 7B Qwen model. 430

Despite this, fine-tuning more complex models 431

with our generated data still yielded substantial 432

improvements on challenging tasks, underscoring 433

the robustness and scalability of our method. 434

4.3 Ablation Study 435

Our method comprises two key components: the 436

Socratic module and the multi-agent debate module. 437

To evaluate the contribution of each component, we 438

fine-tune Qwen2-7B with each module separately 439

and present the results in Table 5. To ablate the 440

debate module, we modify the prompts to restrict 441

the Socratic-style conversation to a single round. 442

This results in a performance drop to 19.9. For the 443

ablation of the Socratic module, we use a simplified 444

multi-agent debate framework without a guiding 445

judge and continue for a fixed number of rounds. 446

This configuration produces the worst result, with 447

performance dropping to 11.9. 448

These findings highlight the critical role of the 449

Socratic module, which guides the discussion in 450

the right direction. Without this guidance, long 451

conversations can sometimes degrade the quality 452

of the dataset, as observed in the results. Interest- 453

ingly, the configuration “w/o both” outperforms 454

“w/o Socratic” (19.9 vs. 11.9), indicating that un- 455

guided long conversations can negatively impact 456

fine-tuning performance. This result underscores 457

the effectiveness of our guided conversational rea- 458

soning paradigm, which ensures meaningful and fo- 459

cused dialogue to enhance the quality of the dataset. 460

4.4 Generalization on Code Domain 461

We use the code generation task as an example 462

to evaluate whether SoDa can generalize to other 463

domains. Following a similar approach to the 464

mathematics tasks, we augmented the McEval- 465

Instruct (Chai et al., 2024) dataset by generating 466

30K additional samples for instruction fine-tuning. 467

The results are presented in Table 7. On aver- 468

age, SoDa-McEval outperforms McEval across all 469

benchmarks, achieving an average improvement of 470
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Models SFT Data (# Samples) Synthesis Model GSM8K MATH AIME Olympiad
Bench Average

Frontier LLMs
DeepSeekMath-7B-RL - - 88.2 52.4 0.0 19.0 39.9
Qwen2-Math-7B - - 80.6 55.0 3.3 19.0 39.5
Qwen2-Math-7B-Ins - - 89.5 73.1 6.7 37.8 52.7
Qwen2.5-7B-Ins - - 91.8 74.5 13.3 37.2 54.2
Skywork-o1-open - - 91.6 78.1 13.3 43.1 56.5
GPT-4o-2024-08-06 - - 92.9 81.1 16.7 43.3 58.9

General Base Model

Llama3.1-8B

DART-Math (30K) DSMath-7B-RL 76.5 37.0 0.0 10.7 31.0
SoDa-DART-Math (30K) Qwen2.5-7B-Ins 76.2 40.4 0.0 12.6 32.3 ↑1.3%
NuminaMath (30K) GPT-4o 57.7 23.4 0.0 8.1 22.3
SoDa-NuminaMath (30K) Qwen2.5-7B-Ins 80.0 41.0 6.7 15.6 35.8 ↑13.5%
ScaleQuest (30K) Qwen2-Math-7B-Ins 79.2 38.8 0.0 9.5 31.8
SoDa-ScaleQuest (30K) Qwen2.5-7B-Ins 79.9 46.9 0.0 20.3 36.8 ↑5.0%

Math-Specialized Base Model

Qwen2-Math-7B

DART-Math (30K) DSMath-7B-RL 88.1 60.8 0.0 24.7 43.4
SoDa-DART-Math (30K) Qwen2.5-7B-Ins 86.9 63.8 6.7 27.7 46.2 ↑2.8%
NuminaMath (30K) GPT-4o 76.0 54.8 6.7 27.0 41.1
SoDa-NuminaMath (30K) Qwen2.5-7B-Ins 84.6 65.9 10.0 32.1 48.1 ↑7.0%
ScaleQuest (30K) Qwen2-Math-7B-Ins 88.1 69.7 6.7 32.1 49.2
SoDa-ScaleQuest (30K) Qwen2.5-7B-Ins 88.9 71.0 16.7 33.2 52.5 ↑1.5%

o1-like Base Model

Skywork-o1-open

DART-Math (30K) DSMath-7B-RL 89.8 64.4 3.3 31.7 47.3
SoDa-DART-Math (30K) Qwen2.5-7B-Ins 88.0 73.1 13.3 38.4 53.2 ↑5.9%
NuminaMath (30K) GPT-4o 90.3 75.2 6.7 42.1 53.5
SoDa-NuminaMath (30K) Qwen2.5-7B-Ins 90.9 76.7 13.3 43.3 56.1 ↑2.6%
ScaleQuest (30K) Qwen2-Math-7B-Ins 90.1 77.4 10.0 43.6 55.2
SoDa-ScaleQuest (30K) Qwen2.5-7B-Ins 91.0 78.0 20.0 44.9 58.5↑3.3%

Table 4: Main results on four mathematical reasoning benchmarks.

Methods # Samples Olympiad
Bench

SoDa 1K 23.4

w/o debate 1K 19.9
w/o Socratic 1K 11.9
w/o Both 1K 18.2

Table 5: Ablation experiments of debate framework and
Socratic questions.

2.7%. Notably, SoDa-McEval delivers a significant471

performance boost of up to 6.1% (85.4 vs. 80.5472

on HumanEval). These results demonstrate the473

versatility of Socratic reasoning, highlighting its474

potential as a universal framework for improving475

performance across diverse tasks.476

4.5 Detailed Analysis477

Comparison of Different Debate Configurations.478

We investigate the impact of different configura-479

tions in the debate module, including the number480

of rounds and the type of synthesis model used.481

As outlined in Section 3.1, the SoDa framework482

employs a fixed 5-round discussion. To explore the483

effect of increasing rounds, we generate 1K sam-484

ples using a 10-round configuration, fine-tune the485

Qwen2.5-7B-Instruct model, and report the results486

in the first two rows of Table 6. The results show a487

Synthesis
Model

Rounds of
Debate # Samples Olympiad

Bench

Qwen2.5-7B-Ins 10 1K 23.7
Qwen2.5-7B-Ins 5 1K 23.4

GPT-o1-mini 5 1K 25.2
Qwen2.5-32B-Ins 5 1K 23.9
Qwen2.5-7B-Ins 5 1K 23.4

Table 6: Effect of rounds and synthesis model size.

slight improvement in performance with 10 rounds 488

of data (23.7 vs. 23.4). However, considering the 489

trade-off between computational cost and perfor- 490

mance, we select the five-round configuration for 491

our final experiments. 492

For the synthesis models, we select three options 493

based on their reasoning capabilities: GPT-o1-mini, 494

Qwen2.5-32B-Instruct, and Qwen2.5-7B-Instruct. 495

While GPT-o1-mini demonstrates significant ad- 496

vantages, the 32B Qwen model only slightly out- 497

performs its 7B counterpart. Consequently, our 498

current choice of the 7B model remains a favor- 499

able balance between performance and efficiency. 500

Nevertheless, leveraging more powerful LLMs to 501

further enhance the SoDa framework represents a 502

promising direction for future work. 503
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Figure 3: An example of dialogues illustrating the complete process from problem to solution. The SoDa expansion
includes phases of reflection (e.g., 1, 2, 3, 5), exploration (e.g., 4), and summarization (e.g., 3, 4, 5, 6).

SFT Data (# samples) HumanEval HumanEval+ MBPP MBPP+ Average

Qwen2.5-Coder-7B(Base) 78.7 74.4 80.7 68.0 75.4
McEval-Instruct (30K) 80.5 76.8 80.7 66.9 76.2
SoDa-McEval (30K) 85.4 80.0 81.5 68.8 78.9

Table 7: Additional experiments conducted in code generation tasks.

Case Study of SoDa Dataset We analyzed the504

synthetic data to provide a clearer understanding505

of SoDa’s effectiveness. SoDa leverages the de-506

bate process to introduce various questions, guiding507

the “student” role to explore different perspectives.508

This process, as illustrated in the Figure 3, involves509

multiple forms of reasoning, such as analyzing the510

problem, exploring alternative solutions, engag-511

ing in self-reflection, and revisiting previous steps.512

This highlights that the key to SoDa’s success lies513

in its ability to expand these reasoning pathways,514

allowing the data to radiate from a single problem515

to cover a broader range of related areas. This ra-516

diating coverage is essential for generating diverse517

and comprehensive datasets, which we identify as518

a critical factor in SoDa’s effectiveness.519

Cost Analysis. Here we analyze the cost of the520

whole SoDa process, including high-quality data521

SoDasta1 produced by accessing API and SoDasta2522

containing 30K samples generated by Qwen2.5-523

7B-Instruct. The results are summarized in the524

Table 8. We can see that the total cost is approxi-525

mately 191$, with the majority of the expense com-526

ing from API access in the SoDasta1 stage. This527

underscores the advantage of leveraging a low-cost528

model: with the effective data generation frame-529

work SoDa, it enables the efficient generation of530

high-quality datasets at a significantly reduced cost.531

Stages # Samples GPU hours Cost ($)

SoDasta1 1K - 100
SoDasta2 29K 70 91

Total 30K 70 191

Table 8: Cost analysis of our method.

5 Conclusion 532

In this paper, we focused on enhancing data syn- 533

thesis frameworks to achieve high-quality genera- 534

tion while maintaining low cost. To this end, we 535

proposed SoDa, a multi-agent debate framework 536

grounded in the Socratic questioning methodology. 537

We initialized the debate roles, the Socratic and 538

the student, using curated prompts based on funda- 539

mental Socratic principles, facilitating a structured 540

and iterative reasoning process. To reduce genera- 541

tion costs, we optimized the pipeline by leveraging 542

in-context learning with smaller models instead of 543

relying on advanced LLMs, ensuring scalability 544

without compromising quality. After fine-tuning a 545

wide range of foundation models, our approach out- 546

performed existing methods at similar data scales. 547

Notably, it even surpassed Numina-math and Scale- 548

Quest datasets, which contains 20x more data, on 549

average benchmarks. This work highlights the po- 550

tential of leveraging small LLMs to enhance pow- 551

erful models effectively and cost-efficiently. 552
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6 Limitations553

While our method demonstrates strong empirical554

results across mathematical and coding domains,555

the current evaluation primarily focuses on syn-556

thetic benchmarks within these two fields. Its ef-557

fectiveness in more diverse real-world scenarios,558

such as scientific reasoning or multimodal problem,559

remains to be explored. Additionally, our SoDa560

relies primarily on 7B-scale open-source models.561

Although this significantly reduces computational562

costs, scaling to larger foundation models may un-563

cover new optimization opportunities, which war-564

rants further exploration.565
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Figure 4: Intelligence Quality per Token (IQPT) of different datasets in fine-tuning Qwen2-Math-7B. IQPT is
calculated as average performance divided by number of tokens, with the IQPT of NuminaMath normalized to 1 as
the baseline.

Principles Examples

Clarification Questions What do you mean by [specific term]?
Can you explain that further?

Probing Assumptions What are you assuming here?
Why do you think that assumption holds true?

Probing Evidence & Reasons What evidence supports your conclusion?
Are there alternative explanations?

Exploring Alternative Perspectives What is another way to look at this problem?
How might someone with a different viewpoint approach this?

Examining Implications & Consequences What are the implications of this conclusion?
What might be the consequences if this is implemented?

Questioning the Question Is the question properly framed, or is there a better way to ask it?
What are we missing by focusing on this question?

Encouraging Reflection How has your understanding changed during this discussion?
What questions remain unanswered?

Challenging Logic Does this reasoning follow logically?
Can you identify any contradictions?

Exploring Causes & Effects What are the root causes of this issue?
How does one factor influence another?

Summarizing & Synthesizing Can you summarize the main points?
Can you develop a general principle from these specifics?

Table 9: Basic principles and examples.
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