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Abstract

Synthetic data generation has emerged as a
promising approach to enhance the reasoning
capabilities of large language models. How-
ever, existing methods remain hindered by high
costs—either through expensive API access or
additional intermediate training—and are lim-
ited in their ability to generalize across different
domains. To address these challenges, we pro-
pose a multi-agent debate framework based on
the Socratic questioning strategy, abbreviated
as SoDa. Distinguished from previous methods
that prioritize data quantity, we highlight the
wisdom of Socratic questioning in augmenting
reasoning quality by deepening the thinking
process to encourage exploration and broaden-
ing it to motivate self-reflection on each ques-
tion. Combined with our efficient production
pipeline, SoDa enables scaling while maintain-
ing affordable costs. We use SoDa to gener-
ate diverse datasets for mathematics and code
generation tasks with the Qwen2.5-7B-Instruct
model, successfully fine-tuning a range of foun-
dation models, from general-purpose ones to
OpenAl ol-like ones. For mathematics, the
experimental results show that SoDa outper-
forms the performance of existing datasets at
the same scale, achieving improvements rang-
ing from 1.3% to 13.5%. Remarkably, SoDa
with 30K examples even surpasses the Scale-
Quest dataset with 1000K samples, demonstrat-
ing significant efficiency. Our findings high-
light the potential of SoDa as a universal, scal-
able, and cost-effective method for enhancing
reasoning capabilities in large models across
domains.

1 Introduction

The enhancement of reasoning capabilities in Large
Language Models (LLMs) has become a recent re-
search focus (Huang et al., 2024; Min et al., 2024).
Recent studies have achieved notable progress
by utilizing large language models to synthesize
high-quality training data (Ding et al., 2024), re-
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Figure 1: Performance of Qwen2-Math-7B fine-tuned
on SoDa-enhanced data (30K) vs. full-scale Numina-
Math (860K) and ScaleQuest (1000K) datasets on math-
ematical benchmarks.

sulting in substantial performance improvements
on mathematical reasoning benchmarks such as
GSMS8K (Cobbe et al., 2021a) and Olympiad-
Bench (He et al., 2024a). However, these methods
depend on strong supervisory signals from two pri-
mary sources: i) powerful LLMs, which generally
incur high API costs (Yu et al., 2024), and ii) fine-
tuned smaller models, which demand extensive
training and struggle with domain adaptation (Ding
et al., 2024). These dependencies inherently con-
strain the scalability and flexibility of their data
generation processes. Furthermore, existing ap-
proaches are predominantly tailored to mathemat-
ics, with limited generalizability to other domains
such as code generation. Consequently, there is
an urgent need for a cost-effective and adaptable
method for generating high-quality data across di-
verse domains.

We draw inspiration from the Socratic ques-
tioning method (Qi et al., 2023), a systematic ap-
proach to critical thinking that uncovers under-
lying assumptions, clarifies concepts, and moti-
vates deeper understanding through iterative ques-



tioning. This iterative process mirrors the pro-
cess of human learning, which involves experienc-
ing and exploring through trial-and-error (Song
et al., 2024) interactions with the environment, ul-
timately leading to improved solutions. If models
can adopt this paradigm, it would enable a more
natural extension of existing data-driven methods.
This approach fundamentally differs from the di-
rect answer-generation style of current Chain-of-
thoughts (CoT) methods and offers several key ad-
vantages. First, it does not rely heavily on advanced
models, making it highly efficient for scaling. Sec-
ond, it requires no additional training and instead
relies solely on self-debating, allowing generaliza-
tion across diverse domains and even real-world
problem-solving scenarios. Ultimately, the trained
models would demonstrate enhanced adaptability
and robustness, paving the way for broader and
more versatile applications.

We propose the SoDa (Socratic Debate), a
model debate framework based on the Socratic
questioning strategy (Qi et al., 2023). For the
Socratic component, we incorporate its principles
to iteratively explore and reflect, while additional
constraints ensure comprehensive generation of
thoughts and answers. For the debate component,
we simplify the process by reducing it to a fixed
number of turns between two roles (i.e., the So-
cratic and the student), enabling efficient execution
without compromising quality. To further accel-
erate scaling, we optimize the generation pipeline
by leveraging the observation that in-context learn-
ing (ICL) can effectively guide the debate process.
This allows us to generate high-quality datasets
using a 7B model, Qwen2.5-7B-Instruct (Yang
et al., 2024b), which significantly reduces com-
putational costs. Ultimately, our method achieves
efficient dataset generation and maintains adaptabil-
ity across diverse domains (see Table 1), facilitating
broader applicability.

Based on the proposed SoDa, we expanded ex-
isting datasets by converting them into Socratic-
dialogue formats. This includes three math
datasets: DART-Math (Tong et al., 2024), Numi-
naMath (Li et al., 2024), and ScaleQuest (Ding
et al., 2024), as well as a code dataset McEval-
Instruct (Chai et al., 2024). For math tasks, train-
ing with the expanded dataset resulted in signif-
icant performance improvements on LL.aMa-3.1-
8B (Dubey et al., 2024), with gains ranging from
1.3% to 13.5%. These improvements were con-
sistently observed across various models, such

Multiple Synthesis Training
Methods Domains Model Free
MetaMath X GPT-3.5 v
DART-Math X DSMath (7B) v
NuminaMath X GPT-40 v
ScaleQuest X Qwen2-Math (7B) X
SoDa v Qwen2.5 (7B) v

Table 1: Overview comparison between SoDa and re-
cent advanced synthetic data generation methods.

as Qwen2-Math-7B (Yang et al., 2024a), a math-
specific model, and Skywork-ol (Skywork-ol,
2024), an ol-like model. Notably, utilizing 30K
SoDa-enhanced data achieves comparable or supe-
rior performance to full-scale datasets (see Figure
1). Additionally, our method achieved an average
2.7% improvement on code tasks. These results
suggest that our approach enhances CoT reason-
ing, making it a versatile and efficient method for
synthetic data generation across diverse domains..

2 Related Work

2.1 Math Reasoning

OpenAl ol (Jaech et al., 2024) has demonstrated
remarkable reasoning capabilities, primarily at-
tributed to its use of long chain-of-thought (CoT)
reasoning. This model has become a pivotal mile-
stone in the development of reasoning methods for
LLMs. Prior to ol, mathematical reasoning was
predominantly driven by diverse, heuristic-based
approaches, including prompting techniques (Chia
et al., 2023), instruction tuning techniques (Yue
et al., 2024), tool based methods (Wang et al., 2024)
and preferring tuning (Lai et al., 2024). Following
o1, the emphasis shifted toward long-form CoT pro-
cesses, which are now widely regarded as an effec-
tive strategy for enhancing reasoning capabilities.
Subsequent work, such as DeepSeekMath (Shao
et al., 2024) and Qwq (Team, 2024), has built upon
this paradigm, further refining the approach and
fostering deeper, more systematic reasoning.

2.2 Synthetic Data Generation for LLMs

In the process of replicating ol-like reasoning,
data synthesis has been recognized as a highly ef-
fective approach. Specifically, this involves ex-
panding a seed dataset by enriching its questions
or answers to generate larger and more diverse
datasets. For question-centric augmentation, com-
mon methods include increasing the complexity
of questions (Luo et al., 2023), modifying ques-



tions to enhance diversity (Yu et al., 2024), or gen-
erating high-quality questions through a trained
model (Ding et al., 2024). While these methods are
effective, high-quality models are often challenging
to scale, and training-based approaches are difficult
to generalize across domains. For answer-centric
augmentation, existing work includes introducing
additional knowledge into answers and improving
their quality (Didolkar et al., 2024; Shah et al.,
2024). Some approaches propose to enhance the
quality of both questions and answers simultane-
ously. For example, Numinamath (Li et al., 2024)
incorporates real-world data to achieve this dual
enhancement. However, these methods are special-
ized for mathematics and struggle to generalize to
other domains.

3 Methods

We present a general framework (see Figure 2)
for efficiently generating synthetic conversational
Socratic-style Chain-of-Thought (CoT) data, which
includes two key components: the Socratic module,
designed to generate insightful questions that stim-
ulate critical thinking, and the multi-agent debate
module, which extends the dialogue into multi-turn
interactions for deeper exploration. To accelerate
the data generation process, we propose an effi-
cient pipeline leveraging in-context learning with
meticulously curated high-quality demonstrations.

3.1 Socratic Style Debate Framework

Generally speaking, Socratic questioning is a
method of exploration designed to inspire deeper
thinking through thought-provoking questions. An
intuitive way to do this is to mimic real-world con-
versations between a teacher and a student, with
additional constraints to ensure the teacher adheres
to Socratic-style principles. The key mechanism
behind our method is to enrich the thought process
for each individual sample, in contrast to existing
methods that primarily aim to automatically in-
crease data quantity. This enables more efficient
utilization of the available data. Next, we will detail
the Socratic module and the debate module.

Socratic Module. We begin with formalizing the
data generation process in the context of instruction
tuning. Typically, the training datasets consist of
question-answer pairs, i.e., (¢, a) € Dgeeq, Where
Dyeeq denotes the seed dataset used for data synthe-
sis. In this process, the LLM is prompted to adopt
a Socratic role, generating new guiding questions

(2 based on the given questions. Specifically, the
prompts are split into two categories: Socratic prin-
ciples (Ps,) and questioning requirements (Fg).
Then we generate the first guiding question at the
initial round (¢ = 0) as follows:

Q" = LLM (g, a, Ps,, Pg). (1)

For Socratic principles, we follow the study (Qi
et al., 2023) and incorporate the ten common guide-
lines of Socratic questioning (see Table 2). For
questioning requirements, we introduce three spe-
cific constraints to prevent irrelevant or endless
discussions.

o Ask questions only. The Socratic should avoid
providing direct answers, focusing instead on ask-
ing questions. This encourages the Student to think
independently and make more attempts to solve the
problem.

e Encourage exploration. The Socratic should
guide the Student to explore multiple possible solu-
tions, linking the problem to their existing knowl-
edge and broadening their thought process.

e Promote reflection. The Socratic should help
the Student reflect on each step to reduce uncer-
tainty and verify correctness. This ensures a solid
final solution and a deeper understanding of the
problem.

Following the application of these Socratic prin-
ciples, we analyze the distribution of the generated
Socratic-style question types, with the results pre-
sented in Table 2. Except for the principle “Prob-
ing Evidence & Reasons ”, which accounts for a
slightly larger proportion (20.8%), the other prin-
ciples are distributed relatively evenly. This result
aligns with our expectations, as Socratic question-
ing is designed to approach students from diverse
perspectives, facilitating broader exploration and
capturing a wider range of knowledge points.

Multi-Agent Debate. Building on the foundation
of Socratic principles, we extend our approach by
adopting a multi-agent debate framework inspired
by prior research (Liang et al., 2023). Specifically,
we design two agents as debaters: the Socratic
role Rg and the Student role R,, engaging in a
structured Socratic-style dialogue for a maximum
number of rounds, T},4.:

Q(t) = RS(Qa a, PSOa PQa {sz AZ 226)7 (2)
AW = R, (Pa{Q", A'}iZh, QY),

where te€{1,2, -, Tar — 1},
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Figure 2: Overview of the SoDa framework.
Principl Rati lympi
cipes atio (%) Methods  # Sample Dataset Olympiad
- - - Bench
Clarification Questions 9.1
Probing Assumptions 9.8 Base - - 16.6
Probing Evidence & Reasons 20.8 . - -
Exploring Alternative Perspectives 10.8 Tuning ~ 50K NuminaMath 20.0
Examining Implications & Consequences 8.4 1 random 17.6
Questioniqg the Ques.tion 6.7 ICL 1 random SoDagzq1 20.1
Encouraging Reflection 7.7 1 nearest SoDasiq1 21.0
Challenging Logic 9.4
Exploring Causes & Effects 7.1 . . .
Summarizing & Synthesizing 101 Table 3: Investivation of the ICL experiments on the

Table 2: Basic principles and the ratio in our dataset.
Specific examples for each principle refer to Table 9 in
the Appendix.

where P4 represents the prompts for the student
roles to answer in a step-by-step manner and
{Q1, At 126 refers to the dialogue history up to
round ¢. For each interaction, the Socratic guides
the student step by step through insightful ques-
tions, while the student responds based on these
prompts. This iterative structure allows for a pro-
gressive and dynamic exploration of the input ques-
tion, fostering deeper reasoning and broader explo-
ration. Finally, the process progressively builds the
final dataset in the first stage, i.e., SoDagq1.
Different from existing methods (Liang et al.,
2023) that rely on high-quality questions and a
judge mechanism to guide and control debates,
our method simplifies the process by removing the
judge and adopting a fixed number of rounds. In
this way, we focus solely on the core discussion pro-
cess, enabling faster iterations and improved scala-

base model Qwen2-base. “SoDag;,1” denotes the gen-
erate datasets using GPT-o1-mini as Socratic role. The
“NuminaMath*” is the olympiad subset from the Numi-
naMath source.

bility. This emphasis on efficiency and simplicity
allows our approach to achieve effective Socratic-
style reasoning while remaining cost-effective and
practical for large-scale applications.

3.2 Efficient Pipeline with In-context
Learning

So far, we have established an initial debate frame-
work, but it still lacks the ability to scale efficiently.
Therefore, we explore an efficient data generation
approach that leverages small LLMs guided by
high-quality prompts. Our key observation is that
using high-quality data as prompts can effectively
steer the generation process toward producing high-
quality outputs. Building on this insight, we pro-
pose a clustering-based prompt generation strategy
to automate and accelerate the creation of a scal-
able, high-quality dataset.



Observations. The previous framework has en-
abled a rich expansion of reasoning processes with
powerful LLMs in the Socratic debate framework.
It is reasonable to assume that these reasoning pro-
cesses overlap with new input queries. Leveraging
this overlap, we hypothesize that such data can
serve not only as training material but also as effec-
tive prompts to guide the generation of new sam-
ples. If this holds true, the value of high-quality
data produced by powerful LLM can be signifi-
cantly amplified, as each sample can serve as an
independent prompt to guide the generation of a
class of related queries using small LLMs.

To validate these assumptions, we conducted
an experiment where, for a given input query
Qinp» we randomly selected a high-quality sample
< q,a,{QW, A(t)}iigm‘”' >€ SoDagi, to form
a prompt. Then we evaluated the performance of
the model on a downstream task using this prompt-
based setup. The results are summarized in Table 3.
We observe that randomly selected samples can ef-
fectively serve as prompts, guiding small LLMs to
solve challenging problems. Notably, the accuracy
achieved with random SoDag;,1 samples (20.1%)
slightly surpasses that of fine-tuning with around
50K CoT data (20.0%). Furthermore, accuracy im-
proves when the prompt is selected based on its
relatedness to the query by identifying the nearest
sample (21.0%). These findings motivate the de-
velopment of a clustering-based data generation
pipeline to further enhance performance.

Generation by ICL. Building on the obser-
vations, we further explore how to systemati-
cally identify the most suitable example for each
given query. To achieve this, we propose a
clustering-based approach that efficiently lever-
ages high-quality data samples. Specifically, we
first employ a K-means clustering method to
group the high-quality dataset into N clusters,
{c1,¢9,- - ,cn}. Each cluster ¢ is represented
by a centroid ¢; and representative sample <
Gir ai, {QW, AWYI<Tmaz 5 which is the data
point closest to the centroid. Second, for an input
query ¢inp, we identify the most relevant cluster
c* and form the corresponding example as prompt
by locating the centroid closest to g;,,, based on a
predefined distance metric d(-):

= arg II'élIl d(‘]inpa Ci)- (3)

This clustering-based selection not only automates
the process of finding suitable prompts but also

ensures that each new query is guided by the most
contextually appropriate example. The whole pro-
cess is summarized in the Algorithm 1.

Algorithm 1 Efficient generation pipeline.

Input: High-quality dataset in first stage, SoDas:q1, input
seed dataset to process Dseed-

Output : Generated dataset for the second stage SoDas;q2
K-means Clustering

1: Apply K-means clustering to the queries in high-quality
dataset SoDastq1, grouping the data into N clusters and
the representative samples {c1,c2,- - ,cn}
Generation
2: for ginp € Dseeq do

/* Find the closest cluster */

¢" = argminc, d(Ginp, i)

/* Select the representative sample as prompts P.*/

P ={<q",a" {QW*, A" }Tmer >}

fort =0 — Thae do
Q(t) = RS(q, a, PSO? PQ7 PC? {Qla Al}zi(t))
A(t) = RM(PAa {QZ7 Al}zi(tﬁ Q(t))

end for

SoDasta2 <— {Qinpa Qinp, {Qa)v A(t)}gmam }

: end for

: return SoDagtq2

b
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4 Experiments

4.1 Experimental Setup

Data Synthesis. We evaluate our method on
mathematics and code tasks. In the mathematics
domain, data synthesis is performed using three
datasets: DART-Math (Tong et al., 2024), Numi-
naMath (Li et al., 2024), and ScaleQuest (Ding
et al., 2024). Code-oriented synthesis utilized the
McEval-Instruct dataset (Chai et al., 2024). For
each dataset, we randomly select 30,000 problem-
solution pairs as the source data. GPT-ol is
used as the generator in SoDag,; to synthesize
1,000 high-quality samples, with the clusters N
set to 50. Based on these samples, we em-
ploy Qwen2.5-7B-Instruct in SoDag;qo framework
to generate additional 29,000 samples. The fi-
nal synthesized datasets—comprising 30,000 sam-
ples each—were designated as SoDa-DART-Math,
SoDa-NuminaMath, SoDa-ScaleQuest, and SoDa-
MCEval, respectively. The fine-tuning configura-
tion is provided in the Appendix A.1.

Baseline Methods. We compare the data gen-
erated by SoDa with popular synthetic datasets,
including DART-Math (Tong et al., 2024), Numi-
naMath (Li et al., 2024), and ScaleQuest (Ding
et al.,, 2024). We additionally consider per-
formance comparisons with advanced models
such as GPT-4o0, LLaMa-3.1-8B (Dubey et al.,
2024), DeepSeekMath-7B-RL (Shao et al., 2024),



Skywork-o1-open (Skywork-o1, 2024) and models
of Qwen family (Yang et al., 2024a).

For the mathematical evaluation, we consider
four benchmarks: GSMS8K (Cobbe et al., 2021b),
MATH (Hendrycks et al., 2021), Olympiad-
Bench (He et al., 2024b) and AIME-24 (Math-
ematical Association of America, 2024). Code
generation capabilities were evaluated on Hu-
manEval (Chen et al., 2021), HumanEval+ (Liu
et al., 2024), MBPP (Austin et al., 2021) and
MBPP+ (Liu et al., 2024) problems. The zero-shot
pass@]1 accuracy is reported.

4.2 Main Results

Comparing with Synthetic Data Generation
Methods. We fine-tune popular models using
synthetic datasets and summarize the results in Ta-
ble 4. At comparable dataset scales, SoDa-style
datasets consistently outperform other methods,
with improvements ranging from 1.3% on DART-
Math data with Llama3.1-8b model to 13.5% on
NuminaMath data with Llama3.1-8b model. Next,
we examine the impact of seed datasets. Among
the three datasets evaluated, ScaleQuest demon-
strates the best average performance, followed by
NuminaMath in second place. This trend is also
observed in the SoDa-style datasets, highlighting
the critical role of seed datasets in the synthetic
data generation process. When analyzing differ-
ent base models, we find that performance gains
diminish as model complexity increases. For ex-
ample, Skywork-ol-open, which targets ol-like
abilities, shows limited improvement after fine-
tuning with seed datasets. However, reasonable
gains can still be observed in average metrics (58.8
vs. 56.5). Notably, SoDa-ScaleQuest achieves a
6.7% improvement (20.0 vs. 13.3) on AIME, fur-
ther demonstrating the effectiveness of the SoDa
approach. In Appendix Figure 4, we present the In-
telligence Quality per Token (IQPT), calculated as
average performance divided by number of tokens,
for NuminaMath, ScaleQuest, SoDa-NuminaMath,
and SoDa-ScaleQuest. As shown, our methods sig-
nificantly improve IQPT, demonstrating that SoDa
effectively enhances the information density.

Comparison with Advanced Models. To
demonstrate the advantages of our data-trained
models in mathematical reasoning, we compare
them with current state-of-the-art LLMs. Among
frontier LLMs, the closed-source model GPT4o
achieves the best overall performance. However,

our trained model, Skywork-o1-SoDa, achieves
comparable average performance (58.5 vs. 58.9).
Notably, on more complex benchmarks, our
model outperforms GPT4o, with significant gains
observed on tasks such as AIME (20.0 vs. 16.7)
and OlympiadBench (44.9 vs. 43.3). These
results further validate the effectiveness of the
reasoning processes generated by our approach. It
is particularly noteworthy that our data generation
relied on a relatively simple 7B Qwen model.
Despite this, fine-tuning more complex models
with our generated data still yielded substantial
improvements on challenging tasks, underscoring
the robustness and scalability of our method.

4.3 Ablation Study

Our method comprises two key components: the
Socratic module and the multi-agent debate module.
To evaluate the contribution of each component, we
fine-tune Qwen2-7B with each module separately
and present the results in Table 5. To ablate the
debate module, we modify the prompts to restrict
the Socratic-style conversation to a single round.
This results in a performance drop to 19.9. For the
ablation of the Socratic module, we use a simplified
multi-agent debate framework without a guiding
judge and continue for a fixed number of rounds.
This configuration produces the worst result, with
performance dropping to 11.9.

These findings highlight the critical role of the
Socratic module, which guides the discussion in
the right direction. Without this guidance, long
conversations can sometimes degrade the quality
of the dataset, as observed in the results. Interest-
ingly, the configuration “w/o both” outperforms
“w/o Socratic” (19.9 vs. 11.9), indicating that un-
guided long conversations can negatively impact
fine-tuning performance. This result underscores
the effectiveness of our guided conversational rea-
soning paradigm, which ensures meaningful and fo-
cused dialogue to enhance the quality of the dataset.

4.4 Generalization on Code Domain

We use the code generation task as an example
to evaluate whether SoDa can generalize to other
domains. Following a similar approach to the
mathematics tasks, we augmented the McEval-
Instruct (Chai et al., 2024) dataset by generating
30K additional samples for instruction fine-tuning.
The results are presented in Table 7. On aver-
age, SoDa-McEval outperforms McEval across all
benchmarks, achieving an average improvement of



Olympiad

Models SFT Data (# Samples) Synthesis Model GSMS8K MATH AIME Bench Average
Frontier LLMs
DeepSeekMath-7B-RL - - 88.2 52.4 0.0 19.0 39.9
Qwen2-Math-7B - - 80.6 55.0 3.3 19.0 39.5
Qwen2-Math-7B-Ins - - 89.5 73.1 6.7 37.8 52.7
Qwen2.5-7B-Ins - - 91.8 74.5 13.3 37.2 54.2
Skywork-o1-open - - 91.6 78.1 13.3 43.1 56.5
GPT-40-2024-08-06 - - 92.9 81.1 16.7 43.3 58.9
General Base Model
DART-Math (30K) DSMath-7B-RL 76.5 37.0 0.0 10.7 31.0
SoDa-DART-Math (30K) Qwen2.5-7B-Ins 76.2 404 0.0 12.6 323 +1.3%
Llama3.1-8B NuminaMath (30K) GPT-40 57.7 234 0.0 8.1 22.3
’ SoDa-NuminaMath (30K) Qwen2.5-7B-Ins 80.0 41.0 6.7 15.6 35.8 +13.5%
ScaleQuest (30K) Qwen2-Math-7B-Ins 79.2 38.8 0.0 9.5 31.8
SoDa-ScaleQuest (30K) Qwen2.5-7B-Ins 79.9 46.9 0.0 20.3 36.8 15.0%
Math-Specialized Base Model
DART-Math (30K) DSMath-7B-RL 88.1 60.8 0.0 24.7 434
SoDa-DART-Math (30K) Qwen2.5-7B-Ins 86.9 63.8 6.7 27.7 46.2 12.8%
Qwen2-Math-7B NuminaMath (30K) GPT-40 76.0 54.8 6.7 27.0 41.1
SoDa-NuminaMath (30K) Qwen2.5-7B-Ins 84.6 65.9 10.0 32.1 48.1 47.0%
ScaleQuest (30K) Qwen2-Math-7B-Ins 88.1 69.7 6.7 32.1 49.2
SoDa-ScaleQuest (30K) Qwen2.5-7B-Ins 88.9 71.0 16.7 33.2 52.5 11.5%
ol-like Base Model
DART-Math (30K) DSMath-7B-RL 89.8 64.4 33 31.7 47.3
SoDa-DART-Math (30K) Qwen2.5-7B-Ins 88.0 73.1 13.3 38.4 53.2 +5.9%
Skywork-ol-open NuminaMath (30K) GPT-40 90.3 752 6.7 42.1 53.5
SoDa-NuminaMath (30K) Qwen2.5-7B-Ins 90.9 76.7 13.3 433 56.1 12.6%
ScaleQuest (30K) Qwen2-Math-7B-Ins 90.1 77.4 10.0 43.6 55.2
SoDa-ScaleQuest (30K) Qwen2.5-7B-Ins 91.0 78.0 20.0 44.9 58.543.3%
Table 4: Main results on four mathematical reasoning benchmarks.
Olympiad Synthesis Rounds of Olympiad
Methods # Samples Bench Model Debate # Samples Bench
SoDa 1K 234 Qwen2.5-7B-Ins 10 1K 23.7
W/o debate K 199 Qwen2.5-7B-Ins 5 1K 23.4
w/o Socratic 1K 11.9 GPT-01-mini 5 1K 25.2
w/o Both 1K 18.2 Qwen2.5-32B-Ins 5 1K 23.9
Qwen2.5-7B-Ins 5 1K 234

Table 5: Ablation experiments of debate framework and
Socratic questions.

2.7%. Notably, SoDa-McEval delivers a significant
performance boost of up to 6.1% (85.4 vs. 80.5
on HumanEval). These results demonstrate the
versatility of Socratic reasoning, highlighting its
potential as a universal framework for improving
performance across diverse tasks.

4.5 Detailed Analysis

Comparison of Different Debate Configurations.
We investigate the impact of different configura-
tions in the debate module, including the number
of rounds and the type of synthesis model used.
As outlined in Section 3.1, the SoDa framework
employs a fixed 5-round discussion. To explore the
effect of increasing rounds, we generate 1K sam-
ples using a 10-round configuration, fine-tune the
Qwen2.5-7B-Instruct model, and report the results
in the first two rows of Table 6. The results show a

Table 6: Effect of rounds and synthesis model size.

slight improvement in performance with 10 rounds
of data (23.7 vs. 23.4). However, considering the
trade-off between computational cost and perfor-
mance, we select the five-round configuration for
our final experiments.

For the synthesis models, we select three options
based on their reasoning capabilities: GPT-o1-mini,
Qwen2.5-32B-Instruct, and Qwen2.5-7B-Instruct.
While GPT-o1-mini demonstrates significant ad-
vantages, the 32B Qwen model only slightly out-
performs its 7B counterpart. Consequently, our
current choice of the 7B model remains a favor-
able balance between performance and efficiency.
Nevertheless, leveraging more powerful LLMs to
further enhance the SoDa framework represents a
promising direction for future work.



1. Questioning the Question

4. Exploring Alternative Ways

6. Summarization Principles

Why is it important to determine the nature of the roots when
analyzing this quadratic equation?

=

1

How might someone with a different viewpoint
approach determining the nature of the roots for the.
quadratic equation (a® + 1)x? + (a? + 1)x —

Can you develop a general principle from the specific example
of determining the nature of the roots for (@ < ~1)?

2

@< It provides insight into the behavior of the quadratic unction, (@+=0?
@ | such as where it intersects the x-axis. For a quadratic equation of the form Ax? + Bx + C = 0, the
1. **Graphical Approach**: Plotting the quadratic nature of the roots can be determined by analyzing the
an  function f(x) = (a®+1)x* + (a* + Dx — 3 discriminant and the signs of the coefficients. Specifically:
(a+ 1){;: various vzlucs of (@ ;;Um visually L] 1. **Discriminant Analysis**: Calculate the discriminant A =
inspect the nature and position of the roots. B2 — 4AC.TEA > 0, there are two distinct real roots; if A =
Problem: When a < —1, the nature of the roots 2. **Numerical Methods**: ... 0, there is one real repeated root; and if A < 0., the roots are
for the equation 3 **Factorization**: ... complex;
3 2 2 P 2. **Sign Analysis Using Vieta's Formulas**: Utilize Vieta's
(@+1D)x*+ (@ +1x—(a+1)=0is? @ Error occurs formulas to determine the sum and product of the roots z, +
_ x,=—B/A andx;-x, = C/A.",
‘ (‘P’ T=sa - 3. **Interpreting Signs**:", " - If the product x, * x, > 0, the
~o roots have the same sign. If the product x, - x, < 0, the roots
@ S have opposite signs. The sum x; + x, indicates the relative
i i < @ N magnitudes of the roos.
2. Probing Evidence and Reasons S A 4. **Applying Conditions**: Incorporate specific conditions
3. Challenging Logic ~<o o \ or constraints on parameters (like a < —1) to further refine
Using Vieta's formulas, what is the expression for 5 5. Chall Logic ™~ ~=~- Tea _»® the nature of the roots.
the product of the roots (x; - x,) of the quadratic Gyt oy ey | 0gic

equation (0 +1)x*+(a” + Dx— @@+ 1) =0 previous reasoning about the nature of the

roots for (a < —1)?

... This implies that the product of the roots (x; -
x,) is negative. Therefore, it has one positive
root and one negative root. with the absolute
value of the negative root being larger. Q

- Upon reviewing the previous reasoning, there

2. ppears to be a contradiction in the analysis Py
of the sum of the roots )

. Can you verify the expansion step by stp
to ensure no terms are missing or incorrectly

calculated?

S Given the quadratic equation: ...
** Identify the coefficients and analyze the signs:
| ** Conclusion: ...

)

ﬁ let's break it down step by step .

Figure 3: An example of dialogues illustrating the complete process from problem to solution. The SoDa expansion
includes phases of reflection (e.g., 1, 2, 3, 5), exploration (e.g., 4), and summarization (e.g., 3, 4, 5, 6).

SFT Data (# samples) HumanEval HumanEval+ MBPP MBPP+ Average
Qwen2.5-Coder-7B(Base) 78.7 74.4 80.7 68.0 75.4
McEval-Instruct (30K) 80.5 76.8 80.7 66.9 76.2
SoDa-McEval (30K) 854 80.0 81.5 68.8 78.9

Table 7: Additional experiments

Case Study of SoDa Dataset We analyzed the
synthetic data to provide a clearer understanding
of SoDa’s effectiveness. SoDa leverages the de-
bate process to introduce various questions, guiding
the “student” role to explore different perspectives.
This process, as illustrated in the Figure 3, involves
multiple forms of reasoning, such as analyzing the
problem, exploring alternative solutions, engag-
ing in self-reflection, and revisiting previous steps.
This highlights that the key to SoDa’s success lies
in its ability to expand these reasoning pathways,
allowing the data to radiate from a single problem
to cover a broader range of related areas. This ra-
diating coverage is essential for generating diverse
and comprehensive datasets, which we identify as
a critical factor in SoDa’s effectiveness.

Cost Analysis. Here we analyze the cost of the
whole SoDa process, including high-quality data
SoDag,1 produced by accessing API and SoDagy2
containing 30K samples generated by Qwen2.5-
7B-Instruct. The results are summarized in the
Table 8. We can see that the total cost is approxi-
mately 1913, with the majority of the expense com-
ing from API access in the SoDag;,; stage. This
underscores the advantage of leveraging a low-cost
model: with the effective data generation frame-
work SoDa, it enables the efficient generation of
high-quality datasets at a significantly reduced cost.

conducted in code generation tasks.

Stages # Samples  GPU hours  Cost ($)
SoDasta1 1K - 100
SoDasta2 29K 70 91

Total 30K 70 191

Table 8: Cost analysis of our method.

5 Conclusion

In this paper, we focused on enhancing data syn-
thesis frameworks to achieve high-quality genera-
tion while maintaining low cost. To this end, we
proposed SoDa, a multi-agent debate framework
grounded in the Socratic questioning methodology.
We initialized the debate roles, the Socratic and
the student, using curated prompts based on funda-
mental Socratic principles, facilitating a structured
and iterative reasoning process. To reduce genera-
tion costs, we optimized the pipeline by leveraging
in-context learning with smaller models instead of
relying on advanced LLMs, ensuring scalability
without compromising quality. After fine-tuning a
wide range of foundation models, our approach out-
performed existing methods at similar data scales.
Notably, it even surpassed Numina-math and Scale-
Quest datasets, which contains 20x more data, on
average benchmarks. This work highlights the po-
tential of leveraging small LLMs to enhance pow-
erful models effectively and cost-efficiently.



6 Limitations

While our method demonstrates strong empirical
results across mathematical and coding domains,
the current evaluation primarily focuses on syn-
thetic benchmarks within these two fields. Its ef-
fectiveness in more diverse real-world scenarios,
such as scientific reasoning or multimodal problem,
remains to be explored. Additionally, our SoDa
relies primarily on 7B-scale open-source models.
Although this significantly reduces computational
costs, scaling to larger foundation models may un-
cover new optimization opportunities, which war-
rants further exploration.
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A Appendix

A.1 Training Configuration

All instruction fine-tuning experiments are con-
ducted on 8 NVIDIA A800 GPUs. We train the
model using the AdamW optimizer for 2 epochs
with a batch size of 16, a learning rate of 2 x 1072,
a 3% warm-up ratio, a weight decay of 0.1, and
gradient clipping with a maximum norm of 1.0.

A.2 Socratic Principles and Examples
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Principles

Examples

Clarification Questions

What do you mean by [specific term]?
Can you explain that further?

Probing Assumptions

What are you assuming here?
Why do you think that assumption holds true?

Probing Evidence & Reasons

What evidence supports your conclusion?
Are there alternative explanations?

Exploring Alternative Perspectives

What is another way to look at this problem?
How might someone with a different viewpoint approach this?

Examining Implications & Consequences

What are the implications of this conclusion?
What might be the consequences if this is implemented?

Questioning the Question

Is the question properly framed, or is there a better way to ask it?
What are we missing by focusing on this question?

Encouraging Reflection

How has your understanding changed during this discussion?
What questions remain unanswered?

Challenging Logic

Does this reasoning follow logically?
Can you identify any contradictions?

Exploring Causes & Effects

What are the root causes of this issue?
How does one factor influence another?

Summarizing & Synthesizing

Can you summarize the main points?
Can you develop a general principle from these specifics?

Table 9: Basic principles and examples.
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