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ABSTRACT

Vision language models (VLMs) have demonstrated impressive performance
across a wide range of downstream tasks. However, their proficiency in spatial
reasoning remains limited, despite its crucial role in tasks involving navigation and
interaction with physical environments. Specifically, much of the spatial reasoning
in these tasks occurs in two-dimensional (2D) environments, and our evaluation
reveals that state-of-the-art VLMs frequently generate implausible and incorrect
responses to composite spatial reasoning problems, including simple pathfinding
tasks that humans can solve effortlessly at a glance. To address this, we explore
an effective approach to enhance 2D spatial reasoning within VLMs by train-
ing the model on basic spatial capabilities. We begin by disentangling the key
components of 2D spatial reasoning: direction comprehension, distance estima-
tion, and localization. Our central hypothesis is that mastering these basic spatial
capabilities can significantly enhance a model’s performance on composite spa-
tial tasks requiring advanced spatial understanding and combinatorial problem-
solving. To investigate this hypothesis, we introduce Sparkle, a framework that
fine-tunes VLMs on these three basic spatial capabilities by synthetic data gener-
ation and targeted supervision to form an instruction dataset for each capability.
Our experiments demonstrate that VLMs fine-tuned with Sparkle achieve signifi-
cant performance gains, not only in the basic tasks themselves but also in general-
izing to composite and out-of-distribution spatial reasoning tasks (e.g., improving
from 13.5% to 40.0% on the shortest path problem). These findings underscore
the effectiveness of mastering basic spatial capabilities in enhancing composite
spatial problem-solving, offering insights into systematic strategies for improving
VLMs’ spatial reasoning capabilities.

1 INTRODUCTION

Given the 
grid graph with 
nodes(N1, N2, ... 
N16), find the 
shortest path 
from the 
green node to the 
red node.

Answer: 
["N5",""N9","N13"]

Image

The shortest path can be represented as:
["N5","N6","N10","N11","N15","N14","N13"].

The shortest path from N5 to N13 is:
["N5","N6","N10","N9","N13"].

       ChatGPT 4o (Commercial)

       InternVL2-Pro (Open-sourced)

Question

Figure 1: SoTA VLMs fail to solve the
pathfinding problem, a simple 2D spa-
tial reasoning task.

Vision language models (VLMs) (OpenAI, 2023; Liu
et al., 2023b; Chen et al., 2024c) have demonstrated near-
human performance in tasks like image captioning (Chen
et al., 2015), visual question answering (VQA) (Goyal
et al., 2017; Singh et al., 2019) and abundant down-
stream tasks by combining visual and text inputs to reason
about the physical world. However, these models exhibit
significant limitations in understanding spatial relation-
ships. For instance, as shown in Figure 1, state-of-the-
art (SoTA) VLMs GPT-4o and InternVL2-Pro (OpenAI,
2023; Chen et al., 2024c) generate implausible responses
to a shortest path problem that a human could solve at a
glance, a simple 2D spatial reasoning task.

Nevertheless, 2D spatial reasoning is essential for VLMs
to understand and interact with the physical environ-
ments, shaping their ability to solve mazes (Ivanitskiy
et al., 2023; Wang et al., 2024), plan routes (Feng et al.,
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VLMs
+

SPP TSP

Composite Spatial Reasoning

      Sparkle Improve

Instruct
Basic Spatial 
Capabilities

Direction

Distance

Localization

Figure 2: An overview of the workflow of the Sparkle framework.

2024; Chen et al., 2024b), and solve geometric problems like humans (Fernandes & de Oliveira,
2009). These tasks emphasize 2D spatial reasoning, requiring VLMs to process and navigate flat
visual planes, interpret spatial relationships, and make decisions based on geometric understanding.
Such capabilities are fundamental in translating visual input into actionable insights. While more
and more VLMs are developed with larger training datasets and extensive benchmarks (Ge et al.,
2024; Zhang et al., 2024), the focus on enhancing spatial reasoning has received comparatively less
attention, despite its importance to the core capabilities of VLMs.

In this paper, we study VLMs’ spatial reasoning capabilities in a 2D space by investigating three key
questions: (1) How well do existing models perform on 2D spatial reasoning? (2) What fundamental
tasks affect spatial reasoning capabilities in 2D? (3) Can mastering basic tasks help improve the
performance of complex spatial reasoning?

We first analyzed various spatial reasoning tasks presented in existing works (Kamann & Rother,
2020), identifying the capabilities required for these tasks. From this analysis, we identified three
basic capabilities fundamental for spatial reasoning in 2D space: direction comprehension, distance
estimation, and localization. A systematic evaluation of the performance of existing open-source
and closed-source VLMs on these three basic capabilities reveals that even the most advanced VLMs
sometimes struggle with these fundamental tasks. For instance, in a simple 2D direction classifica-
tion task, where a model is asked to determine the relative direction (top left, top right, bottom left,
bottom right) of one object relative to another on a straightforward diagram with only two objects,
the state-of-the-art VLM GPT-4o can achieve only 76.5% accuracy. In contrast, a human should be
able to answer these questions correctly without much thought.

Most real-world spatial reasoning tasks, such as pathfinding (Lester, 2005; Cui & Shi, 2011), inher-
ently require the composition of the basic capabilities identified above. A composite task is often
subject to specific constraints that necessitate tailored solutions, unlike improving basic spatial rea-
soning capabilities, which can exhibit generalizability. In order to effectively improve the model’s
overall spatial reasoning capabilities in 2D space, we raise a conjecture: whether a VLM that mas-
ters the three basic capabilities can generalize and perform better on more complex composite spatial
tasks. In other words, can a VLM exhibit compositional generalizability (van Zee, 2020) in spatial
reasoning tasks?

To test this, we propose Sparkle, as shown in Figure 2, a framework that fine-tunes VLMs on these
three basic spatial capabilities by programmatically generating synthetic data and providing super-
vision to form an instruction dataset for each capability. Our experimental results show that models
trained on Sparkle achieve significant performance gains, not only in the basic tasks themselves (e.g.,
improving from 35% to 83% for InternVL2-8B on direction comprehension) but also in generalizing
to composite and out-of-distribution general spatial reasoning tasks (e.g., improving from 13.5% to
40.0% on the shortest path problem). Additionally, our ablation study confirms the importance of
mastering all three basic spatial reasoning capabilities. To summarize, our contributions are:

• We show that state-of-the-art VLMs struggle with composite spatial reasoning tasks that humans
solve effortlessly.

• We identify three key components of spatial reasoning and construct an instruction-tuning method
called Sparkle to improve these three fundamental spatial reasoning capabilities.

• Our experiments demonstrate that enhancing VLMs’ basic spatial capabilities significantly im-
proves their ability to generalize to out-of-distribution composite spatial tasks.
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2 RELATED WORK

2.1 VISION LANGUAGE MODELS AND APPLICATIONS

Early works on VLMs, such as CLIP (Radford et al., 2021a) and ALIGN (Jia et al., 2021), leveraged
contrastive learning to align visual and textual embeddings in a shared latent space, demonstrating
strong capabilities in linking visual content with corresponding natural language descriptions. With
the rapid advancement of Large Language Models (LLMs), modern VLMs increasingly combine
pretrained vision models (Dosovitskiy et al., 2021; Chen et al., 2023) with powerful LLMs (Chiang
et al., 2023; Bai et al., 2023a; Jiang et al., 2023; Cai et al., 2024) to facilitate a more cohesive under-
standing of both modalities (Liu et al., 2023b; Bai et al., 2023a; Chen et al., 2024c). This approach
enables richer visual reasoning, open-ended image captioning, and more interactive multimodal di-
alogue systems.

VLMs have been applied in various pre-training tasks, such as image-text matching, masked image
modeling, and multimodal reasoning (Li et al., 2022; 2023a; Wang et al., 2022b). In downstream
tasks, they excel in applications like visual question answering (Antol et al., 2015; Wang et al.,
2022a), image captioning (Li et al., 2020; Sidorov et al., 2020; Wang et al., 2021), image generation
based on textual prompts (Ramesh et al., 2022; Baldridge et al., 2024), and aiding human-machine
interactions in complex real-world settings, showcasing their versatility and potential across a broad
range of vision language applications.

2.2 SPATIAL REASONING IN LLMS AND VLMS

Spatial reasoning in LLMs involves understanding and manipulating spatial relationships described
in text. Early work focused on extracting spatial information from natural language (Hois & Kutz,
2011; Kordjamshidi et al., 2011). More recent efforts emphasize improving multi-hop spatial rea-
soning (Li et al., 2024b), especially in complex scenarios like 2D visual scenes (Shi et al., 2022).
Key methods include pretraining on synthetic datasets to better capture spatial patterns (Mirzaee
et al., 2021), and using in-context learning to generalize spatial reasoning across tasks, such as
transforming spatial data into logical forms or visualizing reasoning traces (Yang et al., 2023b; Wu
et al., 2024; Tang et al., 2024).

Building on these foundations, VLMs extend spatial reasoning by integrating visual inputs and often
implicitly encode spatial knowledge through large-scale pretraining on visual-text datasets (Radford
et al., 2021b; Li et al., 2023b). Early studies on VLMs primarily focus on understanding spatial
relationships between objects in front-view images (Liu et al., 2023a), laying the groundwork for
2D spatial reasoning. More recently, research on VLMs has expanded to 3D reasoning tasks, which
introduce additional challenges such as depth estimation (Chen et al., 2024a) and path planning
(Chen et al., 2024b; Deng et al., 2020), as seen in applications like robotic grasping (Xu et al., 2023)
and navigation (Shah et al., 2023; Chiang et al., 2024) in the embodied AI field (Li et al., 2024c).
Despite these advances, 2D spatial reasoning remains more fundamental and flexible, as it can be
applied to various tasks, including VQA (Ge et al., 2024; Kamath et al., 2023; Li et al., 2024a) and
user interface grounding (Rozanova et al., 2021). Due to its broad applicability and foundational
role, this work focuses on exploring 2D spatial reasoning capabilities within VLMs.

3 METHODOLOGY

In order to systematically evaluate and enhance the spatial reasoning capabilities of VLMs in 2D en-
vironments, we introduce the Sparkle framework, as illustrated in Figure 3. This section is structured
as follows:

• Disentangling basic elements: How we identified the basic spatial capabilities of 2D spatial rea-
soning, and why these elements are foundational.

• Sparkle: We present the Sparkle framework to enhance VLMs’ performances in 2D spatial rea-
soning by systematically improving the identified basic spatial capabilities.

• Tasks: We employ three spatial reasoning tasks specifically designed to evaluate both basic and
composite spatial reasoning capabilities of VLMs.

3
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Table 1: Overview of VLM tasks related to spatial reasoning and their required capabilities.

Task Recognition Counting Depth Direction Localization Distance

QualSR (Freksa, 1991) ✔ ✘ ✘ ✔ ✔ ✔

MapVQA (Wang et al., 2024) ✔ ✔ ✘ ✔ ✔ ✘

NavVQA (Wang et al., 2024) ✔ ✔ ✘ ✔ ✔ ✘

GridVQA (Wang et al., 2024) ✔ ✔ ✘ ✔ ✔ ✘

VisualSR (Rajabi & Kosecka, 2023) ✔ ✘ ✔ ✔ ✘ ✔

TvRecog. (Li et al., 2024a) ✔ ✘ ✘ ✘ ✘ ✘

TvLoc. (Li et al., 2024a) ✔ ✘ ✘ ✘ ✔ ✘

StaticSR (Li et al., 2024a) ✔ ✔ ✘ ✔ ✘ ✘

DynamicSR (Li et al., 2024a) ✔ ✔ ✘ ✔ ✘ ✘

SRR (Chen et al., 2022) ✔ ✘ ✔ ✘ ✔ ✔

COCO-Spatial (Ranasinghe et al., 2024) ✔ ✘ ✔ ✔ ✔ ✘

What’s Up (Kamath et al., 2023) ✔ ✘ ✔ ✔ ✘ ✘

Q-Spatial (Liao et al., 2024) ✔ ✘ ✔ ✘ ✘ ✔

SpatialRGPT (Cheng et al., 2024) ✔ ✘ ✔ ✔ ✔ ✔

3.1 DISENTANGLING SPATIAL REASONING

To systematically disentangle basic 2D spatial reasoning capabilities, we first analyze the capabili-
ties required in existing VLM benchmarks related to spatial reasoning, as shown in Table 1. While
these benchmarks include a wide array of capabilities, such as image recognition and depth esti-
mation, we narrow our focus to those most fundamental to 2D spatial reasoning. Depth estimation,
though relevant to spatial reasoning, is more suited to 3D tasks and thus excluded from our analysis,
as discussed in Section 2.2. We present the definitions of three basic components: (1) Direction
Comprehension: The ability to understand the orientation of an object relative to a reference ob-
ject; (2) Distance Estimation: The ability to gauge the magnitude of spatial displacement between
objects; (3) Localization: The ability to determine the precise position of an object in space.

The selected basic spatial reasoning capabilities are foundational because they collectively represent
the minimal components necessary to fully describe an object’s position in 2D space. In particular,
each of the three capabilities aligns with principles from Cartesian and polar coordinate systems,
which serve as the mathematical bedrock for spatial representation: direction defines orientation,
distance represents magnitude, and localization integrates both to precisely define an object’s
position, ensuring comprehensive spatial awareness (Zeng & Si, 2017). This decomposition enables
a systematic evaluation of spatial reasoning by isolating the key dimensions of spatial understanding.

3.2 SPARKLE

To comprehensively investigate our hypothesis, we introduce Sparkle, a simple yet effective frame-
work for constructing an instruction dataset focused on enhancing a model’s spatial reasoning abili-
ties. This framework only improves VLMs’ basic spatial capabilities, and this design enables us to
evaluate whether models that perform well on basic spatial reasoning tasks can also excel in more
complex and composite problems.

3.2.1 INSTRUCTION DATA GENERATION

The design of our instruction dataset focuses on three basic spatial capabilities: direction, distance,
and localization, based on insights provided in Section 3.1. The proposed fine-tuning pipeline does
not require manual labeling, as all data can be programmatically generated.

We use G to denote a data generator that can generate a set of objects, P = {Ni}ni=1, representing
a training sample of basic spatial capabilities. Each object Ni = (xi, yi) ∈ R2 consists of randomly
sampled coordinates within a bounded region. For each basic capability T ∈ {dir., dist., loc.}, we
construct a dataset DT containing input-output pairs (X T ,YT ), where X T represents the inputs
and YT represents the corresponding ground truth outputs. Each input X T consists of: (1) A visual
input X T

V : A labeled diagram representing the spatial configuration of a sample of objects through
a visual representation function VT (P ), (2) A language prompt X T

L : A question querying some
aspects of the spatial properties for P .
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s

LocalizationDirection Distance

Image:  10×10

Object Coordinates:
N1: (7.12, 9.35)
N2: (6.46, 2.08)
N3: (3.59, 7.34)

Raw Data

Basic

      Sparkle
Instruct Basic  Spatial Capabilities

Improve

Composite 
Spatial Reasoning

Shortest Path
Problem

Traveling 
Salesman Problem

Figure 3: The proposed Sparkle framework.

Direction

Q: Which distance is the 
shortest? N1 and N2, N1 
and N3, N2 and N3
A: N1 and N3

Q: Compare the distances: 
N1 and N3 and N2 and N3. 
Which one is longer?
A: N2 and N3

Q: In a 10x10 image, 
what is the distance 
between the N1 and N3 
objects?
A: 4.07

Q: Determine the 
direction from the N2 
object to the N3 object.
A: top left
 
Q: From the N1 object to 
the N2 object, which 
direction should you move?
A: down

Q: What is the direction 
from the N1 object to the 
N3 object?
A: down left

Q: Which relative location 
is the N2 located at?
A: down right

Q: Which relative position 
is the N1 located at?
A: top right

Q: Identify the location 
of the N3.
A: top left

Q: In a 10x10 image, what 
is the coordinate of the 
N3 object?
A: (3.59, 7.34)

DistanceLocalizationVisual Representation

Figure 4: A data sample from the Sparkle dataset.

For example, to craft a training sample for direction comprehension, two objects, N1 and N2, are
selected from P , and a question such as “What is the direction of N2 relative to N1?” is posed. The
corresponding correct answer Y T can be easily computed since we can access the exact coordinates
of these objects, e.g., we can obtain the answer to the above question by calculating the vector from
N1 to N2 based on their coordinates and map it to the corresponding directional label. Details about
these generation processes can be found in Appendix §A.1.

The resulting training dataset consists of these generated questions and answers, paired with the
corresponding visual representations, as shown in Figure 4. Specifically, the training pairs are rep-
resented as {(X train

L ,X train
V ,Y train)}, where X train

L represents the language-based queries, X train
V repre-

sents the visual representations, and Y train represents the corresponding answers. We also provide a
complete data sample from the Sparkle training set in Appendix §A.5.1.

3.2.2 INSTRUCTION FINETUNING FOR BASIC TASKS

To enhance the spatial reasoning capabilities of VLMs, we use the Sparkle training set, denoted as
X train = {(X train

L ,X train
V )}. The objective is to minimize the negative log-likelihood of the predicted

answers. Specifically, the loss function L is defined as:

L(θ) = −E(X train,Y train)

[
log p(Y train | X train

V ,X train
L ; θ)

]
where θ represents the parameters of the VLM. The training aims to improve the model’s profi-
ciency in basic spatial reasoning tasks, which subsequently allows for an effective evaluation of its
performance on more complex spatial challenges.

3.3 TASKS

The goal of the employed tasks is to evaluate the 2D spatial reasoning capabilities of VLMs and
provide a foundation for studying how acquiring basic spatial capabilities can enhance performance
on complex tasks. To achieve this, we follow key design criteria: (1) focus on spatial reasoning, and
(2) progression from basic to composite tasks.

5
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Shortest Path 
Problem

Basic Spatial Relationships
Understanding

Q: Which distance is the shortest? 
Options: A. N1 to N4, B. N1 to N3, 
C. N4 to N3
A: A
 
Q: Determine the direction from 
N1 to N2. Options: A. top left, B. 
top right, C. down left, D. down 
right
A: B

Q: What is the position of the N4 
object? Options: A. top left, B. 
top, C. top right, D. left, E. 
center, F. right, G. down left, H. 
down, I. down right
A: I

Q: The image shows a grid graph 
where each node is labeled (N1, 
N2, ... N16) and connected to 
neighboring nodes. 

Based on the image, find the 
shortest path from the start node 
(green) to the end node (red) 
without loops or backtracking.

Example Output:
[N16, N12, N8, N4, N3] 

Q: Given an image with exactly 5 
objects, analyze their spatial 
relationships and find the 
shortest path that:

1. starts at the N1 object 
2. visits each object exactly 
once

Example Output:
[N1, N3, N4, N5, N2]

Traveling Salesman 
Problem

Figure 5: A sample from the evaluation dataset.

3.3.1 BASIC TASKS: ASSESSING FUNDAMENTAL SPATIAL CAPABILITIES

As shown in Figure 5 (left), the basic tasks in Sparkle are designed to assess the model’s under-
standing of three basic spatial capabilities: (1) direction comprehension, (2) distance estimation, (3)
localization.

In each basic task, the VLM is provided with an image containing several labeled data objects and
a multiple-choice question about the spatial properties of these objects, with the goal of having the
model answer these questions correctly. We first generate labeled diagrams that serve as visual
inputs, then generate the questions (in multiple-choice format) and corresponding answer pairs,
similar to the process described in Section 3.2, to obtain the basic task test set.

3.3.2 COMPOSITE TASKS: EVALUATING INTEGRATED SPATIAL REASONING

Building on the basic spatial relationships, the composite tasks introduce greater complexity. The
objective here is to assess whether the model can apply basic spatial skills to solve problems re-
quiring a combination of these skills or whether it has merely learned each skill in isolation without
being able to generalize effectively. We choose the Shortest Path Problem (SPP) and the Traveling
Salesman Problem (TSP) as composite tasks to evaluate the integration of basic capabilities.

Shortest Path Problem (SPP) As shown in Figure 5 (middle), SPP evaluates the model’s capa-
bility to compute the most efficient route between two objects on a 2D grid, requiring a combination
of distance estimation and spatial planning.

Consider a grid G of size n × n, with two special objects: the start object Nstart = (xs, ys) and the
end object Nend = (xe, ye). We employ a language model LM generates the prompt X spp

L using a
predefined prompt template Pspp, expressed as: X spp

L = LM(Pspp(G,Nstart, Nend)). The visual input
is produced similar to basic tasks: X spp

V = Vspp(G,Nstart, Nend).

The combined input for the VLM is X spp = (X spp
V ,X spp

L ), and the model is expected to predict the
shortest path Ŷ spp, which is evaluated against the true shortest path, Y spp, computed using standard
algorithms.

Traveling Salesman Problem (TSP) As shown in Figure 5 (right), the TSP represents a more
challenging spatial reasoning task, involving combinatorial optimization. The model must find the
shortest possible route that visits each object exactly once and returns to the starting object.

Given n objects P tsp = {Ni}ni=1 sampled from G, the ground truth solution Y tsp is computed
using a TSP solver Mtsp(P

tsp). Similarly, the input to VLMs consists of a visual representation
X tsp

V = Vtsp(P
tsp) and a corresponding language prompt X tsp

L . The complete input query is X tsp =

6
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(X tsp
V ,X tsp

L ). Similarly, the model’s predicted order of visiting all objects, Ŷ tsp, is then evaluated
against the ground truth solution Y tsp.

3.3.3 DISCUSSION

Given that the SPP can be solved in polynomial time, we expect that if the model can effectively
combine its knowledge of basic spatial concepts, it will show significant improvements in solving
this task efficiently. On the other hand, the TSP is an NP-hard problem, requiring combinatorial
optimization to obtain the exact solution. We include the TSP to push the limits of the model’s
spatial reasoning capabilities, aiming to investigate how well the model can manage more complex
problem-solving tasks beyond the basic integration of spatial skills.

4 EXPERIMENTS

In this section, we provide our findings along with the supporting results to demonstrate the ef-
fectiveness of the Sparkle framework. Specifically, the experiments are designed to answer the
following research questions: RQ1: Can mastering basic 2D spatial components enhance overall
spatial reasoning capability in VLMs? RQ2: What insights from the results of evaluations (Section
4.2.1), enhancements (Section 4.2.2), and spatial components (Section 4.3) can guide improvements
in model design, training strategies, and data collection for spatial reasoning in VLMs?

4.1 SETTINGS

Models We tested open-source and commercial models to evaluate and enhance VLMs’ spatial
reasoning capabilities. For commercial VLMs, we used GPT-4o from OpenAI (Yang et al., 2023a)
and Google-Gemini (GeminiTeam et al., 2023). We included LLaVA1.6 (Liu et al., 2024) and
InternVL2 (Chen et al., 2024c) for open-source models. Detailed model specifications and configu-
rations are provided in Appendix §A.1. We use the MS-Swift library (Zhao et al., 2024) and apply
the LoRA (Hu et al., 2022) fine-tuning strategy, with low-rank dimension of 32. We set a constant
learning rate of 1e-4 and a batch size of 1. All training and evaluation tasks are performed on GPU
clusters with 8×NVIDIA A100 machines. Further details can be found in Appendix §A.1.

Data We built the Sparkle training dataset by generating 2,000 images. each with 17 instruction-
answer pairs that describe the spatial relationships between objects, resulting in 34K samples in
total. Out of these 17 pairs, 3 focus on directions between objects, 7 on distances (including 4 for
comparing distances and 3 for estimating numerical distances), and 6 relate to localization (with 3 for
identifying object locations and 3 for estimating exact positions). The final instruction describes the
overall spatial relationships in the image. This setup helps ensure the VLM maintains its capability
to follow instructions effectively. Our evaluation includes tasks of: (1) shortest path problem (SPP),
(2) traveling salesman problem (TSP), and (3) basic spatial relationship understanding. For each
of them, we generated 200 samples, which together make up the evaluation set. For SPP and TSP,
we use LLaMA 3.1 (Dubey et al., 2024) to process the VLMs’ responses into list formats to enable
metric computation. For the basic tasks, we structured them as a multiple-choice question format.
In addition, for SPP and TSP, we designed experiments that vary by grid size and the number of
objects involved. Detailed data statistics and sample data are provided in Appendix §A.2.

To further assess the generalizability of the improved spatial reasoning capabilities, we evaluated
VLMs on existing general spatial reasoning-related benchmarks to examine its out-of-distribution
performance. The general spatial benchmarks we used include What’s Up, COCO-spatial, and
GQA-spatial (Kamath et al., 2023), which feature real-world images and spatial reasoning questions.

Metrics For most of the tasks, we report accuracy as the primary evaluation metric. However,
for tasks like SPP and TSP, where distance is crucial, we also use an additional metric Mar-
gin as a complementing one. This metric measures the extent to which the total distance of the
solved path exceeds the optimal path (i.e., the shortest), expressed as a ratio of their summed
distances. A lower Margin indicates better performance. Formally, the Margin is defined as:
Margin =

∑
(dist(solved path) − dist(optimal path))/

∑
dist(optimal path), where the function

dist(·) computes the total distance of a given path.

7
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Table 2: VLMs’ performance on basic and composite spatial reasoning tasks. “SPP-nGrid” denotes
shortest path problem on n × n grids. “TSP-nObj” denotes traveling salesman problem with n
objects.

Model
Basic Tasks SPP-4Grid SPP-5Grid TSP-4Obj TSP-5Obj

Loc. Dist. Dir. Acc↑ Margin ↓ Acc↑ Margin↓ Acc↑ Margin↓ Acc↑ Margin↓

GPT-4o 67.5 41.5 76.5 74.5 0.089 78.5 0.178 23.5 0.001 21.5 0.195
Gemini 61.5 40.5 55.0 67.0 0.208 65.0 0.188 11.5 0.023 21.7 0.070
LLaVA1.6-7B 24.5 37.0 30.5 1.5 − 0.0 − 16.0 0.132 5.0 0.476
InternVL2-26B 62.5 45.5 58.0 15.5 0.5 10.9 1.135 21.5 0.074 12.5 0.265

InternVL2-8B 60.5 44.5 35.0 16.5 3.893 13.5 1.127 17.5 0.073 11.5 0.302
+ Sparkle-Instruct 73.0 84.0 83.0 36.5 0.571 40.0 0.466 20.0 0.043 14.5 0.239
∆ +21% +89% +137% +121% -85% +196% -58% +14% -41% +26% -21%

4.2 MAIN RESULTS

4.2.1 EVALUATION OF EXISTING VLMS

From Table 2, we observe that even the state-of-the-art commercial VLMs cannot obtain satisfactory
results on composite tasks like SPP and TSP. Open-source models achieve even worse performance
(≤25% accuracy) on these tasks. Specifically, LLaVA perform poorly particularly on SPP com-
pared to TSP, which may attribute to the grid data structure in SPP is more complex for VLMs to
perceive compared to handling just a few objects in TSP, indicating that these VLMs struggle with
visual representations involving intricate spatial structures. Performance on the TSP task worsens
as the number of objects increases across most models, highlighting the growing difficulty of spatial
reasoning with more objects. However, in SPP, increasing the grid size has little impact on perfor-
mance, indicating that a larger grid does not increase the difficulty of reasoning. This result aligns
with our initial design principles, where SPP was intended to combine basic spatial relationship
understanding with a straightforward form of spatial planning.

To delve into how VLMs behave poorly on the composite spatial reasoning tasks, we further examine
their performance on basic spatial relationship understanding, i.e. direction, location and localiza-
tion comprehension. As shown in Table 2, even the state-of-the-art VLM GPT-4o struggles with
basic spatial relationship understanding, achieving only 67.5%, 41.5%, and 76.5% accuracy on the
direction, distance, and localization tasks, respectively. This investigation helps explain why VLMs
underperform on composite tasks, as their inadequate basic spatial reasoning capabilities directly
hinder their ability to handle more complex spatial challenges.

4.2.2 EFFECTIVENESS OF SPARKLE

To demonstrate the effectiveness of Sparkle, we present results from fine-tuning InternVL2-8B with
this method. The results reveal significant improvements in both basic and composite tasks, indi-
cating that 2D spatial reasoning capabilities can be significantly improved when a model effectively
masters the basic components of 2D spatial reasoning.

Specifically, Sparkle only contains data for basic spatial relationship understanding. However, after
fine-tuning with this data, VLMs improved in basic spatial reasoning (around 80%) and showed
significant gains (around 90%) in composite tasks. This justifies the soundness of our abstraction
of spatial reasoning in 2D space into three basic components (i.e., localization, distance, and direc-
tion), and that improving these basic capabilities could effectively enhance VLMs’ overall spatial
reasoning, enabling it to tackle more complex tasks. This finding highlights the potential of strength-
ening basic capabilities to improve problem-solving performance in VLMs. When comparing the
improvements of the InternVL2 model on SPP and TSP, we observe that the gains (around 20%) on
TSP are much smaller than those on the SPP task (160%). One possible explanation is that the TSP
involves more complex optimization challenges, which may not be as easily addressed by simply
improving basic spatial reasoning skills, as discussed in Section 3.3.3. This underscores the need
for further research into the optimization capabilities of language models, a topic we hope our find-
ings will inspire. Additionally, we present results of Sparkle on Qwen-VL-7B in Appendix §A.3.1,
demonstrating its effectiveness across various different VLMs.
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Table 3: Results on general spatial tasks.

Model
What’s Up COCO-Spatial GQA-Spatial

1Obj 2Obj 1Obj 2Obj

GPT-4o 95.9 88.2 49.7 89.4 63.6
Gemini 69.4 50.8 34.1 42.9 21.7
LLaVA1.6-7B 44.9 14.4 6.0 12.6 2.2
InternVL2-26B 87.9 72.7 62.9 91.4 75.0

InternVL2-8B 92.7 92.5 71.3 97.5 85.3
+ Sparkle-Instruct 93.9 93.0 78.4 98.0 90.0
∆ +1.3% +0.5% +10% +0.5% +5.5%

4.2.3 GENERALIZABILITY

In the previous subsection, we have shown that spatial reasoning improvements can generalize from
simple tasks to more complex ones. In this section, we evaluate this generalization further by testing
spatial reasoning performance in an out-of-distribution (OOD) visual representation setting.

Specifically, we investigate whether the enhanced spatial reasoning capabilities transfer to other
general VLM spatial tasks. As seen in Table 3, there are consistent gains across general VLM
benchmarks related to spatial reasoning. For instance, the COCO-spatial and GQA-spatial bench-
marks illustrate that current VLMs often struggle to accurately capture spatial relationships between
two objects. However, with our Sparkle framework, this capability is greatly improved.

These findings suggest that future work designing and training VLMs should consider improving
spatial reasoning of VLMs by decomposing into basic capabilities to enhance the general perfor-
mance. Our results demonstrate that the Sparkle framework is simple and highly effective in en-
hancing spatial reasoning capabilities in VLMs.

4.3 ABLATION STUDIES

In this section, we present the results of ablation studies on the proposed Sparkle framework, using
the InternVL2-8B model for demonstration.

4.3.1 IMPACT OF TRAINING COMPONENTS
Basic
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Figure 6: Ablation results showing accuracy for dif-
ferent Sparkle variants: Sparkle ■; Sparkle without
numerical information ■; Sparkle (Localization) ■;
Sparkle (Distance) ■; Sparkle (Direction) ■.

To evaluate the impact of different training
components, we compared Sparkle to sev-
eral variants. First, we trained InternVL2-
8B on individual spatial reasoning tasks
with our Sparkle framework, resulting
in Sparkle(Direction, Distance, Localiza-
tion). Additionally, we tested a version
called Sparkle w/o Num that excludes nu-
merical information (i.e., distance and lo-
cation estimation) in Sparkle. All of the
four variants are trained with the same
number of total samples as the full Sparkle
model. The results shown in Figure 6
reveal two key insights: First, Sparkle
w/o Num consistently underperforms com-
pared to the full Sparkle model, particu-
larly in tasks that require strong distance
reasoning, such as TSP. This suggests that
incorporating numerical information dur-
ing training significantly enhances the model’s capability in tasks involving distance reasoning and
other related composite challenges. Second, training on specific spatial reasoning subsets can some-
times yield optimal performance for certain tasks. For example, Sparkle (Direction) achieves 96.4%
accuracy on the What’s Up benchmark, indicating that task-specific training can be highly effec-
tive. This highlights the importance of tailoring the training process to the unique characteristics
of individual tasks. When a task emphasizes a particular spatial reasoning capability, focusing the
training data on that aspect can improve performance on the targeted task. Overall, the full Sparkle

9
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Table 4: Results of Sparkle on InternVL2-8B with varying training sample sizes.

framework consistently delivers the best results across the majority of benchmarks, demonstrating
the effectiveness of a more comprehensive approach to training.

4.3.2 IMPACT OF TRAINING SAMPLE SIZE

In this section, we varied the training sample size in Sparkle and evaluated its impact on spatial
reasoning tasks. The results are shown in Figure 4. Several key trends emerge from the results.
First, we observe a general improvement in VLM performance as the training sample size increases
despite some fluctuations in the curve. However, a noteworthy finding is the existence of task-
specific sweet spots, beyond which performance gains taper off or degrade. This suggests that
scaling up training samples does not always yield proportional improvements. For example, in the
TSP task, performance begins to degrade once the number of training samples surpasses a threshold
(around 800). This is likely because, after mastering basic spatial relationships, the model may
focus on locally optimal choices, such as selecting the nearest objects to form a path, rather than
optimizing the entire path. As the model grows more confident in these local decisions, it may
sacrifice the global optimality of the solution, resulting in suboptimal performance.

4.4 DISCUSSION

The analysis and results confirm that mastering basic 2D spatial reasoning capabilities through
Sparkle can significantly enhance VLMs’ overall spatial reasoning in composite tasks (e.g., spa-
tial planning) and general spatial tasks. This directly addresses RQ1 and supports the assumption
presented in the methods section.

Turning to RQ2, the evaluation results revealed the limitations of existing VLMs, particularly in their
capability to perceive complex spatial structures, as evidenced in tasks like SPP. This highlights the
need for improved model and training designs to support more detailed spatial reasoning. Moreover,
introducing synthetic data focusing on basic spatial relationships has proven to enhance overall
VLM spatial reasoning performance, offering a clear path for future spatial data collection. Lastly,
our ablation study suggests that training specific spatial reasoning capabilities in isolation yields the
best results for tasks that demand focused spatial abilities. Therefore, in terms of training strategy,
our findings suggest adopting a pre-train and fine-tune approach (i.e., using diverse spatial data
in pretraining and fine-tuning specific spatial capabilities tailored to particular tasks) to improve
VLMs’ performances on corresponding tasks.

5 CONCLUSION

This work presents the Sparkle framework to address the relatively limited spatial reasoning ability
of Vision Language Models (VLMs). Sparkle is designed to enhance spatial reasoning by focus-
ing on three fundamental capabilities: direction comprehension, distance estimation, and localiza-
tion. Our experiments demonstrate that fine-tuning on these basic capabilities leads to substantial
improvements not only in the basic tasks but also in more complex, composite spatial reasoning
challenges, thereby showcasing the compositional generalizability of our method. Furthermore, our
analysis confirms that mastering all three basic spatial reasoning capabilities is essential for broader
generalization, ultimately strengthening VLMs’ ability to interact with the physical world.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

In addition to the experimental settings outlined in Section 4.1, we provide the following categorized
implementation details for this work.

For model specifications, the GPT-4o model used in our experiments and demonstrations is based
on the gpt-4o-2024-05-13 version, while the Gemini model is Gemini 1.5 Flash. For TSP data
generation, we used an open-source Python TSP solver1 to obtain the ground truth visiting order of
the given object coordinates.

For VLM evaluations, we focused on four directional categories (top left, top right, bottom left, and
bottom right) to make it easier for VLMs to distinguish between directions. To discretize object
locations for localization learning in VLM, the 2D space is proportionally divided using 40% and
60% thresholds along both the x and y axes, creating nine distinct regions (center, top, bottom,
left, right, top-left, top-right, bottom-left, bottom-right). Detailed data statistics and distribution
visualizations are provided in Section A.2.

To extract and format the VLMs’ responses, we used the LLaMA 3.1 language model (Dubey et al.,
2024), which converts the results into the required format for metric calculations. The specific
prompts used for each task are detailed in Section A.4. The evaluation for basic spatial relationship
understanding is intuitive, as it follows a multiple-choice question format. For the SPP evaluation,
we check two criteria: (1) whether the solved path is valid on the grid, and (2) whether the length of
the solved path is indeed the shortest between the given start and end objects. For the TSP evaluation,
a path is considered “correct” only if it exactly matches the solution from the TSP solver mentioned
above. To reduce the difficulty for VLMs in solving TSP, we explicitly specify the starting object in
our implementation.

A.2 DATA STATISTICS

Figure 7: Data statistics of basic spatial relationships (from left to right: distance, direction, and
localization statistics).

To complement Section 4.1, this section provides detailed statistics of the data from Sparkle training
set and evaluation. We begin by discussing data related to basic spatial relationships (i.e., distance,

1https://github.com/fillipe-gsm/python-tsp
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direction, localization), covering both Sparkle training set and the spatial relationship understanding
task in the evaluation set.

Figure 7 illustrates various statistics. In the left column, we see the distribution of questions and
instructions related to the distance between objects, which includes comparative expressions (e.g.,
shortest, shorter, longer, longest) and numerical distance estimations considered only in Sparkle
training set. The training set shows a fairly even distribution of comparison queries, while in the
test set, queries involving the “shortest” and “longest” distances occur more frequently than those
involving “shorter” and “longer”.

The middle column of Figure 7 presents the data concerning directional relationships between ob-
jects. We divided the 2D space into direction sectors: four sectors for testing and eight for training.
The directional relationships of “bottom-right”, “bottom-left”, “top-right”, and “top-left” each make
up about 19% of the training data, while “top”, “bottom”, “left”, and “right” each account for roughly
6%. In the test set, the four main directional relationships are distributed evenly.

Lastly, the right column in Figure 7 shows the localization data. Objects are most frequently located
in the corners of the space (i.e., top-left, top-right, bottom-left, and bottom-right) in both the training
and test sets. The number of objects placed in “top”, “bottom”, “left”, and “right” positions is about
half that of those in the corners, while the fewest objects are placed in the center. This is due to the
intentional narrowing of the center area as we explained in Section A.1, which reduces the likelihood
of randomly generated objects being placed there. Since there is no clear distinction between regions
like “left” and “top-left”, this narrowed design encourages VLMs to accurately distinguish specific
areas such as the “center”, “top”, “bottom”, “left”, and “right”

Figure 8: Data statistics of composite spatial reasoning tasks in the evaluation set.

Figure 8 presents data statistics for composite spatial reasoning tasks. The two left subfigures show
the distribution of ground truth shortest path lengths in 4 × 4 and 5 × 5 grids, while the two right
subfigures depict the distribution of total distances for the optimal path in the TSP with 4 and 5
objects.
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A.3 ADDITIONAL EXPERIMENTS

A.3.1 QWEN-VL EXPERIMENTS

Model

Spatial Relationships Traveling Salesman Problem COCO-Spatial GQA-Spatial What’s

Loc. Dist. Dir. 4 Objects 5 Objects 1 Object 2 Objects 1 Object 2 Objects Up

Acc. Acc. Acc. Acc. Marg. Acc. Marg. Acc. Acc. Acc. Acc. Acc.

Qwen-VL-7B 22.0 37.0 24.5 10.5 0.126 2.5 0.458 89.8 74.3 98.5 94.0 42.7

+ Sparkle-Instruct 56.0 54.5 61.0 16.5 0.069 9.0 0.367 96.3 86.8 98.5 96.2 48.1

∆ +155% +47% +149% +57% -45% +260% -20% +7% +17% − +2% +13%

Table 5: Results of Qwen-VL Enhanced with Sparkle-Instruct

To further validate the generalizability of Sparkle, we conducted experiments using Qwen-VL (Bai
et al., 2023b). The results, presented in Table 5, show significant improvements after fine-tuning
with Sparkle compared to the original InternVL2-8B model.

Specifically, there is an approximately 120% improvement in the basic spatial relationship under-
standing task, a 150% improvement in the accuracy of composite tasks, and an 8% improvement in
general spatial tasks. However, we excluded the results of the SPP task from our analysis, as the
original performance of Qwen-VL-7B was too poor to allow for insightful comparison. This un-
derperformance is not primarily due to limitations in spatial reasoning, but rather issues with visual
recognition capabilities, as discussed in Section 4.2.1.

A.3.2 ABLATION STUDY RESULTS ON MARGIN METRIC
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Figure 9: Margin results of InternVL2-8B with varying training sample sizes.

We have included the ablation study results on the margin metric here. As shown in Figure 9, a
similar trend can be observed, consistent with the analysis discussed in Section 4.3.
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A.4 PROMPTS FOR EXTRACTING INFERENCE RESULTS FROM VLMS

In this section, we provide the designed prompts for a LM to extract results from VLMs’ responses.

A.4.1 MULTI-CHOICE QUESTIONS

Prompt for Extracting Results from VLMs’ Responses to Multiple-Choice Questions

Extract the option capital letter from the result and return it as \\boxed{{X}}, where
X is the letter.

Provide no additional content. The result is: ```{result}```.

Make sure your response is in the \\boxed{{X}} format.

The above prompt is adopted for all evaluations that in a Multi-choice Questions format.

A.4.2 SHORTEST PATH PROBLEM

Prompt for Extracting Results from VLMs’ Responses to Shortest Path Problems

Extract the sequence of node labels from the given input and return it as a Python
list.

**Return Format:**
- Do not include any additional text or explanations.
- Ensure that the response is a single list containing only the node text labels (N1,
N2, ...).
- If no valid action sequence is found, return 'None'.

**Example Output format:**
```
[node1 text label, node2 text label, ...]
```

Now, extract the result from the following input: ```{result}```. Strictly adhere to
the return format.

A.4.3 TRAVELING SALESMAN PROBLEM

Prompt for Extracting Results from VLMs’ Responses to Traveling Salesman Problems

Extract the sequence of movements from the given input and return it as a Python list
of object names.

**Return Format:**
- Do not include any additional text or explanations.
- Ensure that the response is a single list containing only the object names.

**Expected Output Format:**
```
{output_format}
```

Now, extract the result from the following response: ```{result}```. Strictly adhere to
the output format.
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A.5 SAMPLE DATA DEMONSTRATION

In this part, we provide detailed data sample from our experiments.

A.5.1 DATA SAMPLE FROM SPARKLE TRAINING SET AND EVALUATION

Directions

N3_N2: top left
N3_N1: top right
N2_N1: bottom right

Coordinates

N3: [4.57, 1.78]
N2: [1.82, 8.39]
N1: [7.14, 4.23]

Localizations

N3: bottom
N2: top left
N1: right

Direction:
Q: What is the direction from the N2 object to the N1 object?
A: bottom right
Q: From the N3 object to the N2 object, which direction should you 
move?
A: top left
Q: From the N3 object to the N1 object, which direction should you 
move?
A: top right

Distance:
Q: Compare the distances: N3 and N2 and N3 and N1. Which one is 
longer?
A: N3 and N2
Q: Compare the distances: N2 and N1 and N3 and N2. Which one is 
longer?
A: N3 and N2
Q: Which distance is the shortest? N3 and N2, N3 and N1, N2 and N1
A: N3 and N1
Q: Which distance is the shortest? N3 and N2, N3 and N1, N2 and N1 
A: N3 and N1
Q: In a 10x10 image, what is the distance between the N2 and N1 
objects? 
A: 6.75
Q: The image is 10x10. What is the distance between the N3 and N2 
objects?
A: 7.16
Q: In a 10x10 image, what is the distance between the N3 and N1 
objects?
A: 3.55

Localization: 
Q: What is the location of the N2?
A: top left
Q: What is the location of the N1?
A: right
Q: Identify the location of the N3.
A: bottom
Q: The image is 10x10. What is the absolute location of the N2?
A: (1.82, 8.4)
Q: The image is 10x10. What is the absolute location of the N3? 
A: (4.57, 1.78)
Q: The image is 10x10. What is the absolute location of the N1?
A: (7.14, 4.23)

Distances

N3_N2: 7.16
N3_N1: 3.55
N2_N1: 6.75

Q: Please provide a description of the spatial 
relationships among the various objects in the 10 by 10 
picture.
A: Let's describe the spatial relationships among the 
objects in the image:

Direction:
From the N3 object, you can go top left to reach the N2 
object.
You can reach the N1 object by going top right from the 
N3 object.
Starting at the N2 object, head bottom right to find 
the N1 object.

Localization:
The N3 object is located at the bottom of the image.
You'll find the N2 object at the top left of the image.
The N1 object is at the right of the image.
The coordinate of the N3 object is (4.57, 1.78).
The coordinate of the N2 object is (1.82, 8.40).
The coordinate of the N1 object is (7.14, 4.23).

Distance:
The distance from N3 to N2 is longer than the distance 
from N3 to N1.
The distance from N3 to N2 is longer than the distance 
from N2 to N1.
The distance from N2 to N1 is longer than the distance 
from N3 to N1.
The distance between the N3 and N2 objects is 7.16.
The distance between the N3 and N1 objects is 3.55.
The distance between the N2 and N1 objects is 6.75.

Image Raw Data

Instructions (Description) Instructions ( Queries & Answers)

  Sparkle

Figure 10: A data sample from the Sparkle training set.

A.5.2 DATA SAMPLE FROM THE BASIC SPATIAL RELATIONSHIP UNDERSTANDING TASK

Distance:
Q: Which distance is the shortest? Options: A. N1 to N4, B. N1 to N3, C. N4 to N3

Direction:
Q: Determine the direction from N1 to N2. Options: A. top left, B. top right, 
C. down left, D. down right 

Localization:
Q: What is the location of the N4 object? Options: A. top left, B. top, C. top right, 
D. left, E. center, F. right, G. bottom left, H. bottom, I. bottom right

A: A (Distance), B (Direction), I (Localization)

Queries & AnswersImage

  Basic Spatial Relationship Understanding

Figure 11: A data sample for Basic Spatial Relationship Understanding
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A.5.3 DATA SAMPLE FROM THE SHORTEST PATH PROBLEM

Shortest Path Problem:
Q: The image shows a grid graph where each node 
is labeled (N1, N2, ... N25) and connected to 
neighboring nodes. 

Based on the image, find the shortest path from 
the start node (green) to the end node (red) 
without loops or backtracking.

return the solved shortest path in a Python list 
format. Example output format: ["Na", "Nb", "Nc"]

Ground Truth: 5 (The shortest path length)
VLM’s Output Format: [N3, N8, N13, N18, M19, N20]

Queries & AnswersImage

  Shortest Path Problem

Figure 12: A data sample from the Shortest Path Problem.

A.5.4 DATA SAMPLE FROM THE TRAVELING SALESMAN PROBLEM

Traveling Salesman Problem:
Given an image containing exactly 5 objects:

Task:
1. Analyze the spatial relationships between these objects.
2. Find the shortest path that:
   a. Starts at the N5 object
   b. Visits each object exactly once
3. Return the optimal order as a Python list of objects.

Requirements:
- Use only the 5 objects listed above.
- **directly provide reasoning and don't write any code**.
- Provide only the Python list as your answer.
- The list must start with N5.

A: [N5, N1, N4, N3, N2]

Queries & AnswersImage

  Traveling Salesman Problem

Figure 13: A data sample from the Traveling Salesman Problem.

A.5.5 DATA SAMPLE FROM GENERAL SPATIAL TASKS

General Spatial Tasks (What’s Up):

Q: Pick the correct option that matches the image.
Options: 
A. A dog under a table, B. A dog on a table, 
B. C. A dog to the left of a table, 
C. D. A dog to the right of a table

A: D

Queries & AnswersImage

  General Spatial Tasks (What’s Up)

Figure 14: A data sample from the General Spatial Tasks (”What’s Up”).
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A.6 SCREENSHOTS OF CHAT WITH VLMS

A.6.1 GPT-4O

Figure 15: Screenshot supporting Figure 1: Chat interactions with GPT-4o.
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Figure 16: Screenshot supporting Figure 1: Chat interactions with GPT-4o.
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A.6.2 INTERNVL2-PRO

Figure 17: Screenshot supporting Figure 1: Chat interactions with InternVL2-Pro.
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