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Abstract

Non-stationary multi-armed bandits (NSM AB) enable agents to adapt to changing
environments by incorporating mechanisms to detect and respond to shifts in reward
distributions, making them well-suited for dynamic settings. However, existing
approaches typically assume that reward feedback is available at every round—an
assumption that overlooks many real-world scenarios where feedback is limited.
In this paper, we take a significant step forward by introducing a new model of
constrained feedback in non-stationary multi-armed bandits (CONFEE-NSMAB),
where the availability of reward feedback is restricted. We propose the first prior-
free algorithm—that is, one that does not require prior knowledge of the degree
of non-stationarity—that achieves near-optimal dynamic regret in this setting.
Specifically, our algorithm attains a dynamic regret of (’N)(Kl/?’Viﬁ/dT/Bl/?’),
where 7" is the number of rounds, K is the number of arms, B is the query budget,
and V7 is the variation budget capturing the degree of non-stationarity.

1 Introduction

The multi-armed bandits (MAB) problem [29]] is a fundamental framework for decision-making
under uncertainty, where an agent selects from a set of arms to maximize cumulative rewards over
a time horizon, balancing exploration (learning about arms) and exploitation (leveraging known
rewards). Most state-of-the-art MAB algorithms, including Upper Confidence Bound (UCB)-type
methods [[1]] and Thompson Sampling (TS)-based approaches [34]], assume stationary settings in
which reward distributions remain fixed over time. However, many real-world applications—such as
dynamic pricing [[14], evolving user preferences [21]], and environmental shifts [16]—are inherently
non-stationary, with reward distributions that change over time. This has led to growing interest in
non-stationary MAB (NSMAB), which incorporates mechanisms for detecting and adapting to such
changes, making it more applicable to dynamic environments.

However, most of the existing literature on NSMAB assumes that reward feedback is available to
the agent at every round. This overlooks a critical aspect of many real-world applications, where
feedback is often limited. For example, in recommendation systems, repeatedly asking users for
feedback on the quality of recommendations can lead to user fatigue or annoyance [[13]]. Similarly,
in reinforcement learning from human feedback (RLHF) [[L1]], essential signals such as preference
comparisons, demonstrations, or ratings are often costly, time-consuming, or constrained by the
availability of expert annotators. Motivated by these challenges, we introduce a new model of
constrained feedback in non-stationary multi-armed bandits, termed CONFEE-NSMAB, in which the
availability of reward feedback is limited.

Similar to existing NSMAB frameworks, CONFEE-NSMAB quantifies the degree of non-stationarity
in the environment by tracking changes in reward distributions and assumes that the variation in
mean rewards over the time horizon 7" is bounded by a variation budget Vi [5]. However, unlike
conventional NSMAB, the agent in CONFEE-NSM AB cannot observe reward feedback at every round.
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Table 1: Comparison with the most closely related works, where T is the time horizon, K is the
number of arms, Vi denotes the variation budget capturing the degree of non-stationarity, and B is
the reward feedback querying constraint.

Instead, the total number of reward feedback queries available to the agent over the time horizon
T is limited by a reward query budget B. This constraint provides the agent with significantly less
information than in standard NSM AB settings, making the CONFEE-NSM AB problem fundamentally
more challenging. Motivated by this, the primary question we seek to address is:

How does the reward feedback querying constraint affect the agent’s decision-making process
in CONFEE-NSMAB, particularly in balancing exploration, exploitation, and query efficiency
under limited feedback?

Despite recent advances in feedback-constrained MAB [13} 26]] and prior-freeE] non-stationary RL
or MAB [37], this question remains, to the best of our knowledge, unexplored in the context of
constrained feedback learning for NSMAB (see Table[T). In this setting, the agent faces a unique
dilemma: balancing exploration and exploitation in non-stationary environments while operating
under a strict feedback query constraint. This introduces a new layer of complexity to the already
challenging problem of designing prior-free algorithms for NSMAB with near-optimal dynamic
regreﬂ guarantees. This leads us to the second research question:

Is it possible to design prior-free algorithms for CONFEE-NSMAB that achieve near-optimal
dynamic regret guarantees?

Motivated by these open questions, we make the following key contributions:

o CONFEE-NSMAB Framework. We introduce CONFEE-NSMAB, a new framework for NSMAB
that incorporates a reward feedback querying constraint, limiting the total number of reward feedback
queries the agent can issue over the time horizon while learning in non-stationary environments.

e Near-Optimal HYQUE Algorithm. A standard approach in NSMAB is to run multiple instances
of a base algorithm at varying time scales using randomized scheduling to detect non-stationarity [37]].
We extend this multi-scale idea to CONFEE-NSMAB, but the extension presents two key challenges:

> Query Allocation Trade-off: Naively querying every round quickly exhausts the budget,
while querying too infrequently risks missing abrupt changes. Thus, the challenge is to design a
query allocation strategy that balances timely detection with budget preservation, including careful
distribution across time scales.

> Long Non-Query Segments: Longer instances aimed at capturing gradual shifts may contain
extended non-query periods, limiting the algorithm’s responsiveness. It is critical to ensure sufficient
query frequency for timely change detection without prematurely exhausting the budget.

To address these challenges, we propose HYQUE, a hybrid query allocation algorithm that com-
bines baseline allocation—ensuring a minimum query rate within each block—with an on-demand
mechanism that dynamically injects queries when usage falls behind a near-linear pace. HYQUE is
prior-free and provably near-optimal, achieving a regret upper bound that matches the lower bound
up to logarithmic factors. We establish this lower bound to understand how the reward feedback
querying constraint impacts the best-achievable dynamic regret in CONFEE-NSM AB.

IThe algorithm operates without prior knowledge of the degree of non-stationarity, making it more practical
and broadly applicable.

*In non-stationary settings, the conventional “static regret”, defined with respect to a single best action, may
perform poorly. Instead, “dynamic regret” is the appropriate performance metric [3]). See Section2]for a detailed
definition.



2 Model and Problem Formulation

NSMAB. We consider a NSMAB setting with [K] = {1, ..., K} arms, where an agent selects one
arm k € [K] ateachround t € [T] = {1,...,T}. When arm k is pulled, a reward RF € [0,1] is
obtained, where RF is a random variable drawn independently from an unknown distribution. Let
ur denote the expected reward of arm k at round ¢. Let p := {uf, k € [K],t € [T]} denote the
underlying sequence of true expected rewards for all arms over the time horizon 7. In NSMAB,
u¥ may vary across rounds. Consistent with conventional NSMAB settings [5]], while the expected
rewards of each arm may change arbitrarily often, the total variation in the expected rewards over
[T] is bounded by a variation budget V-, whose value is unknown to the agent. The corresponding

non-stationarity set can be defined as V = { W EtT:_ll SUPje[K] ’u,’fﬂ - ,uﬂ < VT} .

NSMAB with Constrained Feedback (CONFEE-NSMAB). At each round ¢, the agent performs
two actions: selects an arm k € [K| to pull, and decides whether to query the reward feedback subject
to the budget constraint. Specifically, we assume that querying reward feedback incurs a unit cost,
and define I}"Y € {0, 1} as an indicator variable denoting whether the reward feedback is queried at
round ¢. The agent can observe the reward R} immediately only if [{"” = 1. The total number of

queries over the time horizon T is constrained by a known query budget B, i.e., > ,_, [I"" < B.
An algorithm A is considered feasible if it selects an arm k& € [K] at each round ¢ and adheres to
the total query budget constraint. Throughout the paper, we use S = {t € [T] | I}**” = 1} and
Snom-auery — f¢ ¢ [T | I{**” = 0} to denote the sets of query and non-query rounds, respectively.

Dynamic Regret. Let yj = max;c(k) u¥ denote the optimal expected reward at round t. The
performance of the agent is evaluated using the dynamic regret. This metric compares the cumulative
expected reward of an optimal policy (aware of ;1 at each round) with that accrued from the sequence
of arms selected by algorithm 4. Formally, it is defined as

T
Rr(A) = Sup{ u; — E
HeEV | =1

iu?] } , ey

t=1

where the expectation is taken over the randomness in rewards and potentially the internal randomness
of the algorithm. The objective of the agent in CONFEE-NSMAB is to minimize the dynamic regret.
While this definition is similar to those in existing NSMAB frameworks, the key distinction is that,
in CONFEE-NSMAB, the agent cannot always observe the reward feedback at each round. Instead,
querying the reward feedback incurs a cost, which is constrained by a budget B over the time horizon
T (e, Zthl [}**™ < B.). These fundamental differences necessitate new techniques for online
algorithm design and dynamic regret characterization, which we will discuss in detail in Sections 3]

and 4.1} respectively.

3 Prior-free Algorithm for CONFEE-NSMAB

We show that it is possible to design a prior-free algorithm for CONFEE-NSMAB that achieves
near-optimal guarantees on dynamic regret.

3.1 Motivation and Challenges

We begin by outlining the core principles that guide our approach. The primary objective is to strike
a balance between accurately detecting environmental changes and efficiently managing a limited
query budget.

e Balancing Change Detection and Query Usage. In NSMAB, the algorithm must detect envi-
ronmental changes by tracking shifts in the mean rewards of the arms. However, when the total
number of queries is constrained, naive strategies such as querying every round quickly exhaust the
query budget. Conversely, querying too infrequently may hinder the algorithm’s ability to detect
abrupt changes in a timely manner. Effectively allocating queries across multiple time scales without
exceeding the budget B requires a carefully crafted strategy. The central challenge, therefore, is to
develop a query allocation mechanism that balances the trade-off between aggressive exploration
(to detect changes) and conservative query usage (to preserve the budget).
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Figure 1: An illustration of a single block in BAQUE with n = 3 and b = 2 is shown. The figure
spans a total of 16 rounds (22 - 2) and highlights the hierarchical structure of the procedure across
four scales (m = 0,1, 2, 3), where each scale alternates between active and inactive states. The
illustration includes 1 instance at m = 3, 1 instance at m = 2, 1 instance at m = 1, and 3 instances
at m = 0. Bold solid lines indicate active periods, while thin solid lines represent inactive periods.
Active periods are further divided into two segments—continuous and dotted sections—to represent
distinct querying and non-querying rounds.

o Budget Splitting across Multiple Scales. Conventional prior-free NSMAB approaches often
employ a multi-scale restart technique, where multiple instances of a base algorithm (e.g., UCB1 [1]])
are run at exponentially increasing time scales [10}37]]. This ensures that at least one instance operates
at an appropriate granularity to detect changes. As a result, it becomes essential to allocate the query
budget across different scales and their corresponding base algorithms. This allocation serves a dual
purpose: it ensures that the regret incurred during query segments remains near-optimal-—comparable
to settings with full feedback—and it supports the accuracy of decisions made in non-query segments,
which rely entirely on the reward estimates obtained during query phases.

e Balancing Query Frequency. For longer instances designed to capture subtle environmental
changes, there may be extended non-query segments. When the agent encounters a prolonged
sequence of non-query rounds, it may be unable to verify whether the environment has shifted,
leading to potentially significant regret if the chosen arm becomes suboptimal due to an undetected
change. Consequently, non-query gaps cannot be arbitrarily long without degrading performance.
The algorithm must query frequently enough to detect changes in a timely manner, while ensuring
that the query frequency is not so high as to prematurely exhaust the total query budget B.

3.2 HYQUE Algorithm

Overview. To address these challenges, we propose HYQUE, a hybrid query allocation algorithm
for CONFEE-NSMAB. HYQUE partitions the time horizon into blocks of geometrically increasing
lengths, within which multiple parallel instances of a base algorithm (e.g., UCB1) operate at different
temporal scales. Small-scale instances are more responsive to rapid changes and emphasize explo-
ration, while large-scale instances target slower trends and focus on exploitation. Since the block
length upper-bounds the instance duration, this structure enables systematic query scheduling that
balances adaptability to non-stationarity, effective exploration, and budget conservation.

At the block level, HYQUE invokes a baseline query allocation subroutine (BAQUE) (Section[3.2.1}
which guarantees a minimal share of queries across scales to ensure robust change detection. On
top of this, HYQUE incorporates an on-demand query allocation mechanism (Section that
continuously tracks cumulative query usage and injects additional queries when usage falls behind
a near-linear pacing schedule. This two-tiered design offers worst-case robustness within each
block while adaptively adjusting to smoother environments, achieving a principled trade-off between
stability and flexibility in query allocation. We begin by detailing the BAQUE subroutine.

3.2.1 The BAQUE Subroutine

To ensure that each time-scale instance receives sufficient queries for detecting abrupt changes, we
pre-allocate a baseline portion of the query budget. Instead of distributing queries across the entire
time horizon, allocation is performed at the block level, covering instances operating at different
scales. We guarantee that within the active rounds of each instance, approximately a %fraction is
designated for query rounds.

Although this proportion may appear small, it ensures that no instance is deprived of queries, thereby
preserving HYQUE ’s ability to adapt to frequent or significant environmental changes. Typically,



each instance begins with an initial one-shot query batch, in which the algorithm uses its baseline
query quota to collect updated reward observations (Line 10 of Algorithm|I). This initial query batch
is crucial for enabling reliable change detection at the corresponding scale.

By distributing queries in this manner, each scale is guaranteed a sufficient number of queries
over the time horizon, ensuring its ability to detect significant changes (Lemma [.6). Moreover,
for long-duration instances with extended non-query periods, the probabilistic creation of shorter-
scale instances—each beginning with its own query batch—naturally segments the timeline into
overlapping sub-intervals. These overlaps help prevent prolonged periods without feedback, as such
uninterrupted non-query spans are unlikely to persist with high probability (Lemma #.4).

Algorithm 1 BAQUE: Baseline Query Allocation

Require: Query budget ratio b = [27'/B], time-scale parameter n.
1: forr=0,b—1,20—-1,...,2"-b—1do

2 form=nn—-1,...,0do

3: if 7 is a multiple of b - 2™ then

4: With probability 2z, initiate a new instance T, m,~ spanning rounds [7 + 1,7 +
b-2m];

W

: for each instance Z,, ,,, - do

Let S, - be its active rounds;

7: Query batch: For the first max(1, ||S,,m, -|/b]) active rounds, run UCB1 (collect reward
and update the UCB index, denoted as g;);

8: Non-query batch: In the remaining active rounds, pick arms according to their frequencies

from query batch (no reward feedback).

A

Algorithm |I|constructs a block of length b - 2" rounds and deploys multiple instances of UCB1 across
various time scales indexed by m = 0,1, ..., n. As illustrated in Fig.[I] these instances operate at
different granularities, resulting in overlapping activity that alternates between query and non-query
rounds. The multi-scale instance setup (Lines 1-7) proceeds by iterating through the timeline in
steps of b, and at each time 7, a new instance Z,, ,,, , is probabilistically initiated if 7 is divisible by
b-2™. This randomized activation ensures coverage across both short- and long-term scales, allowing
the algorithm to adapt to diverse patterns of non-stationarity. Once initiated (Line 4), an instance
Ty m,- covers the nominal time span [T + 1,7 + b - 2]. The set of rounds where the instance is
truly active, denoted Sy, 1, -, is determined through a hierarchical masking mechanism: a round ¢
within the nominal span is included in S,, ,, - if and only if it is not covered by any initiated instance
operating at a finer scale (i.e., with m’ < m). This ensures that finer-scale instances take precedence
over coarser ones in shared intervals.

The baseline query allocation phase (Lines 8—12) then operates on these active rounds. For each
instance Z,, ., -, its (potentially non-contiguous) active rounds S, ,, - are split into two parts (Lines
10-12). The first is a query batch of size max(1, ||Sp,m,-|/b]), during which UCB1 is actively
invoked and reward feedback is collected. The second is a non-query batch, comprising the remaining
rounds, where actions are selected according to the empirical frequency distribution of arms from the
query batch. For example, if a particular arm was selected in 20 out of 50 query rounds, it will be
selected in the non-query phase with probability 0.4—without incurring additional feedback cost.
Our choice of UCB1 as the base algorithm and frequency-based sampling for the non-query phase
is motivated by the goal of providing a clear theoretical analysis. In practice, these components are
modular and can be replaced by other choices, such as a different base algorithm or an alternative
sampling strategy like a greedy policy that exclusively selects the most frequently chosen arm from
the query phase.

3.2.2 The HYQUE Framework

Although BAQUE ensures robust performance in worst-case scenarios, it can be overly conservative
when changes in the environment are infrequent or relatively mild. To better leverage such settings,
we introduce HYQUE (Algorithm [2), which augments BAQUE with an on-demand query allocation
mechanism.

Intuitively, when the on-demand component detects that the cumulative number of queries used so far
falls short of a target proportion—specifically, % - B at time t—it allocates additional query rounds



at the current scale to refine reward estimates. This mechanism promotes near-linear pacing of
query usage over time, ensuring that total query consumption closely tracks the ideal rate of £, thus
avoiding both excessive querying and underutilization. To account for stochastic variability, a buffer
term min{7"/ VB, 2", T — t} is subtracted from the threshold. This guards against over-querying in
short segments and prevents abrupt spikes in query activity (see Remark [4.5|and Lemma[4.7). As a
result, HYQUE is able to opportunistically allocate more queries during stable periods, enabling finer
reward estimation and lower regret in environments that do not change drastically.

Algorithm 2 HYQUE: Hybrid Query Allocation

. Inmitialize: current round ¢ < 1, used queries B’ + 0.

—

2: forn=0,1,... do

3: Set t,, < t and initialize BAQUE for block [t,,, ¢, + b - 2™ — 1] with the time-scale parameter
n;

4: whilet < t, +b-2" do

5: if current instance has queries then

6: Receive the UCB index g; and the selected arm from BAQUE, play the arm, then

increment ¢ and B’;
7: Update the BAQUE instance with the observed feedback;
8: Perform environmental change tests. If any test fails, restart a new phase from Line 2;
9: else

10: it B < 2 — min{T/VB,2",T — t} then
11: Convert the current non-query round into a query round and jump to Line 6;
12: No feedback requested; and set ¢ «<— ¢ + 1.

HYQUE partitions the time horizon into multiple phases, each initiated upon detecting a change in
the environment. Within each phase, time is further divided into consecutive blocks of length b - 2™
rounds. At the beginning of each block, HYQUE invokes BAQUE to initialize multi-scale instances
and records the block’s start time as ¢,,, so the block spans the interval [¢,,, ¢, + b - 2™ — 1].

During each block, HYQUE actively monitors two key aspects to determine whether to restart the
phase or allocate additional queries.

(1) Change Detection (Lines 5-9 of Algorithm : For a given instance Z,, ,, -, define Sy, ¢ =
{t' | t, <t < ;¢ € ST} as the set of its query rounds up to time ¢. Let U; =
mingyes, .., G be the minimum estimated reward, and define the confidence bound p(t) =

6(logT + 1) log (%) (\ / % + If) . Let start and end denote the first and last query rounds

of the instance, respectively. Two tests are performed: (i) If £ = end for some order-m instance
and 50 >, s, . Ru > Uy +9p(2™), the test returns fail; and (ii) If the average discrepancy

satisfies I‘Snilmt\ Et’esn,m,t (gr — Ry) > 3p(|Sn,m.t]), the test also returns fail.

(2) On-Demand Query Activation (Lines 10-12): Let B’ be the total number of queries used up
to round ¢t. If B’ falls significantly below the expected usage %—adjusted by a buffer term

min {%, 2 T — t}—then HYQUE allocates an additional query to the active instance. This

buffer accounts for: (i) lB: the maximum consecutive query rounds needed to ensure worst-case

performance (Remark ; (ii) 2™: the maximum size of any single query batch in the current block;
and (iii) 7" — ¢: the remaining number of rounds, ensuring budget feasibility.

4 Main Theoretical Result

In this section, we bound the regret of the HYQUE Algorithm.
Theorem 4.1. For CONFEE-NSMAB with a query budget B = w(T?’/ 4) and an unknown variation

satisfying Vp € [K~1, K1 \/E], our HYQUE utilizes at most B queries, and its regret is bounded
with high probability as follows:

@

~ 1/3y/1/3
R (HYQUE) < & (KVT)

B1/3
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Figure 2: The workflow of HYQUE for CONFEE-NSMAB and its corresponding regret analysis. The
top (green) box addresses the NSMAB problem during query rounds, which leads to the regret bound
established in Lemma[.9] The bottom (purple) box describes the query allocation strategies within
HYQUE, where BAQUE operates as a subroutine. Together, they aim to minimize regret during
non-query rounds, as analyzed in Lemmas§.10/and[4.T1] By combining these results, Theorem [4.1]
provides the overall regret bound for our HYQUE algorithm.

Ignoring logarithmic factors, this upper matches the lower bound in Theorem [5.1]in terms of its
dependence on K, Vr, T, and B, thereby establishing the near-optimality of HYQUE. When

B = Q(T), the regret upper bound simplifies to O (K 1/3 VTl/ S2/ ‘3) recovering the best-known
result for NSMAB [3]].

As discussed earlier (Section @, our HYQUE must balance environmental change detection with
query allocation due to the presence of the query constraint in CONFEE-NSMAB. This key distinction
renders existing regret analysis for NSMAB [3 [37]] not directly applicable, and necessitates the
development of new proof techniques tailored to constrained feedback settings. First, establishing
feasibility (Section requires a careful analysis of query usage, made more challenging by
the inherent uncertainty in the non-stationary environment. Second, we introduce a novel regret
decomposition (Section[d.1.2)) that enables us to isolate and address the unique structural challenges
posed by limited feedback, allowing separate treatment of regret incurred during query and non-query
rounds. Third, building upon this decomposition, we develop fine-grained analytical techniques
(Section[d.1.3)) to rigorously bound the regret contributed by non-query rounds—an essential step in
accurately characterizing performance under constrained feedback. An overview of our theoretical
analysis is presented in Section .1] with the complete proof detailed in Appendix [A]

A lower bound on the budget B is necessary because non-stationary bandit problems can exhibit
a mixture of both abrupt and gradual changes. Consequently, any algorithm aiming for optimal
regret must detect all such changes with high probability, which in turn requires a sufficiently large
budget B. Specifically for the HYQUE algorithm, a larger B ensures that its randomized querying
strategy provides adequate coverage across the entire time horizon. Furthermore, it facilitates a
cleaner analysis, allowing us to derive an explicit expression for the algorithm’s success probability
and to guarantee a strong high-probability bound, such as Pr(optimal regret) > 1 — exp(—7*(1)).

Remark 4.2. If Vr is known in CONFEE-NSMAB, a near-optimal upper bound can similarly be

achieved, and the algorithm becomes significantly simpler. A detailed description of this algorithm,
along with a rigorous analysis of its theoretical regret bound, is provided in Appendix

Remark 4.3. When B = T, allowing queries at every round, HYQUE’s behavior on query rounds
aligns with the principles of the MASTER algorithm [37], the only known prior-free solution for
non-stationary RL. As a result, the query allocation component of HYQUE primarily affects the regret
incurred during the non-query segments.

4.1 Proof Sketch

We provide an overview of the theoretical analysis for the regret upper bound for HYQUE.



4.1.1 Feasibility of HYQUE

Lemma 4.4 (Bound on Consecutive Non-query Rounds). For some universal constant C' > 0, the
probability that BAQUE experiences more than T/ /B consecutive non-query rounds in that block is

B3/4
at most exp (—C NG )

Instances initiated by BAQUE start with a query phase. The probability of a specific potential instance
Ly, m,r (for block parameter n, scale m) not being initiated is 1 — 2%7" . Consequently, by bounding

the probability that no new instance is initiated over a period of 7'/+/ B rounds, we establish an upper
bound on the probability that this period consists entirely of non-query rounds (as any new instance
would have introduced queries).

Remark 4.5. The same analysis applies to query rounds as well. In particular, with B = o(T),
the probability that BAQUE undergoes more than T'/+/B consecutive guery rounds is also at most
exp (fC Ef;; > .
Lemma 4.6 (Stability in Each Phase). Consider any phase of HYQUE. Throughout this phase, the
fraction of query rounds allocated by BAQUE, relative to the total number of rounds in the same
phase, satisfies: 1 B B (# of query rounds in the phase)

2 T = (#of total rounds in the phase)

Lemma 4.7 (Query Budget Feasibility). For HYQUE, the total number of query rounds throughout
the time horizon T" does not exceed B.

In each phase, HYQUE maintains the query allocation within the proportion B/T for every block
except potentially the last one, where additional caution is needed to handle boundary effects. In
the final block, to avoid a large run of consecutive query rounds following an immediate restart,
HYQUE employs a “buffer term” as discussed in Section[3.2.2] This design ensures that the query
allocation does not exceed the proportion B/T. Consequently, by combining BAQUE with on-
demand allocation, HYQUE ensures that the total number of queries used does not exceed B over the
entire time horizon 7T'. A detailed proof is provided in Appendix

4.1.2 Regret Decomposition

We decompose the dynamic regret R into three parts:

Lemma 4.8. For any algorithm A, we define S;—1 C S N {1,...,t — 1} as the set of query
rounds whose observed feedback is used by the algorithm at round t. Consequently, the arm selection
ay is a function fy(H_1) of the history Hy—1 = {(as,rs) : s € Sy_1}. The regret in (1)) can then be
upper bounded by:

Rr < Z py —E

te Sauery

>

tESauery

> R

t € Snon-query

r L
+ 2 Ejmax Z;lust_l\ -

t € Snon-query

R#”’v Re%mr

v me 2 Blmm 2 ophyle @

t € Snon-query € Snon-query

Rf;:’f/
Let RE” represent the regret incurred when HYQUE actively queries for feedback. Let Ry 4"
denote the regret incurred when HYQUE decides not to query. The latter can be further decomposed
into two subcomponents. (i) Error regret (R7™"): This arises from inaccuracies in the decision-
making of HYQUE when it relies on prev1ously gathered information about the arms without further

querying. The term E |maxe(x] D ;e Sior ] St, J represents the expected reward of the empirically

best arm identified using feedback from S;_1. (ii) Drift regret (R‘}r‘f‘). This accounts for the regret
caused by environmental changes, such as shifts in reward distributions, that are not promptly detected
due to the lack of feedback.



4.1.3 Bounding Total Regret

Since the on-demand query allocation converts some non-query rounds into query rounds, we first
analyze the regret of HYQUE under the baseline allocation. We then prove that on-demand allocation
does not increase HYQUE’s regret.

Lemma 4.9. With high probability, we have R&“"™ < O (Kl/ sy.L/2 g2/ 3).

For each block, as long as environmental change detection is not triggered, it suggests that significant
changes are unlikely to have occurred during the query rounds (though this does not necessarily
imply stability during the non-query periods). Within each block, the query rounds allocated through
BAQUE, regardless of different instance scheduling strategies, exhibit similar properties to those in
standard NSMAB algorithms.

- 1/31,1/3
Lemma 4.10. With high probability, we have R < O (KVTT)

B1/3

If the environment remains stable and does not undergo drift, the regret caused by these inaccuracies
will not exceed % - REY . Thus, we obtain the bound in Lemma Finally, we analyze the regret
due to environmental drift:

" ~ 1/31,1/3
Lemma 4.11. With high probability, we have R%" < O (K;V/gT)

By combining the bounds for R&™ and R, we derive: Ry < 1) (K 1/ 3VT1/ 37 /BY 3) )

Substituting the bound for R and combining the bounds for R*Y and R7"1", we obtain

- A KYVRvy T .
the total regret: Ry = RE™Y + Ry <O TV/TP, . Note that the above regret bound is

derived under the assumption of BAQUE. Since the on-demand allocation in HYQUE converts some
non-query rounds into query rounds, the number of such converted rounds does not exceed B/2.
Consequently, even if this conversion incurs additional regret, it remains at most of the same order as
R, ensuring that the overall order of the regret bound remains unaffected.

5 Lower Bound

Theorem 5.1. Consider CONFEE-NSMAB with K > 2 arms, variation Vp € [K‘l, K‘lB} and
constrained feedback B > K. For any algorithm A, the following holds:
K3y} 3T>

=i @)

Rr(A) > Q <
The core intuition behind the lower bound, established via a hard problem instance in which the
environment changes periodically across distinct batches, is that any algorithm must consistently
query arms within each batch to reliably identify the optimal arm for that period. If an algorithm
uses many queries per batch to ensure high accuracy, it quickly depletes the overall query budget B,
leaving insufficient queries for subsequent batches. Conversely, if it queries too sparsely, it fails to
distinguish the optimal arm from suboptimal ones, leading to increased regret.

The lower bound highlights the fundamental challenge of allocating a limited query budget across
multiple batches. We show that naive strategies—such as uniformly distributing queries or concentrat-
ing them heavily in only a few batches—Iead to substantial regret. This inter-batch query allocation
dilemma introduces a new layer of complexity in the NSMAB problem under constrained feedback.
Remark 5.2. The case of B = T is particularly instructive because it aligns with the conventional
NSMAB setting (where Vr is typically considered within [K 1K _1T]) and removes the feedback
budget constraint. Under this B = T regime, the V- range [K LK _1B] specified in Theorem

1/3y,1/3
conforms to the standard [K 1K _1T] ; simultaneously, the lower bound 2 (W) simplifies

to (K 1/3 VTl/ 2/ 3) . This result aligns with established lower bound for NSMAB problem without
feedback querying constraint [5]]. A detailed proof is available in Appendix [D]



6 Related Work

Non-stationary multi-armed bandits (NSMAB). NSMAB have been extensively studied, with
a focus on adapting algorithms to environments with changing reward distributions, offering per-
formance guarantees based on measures such as total variation or the number of abrupt changes
[2, 138LISLITSL 12501221 [7] 131 [10]. Recent works also address smoothly evolving environments [[L8 30].
Extensions to contextual bandits [33}24}10,32], linear bandits [[19,41}136], dueling bandits [27, 16}, 31]]
and other settings 135} 140, 120, (9, [12} 23| [17, |8]] have been explored. However, none of these works
consider settings with a reward feedback querying constraint.

Learning with constrained feedback. Our work relates closely to learning with constrained
feedback, where the agent manages a limited budget for acquiring observations. Prior studies [26} [13]]
focus on optimizing feedback allocation in stochastic settings. Other related works include MAB
with paid observations [28]], which assume cost and reward share units—often impractical—and
require larger budgets. Bandits with additional observations [39] and knapsacks [4] either assume full
reward observability or terminate when the budget is exhausted. However, these approaches focus on
stationary environments, whereas it is well-known that non-stationary settings demand fundamentally
different algorithmic and analytical tools.

Limitations and Future Work

One limitation is that our HYQUE relies on a predefined query budget, which may not always align
with practical applications where feedback availability can be more dynamic or influenced by external
factors. Future work could explore adaptive mechanisms that adjust the query budget in real-time
based on observed feedback patterns or external constraints. Additionally, while HYQUE achieves
near-optimal dynamic regret guarantees in CONFEE-NSMAB setting, extending these guarantees
to more complex decision-making frameworks, such as non-stationary reinforcement learning with
constrained feedback, remains an open challenge. Finally, our approach primarily focuses on regret
minimization, but in some applications, other performance metrics, such as fairness in feedback
allocation or minimizing computational complexity, may also be important. Exploring multi-objective
formulations of constrained feedback learning could provide deeper insights into balancing different
performance trade-offs.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in the last section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Yes, the paper provides the full set of assumptions and delivers complete and
correct proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the paper provides all the necessary details for anyone to reproduce the
main experimental results, ensuring transparency and allowing others to validate the claims
and conclusions independently.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The paper provides all the necessary details for anyone to reproduce the main
experimental results, ensuring transparency and allowing others to validate the claims and
conclusions independently.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper clearly outlines essential information needed to understand the
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, the paper appropriately reports error bars and provides correct definitions
or other relevant information about the statistical significance of the experiments, ensuring
clarity and accuracy in the interpretation of results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper gives clear details on the computer resources needed for each
experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper adheres to the NeurIPS Code of Ethics in
all respects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper is a theoretical paper and poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A  Proof of Theorem 4.1]

A.1 Total Used Queries

We prove that the total number of queries used by the algorithm cannot exceed B.

A.1.1 Proof of Lemma[4.4]

Let Lo = [T/ \/E] be the length of the consecutive non-query round sequence we are considering.
Such a sequence, if attributable to the failure of initiating new instances, implies that all probabilistic
attempts to start a new instance within this interval of Ly rounds failed. Each new instance initiated
by BAQUE would start with a query batch, thereby interrupting a sequence of non-query rounds.

The BAQUE subroutine attempts to initiate instances Z,, ., » at various scales m € {0,1,...,n}
where n is the time-scale parameter for the current block. If an interval of Ly rounds contains any
7 that is a multiple of b - 2" (the block’s largest scale-defining period), an instance at scale m = n
is initiated with probability 1, preventing the long non-query sequence. Thus, for a long non-query
sequence to occur due to initiation failures, we must have Ly < b - 2”. In this scenario, no initiation
attempt at scale m = n occurs within the Ly rounds. The relevant scales for potential initiation
within the interval are m € {0, ..., min(n — 1, [log,(Lo/b)|)}.

th)

To establish a bound that is independent of a specific block’s n, we consider an “effective ensemble
of scales that contribute to breaking non-query sequences. We define an effective maximum scale

relevant for analyzing non-stationarity of length Lo. Let M = |log,(T/+/B)]. This choice reflects a
characteristic scale related to Lo ~ T'/v/B. We assume that the initiation probability for an effective
scale m within this context can be modeled as p/,, = 2("=*)/2 for m € {0,...,M — 1}. (The
m = M scale would have p), = 1).

The probability of not initiating an instance at a specific opportunity (7,m) is 1 — p/ .. The attempts
are independent. The probability that no new instance is initiated over the Ly rounds is:
M-1
P(no new instance in Ly rounds) < H H (1 —20m=M)/2),

m=0  7€[t,t+Lo—1]
T is a multiple of b-2™

Let N, (Lg) be the number of multiples of b-2™ in an interval of Lo rounds. N,,(Lg) = | Lo/(b-2™)].
Using the inequality 1 —z < e * forz > 0:

M-1
P(no new instance) < exp (— Z Ny (L) - 2(7n—M)/2> .
m=0

We approximate N,,(Lo) =~ Lo/(b - 2™), ignoring the floor for a lower bound on the sum in the
exponent (which leads to an upper bound on the probability). For a more careful bound, N,,(Lg) >
Lo/(b-2™) — 1. Using Lo/ (b - 2™) directly: The sum in the exponent, Seyp, is:
M—1
Sexp ~

M-1
Lo o(m—M)/2 _ Lo
; _9M/2
m=0 b-2m b-2M/ m=0
The sum Zf\f:_ol 2-m/2 = Z;\igl(l/\/i)J As M — oo, this geometric series converges to
1/(1—1/v/2) =24 /2. For M > 1, the sum is at least 1 (for m = 0). Let C; = Z]MZBI(l/\/i)J
C| is a constant factor typically between 1 and 2 + /2.

Substitute Ly ~ T'//+/B and b ~ 2T/ B:
Ly _T/VB B VB

b 2T/B 2B 2
And M = [logy(T/V/B)], so 2™ ~ T/+/B (assuming T//v/B is a power of 2 for simplicity,
otherwise 2M < T'//B < 2M+1), which implies 2M/2 ~ (T///B)'/? = \/T/B'/*. Thus,
B/2 B- B4 B3/
S VB2 _ o VBB
\/T/Bl/‘l

7m/2.

WT — 'ovT
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B3/4
VT
that BAQUE experiences more than Ly = [T/ B] consecutive non-query rounds is at most

Taking C' = (/2 (absorbing constants), we get Se,, ~ C

Therefore, the probability

3/4 .
exp (70%> for some universal constant C' > 0.

Remark A.1. Strictly speaking, we might union-bound over all intervals [t, '] of length 7'/+/B, but
the final exponent remains the same up to a constant factor when B = Q(T'%/3).
Remark A.2. More generally, for any a € [0, 1], the probability that BAQUE experiences more than

. - . 1-a/2 .
T B~“ consecutive non-query rounds within a block is at most exp (fC %) , for some universal
constant C' > 0

A.1.2 Proof of Lemma[4.6

We analyze the conditions under which a restart is triggered by dividing the proof into two cases,
depending on the block index n at the time of the restart. For ease of exposition, we assume that the
time horizon 7" is a multiple of 2.

Case A: n = 0. Under the algorithm’s design, a restart is triggered only when a substantial shift
in the reward distribution is detected. However, when n = 0, only a single query round is allocated
within the block. This is insufficient to satisfy the detection threshold required to initiate a restart.
Therefore, no restart can occur at block index n = 0, and the condition for a restart due to a prolonged
non-query interval is not met.

Case B: n > 1. Now consider a restart occurring in a block with index n’ > 1. Let the blocks
within the corresponding phase be indexed from 1 to n’, each representing a distinct time scale. By
the structure of the algorithm, all preceding n’ — 1 blocks must have fully completed both their
designated query and non-query rounds without triggering a restart. Due to the enforced query budget
ratio, the total number of rounds in these n’ — 1 blocks is % times the number of query rounds. On
the other hand, in the n’-th block, the number of query rounds is at most equal to the total number
of query rounds in the first n’ — 1 blocks. Consequently, across all n’ blocks in the phase, the total
number of rounds is at most L times the number of query rounds. It follows that for any such phase

B
in which a restart occurs, the query density must satisfy:

1 B < # of query rounds in the phase B

g < =
2 T = #of total rounds in the phase T

A.1.3 Proof of Lemma[4.7|

Within any phase of the algorithm, if a restart occurs at a block with index n, the ratio of query
rounds to total rounds during that phase is bounded between % and %. In each phase, HYQUE
maintains the query allocation within the proportion B /T for every block except potentially the last
one, where additional caution is needed to handle boundary effects. In the final block, to avoid a
large run of consecutive query rounds following an immediate restart, HYQUE employs a “Buffer
term” as discussed in Section [3.2.2] This design ensures that the query allocation does not exceed the
proportion B/T. Specifically, the algorithm prevents excessive consecutive query rounds beyond
T/ v/ B (Remark , 2™ (the query bound for the longest instance in a block), or T'— ¢ (the remaining
rounds). Consequently, by combining BAQUE with on-demand allocation, HYQUE ensures that the
total number of queries used does not exceed B over the entire time horizon 7T'.

A.2 Bounding Total Regret
A.2.1 Regret Decomposition (Proof of Lemma[4.8)

Starting from
T

Rr = Z(#f - :U'ic)v
t=1
we split the time index set [7'] into STy U S"°™ 9y, Thus,

Re= Y (uj—p)+ Y (uf— ). 5)

tE€ Squery € Snon-query
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The first term corresponds exactly to R4 since 1y = E[R,]. For the second sum, >~ , . guonquery (145 —

k
f¢), we add and subtract E {maxke[ K] 2 tes, %} inside the summation:

Rk Rk

* k * t t

— = —E E —_— + | E E — 6

e = B He I?Gl[aKX] |Si—1] I?elflKX] |St 1 ‘ He ©)
teSi—1 teS:—1

We substitute (6) back into (3)), which yields the final decomposition.

Discussion. RI“Y is straightforward: the regret incurred on rounds where actual feedback is
gathered. R measures the gap between the best possible mean reward y:; and the predicted reward
: : drift Ry
used by the algorithm in a non-query round. RF"™ captures how E [maxke[ K] D te Sis w{—il‘}
deviates from the true E[R;] = u; because the environment changed after the last time that arm k;

was observed. Note that the term E {maxke[ K] Dt Sis %} may instead be replaced by another

proxy or predicted reward for k; based on stale or previously gathered feedback. Let Ef denote this
proxy reward. Then, (3) can be rewritten as:

Re < S [w-BR]]+ X [w-EE)]+ X [EE)-E®R)].

teSquery teSnon—query teSnon—query

query error drift
RT RT RT

Since on-demand allocation converts some non-query rounds into query rounds, we first analyze the
regret of the algorithm under baseline allocation. Then, we prove that on-demand allocation does not
increase the regret of the algorithm.

A.2.2 Proof of Lemma[4.9

Let us begin by analyzing all the rounds where the algorithm performs a query under baseline
allocation. In each block, the algorithm contains a series of instances, and for these instances, the
length of the query phase is at least 2™. Note that for each block, as long as the environmental change
detection is not triggered, it indicates that during these query rounds, the environment is unlikely to
have undergone significant changes (though this does not imply that the environment remained stable
during the non-query periods). Note that for the UCBI1 algorithm, we have the following result.

Lemma A.3. Let ﬁ € [0, 1] denote the upper confidence bound corresponding to the optimal reward
at each time step t € Tyuery. There exists a non-stationarity measure V| 4, such that when running

the UCB1 algorithm, for all t € [T'], provided that V}; ;) < 1/ @ + % the following holds:
ft > min f: - ‘/[l,t]a
T€[1,t]

t
~ Klogt K
Z(fT*RT) < ¢ +7+V[1,t]'
T=1

Proof. We adapt the standard UCB1 analysis to account for a limited amount of non-stationarity V] 4.
Concretely, we treat the environment as “approximately stationary” up to a total variation V[; ;) in the
optimal arm’s reward. Recall that in a purely stationary K -armed bandit, UCB1 maintains an estimate

1k of each arm’s mean reward plus a confidence bonus CB’: so that the upper confidence bound is

pk = pk + CBL.

2 log T
CBY =,/
T nﬁ ’
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where n* is the number of times arm & has been pulled up to time 7. Then the standard analysis (cf.
[L]) shows that, for large 7,

T

/;E > ,uk and lZ(;%_Rt) < KlogT—i—O(E),

T T T
t=1

assuming a stationary reward distribution with mean p* for each arm k. Now suppose the reward
distribution changes slowly, so that the optimal reward f} = max, p may shift but the total variation

on [1, ] is bounded by V}; 4. In particular, £ can differ from f7 by at most St o= f7 < Vi
We incorporate this into the UCB analysis:

* Lower bounding ft Let k* be the best arm at some time 7 € [1, ¢]. By stationarity analysis
up to time 7, u%" is a valid upper confidence bound for u’; Then

< E < ft (since the UCB1 algorithm’s bound only grows over time).
Meanwhile, f > f* — V]; 4 by the definition of variation. Combining, ﬁ > fr>

It + V1,4, or equivalently

J}; > min ff — V-
TE[L,t]

This proves the first inequality in the lemma.

* Bounding the per-round difference (]?T — R;). In standard UCB we know that, up to

A/ % + %, the difference between the UCB and actual reward is controlled if the

environment is effectively stationary in [1,¢]. Since we allow a total variation V1,4, the
environment can shift the actual reward 12, away from the estimated bound by at most V]; 4.
Summation from 7 = 1 to ¢ yields

t

SF-R) < Y [VEE L] 4 vy

T=1 T=1

Dividing by ¢ proves

Klogt n K
4 4

+ ‘/[Lt]'

~ | —

Z(J?T - R‘r) <

This completes the proof. O

From this, we see that the UCB1 algorithm is capable of handling near-stationary environments.
In contrast, Algorithm [1|follows a probabilistic scheduling mechanism that deploys multi-scale
instances. Our goal is that, despite its more complex structure, it retains the same fundamental
property—namely, the ability to handle near-stationary environments effectively. When addressing
the non-stationary bandit problem (which, if restricted to query rounds only, reduces to a standard
non-stationary bandit setting), we adopt a structure similar to the MASTER algorithm [37]. Although
the introduction of baseline query allocation modifies the structure, the core analytical techniques
remain comparable. By leveraging a similar proof strategy (Lemma 3 in [37]), we establish that our
framework achieves the same theoretical guarantees.

Within each phase, there are different instances Z,, ,,, -, where we use S,, ,,, - to denote the set of all
active rounds corresponding to each instance, parameterized by n and m. To distinguish between
query rounds and non-query rounds, let Spn s = Sy N STV represent the set of all active
query rounds in instance Z,, ,,, -, and let Spmr - = Sy, N S"IY denote the set of all active

non-query rounds in Z,, ,, . Then we have the following result:

LemmaAd. Lerin = log, T+1, p(t) = 4/ %—k%, and p(t) = 6nlog(T/)p(t). Algorithm
with input n < log, T' guarantees the following: for any instance L, ,  that Algorithm main-

tains and any round index t € S}y, let VD, . denote the total variation over the round set
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[start,t] N SEEY.. As long as VLD, 4 < p(IS357 ), we have, with probability at least 1 — oy

~ : * query
gt > min fr—
TE[start,t] T [stars,t]

]. ~ ~ ue.
7 Z (G- — Rr) < p(t) + V[z-tar:t t]”

T=start

Apart from the structural differences in each block, if we consider only the query rounds allocated
by the baseline allocation, the HYQUE algorithm and the MASTER algorithm exhibit no fundamental
differences. This aligns with our intuition that, for the CONFEE-NSMAB problem, when B = T, the
problem effectively reduces to the non-stationary bandits setting. Consequently, for unery we can
derive a near-optimal regret bound for the non-stationary bandits problem as a functlon of B rather
than T'. Therefore, the regret corresponding to query rounds can be bounded as:

RE™ < O (K B2
A.2.3 Proof of Lemma[4.10]

Building upon Lemma [.9] and #.4] we now consider R$™", which arises from inaccuracies in
the algorlthm s decision-making. In Algorithm [2] due to potential restarts, multiple phases p =
1,2,3,... may exist. Thus, we obtain:

Rk:
RE = E max ¢ —-E
T Z kelK Z |3t 1

€ Snon-query

> n

€ Snon-query

Rk
2o 2 Elmy 2 gEmy| R 2

nm‘r‘

P e ST reom s
\Sﬁ"%ﬂ“y
= E TSmE T max E Rt —E E R,
‘ n,m,T ke K] query query
p,m,m te Sn m,T tesn,7n,r
| Snon query
n,m,t
+ |Squery|1E E: R, —E § R,
T teswey te Sy

2‘ Snon- queryl query ‘ S?zofrrln qiery
= | Sauery| + Z Sameny | gy & Z Ry —E Z Ry
pnym T tese tesmTa
2T 1/3y,1/3 p2/3 T
<= O (KB o Vi

_ CKY3 Ly
<O<T K'Y3.v} )
B1/3

Explanation of the derivation: The first line defines RS by summing, over every non-query round,
the gap between an idealized “best average reward” (which could have been inferred from previous
query feedback) and the actual reward collected. The second line refines this sum by grouping the non-
query rounds across different phases p and different multi-scale instances (n, m, 7). The third line

ﬂOI’] query
factors out the ratio “ SE..ZI; T “ , rewriting the maximum average reward max, y . s RF/|SPR -

n,m,T

in a form that highlights how each non- query round effectively “relies” on the estimates from the query
segment. The fourth line then bounds the difference in these sums by relating max, » -, RF — > Ry

to the query regret R, multiplied by a factor reflecting the non-query to query ratio. In addition,
it isolates a leftover term that accounts for how the environment might have shifted between the
query and non-query parts. The fifth line substitutes known estimates for unery and applies prior

Lemma and Remark | yielding two main contributions on the order of L - K1/ 3V1/ p2/3
and =L - V. The sixth and final line combines these two contributions with B = w(T3/ 4) and

Vr < K~1VB.
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A.2.4 Proof of Lemmal4.11

Finally, we analyze the regret due to environmental drift. As a result, there are at least v/ B non-query

segments, and each non-query segment has a length of at most (b — 1)\/§ Consequently, the regret
due to environmental drift is bounded by:

i RE
Rdrlft — /’L* _ E | max t
T Z t Z ke[K] teszt_l |St—1|

t GSnon-query t eSnon-query

R¥
* E I A
Z Z Ht ,52% Z ST |
P e ST -
T ~ (T K3 v/
=g T<0 (B/3

Explanation of the derivation: In the first line, we define the “drift” component R%" by summing,
over each non-query round ¢t € S"°" 9 the gap between y; (the true best mean reward at time ¢)
and the proxy-based estimate that was used. In the second line, we reorganize this summation by
phases p and multi-scale instance indices (n, m, 7), noting that non-query rounds in each instance
Z,,,m, - rely on historical query information 5%“22& Finally, in the third line, we invoke two key facts:
(i) the environment’s drift between query and non-query segments can be controlled by bounding the
maximal length of a non-query interval, thus contributing at most - Vo additional regret, and

1/31,1/3
(i) under B = w(T?/%) and Vi < K ~'v/B, this quantity falls within O(%) Hence, even

if the environment may change during non-query intervals, the total extra cost is dominated by the
same main order of regret.

B2/3

A.2.5 Total Regret

Combining the bounds for RE™" and R4, we obtain:

T K3 VT1/3>

non-query A
RT <0 < B1/3

non-query

Substituting the bound for Rguery and combining the bounds for R%" and R7: , the total regret

is given by:
T . KI/S V1/3>

query non-query
Rr = RE™ + RPN < O < B

This has been established under baseline query allocation alone. We now show that our on-demand
mechanism—which may convert certain non-query rounds into query rounds (or vice versa) whenever
the actual usage lags behind (or overshoots) an approximate linear pace %—does not inflate this

overall regret bound. Let QB*QUE be the set of query rounds chosen by the baseline allocation, and
let QOPQUE denote the additional query rounds triggered by on-demand scheduling By design, on-

demand scheduling only triggers new queries if the total used so far B’ is below —min{vB VB, T— t}.

Consequently, the number of such converted rounds does not exceed B/2, ensurmg that: QOPQUE <
B/2. Now consider two scenarios:

* Scenario A (Baseline only). The algorithm uses only the baseline queries Q3*QUE, incurring

TKY3vE/®
regret O(T)

* Scenario B (Baseline + On-demand). The algorithm has QBAQUE J QOPQUE a5 query
rounds. Suppose it ends up with R2"" total regret.

Each newly allocated query round might cause partial suboptimal pulls, but a bounding analy-
sis based on UCB1 analysis shows that |QOPQUE| additional query steps can only add at most

V/]QOPQUE[ . K log T to the query-phase regret. Because |QOPQUE| < B/2, this is at most on
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the order of the baseline query regret R+” or smaller. Meanwhile, those same converted rounds
lower the non-query portion; effectively, the error from stale estimates in scenario B should be < that
in scenario A.

Consequently, even if this conversion incurs additional regret, the difference is at most a constant
factor times R7”, which does not affect the overall order of the regret bound.

B Algorithm for Known Variation Setting

B.1 The Rexp3B Algorithm

Algorithm 3 Rexp3B: Rexp3 algorithm with Budgeted feedback
1: Inputs: Feedback budget B, time horizon 7', variation budget V-, and number of arms K.

. /
2 Set Ag = USRI AL B A and = min {1,/ B2EE .
T

3: Initialize wf = 1 for all k € [K].

4: forj=1,...,[T/Ar] do

5: Set the current batch’s start time 7 = (§ — 1)Ar.
6: fort =7+1,... min{T,7+ Ap} do

7: For each k € [K], set

k

k wy gl
=t L
D pr—1 Wi K
8: Draw an arm &’ € [K] according to the distribution {p}} %
9: Receive a reward R}
10: For k', set X} = RF /pt', and for any a # K set XF = 0
11: For all k& € [K], update:

VXF
wf+1 = wf exp ( Kt >

12: fort=7+Ap+1,...,min{T,7+ Ar} do
13: Select an arm uniformly at random from the set {a}, : ¢/ =7+ 1,...,7+ Ag}.

The Rexp3B algorithm operates by dividing the time horizon 7" into discrete batches, dynamically
adjusting its query strategy based on the allocated feedback budget and the known variation budget
V. Initially, the time horizon 7 is partitioned into batches of size Ar, ensuring a balanced allocation
of resources across time. Within each batch, the algorithm allocates a subset of A g steps to a query
phase. During this phase, it employs the EXP3 strategy to select arms and actively request feedback,
prioritizing arms with higher estimated rewards by assigning them greater selection probabilities.
After the query phase, the algorithm transitions to a non-query phase for the remaining A — A g steps
of the batch. In this phase, the algorithm selects arms without requesting additional feedback, relying
instead on the information gathered during the query phase. Specifically, it uniformly randomly
selects an arm from the set of arms chosen during the current batch’s query phase. In practice, this
sampling strategy could be replaced by others, such as greedily selecting the arm with the highest
weight from the query phase.

To achieve the desired regret bounds, the algorithm parameters are carefully configured, including
the batch size A, the learning rate -y, and the number of query steps per batch A . These parameter
settings enable Rexp3B to balance query and non-query steps while strictly adhering to the feedback
budget. Furthermore, the algorithm accommodates the non-stationary nature of the environment by
adjusting its behavior in accordance with the known variation budget V. As a result, the Rexp3B
algorithm is theoretically guaranteed to achieve the desired regret bounds, providing an effective
solution for multi-armed bandit problems characterized by budgeted feedback and non-stationary
rewards.

Theorem B.1 (Regret Bound for Rexp3B). Under the known variation setting with variation Vo €
[K~Y, K~1B), the Rexp3B algorithm uses at most B query rounds and satisfies the following regret
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bound:
Rr

IN

& <K1/3V;/3T>
B1/3 ’

B.2 Regret Analysis (Proof of Theorem [B.1)

As discussed in Section the regret R can be expressed as:
RT — R(%Per}’ + Rrjlg)n—query — R%lery + R;l;ror 4 R(jifift.

The term R represents the regret incurred during the time steps when the algorithm actively
queries for feedback. The term R 4"“Y captures the regret incurred when the algorithm decides not
to query for feedback. This component can be further decomposed into two subcomponents. The
first, R7™, arises from inaccuracies in the algorithm’s decision-making when it relies on previously
gathered information about the arms without further querying. The second subcomponent, R,
accounts for the regret caused by environmental changes, such as shifts in the reward distributions,

that are not promptly detected due to the absence of feedback.
Step1: Bounding R

The term R is the regret arising from the A query rounds in each batch. Fix T > 1, K > 2,
and Vr € [K~!, K~1B]. We partition the time horizon T into a sequence of batches 71, ..., T
of size At each (except possibly the last batch). Let 7" denote the set of query rounds in batch

T;,7 € {1,...,m}. We decompose the regret R} as:

RPY- | ¥ n] -l T 6w
€ Squery t € Saquery ] _te/]—;]uery
] ) 7
= ¥ —E | max RY| +E | max RY| —E R
2 Z . kelK] Z ' kelK] Z ! Z '
JoteTM™ e | teT te T
Jlﬁj Jz‘j

Here, J; ; is the expected loss associated with using a single action over batch j, and .J; ; is the
expected regret relative to the best static action in batch j. Let V; denote the total variation in expected
rewards during batch j:

k k
Vi= ZI?GI%}((] s — pgl-

teT;
We note that:
m m
Kk k
ZVJ:Z max [y — pi| < Vr.
, - ke[K]
j=1 J=11teT;

Let k; be an arm with the best expected performance over 7,

k; € arg max k
j gke[K] Zm' M
teT"

Then,

max Soubp= > w=E| > R} <E | max > Rfp,

uery uery uery uery
teT} teT] teT} teT]

For term Jy ;, we have:

* . * k.
Jij = Z py — E | max Z R} < Z (Mt _Mtj) < 2V;Ap. )
t€7—jquery t€7—jquery te 7—]guery

27



For term .J; ;, using the standard regret bound for the EXP3 algorithm in adversarial settings, we
have:

Joj=E|max Y Rl —E| > R <2y/(e—1)ApKlogK. )
teT t€7—f“ew

We substitute (8) and (9) into (7) and sum over all m = [ALT—‘ batches. This yields the total regret

incurred during all query rounds:

R < 37 (2\/6 —1/ApKlog K + 2VjAB)
Jj=1

IN

<AT + 1) '2\/67 1\/ABK10gK+2ABVT.
T

Step2: Bounding R "™

In the remaining A7 — Ap steps of each batch (denote them by 7"*"**“™), the algorithm does not
request feedback. The main concern here is that the environment mlght “drift” substantially in these
non-query steps without being detected. We start with the term RT°". We have:

k
REFT = Z E | max Z \Sljjﬂ —El Z R
t—1

teSnon-query k € [K] t GS _ t GSnon-quew

m Rk
T2 2Bl 2 | TR 2

] 1 teTnon query Tquery teTnon-query
j j J
‘Tnon query
k
E 7,quew| max E Ri| —E g R,
Jj=1 feT"”“y teT M
J2,j
non query|
n—query' — —query E E Rt —-E § Rt
teT teTome

ZAT AB\/e—l ApKlog K + V;Ar

< 2T +2VpAp

(e—1)Klog K
Ap

Explanation of the derivation: We decompose the error term R by initially defining it (Line 1)
as the sum over non-query rounds of the difference between a hypothetical “best average reward”
inferred from prior query feedback and the actual total reward in those non-query rounds. We then
reorganize this sum by batches j = 1,...,m (Line 2), where each batch has a query part 7;"**” and a
non-query part 7;'*""“" (Line 3). At this stage, the bracketed term .J5 ; compares the “best possible
reward sums” in query rounds to the algorithm’s chosen sums, bounded by the adversarial regret
argument. Substituting known estimates yields the expression in Line 4, where the ratio %
reflects how many non-query rounds depend on each query segment, and V; captures environment
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variation within that batch. Then we consider R$™:

rift * Rk
R%ft_ Z By — Z E 1?@1[&1}({ 2;1'8:“

t eSnon-query te Snon-query ] t GS _

m ) Rk’
= Z Z M —E ]{Iel[al)({] Z W—quziery‘

j=1 tenﬂon—query te,r;query 7
<2» (Ar—ApR)V;
i=1
T Vr-Ar

<2 —+1) (A7 —A

< (A + ) (Ap B) T

VrAr
<2(T+ Ar) < 4VrAr.

Explanation of the derivation: We similarly define the drift term R (Line 1) as the gap between
the true best mean reward p; in each non-query round and the “best average feedback” constructed
from query data. We again partition by batches (Line 2) and argue (Line 3) that each batch’s drift
can be bounded by the product of its non-query length (A7 — Ap) and a local measure of variation
V;. Accumulating over batches and simplifying (Line 4-6) shows that the drift contribution is also
capped, typically at O(Vp Ar).

Therefore, the regret during the exploitation phase can be bounded as:

(e—1)Klog K

Rl;?n»query _ R%Eror + R%Eiﬁ < 6VTAT + 27 AB

Step3: Combining and Minimizing Over A
The total regret could be bounded as:

__ pquery non-query
Rp = REY 4 R

T
= (A +1) '2\/67 1\/ABK10gK+2ABVT+6VTAT+2T
T

(e—1)Klog K
SR N —
By choosing the batch size At as

T - (K log K)'/3

Ap = Bl/3'V;/3

)

we minimize the cumulative regret to:

: /3 y1/3
RT§O<T (Klog K)'/3 .V} >

B1/3

C Extensions

In this section, we show that our framework naturally accommodates more general non-stationary
learning problems, including contextual bandits, linear bandits, and certain reinforcement learning
(RL) scenarios. Concretely, one only needs to replace the base algorithm (UCB1 in our default BAQUE)
with a corresponding algorithm ALG suited fo the target setting (e.g., a linear bandit algorithm or a
contextual bandit procedure).

C.1 Extended Baseline Allocation: BAQUE with ALG

Algorithm @ explanation. Compared with Algorithm[T]in Section|[T} we reilace UCB1 by a generic

base algorithm ALG. The p(-) and 5 ((221)) criteria follow from Assumption , ensuring the instance
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Algorithm 4 Extended BAQUE for General Base Algorithm ALG

Require: Query budget ratio b = [27'/ B, time-scale parameter n, non-increasing function p(-).
1: forr=0,0—-1,20—-1,...,2"-b—1do

2 form=nn—-1,...,0do

3: if 7 is a multiple of b - 2™ then

4: With probability 5 ((22m))’ initiate a new instance Z,, ,, » spanning rounds [T + 1,7 +
b-2m];

5: for each instance Z,, ,,, - do

6: Let S, - be its active rounds;

7 Query batch: For the first max (1, | |Sy,,m,~|/b]) active rounds, run ALG, collecting rewards
and updating the index g;, which is f; in Assumption

8: Non-query batch: In the remaining active rounds, pick arms according to their frequencies

from query batch (no reward feedback).

scheduling probabilities remain consistent with the required non-stationarity measure V' and error
margin.

Remark C.1. Figure[l](earlier) remains unchanged: we still have multi-scale instances, each with a
query batch and a non-query batch. Only the internal UCB1 logic is replaced by ALG, which might be,
e.g., a linear bandit algorithm or a contextual bandit procedure.

C.2 Extended Hybrid Framework: HYQUE with ALG

Algorithm 5 Extended HYQUE

. Inmitialize: current round ¢ < 1, used queries B’ < 0.

Ju—

2: forn=0,1,... do
3: Set t,, < t and initialize BAQUE for block [t,,, ¢, + b+ 2™ — 1] with the time-scale parameter
n;

4: whilet < t, +b-2" do

5: if current instance has queries then

6: Receive index §; and selected arm from BAQUE, play it, increment ¢ and B’;

7: Update BAQUE instance with the observed feedback;

8: Perform environmental change tests. If any test fails, restart a new phase from Line 2;
9: else
10: it B’ < 22 — min{T/VB,2",T — t} then

11: Convert the current non-query round into a query round and jump to Line 6;
12: No feedback requested; ¢ <— ¢ + 1.

Algorithm [5|explanation. This is a direct generalization of Algorithm [2]in the main text, except
we embed ALG inside BAQUE. The environment-change tests remain the same, or adapt to ALG’s
specific estimates of reward. The on-demand logic remains: if the total used queries B’ is far below
%, we convert that round into a query.

C.3 General Conditions on the Base Algorithm ALG

The following assumption from Wei and Luo [37] ensure that ALG yields upper confidence estimates
for the optimal reward under bounded non-stationarity.

Assumption C.2 (37). ALG outputs an auxiliary quantity fr e [0, 1] at each time step t. There exists
a non-stationarity measure V' and a non-increasing function p : [T] — R such that when running ALG,
the following conditions hold for all ¢ € [T'] provided that V}; 4 < p(t):

ft > min f: - ‘/[l,t]a
TE[1,t]

&+ | =

t
Z(fT - TT) < P(t) + V[l,t]-
=1
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This guarantees hold with probability at least 1 — & Addltlonally, p(t) >
non-decreasing function.

7 and C(t) =tp(t)isa

This assumption ensures that the base algorithm (ALG) provides reliable estimates of the optimal
reward and maintains a controlled discrepancy between the auxiliary outputs and the actual rewards.
The function p(t) captures the uncertainty or error margin, which decreases over time.

Implication. Under Assumption [C.2} the entire analysis remains the same, simply replacing UCB1
with ALG, and ensuring the scheduling probabilities scale via p(-) as indicated. This yields a near-
optimal dynamic regret for a broader class of non-stationary settings, matching the idea of the MASTER
algorithm [37], but now budgeted by B queries thanks to our hybrid query method.

D Proof of Theorem 3.1]

We construct a family of problem instances and analyze the regret that any algorithm must incur on
these instances.

Step 1: Batching the Horizon and Constructing Reward Means
Partition the time horizon 7" into m = {%w batches, each of size A (except possibly the last). Denote

Ti={t:(—1DA+1<t<min{jAT}}, j=1,....m
We will choose A later to balance the terms in the lower bound. For a small 0 < ¢ < i (also
determined later), define a family V' of reward sequences such that:
s up €{3,5+e}forallk e K], tel[T];

* In each batch 7}, exactly one “good” arm k; has mean 3 + €, while all others remain at 5

¢ These means are constant within each batch (no W1th1n-batch variation).
The total variation over time for any p € V' is:

T
ngpluf — fifp1] = (m = 1)e < Kg-

Hence if we set
Vr A
T b)
then V' C V, ensuring all such sequences are valid under the variation budget V.

Step 2: Single-Batch Analysis under a Feedback Budget

e <

In each batch 7;, we analyze the expected regret under the constraint of the corresponding query
budget B; allocated to this batch. For any algorithm A, define:

* n;(k) = E[(# times arm k is pulled in batch j)];
. ng(k‘) =E [(# times feedback of arm £ is actually observed in batch j)] .

Because the total feedback across all batches is at most B, we have

> Y Ee) <38,

Jj=1ke[K] Jj=1

I /\

We aim to lower bound the regret in each batch ’7} , accounting for the limited feedback. Let v be an
instance with all arms having mean 2 ,and let v/ differ only by giving arm k; a mean of ( +¢)in
batch j. Let P, and P,/ be the probability measures (over entire batch’s observatlon process) under v
and v/, respectively. The Kullback-Leibler divergence satisfies

KL(P,,P,) < By [nd(k)] - KL(}, §+¢).
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Here KL (3, 3 +¢) < 2¢2 fore < 1. By Pinsker’s inequality,

|Eu[f}_Eu/[f” < ||fHoo %KL(PuvﬂDlﬂ)a

where || f]| is the maximum absolute value of f. Taking f = n;(k;), which is clearly at most A in
magnitude (the arm cannot be pulled more than A times in that batch), we get

By [ (k;)] = Eurfng(ks)]] < Ay/3KL(P,,P) < Aey/2E,[nd(k))].

Then we have
Ey[ng (k)] < Eyln (k)] + Ae /2B, [n](k;)]- (10)
To further bound E, [ (k;)], we use the following result:

Lemma D.1 (Efroni et al. [13]]). Let x,y € R} for some n > 2, and assume that Z”,l r, <X
and Y., y; <Y. Then, for any o € (1,2) and B > 2% there exists an index k € [n] such that

< O‘X and y, < ’8— simultaneously.

Leta = %, =15, 7 = B, [n;(k)] and yx = E, [n] (k)] for k € [K]. Then,

S a<A >y <B;

ke[K] ke[K]
By Lemma|D.T] there exists an arm &; such that:
aA 5A < ﬁB] - 15B]

Ty, < — = —, . = .
Bk Tak M=K TTK
Substituting the above two terms into (I0)), we have

5A 15B;
ALy < = .
E, [n;(k;)] e + Aeg i

Let R; denote the expected regret in batch j. Under v/, the expected regret in batch j is at least:
Rj =2 e(A=Eun;(k))]).

Therefore,

5A 308, 5 30B;
> - — = J = —_— J .
R; >« (A 1 Ae > Ae (1 1 —& ) (11)

Step 3: Summing Regret over m Batches

We have m = [T'/A] batches in total. Summing (1)) over j = 1,...,m yields:

j=1 Jj=1
5 30BA

> — - — i 12
(m—1)Ae (1 KN wT ) (12)
1 5 30BA

> = _ -

= oTe (1 4K KT )

We choose ¢ and A such that:
_VrA 30BA 1

T VKT T%
Recall that ¢ = VTTA. Substituting, we have:

VrA [30BA 1

T KT 8§
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Therefore,

1/3 1/3 1/3
A:< KT? ) VA VT< KT? > K3y}

1920V2B ~ T T \1920V2B)  19201/3B1/3’

Since K > 2, -2 < 2 so:

e 51 501 1
l-—-=->1-=--=-=-
4K 8 8 8 4
We substitute these A,  back into (12):
Te T [ K'YV} 1 KWVvAT
Re(A) > — = = )= T
8 8 \ 19201/3B1/3 8-19201/3 Bl/3

1/3y,1/3
This shows that any algorithm .4 limited to B queries suffers 2 (W) regret in the worst

case, completing the proof.

E Experiment Results

In this section, we compare different query allocation strategies. We base our comparison on the
Rexp3B-Sample algorithm (Appendix [B), which assumes a known variation budget V7, as its
structure is more easily adapted to accommodate different allocation policies.

Environments. We evaluate all algorithms across three distinct non-stationary environments. In
all settings, the time horizon is set to 7' = 200, 000, the number of arms is K = 5, and all non-
optimal arms provide a baseline reward of fipae = 0.5. First, we use a standard Piecewise Stationary
environment, where the time horizon is divided into 40 equal epochs. In each epoch, a single optimal
arm’s reward is elevated, and this optimal arm cycles deterministically at each change point. This
setting, with a query budget of B = 100,000 and total variation Vr = 20. We also test on a
Random Changepoints environment with randomly distributed change points, and a Low Query
Budget environment where the budget is reduced to B = 20, 000. All runs are executed on a machine
equipped with a 12th Gen Intel(R) Core(TM) i9-12900HX processor.

Baselines. We compare our main algorithm, Rexp3B-Sample with frequency-based sampling in
non-query phase, against four baselines. The Rexp3B-Greedy baseline follows the same batched
structure but commits to a purely greedy strategy in non-query phase. The Uniform Query base-
line also uses a batched approach but distributes its queries uniformly within each batch. The
Explore-Then-Commit (ETC) baseline is a classic strategy that expends its entire query budget in
an initial exploration phase before committing to a fixed policy. Finally, the Random baseline selects
arms uniformly at random, serving as a performance lower bound.

Results. Figure [3|presents the cumulative regret of all algorithms across the three environments.
Across all settings, the Rexp3B-Greedy strategy consistently achieves the best performance. In
contrast, Uniform Query performs poorly, due to its delayed exploration within each batch. The
Rexp3B-Sample algorithm delivers a middle-ground performance, appearing conservative in these
non-adversarial environments. The Explore-Then-Commit (ETC) strategy performs well during
its initial query phase but degrades to random-like performance after its budget is exhausted.
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Figure 3: Regret with different non-statioanry environments.
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