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Abstract001

Generative retrieval directly decode a docu-002
ment identifier (i.e., docid) in response to a003
query, making it impossible to provide users004
with explanations as an answer for “why is005
this document retrieved?”. To address this006
limitation, we propose Hierarchical Category007
Path-Enhanced Generative Retrieval (HYPE),008
which enhances explainability by first gener-009
ating hierarchical category paths step-by-step010
then decoding docid. By leveraging hierarchi-011
cal category paths which progress from broader012
to more specific semantic categories, HYPE013
can provide detailed explanation for its retrieval014
decision. For training, HYPE constructs cate-015
gory paths with external high-quality semantic016
hierarchy, leverages LLM to select appropriate017
candidate paths for each document, and opti-018
mizes the generative retrieval model with path-019
augmented dataset. During inference, HYPE020
utilizes path-aware ranking strategy to aggre-021
gate diverse topic information, allowing the022
most relevant documents to be prioritized in023
the final ranked list of docids. Our extensive024
experiments demonstrate that HYPE not only025
offers a high level of explainability but also026
improves the retrieval performance.027

1 Introduction028

Information retrieval (IR) systems are essential for029

helping users find proper information within vast030

amount of online information. A fundamental task031

of these systems is document retrieval, which fo-032

cuses on searching for and ranking documents that033

are relevant to a given query from a large document034

corpus. Recently, generative retrieval has emerged035

as a new paradigm in document retrieval. It aims to036

directly generate document identifier (i.e., docid)037

for a given query by leveraging pre-trained gener-038

ative models such as BART (Lewis et al., 2020)039

and T5 (Raffel et al., 2020). This paradigm enables040

end-to-end optimization of the retrieval process,041

allowing for fine-grained interaction between the042

Figure 1: Existing generative retrieval methods fail to
explain why specific documents are retrieved, as they
directly decode docid (Upper). In contrast, our HYPE
provides clear explanations by generating query-related
hierarchical category paths leading to the docid (Lower).

input query and docid, and significantly reduces 043

memory usage by leveraging the parametric mem- 044

ory of a single generative model. 045

Even with these advantages, generative retrieval 046

continues to face the challenge of determining how 047

to construct docid that effectively represent docu- 048

ments. As the docid serves as a representation of 049

the entire document, defining one that accurately 050

encapsulates the document’s contents is both cru- 051

cial and challenging. Existing works on generative 052

retrieval have categorized docid into two types: se- 053

mantic docid and lexical docid. A semantic docid 054

represents each document as a series of numbers 055

(e.g., 0-5-2), where each number indicates a cluster 056

index assigned over its dense representation. This 057

dense representation is encoded by a PLM-based 058

encoder (Devlin et al., 2019; Raffel et al., 2020) 059

and clustered using methods such as hierarchical 060

k-means (Tay et al., 2022; Wang et al., 2022) or 061

product quantization (Zhou et al., 2022). On the 062

other hand, lexical docid represents each document 063

as human-readable text, such as titles (Cao et al., 064

2021), keywords (Zhang et al., 2023; Wang et al., 065
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2023) and pseudo queries (Tang et al., 2023).066

However, both existing approaches still lack ex-067

plainability, which remains a significant limita-068

tion. For instance, in the upper part of Figure069

1, two types of queries related to the same doc-070

ument “Dubai”, are presented. While the existing071

retrieval systems may return identifiers of relevant072

documents such as the lexical docid (i.e., Dubai)073

or semantic docid (i.e., 0-5-2), they fail to provide074

an explicit explanation that aligns with the differ-075

ent intention behind each query. Specifically, they076

do not clarify why a particular document is re-077

trieved for a specific query and fail to answer078

the question, “why is this document retrieved?”.079

The lack of explainability in retrieval systems is a080

critical issue, as it can undermine the reliability of081

retrieved documents and make it more difficult for082

users to explore additional information related to083

a specific query (Anand et al., 2022). To address084

this aforementioned limitation, our research aims085

to design a generative retrieval framework that can086

provide retrieved document with clear and reason-087

able explanations for a user’s query.088

In this work, we propose Hierarchical Category089

Path-Enhanced Generative Retrieval (HYPE),090

which enhances explainability by generating hi-091

erarchical category paths step-by-step before de-092

coding docid. Motivated by structured document093

categorization systems, such as Wikipedia category094

tree or Microsoft Academic taxonomy (Shen et al.,095

2018), HYPE utilizes hierarchical category paths096

as explanations, progressing from broad to specific097

semantic categories. In the lower part of Figure 1,098

when queries about document “Dubai” are given,099

HYPE uses category paths like “Government >100

Government by cities” or “Economy > Economy101

by cities” to explain why document “Dubai” is re-102

trieved for each query. This approach 1) enables103

specific explanations for the document depending104

on the query by using hierarchical category paths105

that connect the query and the document, and 2)106

provides more reasonable and insightful explana-107

tion by reflecting the document’s semantic struc-108

ture through a coarse-to-fine manner. Additionally,109

HYPE 3) can employ effective ranking of the re-110

trieved results by leveraging multiple paths, which111

helps improve retrieval performance.112

Specifically, HYPE consists of the following113

three steps: 1) constructing category paths based114

on an external semantic hierarchy and selecting115

appropriate candidate paths for each document us-116

ing Large Language Models (LLM), 2) building a117

path-augmented dataset with candidate paths, and 118

3) optimizing a model with the path-augmented 119

dataset. During inference phase, HYPE conducts 120

a pseudo-reasoning process1 by generating the hi- 121

erarchical category path step-by-step to decode do- 122

cid, allowing it to serve as an explanation which 123

enhances explainability. Additionally, HYPE em- 124

ploys path-aware ranking strategy, which simulta- 125

neously considers multiple pseudo-reasoning paths 126

for each query. This strategy helps build a more 127

robust retrieval system by capturing the semantic 128

information of multiple category paths, thereby im- 129

proving overall retrieval performance. 130

Our extensive experiments demonstrate that 131

HYPE not only offers a high level of explainabil- 132

ity but also improves the retrieval performance in 133

the document retrieval task. Additionally, HYPE 134

can be applied orthogonally to various docid types 135

(e.g., title, keywords), making it a versatile frame- 136

work that can be seamlessly integrated into differ- 137

ent generative retrieval systems. For reproducibil- 138

ity, our codes are publicly available at the anony- 139

mous github repository.2 140

We summarize our contributions as follows: 141

• We introduce HYPE, an explainable generative 142

retrieval framework that generates query-specific 143

hierarchical category paths for relevant docu- 144

ments before decoding their docid. These cate- 145

gory path enables the retrieval system to provide 146

users explanations of document retrieval. 147

• We propose a new ranking strategy called path- 148

aware ranking, which considers multiple cate- 149

gory paths simultaneously to determine the final 150

ranked list of docids. 151

• We empirically show that HYPE improves both 152

the explainability and accuracy of generative 153

retrieval across various docid types, making it 154

adaptable and easily integrable into different gen- 155

erative retrieval systems. 156

2 Preliminaries 157

In this section, we formally define the task of gen- 158

erative retrieval and explain its overall process and 159

relevant techniques. 160

2.1 Task Formulation 161

Given a corpus C = {D1, D2, . . . , Dn} where D 162

represents a document, generative retrieval aims to 163

autoregressively generate the document identifier 164

1We describe this term in Appendix A.2.
2https://anonymous.4open.science/r/HyPE-1B74
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(i.e. docid) of the relevant document for a given165

query. To this end, the model is optimized for166

indexing task and retrieval task. The indexing167

task involves taking a document as the input and168

generating the corresponding docid, described by169

Mθ(d | D) =

n∏
t=1

Mθ(dt | D, d<t), (1)170

where Mθ is a generative model, D is a document,171

d is the target docid, and n is the token length172

of the target docid. The retrieval task focuses on173

processing a query as the input and generating the174

docid of a relevant document, described as follows:175

Mθ(d | q) =
n∏

t=1

Mθ(dt | q, d<t), (2)176

where q is a query. In performing the aforemen-177

tioned two tasks, it is crucial to address two key178

aspects: 1) effectively represent the long document179

D and 2) construct the docid d that captures the180

overall semantic information of the document.181

During inference, given an input query q, the182

model produces a top-K ranked list of docids that183

have the largest likelihoods Mθ(d | q). To en-184

sure the generation of valid docids, the model em-185

ploys constrained decoding, which mostly uses con-186

strained beam search (Cao et al., 2021).187

2.2 Document Representation and Identifier188

Document representation. For the indexing189

task, each document is used as the input. This190

makes it crucial to define effective input represen-191

tations of the long document while preserving as192

much of its information as possible within the con-193

text length of the language model. The primary194

approaches to effectively representing documents195

are FirstP (Tay et al., 2022) and Document as Query196

(DaQ) (Wang et al., 2022). FirstP uses only the first197

k tokens from the beginning of the document, while198

DaQ randomly extracts chunks from the document.199

Document identifier. To ensure that docid effec-200

tively encodes semantic information of document,201

a variety of approaches have been proposed. Docid202

can be broadly categorized into semantic docid and203

lexical docid. Semantic docid represents each doc-204

ument as a series of numbers, where each number205

corresponds to a cluster index derived from the doc-206

ument’s dense representation. This dense represen-207

tation is encoded by a PLM-based encoder (Devlin208

et al., 2019) and mapped to discrete cluster indices209

using methods such as hierarchical k-means (Tay 210

et al., 2022; Wang et al., 2022) or product quantiza- 211

tion (Zhou et al., 2022). Lexical docid is a textual 212

format designed to effectively convey the semantic 213

content of a document. It can be constructed using 214

various forms, such as the document’s title (Cao 215

et al., 2021), substrings (Bevilacqua et al., 2022), 216

keywords (Zhang et al., 2023; Lee et al., 2023; 217

Wang et al., 2023), URL (Zhou et al., 2022), and 218

pseudo query (Tang et al., 2023). Title and URL 219

are used as docid directly from the dataset. Sub- 220

strings are generated by the retrieval model using 221

an FM index (Ferragina and Manzini, 2000), which 222

creates specific n-grams within the document for re- 223

trieval. Keywords are extracted from the document 224

using methods such as TF-IDF (Robertson and 225

Walker, 1997), BM25 (Robertson and Zaragoza, 226

2009), or pre-trained language models (PLMs). 227

Pseudo query is generated using query generation 228

models, such as docT5query (Nogueira and Lin, 229

2020), which is then utilized as the docid. 230

2.3 Optimization and Inference 231

Optimization via multi-task learning. Given 232

a training dataset that consists of (query, docu- 233

ment, docid), denoted by X = {(q,D, d)}, the 234

model is trained for both the indexing and retrieval 235

tasks, maximizing the likelihoods in Equations (1) 236

and (2), respectively: 237

max
θ

∑
(q,D,d)∈X

Mθ(d | D) +Mθ(d | q) (3) 238

Indexing with synthetic query. In indexing task, 239

documents are long and contain extensive informa- 240

tion; however, in retrieval task, queries are rela- 241

tively short and request specific information. To 242

bridge this discrepancy, recent studies (Zhuang 243

et al., 2023; Wang et al., 2022; Sun et al., 2023) 244

have tried to integrate synthetic queries, gener- 245

ated by query generation models (Nogueira and 246

Lin, 2020), into the training phase. The synthetic 247

queries improve the retrieval performance of gener- 248

ative retrieval models by effectively reducing the 249

gap between queries and documents. Note that 250

these synthetic queries are treated as alternative 251

document representation, similar to FirstP and DaQ 252

mentioned in 2.2, and are used as input for the in- 253

dexing task (Zhuang et al., 2023; Sun et al., 2023). 254

3 Proposed Method 255

In this section, we present Hierarchical category 256

Path-Enhanced generative retrieval (HYPE), 257
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Figure 2: Overview of HYPE framework. (1) HYPE constructs category paths using an external high-quality
semantic hierarchy and employs LLM to select appropriate candidate paths for each document. (2) Then, HYPE
links queries to the paths based on semantic relevance to construct path-augmented training set, and uses this to
optimize the retrieval system. (3) During inference, HYPE employs path-aware ranking strategy to determine the
final docid ranking by considering multiple paths.

which improves explainability by generating hierar-258

chical category paths step-by-step before decoding259

docid. The overall framework is shown in Figure 2.260

3.1 Candidate Path Set Construction261

The first step of our HYPE framework is to con-262

struct a set of candidate hierarchical category paths263

for each document. To ensure explainability, these264

paths should satisfy the following criteria: Seman-265

tic Hierarchy, Generalizability, and Specificity (see266

Appendix A.3 for details). To achieve this, we first267

construct the high-quality backbone hierarchy for268

category paths. Then, for each document, we (1)269

filter out category paths based on semantic similar-270

ity calculated by a pre-trained text encoder, and (2)271

select several category paths that comprehensively272

represent the content of the document while specifi-273

cally addressing certain topics within the document274

by the help of reasoning capabilities of LLM.275

Hierarchical category path collection. In the276

open-domain retrieval task, the category (or topic)277

hierarchy must encompass both a broad range of278

domain categories (i.e. width of tree) and sufficient279

semantic granularity (i.e. depth of tree) to ensure280

comprehensive and accurate retrieval system. To281

this end, we leverage Wikipedia’s category tree282

as our backbone hierarchy of categories, setting283

the Main Topic classification category as the root284

node of the hierarchy. This hierarchy is specifically285

designed to systematically categorize “real-world286

wikipedia documents”, which cover a wide range of287

domains and provide specific and detailed semantic288

information. Considering the vast and complex289

nature of Wikipedia’s category tree, we limit the 290

scraping process to a depth of four to construct 291

our backbone hierarchy. Then, we linearize all the 292

paths within the hierarchy and convert them into a 293

sequence of strings, thereby enabling more efficient 294

processing and manipulation. The entire set of 295

linearized category paths is denoted by P . The 296

statistics of collected hierarchical category paths 297

are presented in Appendix A.3. 298

Candidate path set construction. Subsequently, 299

we utilize the knowledge of LLM to assign appro- 300

priate category paths to each document within the 301

corpus. However, due to the context length of LLM, 302

it is impossible to input all possible paths within 303

the category hierarchy (collected in Section 3.1). 304

Thus, we first filter out path set for each document 305

D by leveraging a bi-encoder. The pre-candidate 306

path set P̂D is obtained as follows: 307

P̂D = argTop-
p∈P

k sim(E(D), E(p)), (4) 308

where E(·) is the encoder, sim(·) is a cosine simi- 309

larity, and k is the number of pre-candidate paths 310

for each document. Then, given the document 311

D and its pre-candidate path set P̂D, we leverage 312

LLM3 to generate the final path set PD, selecting 313

up to three paths that best represent the document. 314

3.2 Optimization with category path 315

The second step is to augment the training set X 316

with path, building a path-augmented training set 317

3We use Llama-3-8B-Instruct (Dubey et al., 2024) as LLM.
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X+ = {(q, pq, D, d)}. To achieve this, we first (1)318

link each query to one of the document’s candidate319

paths based on semantic similarity computed by320

pre-trained encoder, and then (2) utilize the result-321

ing query-path pairs together with the document-322

path pairs to optimize the retrieval model.323

Linking Path with Query. Using the candidate324

path set for each document, we build a path aug-325

mented training set X+. For each query-document326

pair in the training set (q,D, d) ∈ X , we link the327

query q to its most relevant path among the paths in328

the document’s candidate path set PD. This linking329

can be described as follows:330

pq = argmax
p∈PD

sim(E(q), E(p)), (5)331

where pq is the path linked to the query q. This332

process is then applied to all queries in the training333

set. In the end, we construct the path-augmented334

training set, denoted by X+ = {(q, pq, D, d)}.335

Optimization. By leveraging the path-336

augmented training set X+, we train our337

model Mθ on both indexing and retrieval tasks,338

as described in 2.1. Our optimization follows the339

same strategy as standard generative retrieval in340

2.1, with the only difference being the addition of341

path information as follows:342

max
θ

∑
Mθ(pq, d | D) +Mθ(pq, d | q) (6)343

3.3 Inference with Path-Aware Ranking344

During inference, HYPE generates the final ranked345

list of docids through two stages: 1) path genera-346

tion stage and 2) docid decoding stage. First, in the347

path generation stage, our model Mθ generates up348

to Kp hierarchical category paths, each of which349

is denoted by pj for j = 1, . . . ,Kp, by using beam350

search; these are query-specific hierarchical cate-351

gory paths that encapsulate various topics related352

to the given query. Next, in the docid decoding353

stage, the model uses each generated hierarchical354

category path as the decoder’s input context and355

then applies constrained beam search to decode356

m docids. For each path pj , the model outputs m357

number of docid-score pairs as follows:358

Yj = {(di, si) ∼ Mθ(· | q, pj)}mi=1, (7)359

where si represents the score for the docid di con-360

ditioned on the category path pj . The remaining361

process is to aggregate Kp number of docid-score362

pair sets for making the final ranked list of docids. 363

At this point, we remain only unique docid with 364

the highest score, resulting in Ỹ . 365

Ỹ =
{
(d, s) | s = max{s′|(d, s′) ∈ Yj}, ∀(d, s) ∈ ∪Kp

j=1Yj

}
(8)

366

From the set of unique docid-score pairs, we ob- 367

tain the final ranked list by sorting their scores in 368

descending order, Yfinal = sort(Ỹ ). By utilizing 369

path-aware ranking strategy, HYPE can effectively 370

capture the semantic information of an input query 371

from multiple category paths, leading to improved 372

retrieval performance. 373

4 Experiments 374

In this section, we design and conduct our experi- 375

ments to answer the following research questions: 376

• RQ1: Can HYPE improve retrieval accuracy? 377

• RQ2: Can hierarchical category paths in HYPE 378

serve as effective explanations for retrieval? 379

• RQ3: Can explanations of HYPE help real- 380

world users in search systems? 381

4.1 Experimental Settings 382

Dataset. We conduct our experiments on two 383

datasets, NQ320K (Kwiatkowski et al., 2019) and 384

MS MARCO (Nguyen et al., 2016), which have 385

been widely utilized in previous works (Tay et al., 386

2022; Wang et al., 2022). For NQ320K, we divide 387

the test set into two subsets, seen and unseen, fol- 388

lowing the setup in (Wang et al., 2022; Sun et al., 389

2023), where the seen test includes queries whose 390

annotated target documents are present in the train- 391

ing set, and the unseen test consists of queries with 392

no labeled documents in the training set. More 393

details are provided in Appendix A.4. 394

Evaluation Metrics. We report Recall and Mean 395

Reciprocal Rank (MRR) for NQ320K and MS 396

MARCO. For NQ320K, we use Recall@{1, 10, 397

100} and MRR@100. For MS MARCO, we use 398

Recall@{1, 10, 100} and MRR@10 as done in pre- 399

vious works (Sun et al., 2023; Wang et al., 2023). 400

Baselines. To validate the effectiveness of HYPE 401

across diverse generative retrieval settings, we 402

conduct experiments on four representative docid 403

types, introduced in Section 2.2, as our baseline. 404

• Title docid uses a document’s title as docid. For 405

documents without a title, we use the first 16 406

tokens of the document as a title, following the 407

approach used in (Sun et al., 2023). 408
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Method
Full test Seen test Unseen test

R@1 R@10 R@100 M@100 R@1 R@10 R@100 M@100 R@1 R@10 R@100 M@100

Title docid 62.2 78.7 89.3 68.6 64.8 81.5 90.1 71.2 53.1 68.9 80.4 59.3
+ HYPE 63.6∗ 83.5∗ 90.1∗ 71.0∗ 66.4∗ 86.3∗ 92.6∗ 73.9∗ 53.7∗ 73.6∗ 81.7∗ 61.0∗

Improvement +2.3% +6.1% +2.5% +3.5% +2.5% +5.9% +2.8% +3.8% +1.1% +6.8% +1.6% +2.9%

Keyword docid 61.8 77.1 85.5 67.6 67.3 82.3 89.9 73.0 43.0 59.0 70.4 48.8
+ HYPE 60.7 79.1∗ 86.2∗ 67.6 66.6 84.6∗ 90.7∗ 73.4∗ 40.1 60.2∗ 70.6∗ 47.5

Improvement -1.8% +2.6% +0.8% +0.0% -1.0% +2.8% +0.9% +0.5% -6.7% +2.0% +0.3% -2.7%

Summary docid 60.9 78.8 84.1 67.6 65.7 84.1 88.6 72.6 44.0 60.5 68.5 50.1
+ HYPE 61.5∗ 79.6∗ 85.2∗ 68.3∗ 66.3∗ 84.6∗ 89.8∗ 73.2∗ 44.8∗ 62.2∗ 69.4∗ 51.3∗

Improvement +1.0% +1.0% +1.3% +1.0% +0.9% +0.6% +1.4% +0.8% +1.8% +2.8% +1.3% +2.4%

Atomic docid 65.3 83.5 89.3 72.2 70.2 88.3 93.5 77.2 48.6 66.8 74.9 55.0
+ HYPE 64.5 84.2∗ 90.2∗ 71.9 69.5 88.6∗ 93.8∗ 76.8 47.2 68.7∗ 77.6∗ 55.0

Improvement -1.2% +0.8% +1.0% -0.4% -1.0% +0.3% +0.3% -0.5% -2.9% +2.8% +3.6% +0.0%

Table 1: Retrieval accuracy of baselines and our HYPE framework on the NQ320K. ∗ denotes the statistical
significance on paired t-test p < 0.05.

Method R@1 R@10 R@100 M@10

Keyword docid 31.7 61.2 77.2 41.0
+ HYPE 32.2∗ 62.7∗ 78.5∗ 41.9∗

Improvement +1.6% +2.5% +1.7% +2.2%

Summary docid 28.1 55.5 71.5 36.8
+ HYPE 28.4∗ 57.5∗ 73.1∗ 37.8∗

Improvement +1.1% +3.6% +2.2% +2.7%

Atomic docid 43.9 73.6 85.6 53.8
+ HYPE 44.9∗ 74.6∗ 87.1∗ 54.7∗

Improvement +2.3% +1.4% +1.8% +1.7%

Table 2: Retrieval accuracy of baselines and HYPE on
the MS MARCO. ∗ denotes the statistical significance
on paired t-test p < 0.05.

• Keyword docid uses a sequence of keywords409

as docid that effectively represent the document.410

For NQ320K, we use 3 keywords, while for MS411

MARCO, we extract 5 keywords.412

• Summary docid uses the document summary as413

docid. Although it has not been attempted before,414

a similar structure using substrings is employed415

in (Bevilacqua et al., 2022).416

• Atomic docid uses a unique arbitrary integer as417

docid. We assign each document a integer and418

generates a corresponding new token for it.419

We intentionally do not consider semantic docids420

(+HYPE) in our experiments. This is because se-421

mantic docids are constructed based on techniques422

such as hierarchical clustering, and thus inherently423

embed a semantic structure. Given that these struc-424

tures are already formed in a coarse-to-fine manner,425

prepending hierarchical category paths to them can426

contradict the coarse-to-fine principle.427

Furthermore, existing generative methods em-428

ploy various architectures and optimization tech-429

niques, which may introduce additional factors af-430

fecting performance. To specifically assess the431

impact of HYPE, we adopt the basic form of432

generative retrieval described in Section 2 as433

our baseline. This approach ensures a direct com- 434

parison between plain docids and those enhanced 435

with HYPE, isolating the effects of HYPE itself 436

from other architectural or optimization differences. 437

For more details, please refer to the Appendix A.7. 438

4.1.1 Implementation Details 439

We use T5-base (Raffel et al., 2020) as our back- 440

bone model. For the input of the indexing task, we 441

utilize the FirstP approach as our document repre- 442

sentations and five synthetic queries. (Section 2.2). 443

During the inference of HYPE, we generate three 444

category paths (i.e., Kp = 3), and for the docid de- 445

coding stage, we use constrained beam search with 446

a beam size of 100 (i.e., m = 100). More details 447

about this part are provided in Appendix A.7. 448

4.2 HYPE improves retrieval accuracy (RQ1) 449

Table 1 shows retrieval accuracy of various docid 450

types with HYPE on NQ320K. Overall, HYPE 451

consistently improves retrieval accuracy across all 452

docid types in both seen test and unseen test. This 453

demonstrates that HYPE’s hierarchical category 454

paths can be orthogonally applied to enhance 455

retrieval accuracy across different docid types, 456

suggesting that integrating these paths into ex- 457

isting generative retrieval methods can further 458

improve performance. While HYPE can be ap- 459

plied to all docid types effectively, the experimental 460

results show that title docid yields the most signif- 461

icant performance improvement when HYPE is 462

applied. Our paths, serve as a pseudo-reasoning, al- 463

lowing the model to navigate step-by-step through 464

various semantic hierarchical categories before ar- 465

riving docid. Since titles are concise and inherently 466

reflect a structured overview of a document, they 467

aligns well with the HYPE’s hierarchical category 468

paths, further enhancing retrieval accuracy. 469
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Figure 3: Human evaluation of pairwise quality com-
parisons for retrieval explanations, generated by HYPE
and baseline models.

Additionally, to investigate whether our hierar-470

chical category paths perform effectively on docu-471

ments beyond Wikipedia, we conduct experiment472

with MS MARCO. Table 2 shows that HYPE473

consistently improves retrieval accuracy on MS474

MARCO as well. Although the hierarchical cat-475

egory paths are constructed using Wikipedia cat-476

egory tree as the backbone, the consistent per-477

formance gains on MS MARCO emphasize the478

robustness and generalizability of HYPE. These479

findings suggest that HYPE can be widely applied480

to datasets across various domains in the future.481

4.3 Hierarchical category paths serve as482

effective retrieval explanations (RQ2)483

We evaluate the explanatory quality of the hierar-484

chical category paths of HYPE through a human485

evaluation conducted via Amazon Mechanical Turk486

(AMT). We ask three human judges per sample to487

compare the quality of the explanations based on488

four distinct criterias: overall, specificity, reason-489

ability and comprehensiveness. Detailed descrip-490

tions of the evaluation criteria and experimental491

baselines are provided in Appendix A.5.492

In Figure 3, HYPE outperforms both the title493

docid baseline and BM25 across all criteria, receiv-494

ing high scores for its overall explanation of the495

retrieval process. Specifically, HYPE shows sub-496

stantial margin of superiority in terms of specificity497

and reasonability. This demonstrates that HYPE498

provides clearer explanations of retrieval process,499

as well as more logical and reasonable explana-500

tion. Furthermore, HYPE beats other baselines501

in comprehensiveness, indicating that its hierar-502

chical category path is effective in explaining not503

only narrow, specific details but also broader se-504

mantic information. These results highlight that505

HYPE’s pseudo-reasoning, which utilizes hier-506

archical category paths, provides users with a507

effective explanation of the retrieval process.508

Baseline R@1 M@5 Conf.

Title Docid 19.7 47.9 4.0
+ HYPE 24.3 52.8 4.5

Improvement 23.7% 10.4% 12.0%

Table 3: Human reranking performance with and with-
out category paths on NQ320K dev set pairs where the
model retrieves the gold document in the top 5.

4.4 HYPE guides users in making better 509

search decision by explanations (RQ3) 510

In real-world search systems, users are typically 511

provided only with the document title and the first 512

few lines when deciding which result to open. We 513

investigate whether explanations of HYPE can help 514

users effectively identify relevant documents in 515

such real-world settings. To this end, we con- 516

duct a human reranking experiment via AMT using 517

the NQ320K dev set. Specifically, human judges 518

rerank the top-5 retrieved results by relevance and 519

rate their confidence (1–5) under two settings: title 520

only, and title with category path. With human- 521

reranking results, we measure performance with 522

Recall@1, MRR@5 and Confidence. Details of the 523

evaluation setup are provided in Appendix A.6. 524

Table 3 shows that offering hierarchical cate- 525

gory paths improve human reranking accuracy, 526

with Recall@1 improving by 23.7% and MRR@5 527

by 10.4%. This shows that the hierarchical cate- 528

gory paths, used as explanations in HYPE, help 529

real-world users better select relevant documents. 530

Additionally, Confidence also improves by 12.0%. 531

These results demonstrate that explanations of 532

HYPE provide users with clarity and guidance, 533

enabling not only more accurate selections but 534

also more confident decisions during search. 535

5 Analysis 536

Case Study. Table 4 illustrates HYPE’s explana- 537

tions in cases where a single document is annotated 538

with multiple queries on different topics. For the 539

query “the core of the sun in which the sun’s ther- 540

monuclear energy is produced”, the model gener- 541

ates paths related to the universe and energy con- 542

version, clearly explaining the thematic relevance 543

between the query and the document. However, for 544

another query, “what stage of the star life cycle is 545

the sun in”, it generates a path related to stellar evo- 546

lution, which is different from the previously gen- 547

erated path but relevant to the query. This shows 548

that HYPE can provide effective explanations 549

to users by tailoring them to each query. 550
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Document Generated Category Paths for Each Query

Title: Sun
The Sun is the star at the center of the Solar System. . . . The
core is the only region of the Sun that produces an apprecia-
ble amount of thermal energy through fusion; . . . The Sun is
about halfway through its main-sequence stage, during which
nuclear fusion reactions in its core fuse hydrogen into helium.

Query 1: the core of the sun in which the sun’s thermonuclear
energy is produced takes up about
Generated Category Path: universe > energy > energy conversion

Query 2: what stage of the star life cycle is the sun in
Generated Category Path: nature > evolution > stellar evolution

Table 4: Example of the document annotated for multiple queries in the NQ320K dev set. The generative retrieval
model with HYPE generates query-specific category paths based on the topics of the document associated with each
query, explaining why the document is retrieved for the particular query.

Figure 4: Performance changes of HYPE. The number
of decoded category paths to obtain a ranked docid list.

Analysis of Path-Aware Ranking. To validate551

the effectiveness of path-aware ranking strategy,552

we analyze the performance changes in retrieval553

accuracy with respect to the number of hierarchi-554

cal category paths considered by HYPE. Figure 4555

presents the analysis results, showing that retrieval556

accuracy improves as the number of paths increases557

across all baselines. Notably, there is a clear perfor-558

mance gap between the setting without path-aware559

ranking strategy (i.e., K = 1) and with path-aware560

ranking strategy (i.e., K > 2). These results in-561

dicate that considering multiple paths through the562

path-aware ranking strategy allows the most rel-563

evant docids to be prioritized in the final ranked564

list, thereby enhancing retrieval accuracy. However,565

we observe that using too many paths eventually566

leads to a plateau in performance improvement. Be-567

yond a certain threshold, additional paths tend to568

introduce noise or increase unnecessary complexity.569

Consequently, using three paths achieves optimal570

retrieval accuracy for most docid types.571

Analysis of Efficiency. Providing explanations572

in the context of generative retrieval inherently in-573

creases inference cost, as it involves additional ex-574

planation generation beyond the decoding docids575

alone. Considering this, we conduct additional ex-576

periments to analyze the impact of HYPE’s path577

generation stage on inference cost. Table 5 com-578

pares the average inference time per instance for579

decoding only docids and decoding docids with580

HYPE’s path generation stage. Details of the anal-581

ysis setup are provided in Appendix A.8. Overall,582

Docid Type Docid Only Docid + HYPE

Summary 0.8127s 0.9134s
Keyword 1.0389s 1.1402s

Table 5: Average inference time per instance for decod-
ing only docid vs decoding both docid and a single path.

when applying HYPE, the inference time increases 583

slightly compared to decoding only docids. Never- 584

theless, the hierarchical category path employed by 585

HYPE effectively enhances explainability and 586

retrieval accuracy by providing a structured and 587

step-by-step way to convey the connection between 588

queries and retrieved documents, while minimiz- 589

ing the additional computational cost inherently 590

involved in the explanation generation process. 591

6 Related Work 592

Generative retrieval leverages a single pre-trained 593

generative model, such as T5 (Raffel et al., 2020) 594

and BART (Lewis et al., 2020), to directly generate 595

document identifier (docid) relevant to the query, 596

enabling end-to-end optimization of the retrieval 597

process (Tay et al., 2022; Wang et al., 2022; Sun 598

et al., 2023; Wang et al., 2023; Zhang et al., 2023; 599

Zhou et al., 2022; Lee et al., 2023). Additionally, it 600

reduces reliance on external indexing, lowering the 601

system’s demand for storage resources. However, 602

existing generative retrieval methods directly gen- 603

erate the docid for a user’s query, making it difficult 604

to fully understand why the document is retrieved. 605

7 Conclusion 606

In this paper, we propose HYPE, a framework de- 607

signed to enhance the explainability of document 608

retrieval by utilizing hierarchical category paths. 609

Our experiments demonstrate that HYPE not only 610

enhances overall retrieval performance but also 611

helps users make more accurate decisions during 612

search by providing effective explanations. We 613

hope our research paves the way for meaningful 614

progress in the development of retrieval systems. 615
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Limitations616

Despite the promising results and contributions of617

HYPE, our work has three key limitations stem-618

ming from computational costs and budget con-619

straints. First, we do not experiment with alter-620

native backbone hierarchies beyond Wikipedia’s621

category tree. While it is possible that domain-622

specific taxonomies may further improve retrieval623

performance in specialized settings, we consider624

Wikipedia’s broad and deep hierarchy sufficient for625

general-purpose document retrieval. Please refer to626

Appendix A.3 for further discussion. Second, due627

to cost and scalability constraints, we do not con-628

duct human evaluations to assess how different path629

depths affect the quality of the explanation. Instead,630

we provide a limited analysis of explainability with631

respect to path depth using STS score in the Ap-632

pendix A.1. Third, we evaluate HYPE using a basic633

generative retrieval setup (Section 2) to isolate its634

effect. We do not incorporate advanced optimiza-635

tion techniques or architectures from recent works,636

which may further improve performance of HYPE.637

Ethical Statement638

This study strictly adhered to ethical guidelines639

throughout the human evaluation and data usage640

process. All content used in the human evalua-641

tion and human reranking—including NQ320K642

and Wikipedia documents—was publicly accessi-643

ble and did not involve any private or proprietary644

data. We did not obtain IRB approval for our study,645

following precedents set by prior work (Kim et al.,646

2023; Kang et al., 2024a) which conducted simi-647

lar human evaluations without IRB oversight. We648

ensure that no ethical concerns would arise during649

the evaluation. The evaluation and reranking were650

conducted on Amazon Mechanical Turk (AMT),651

where all participation was anonymous and no per-652

sonal information was collected at any stage. For653

human evaluation, we hire three different judges654

per instance from Amazon Mechanical Turk and655

guarantee fair compensation for each judge. We656

pay $0.15 for each unit task. Human judges were657

fully informed about the task’s purpose, procedure,658

and estimated time requirement before beginning659

the task. Additionally, all examples were screened660

to exclude offensive, hateful, or sensitive content661

and were limited to socially and culturally neutral662

topics. All datasets used in this study are publicly663

available and appropriately licensed. Specifically,664

the NQ dataset is distributed under the Apache 2.0665

license, and the MS MARCO dataset is released 666

under the MIT license. 667
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A Appendix841

A.1 Quantitative Analysis of Explainability842

We quantitatively evaluate whether HYPE’s hier-843

archical category path provides a valid explana-844

tion by effectively capturing the semantic relation-845

ship between the query and the document. To this846

end, we use a semantic textual similarity (STS)847

model (Agirre et al., 2012)4 to measure the seman-848

tic relevance between two sentences, evaluating849

the semantic relevance between the query and ex-850

planation, as well as between the document and851

explanation. Specifically, for each baseline, we use852

the model output as an explanation and calculate853

the STS scores for both the query-explanation and854

document-explanation pairs. We then compute the855

geometric mean of these two scores to evaluate856

how effectively the explanation captures the rela-857

tionship between the query and the document. To858

further analyze the role of hierarchical category859

paths in explainability, we consider how varying860

the maximum level of the paths impacts semantic861

relevance. As mentioned in Section 3.1, HYPE862

basically leverages Level 4 paths, but we also ex-863

periment with varying the maximum level (e.g.,864

Level 2, Level 3) to examine how the maximum865

level of paths influences the explainability of the866

query-document relationship. In addition, we also867

include BM25 as a baseline, which is capable of868

providing explanations for its retrieval results. For869

the explanation of BM25, we consider the top-3870

terms that have the highest BM25 scores calculated871

between a given query and a document.872

As shown in Table 6, applying HYPE improves873

overall semantic relevance across all baselines.874

This indicates that HYPE’s category path effec-875

tively captures and explains the relationship be-876

tween the query and the document. We note that877

HYPE achieves higher overall relevance than the878

term-matching method (i.e., BM25), further prov-879

ing the validity of the HYPE’s category path as an880

explanation. Moreover, maximum level of hierar-881

chical category path significantly influences overall882

semantic relevance. Specifically, paths with fewer883

levels than the default level (level 4) fail to capture884

sufficient semantic relevance between the query885

and the document, resulting in limited explainabil-886

ity. These results demonstrate that for category887

paths to effectively serve as explanations, they must888

achieve specificity necessary to sufficiently explain889

4We use sentence-transformers/roberta-base-nli-stsb-mean-
tokens as STS model

Baseline
Semantic Relevance

Query Document Overall

Title Docid 0.52 0.46 0.48
+ HYPE (Level 2) 0.49 0.51 0.49
+ HYPE (Level 3) 0.49 0.54 0.50
+ HYPE 0.50 0.56 0.52

Keyword Docid 0.42 0.54 0.47
+ HYPE (Level 2) 0.41 0.56 0.47
+ HYPE (Level 3) 0.41 0.57 0.47
+ HYPE 0.43 0.58 0.49

Summary Docid 0.46 0.69 0.55
+ HYPE (Level 2) 0.45 0.70 0.55
+ HYPE (Level 3) 0.45 0.70 0.55
+ HYPE 0.45 0.71 0.57

BM25 0.56 0.31 0.42

Table 6: Semantic relevance between query/explanation
and document/explanation on 1,000 NQ320K dev set
pairs where each baseline successfully retrieves the rel-
evant document at rank 1.

specific and detailed semantic information, as men- 890

tioned in Section 3.1. 891

A.2 Pseudo-Reasoning 892

Generating the hierarchical path resembles step-by- 893

step reasoning. However, unlike natural language- 894

based reasoning in LLM, we use the term “pseudo- 895

reasoning” because the path structure is more akin 896

to pseudo-code. 897

A.3 Backbone category hierarchy 898

Criteria for Selecting the Backbone. To address 899

the criteria mentioned in Section 3.1—Semantic 900

Hierarchy, Generalizability, and Specificity—we 901

utilize Wikipedia’s category tree as the foundation 902

for our hierarchical structure, designating the Main 903

Topic classification category as the root node of the 904

hierarchy. 905

• Semantic Hierarchy: Are they semantically hier- 906

archical, allowing step-by-step progression in the 907

generation process to clearly represent a specific 908

semantic level? 909

• Generalizability: Are they able to provide seman- 910

tic information across a wide range of domains? 911

• Specificity: Are they capable of sufficiently ex- 912

plaining specific and detailed information? 913

Level 1 Level 2 Level 3 Level 4 Total

40 1,330 13,383 95,240 109,993

Table 7: Statistics of the used category hierarchy, show-
ing the number of nodes at each level (or depth).
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Wikipedia category tree Overview. Wikipedia’s914

category tree consists of 40 nodes at level 1, cover-915

ing broad categories such as Business, Sports, Sci-916

ence, Philosophy, Language, Health, Government,917

Culture, and others. This feature of encompassing918

a wide range of fields ensures that Wikipedia’s cat-919

egory tree satisfies the criterion of Generalizability,920

as it can be applied across various domains. More-921

over, these broad categories are further subdivided922

into increasingly specific subcategories as the level923

increases. For instance, level 1 Science is divided924

into major subcategories such as Branches of Sci-925

ence, Scientists, and History of Science at level 2.926

Among these, Branches of Science is further refined927

into Applied Science, Formal Science, and Social928

Science at level 3, which are then expanded into929

even more specific subcategories like Computer930

Science, Agronomy, Metrology, and Bioinformatics931

at level 4. As the levels progress, the structure cap-932

tures increasingly detailed semantic information,933

effectively fulfilling the criterion of Specificity. Ad-934

ditionally, the broad-to-specific hierarchical struc-935

ture of Wikipedia’s category tree naturally achieves936

Semantic Hierarchy.937

Implementation Details for Path. To utilize938

Wikipedia’s category tree, we employed Selenium5939

to recursively scrape the Wikipedia and extract the940

Wikipedia category tree. When linearizing the cat-941

egory hierarchy into a hierarchical category path,942

each category is connected using the delimiter >.943

The delimiter > is chosen among several candidate944

delimiters because it showed the highest seman-945

tic similarity to the natural language sentence “the946

right category is included in the left category”, as947

measured by Sentence-T5.948

Scalability of Our Backbone Hierarchy. We949

believe that Wikipedia’s category tree will func-950

tion effectively in most document retrieval sce-951

narios. This taxonomy was specifically designed952

to systematically categorize real Wikipedia docu-953

ments, which cover a wide range of domains and954

knowledge. Its broad and deep structure en-955

sures that it can encompass diverse domains ef-956

fectively, making it a strong backbone hierarchy957

for general-purpose retrieval systems.958

Adaptability of HYPE. However, we acknowl-959

edge that in more specialized domains—such as960

expert-driven fields like medicine, law, or scientific961

literature—the Wikipedia-based hierarchy may not962

5https://pypi.org/project/selenium/

Dataset # Docs # Train queries # Test queries

NQ320K 109,739 307,373 7,830
MS MARCO 323,569 366,235 5,187

Table 8: Statistics of the document retrieval datasets
used.

fully capture domain-specific semantics or catego- 963

rization needs. In such cases, the backbone hier- 964

archy may need to be replaced or augmented with 965

a domain-specific taxonomy better suited to the 966

task. We note that HYPE is compatible with this 967

setting: domain-specific taxonomies can be inte- 968

grated in a plug-and-play fashion. For example, 969

the domain taxonomy used for academic paper re- 970

trieval (Kang et al., 2024b) could be adopted as an 971

alternative backbone in that context. Furthermore, 972

if a well-defined taxonomy does not yet exist for 973

a specific domain, one can be constructed using 974

taxonomy induction methods (Zhang et al., 2018; 975

Lee et al., 2022). 976

A.4 Dataset Overview 977

In this work, we use NQ320K and MS MARCO. 978

For NQ320K, we follow NCI (Wang et al., 2022) 979

setup and adhered to the seen and unseen test 980

splits used in GENRET (Sun et al., 2023). For 981

MS MARCO, we construct dataset based on the 982

MSMARCO document ranking dataset, follow- 983

ing setups from Ultron (Zhou et al., 2022), GEN- 984

RET (Sun et al., 2023), and NOVO (Wang et al., 985

2023). Table 8 shows the statistical details of the 986

datasets used in our experiments. 987

A.5 Human Evaluation 988

We assess the quality of the generated explana- 989

tions by conducting a human evaluation, where we 990

compare the outputs of HYPE to other baseline 991

models using Amazon Mechanical Turk (AMT). 992

In this experiment, we use the title docid baseline 993

described in Section 4.1, and additionally include 994

BM25 as a baseline. which is capable of providing 995

explanations for its retrieval results by highlighting 996

the top-ranked terms contributing to the retrieval. 997

We ask human judges to evaluate each sample’s 998

explanations based on the following four criteria. 999

• Overall: Which retrieval system output better 1000

explains the retrieval process overall? 1001

• Specificity: Which retrieval system output pro- 1002

vides more specific information? 1003

• Reasonability: Which retrieval system output 1004

represents the retrieval process more logically 1005

and reasonably? 1006

13



• Comprehensiveness: Which retrieval system1007

output more comprehensively reflects the con-1008

tent of the document?1009

Note that our human evaluation involved a total of1010

300 human judges, with each sample being inde-1011

pendently evaluated by 3 different human judges.1012

This setting is designed by referencing previous1013

works that conduct human evaluation (Kim et al.,1014

2023; Lee et al., 2025). We show the interface for1015

the human evaluation in Figure 51016

A.6 Human Reranking1017

To evaluate whether explanations provided by1018

HYPE can help users more effectively identify rel-1019

evant documents in realistic search scenarios, we1020

conduct a human reranking experiment via Ama-1021

zon Mechanical Turk (AMT). We prepare two con-1022

ditions for comparison: (1) a title-only setting and1023

(2) a title+path setting, where the title is shown1024

along with a hierarchical category path explanation1025

generated by HYPE. For each query, five candidate1026

documents are shown in both conditions, with the1027

same title across settings; only the presence or ab-1028

sence of the category path differs, allowing for a1029

controlled comparison of explanation impact. We1030

randomly sample 100 query-document instances1031

from the NQ320K dev set where the title docid1032

baseline with HYPE successfully retrieves the gold1033

document within the top-5 results. Human judges1034

are asked to (1) rank the five candidates based on1035

their relevance to the query (i.e., human reranking),1036

and (2) indicate their confidence in the ranked list1037

using a 5-point Likert scale. Based on the collected1038

responses, we compute three metrics: Recall@1,1039

which indicates whether the gold document was1040

ranked first; MRR@5, which reflects how highly1041

the gold document was ranked; and Confidence,1042

which measures how certain participants are in1043

their rankings. This setup allows us to quantita-1044

tively assess whether the explanations produced1045

by HYPE improve both the accuracy and certainty1046

of user decisions in realistic, information-limited1047

search environments. We show the interface for the1048

human reranking in Figure 61049

A.7 Implementation Details1050

We use T5-base (Raffel et al., 2020) as our back-1051

bone model. For the input of the indexing task,1052

we utilize the FirstP approach as our document1053

representations (Section 2). Additionally, for the1054

indexing task, we employ five synthetic queries,1055

generated by using docT5query (Nogueira and1056

Lin, 2020) with nucleus sampling with parame- 1057

ters p = 0.8 and t = 0.8. We use new [DOC] 1058

token to separate the path from the docid, which 1059

we insert between the path and the docid. We op- 1060

timize our model as described in 3.2, while em- 1061

ploying AdamW optimizer with a learning rate of 1062

5e-4 and a batch size of 128, for up to 1M training 1063

steps. During the inference of HYPE, we adopt 1064

path-aware ranking strategy; for the path genera- 1065

tion stage, we generate three category paths (i.e., 1066

Kp = 3), and for the docid generation stage, we 1067

use constrained beam search with a beam size of 1068

100 (i.e., m = 100). To build the summary docid 1069

baseline and keyword docid baseline, we utilize 1070

the off-the-shelf text summarization model based 1071

on BART (Lewis et al., 2020) and the keyword 1072

extraction tool (Grootendorst, 2020). 1073

A.8 Analysis of Efficiency 1074

To quantify the inference cost introduced by gen- 1075

erating hierarchical category paths, we measure 1076

the average inference time per instance using an 1077

NVIDIA RTX 4090 GPU. Specifically, we com- 1078

pare two decoding settings: (1) decoding only the 1079

docid, and (2) decoding both the docid and a sin- 1080

gle hierarchical category path. Our results show 1081

that the additional decoding required for generat- 1082

ing a single path introduces only a marginal in- 1083

crease in inference time, demonstrating that HYPE 1084

’s explainability can be achieved with minimal effi- 1085

ciency loss. 1086

A.9 Prompt 1087

Table 9 shows the prompt used to construct the path 1088

candidate set for the document with LLM. 1089
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Prompt: Select candidate path set for document

You’re a taxonomy expert. You will receive a document along with a set of candidate taxonomy
hierarchy paths for the document. Your task is to select the path that can represent the document.
Exclude paths that are too broad or less relevant or contain too specific information such as
year.
You may list up to 3 paths, using only the paths in the candidate set. Do not include any
explanation.

<Document title>: {Document title}
<Document contents>: {Document contents}
<Candidate hierarchy paths>: {pre-candidate path set}
<Selected hierarchy paths>: {Candidate path set}

Table 9: The prompt for building final candidate path set.

Figure 5: Annotator interface of human evaluation on retrieval system output.
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Figure 6: Annotator interface of human reranking on retrieval system output.
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