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Abstract

Generative retrieval directly decode a docu-
ment identifier (i.e., docid) in response to a
query, making it impossible to provide users
with explanations as an answer for “why is
this document retrieved?”. To address this
limitation, we propose Hierarchical Category
Path-Enhanced Generative Retrieval (HYPE),
which enhances explainability by first gener-
ating hierarchical category paths step-by-step
then decoding docid. By leveraging hierarchi-
cal category paths which progress from broader
to more specific semantic categories, HYPE
can provide detailed explanation for its retrieval
decision. For training, HYPE constructs cate-
gory paths with external high-quality semantic
hierarchy, leverages LLM to select appropriate
candidate paths for each document, and opti-
mizes the generative retrieval model with path-
augmented dataset. During inference, HYPE
utilizes path-aware ranking strategy to aggre-
gate diverse topic information, allowing the
most relevant documents to be prioritized in
the final ranked list of docids. Our extensive
experiments demonstrate that HYPE not only
offers a high level of explainability but also
improves the retrieval performance.

1 Introduction

Information retrieval (IR) systems are essential for
helping users find proper information within vast
amount of online information. A fundamental task
of these systems is document retrieval, which fo-
cuses on searching for and ranking documents that
are relevant to a given query from a large document
corpus. Recently, generative retrieval has emerged
as a new paradigm in document retrieval. It aims to
directly generate document identifier (i.e., docid)
for a given query by leveraging pre-trained gener-
ative models such as BART (Lewis et al., 2020)
and T5 (Raffel et al., 2020). This paradigm enables
end-to-end optimization of the retrieval process,
allowing for fine-grained interaction between the
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Figure 1: Existing generative retrieval methods fail to
explain why specific documents are retrieved, as they
directly decode docid (Upper). In contrast, our HYPE
provides clear explanations by generating query-related
hierarchical category paths leading to the docid (Lower).

input query and docid, and significantly reduces
memory usage by leveraging the parametric mem-
ory of a single generative model.

Even with these advantages, generative retrieval
continues to face the challenge of determining how
to construct docid that effectively represent docu-
ments. As the docid serves as a representation of
the entire document, defining one that accurately
encapsulates the document’s contents is both cru-
cial and challenging. Existing works on generative
retrieval have categorized docid into two types: se-
mantic docid and lexical docid. A semantic docid
represents each document as a series of numbers
(e.g., 0-5-2), where each number indicates a cluster
index assigned over its dense representation. This
dense representation is encoded by a PLM-based
encoder (Devlin et al., 2019; Raffel et al., 2020)
and clustered using methods such as hierarchical
k-means (Tay et al., 2022; Wang et al., 2022) or
product quantization (Zhou et al., 2022). On the
other hand, lexical docid represents each document
as human-readable text, such as titles (Cao et al.,
2021), keywords (Zhang et al., 2023; Wang et al.,



2023) and pseudo queries (Tang et al., 2023).

However, both existing approaches still lack ex-
plainability, which remains a significant limita-
tion. For instance, in the upper part of Figure
1, two types of queries related to the same doc-
ument “Dubai”, are presented. While the existing
retrieval systems may return identifiers of relevant
documents such as the lexical docid (i.e., Dubai)
or semantic docid (i.e., 0-5-2), they fail to provide
an explicit explanation that aligns with the differ-
ent intention behind each query. Specifically, they
do not clarify why a particular document is re-
trieved for a specific query and fail to answer
the question, “why is this document retrieved?”.
The lack of explainability in retrieval systems is a
critical issue, as it can undermine the reliability of
retrieved documents and make it more difficult for
users to explore additional information related to
a specific query (Anand et al., 2022). To address
this aforementioned limitation, our research aims
to design a generative retrieval framework that can
provide retrieved document with clear and reason-
able explanations for a user’s query.

In this work, we propose Hierarchical Category
Path-Enhanced Generative Retrieval (HYPEj,
which enhances explainability by generating hi-
erarchical category paths step-by-step before de-
coding docid. Motivated by structured document
categorization systems, such as Wikipedia category
tree or Microsoft Academic taxonomy (Shen et al.,
2018), HYPE utilizes hierarchical category paths
as explanations, progressing from broad to specific
semantic categories. In the lower part of Figure 1,
when queries about document “Dubai” are given,
HYPE uses category paths like “Government >
Government by cities” or “Economy > Economy
by cities” to explain why document “Dubai” is re-
trieved for each query. This approach 1) enables
specific explanations for the document depending
on the query by using hierarchical category paths
that connect the query and the document, and 2)
provides more reasonable and insightful explana-
tion by reflecting the document’s semantic struc-
ture through a coarse-to-fine manner. Additionally,
HYPE 3) can employ effective ranking of the re-
trieved results by leveraging multiple paths, which
helps improve retrieval performance.

Specifically, HYPE consists of the following
three steps: 1) constructing category paths based
on an external semantic hierarchy and selecting
appropriate candidate paths for each document us-
ing Large Language Models (LLM), 2) building a

path-augmented dataset with candidate paths, and

3) optimizing a model with the path-augmented

dataset. During inference phase, HYPE conducts

a pseudo-reasoning process' by generating the hi-

erarchical category path step-by-step to decode do-

cid, allowing it to serve as an explanation which
enhances explainability. Additionally, HYPE em-
ploys path-aware ranking strategy, which simulta-
neously considers multiple pseudo-reasoning paths
for each query. This strategy helps build a more
robust retrieval system by capturing the semantic

information of multiple category paths, thereby im-

proving overall retrieval performance.

Our extensive experiments demonstrate that
HYPE not only offers a high level of explainabil-
ity but also improves the retrieval performance in
the document retrieval task. Additionally, HYPE
can be applied orthogonally to various docid types
(e.g., title, keywords), making it a versatile frame-
work that can be seamlessly integrated into differ-
ent generative retrieval systems. For reproducibil-
ity, our codes are publicly available at the anony-
mous github repository.”

We summarize our contributions as follows:

* We introduce HYPE, an explainable generative
retrieval framework that generates query-specific
hierarchical category paths for relevant docu-
ments before decoding their docid. These cate-
gory path enables the retrieval system to provide
users explanations of document retrieval.

* We propose a new ranking strategy called path-
aware ranking, which considers multiple cate-
gory paths simultaneously to determine the final
ranked list of docids.

* We empirically show that HYPE improves both
the explainability and accuracy of generative
retrieval across various docid types, making it
adaptable and easily integrable into different gen-
erative retrieval systems.

2 Preliminaries

In this section, we formally define the task of gen-
erative retrieval and explain its overall process and
relevant techniques.

2.1 Task Formulation

Given a corpus C = {D1, Ds, ..., D,} where D
represents a document, generative retrieval aims to
autoregressively generate the document identifier

'We describe this term in Appendix A.2.
Zhttps://anonymous.4open.science/r/HyPE-1B74



(i.e. docid) of the relevant document for a given
query. To this end, the model is optimized for
indexing task and retrieval task. The indexing
task involves taking a document as the input and
generating the corresponding docid, described by

M(d| D) =M d | D,dey), (D)

t=1

where MY is a generative model, D is a document,
d is the target docid, and n is the token length
of the target docid. The retrieval task focuses on
processing a query as the input and generating the
docid of a relevant document, described as follows:

M| q) =] M | q.der), (@

t=1

where ¢ is a query. In performing the aforemen-
tioned two tasks, it is crucial to address two key
aspects: 1) effectively represent the long document
D and 2) construct the docid d that captures the
overall semantic information of the document.

During inference, given an input query ¢, the
model produces a top-K ranked list of docids that
have the largest likelihoods M?(d | ¢). To en-
sure the generation of valid docids, the model em-
ploys constrained decoding, which mostly uses con-
strained beam search (Cao et al., 2021).

2.2 Document Representation and Identifier

Document representation. For the indexing
task, each document is used as the input. This
makes it crucial to define effective input represen-
tations of the long document while preserving as
much of its information as possible within the con-
text length of the language model. The primary
approaches to effectively representing documents
are FirstP (Tay et al., 2022) and Document as Query
(DaQ) (Wang et al., 2022). FirstP uses only the first
k tokens from the beginning of the document, while
DaQ randomly extracts chunks from the document.

Document identifier. To ensure that docid effec-
tively encodes semantic information of document,
a variety of approaches have been proposed. Docid
can be broadly categorized into semantic docid and
lexical docid. Semantic docid represents each doc-
ument as a series of numbers, where each number
corresponds to a cluster index derived from the doc-
ument’s dense representation. This dense represen-
tation is encoded by a PLM-based encoder (Devlin
et al., 2019) and mapped to discrete cluster indices

using methods such as hierarchical k-means (Tay
et al., 2022; Wang et al., 2022) or product quantiza-
tion (Zhou et al., 2022). Lexical docid is a textual
format designed to effectively convey the semantic
content of a document. It can be constructed using
various forms, such as the document’s title (Cao
et al., 2021), substrings (Bevilacqua et al., 2022),
keywords (Zhang et al., 2023; Lee et al., 2023;
Wang et al., 2023), URL (Zhou et al., 2022), and
pseudo query (Tang et al., 2023). Title and URL
are used as docid directly from the dataset. Sub-
strings are generated by the retrieval model using
an FM index (Ferragina and Manzini, 2000), which
creates specific n-grams within the document for re-
trieval. Keywords are extracted from the document
using methods such as TF-IDF (Robertson and
Walker, 1997), BM25 (Robertson and Zaragoza,
2009), or pre-trained language models (PLMs).
Pseudo query is generated using query generation
models, such as docT5query (Nogueira and Lin,
2020), which is then utilized as the docid.

2.3 Optimization and Inference

Optimization via multi-task learning. Given
a training dataset that consists of (query, docu-
ment, docid), denoted by X = {(¢, D, d)}, the
model is trained for both the indexing and retrieval
tasks, maximizing the likelihoods in Equations (1)
and (2), respectively:

max > MAID)+M(d]g) (3
(¢,D,d)ex

Indexing with synthetic query. In indexing task,
documents are long and contain extensive informa-
tion; however, in retrieval task, queries are rela-
tively short and request specific information. To
bridge this discrepancy, recent studies (Zhuang
et al., 2023; Wang et al., 2022; Sun et al., 2023)
have tried to integrate synthetic queries, gener-
ated by query generation models (Nogueira and
Lin, 2020), into the training phase. The synthetic
queries improve the retrieval performance of gener-
ative retrieval models by effectively reducing the
gap between queries and documents. Note that
these synthetic queries are treated as alternative
document representation, similar to FirstP and DaQ
mentioned in 2.2, and are used as input for the in-
dexing task (Zhuang et al., 2023; Sun et al., 2023).

3 Proposed Method

In this section, we present Hierarchical category
Path-Enhanced generative retrieval (HYPE),



[ 1) Candidate Path Set Construction

) Category Hierarchy (UAE) ..

=

[E5] D: Dubai is the most populous United Arab Emirates
. its economy relies on revenues from trade, .

‘.o.i
Select Appropriate Paths

Government > Government By Cities \ .

D
i Government > Leglslatures
Government| | Economy Linearize :

Topk ! LLM
7O B | o SeeeREy G

I
]
‘ | 1 O :
5 Government, Economy Financial Economy > Economy By Cities : |Economy > Economy By Cities :
Legisiatures| | "5y Gifies | | By Cities risk '_E_C_"P‘E'I‘X >Financialrisk J O iEsemempoShaesiabad 0K
Backbone Category Hierarchy Hierarchical Category Paths Latent Space Candidate Path Set
[ 2) Optimization with Path-Augmented Dataset I 3) Inference with Path-Aware Ranking ]
[EX] D: Dubai is the most populous city in UAE (United .. ’(-0_1- ;-:1- -D- :1;;,;): -(6; _p-z- 1:7-1;0_0_11;)~
Path docid  Score

Its economy relies on revenues from trade, tourism ...

Path-A ! Training Set i
c---- Candidate Path Set ----- 9 Goverment GDP 252 dac”_j S ) e
| P1: Government > Government By Cltles: Q1 Q1 P1, docid dubai 353 Aggrzgate dubai  -1.83 1
| P2: Economy > Economy By Cities 1 . o
VoDl Y Zeenam Yy oIes - & Q2 P2, docid Path docid  Score Rank P 252 2
Q1: When was Dubai founded? D P1, docid . trade  -5.12 3
Q2: What are the main economic sectors Q2 P2 D P2 docid Emnomy ubal Final Ranked Docid List
of Dubai? ’ o trade  -5.12
Training Set Queries Latent Space Optimize Retrieval Syst Ranked Docid List per Path

Figure 2: Overview of HYPE framework. (1) HYPE constructs category paths using an external high-quality
semantic hierarchy and employs LLM to select appropriate candidate paths for each document. (2) Then, HYPE
links queries to the paths based on semantic relevance to construct path-augmented training set, and uses this to
optimize the retrieval system. (3) During inference, HYPE employs path-aware ranking strategy to determine the

final docid ranking by considering multiple paths.

which improves explainability by generating hierar-
chical category paths step-by-step before decoding
docid. The overall framework is shown in Figure 2.

3.1 Candidate Path Set Construction

The first step of our HYPE framework is to con-
struct a set of candidate hierarchical category paths
for each document. To ensure explainability, these
paths should satisfy the following criteria: Seman-
tic Hierarchy, Generalizability, and Specificity (see
Appendix A.3 for details). To achieve this, we first
construct the high-quality backbone hierarchy for
category paths. Then, for each document, we (1)
filter out category paths based on semantic similar-
ity calculated by a pre-trained text encoder, and (2)
select several category paths that comprehensively
represent the content of the document while specifi-
cally addressing certain topics within the document
by the help of reasoning capabilities of LLM.

Hierarchical category path collection. In the
open-domain retrieval task, the category (or topic)
hierarchy must encompass both a broad range of
domain categories (i.e. width of tree) and sufficient
semantic granularity (i.e. depth of tree) to ensure
comprehensive and accurate retrieval system. To
this end, we leverage Wikipedia’s category tree
as our backbone hierarchy of categories, setting
the Main Topic classification category as the root
node of the hierarchy. This hierarchy is specifically
designed to systematically categorize “real-world
wikipedia documents”, which cover a wide range of
domains and provide specific and detailed semantic
information. Considering the vast and complex

nature of Wikipedia’s category tree, we limit the
scraping process to a depth of four to construct
our backbone hierarchy. Then, we linearize all the
paths within the hierarchy and convert them into a
sequence of strings, thereby enabling more efficient
processing and manipulation. The entire set of
linearized category paths is denoted by P. The
statistics of collected hierarchical category paths
are presented in Appendix A.3.

Candidate path set construction. Subsequently,
we utilize the knowledge of LLM to assign appro-
priate category paths to each document within the
corpus. However, due to the context length of LLM,
it is impossible to input all possible paths within
the category hierarchy (collected in Section 3.1).
Thus, we first filter out path set for each document
D by leveraging a bi-encoder. The pre-candidate
path set Pp is obtained as follows:

Pp = argTop-k sim(E(D), E(p)),  (4)
peEP

where E/(-) is the encoder, sim(-) is a cosine simi-
larity, and k is the number of pre-candidate paths
for each document. Then, given the document
D and its pre-candidate path set Pp, we leverage
LLM? to generate the final path set Pp, selecting
up to three paths that best represent the document.

3.2 Optimization with category path

The second step is to augment the training set X’
with path, building a path-augmented training set

3We use Llama-3-8B-Instruct (Dubey et al., 2024) as LLM.



Xt ={(q,p%, D,d)}. To achieve this, we first (1)
link each query to one of the document’s candidate
paths based on semantic similarity computed by
pre-trained encoder, and then (2) utilize the result-
ing query-path pairs together with the document-
path pairs to optimize the retrieval model.

Linking Path with Query. Using the candidate
path set for each document, we build a path aug-
mented training set X . For each query-document
pair in the training set (¢, D, d) € X, we link the
query q to its most relevant path among the paths in
the document’s candidate path set Pp. This linking
can be described as follows:

p? = argmax sim(E(q), E(p)), 5)
pPEPD

where p? is the path linked to the query ¢. This
process is then applied to all queries in the training
set. In the end, we construct the path-augmented
training set, denoted by X+ = {(q, p?, D,d)}.

Optimization. By leveraging the path-
augmented training set X, we train our
model M? on both indexing and retrieval tasks,
as described in 2.1. Our optimization follows the
same strategy as standard generative retrieval in
2.1, with the only difference being the addition of
path information as follows:

m@axZMe(pq,d | D) + Ma(pq7d lq) (6)

3.3 Inference with Path-Aware Ranking

During inference, HYPE generates the final ranked
list of docids through two stages: 1) path genera-
tion stage and 2) docid decoding stage. First, in the
path generation stage, our model MY generates up
to K, hierarchical category paths, each of which
is denoted by p; for j = 1,..., K, by using beam
search; these are query-specific hierarchical cate-
gory paths that encapsulate various topics related
to the given query. Next, in the docid decoding
stage, the model uses each generated hierarchical
category path as the decoder’s input context and
then applies constrained beam search to decode
m docids. For each path p;, the model outputs m
number of docid-score pairs as follows:

Yy ={(di,si) ~ M(- | q.p)}y, (D)

where s; represents the score for the docid d; con-
ditioned on the category path p;. The remaining
process is to aggregate K, number of docid-score

pair sets for making the final ranked list of docids.
At this point, we remain only unique docid with
the highest score, resulting in Y.

Y = {(d, s) | s = max{s'|(d, s) € Y;},¥(d,s) € U]K:ple}
3)

From the set of unique docid-score pairs, we ob-
tain the final ranked list by sorting their scores in
descending order, Yfna = sort(f/). By utilizing
path-aware ranking strategy, HYPE can effectively
capture the semantic information of an input query
from multiple category paths, leading to improved

retrieval performance.

4 Experiments

In this section, we design and conduct our experi-
ments to answer the following research questions:

* RQ1: Can HYPE improve retrieval accuracy?

* RQ2: Can hierarchical category paths in HYPE
serve as effective explanations for retrieval?

* RQ3: Can explanations of HYPE help real-
world users in search systems?

4.1 Experimental Settings

Dataset. We conduct our experiments on two
datasets, NQ320K (Kwiatkowski et al., 2019) and
MS MARCO (Nguyen et al., 2016), which have
been widely utilized in previous works (Tay et al.,
2022; Wang et al., 2022). For NQ320K, we divide
the test set into two subsets, seen and unseen, fol-
lowing the setup in (Wang et al., 2022; Sun et al.,
2023), where the seen test includes queries whose
annotated target documents are present in the train-
ing set, and the unseen test consists of queries with
no labeled documents in the training set. More
details are provided in Appendix A.4.

Evaluation Metrics. We report Recall and Mean
Reciprocal Rank (MRR) for NQ320K and MS
MARCO. For NQ320K, we use Recall@{1, 10,
100} and MRR@100. For MS MARCO, we use
Recall@{1, 10, 100} and MRR @10 as done in pre-
vious works (Sun et al., 2023; Wang et al., 2023).

Baselines. To validate the effectiveness of HYPE
across diverse generative retrieval settings, we
conduct experiments on four representative docid
types, introduced in Section 2.2, as our baseline.

« Title docid uses a document’s title as docid. For
documents without a title, we use the first 16
tokens of the document as a title, following the
approach used in (Sun et al., 2023).



Method Full test Seen test Unseen test
etho
R@1 R@10 R@100 M@100 Re@l1 R@10 R@100 M@100 Re@l1 R@10 R@100 M@100
Title docid 62.2 78.7 89.3 68.6 64.8 81.5 90.1 71.2 53.1 68.9 80.4 59.3
+ HYPE 63.6" 83.5" 90.1* 71.0* 66.4* 86.3" 92.6" 73.9* 53.7* 73.6" 81.7* 61.0"
Improvement +2.3% +6.1% +2.5% +3.5% +25% +59% +2.8% +3.8% +11% +68% +1.6% +2.9%
Keyword docid 61.8 77.1 85.5 67.6 67.3 82.3 89.9 73.0 43.0 59.0 70.4 48.8
+ HYPE 60.7 79.1* 86.2* 67.6 66.6 84.6" 90.7* 73.4* 40.1 60.2* 70.6* 475
Improvement -1.8% +2.6% +0.8% +0.0% -1.0% +2.8% +0.9% +0.5% 6.7% +2.0% +0.3% -2.7%
Summary docid 60.9 78.8 84.1 67.6 65.7 84.1 88.6 72.6 44.0 60.5 68.5 50.1
+ HYPE 61.5" 79.6* 85.2* 68.3" 66.3" 84.6" 89.8" 73.2* 44.8* 62.2* 69.4* 51.3*
Improvement +1.0% +1.0% +1.3% +1.0% +09% +0.6% +1.4% +08% +1.8% +28% +1.3% +2.4%
Atomic docid 65.3 83.5 89.3 72.2 70.2 83.3 93.5 77.2 48.6 66.8 74.9 55.0
+ HYPE 64.5 84.2* 90.2* 71.9 69.5 88.6" 93.8* 76.8 47.2 68.7* 77.6* 55.0
Improvement -12% +0.8% +1.0% -0.4% -1.0% +03% +0.3% -0.5% 29% +2.8% +3.6% +0.0%

Table 1: Retrieval accuracy of baselines and our HYPE framework on the NQ320K. * denotes the statistical

significance on paired t-test p < 0.05.

Method R@1 R@10 R@100 M@I10
Keyword docid 31.7 61.2 77.2 41.0
+ HYPE 32.2" 62.7" 78.5" 41.9"
Improvement +1.6% +2.5% +1.7% +2.2%
Summary docid 28.1 55.5 71.5 36.8
+ HYPE 28.4* 57.5* 73.1* 37.8*
Improvement +1.1% +3.6% +22% +2.7%
Atomic docid 439 73.6 85.6 53.8
+ HYPE 44.9* 74.6" 87.1" 54.7"
Improvement +23% +14% +18% +1.7%

Table 2: Retrieval accuracy of baselines and HYPE on
the MS MARCO. * denotes the statistical significance
on paired t-test p < 0.05.

* Keyword docid uses a sequence of keywords
as docid that effectively represent the document.
For NQ320K, we use 3 keywords, while for MS
MARCO, we extract 5 keywords.

* Summary docid uses the document summary as
docid. Although it has not been attempted before,
a similar structure using substrings is employed
in (Bevilacqua et al., 2022).

* Atomic docid uses a unique arbitrary integer as
docid. We assign each document a integer and
generates a corresponding new token for it.

We intentionally do not consider semantic docids
(+HYPE) in our experiments. This is because se-
mantic docids are constructed based on techniques
such as hierarchical clustering, and thus inherently
embed a semantic structure. Given that these struc-
tures are already formed in a coarse-to-fine manner,
prepending hierarchical category paths to them can
contradict the coarse-to-fine principle.

Furthermore, existing generative methods em-
ploy various architectures and optimization tech-
niques, which may introduce additional factors af-
fecting performance. To specifically assess the
impact of HYPE, we adopt the basic form of
generative retrieval described in Section 2 as

our baseline. This approach ensures a direct com-
parison between plain docids and those enhanced
with HYPE, isolating the effects of HYPE itself
from other architectural or optimization differences.
For more details, please refer to the Appendix A.7.

4.1.1 Implementation Details

We use T5-base (Raffel et al., 2020) as our back-
bone model. For the input of the indexing task, we
utilize the FirstP approach as our document repre-
sentations and five synthetic queries. (Section 2.2).
During the inference of HYPE, we generate three
category paths (i.e., K, = 3), and for the docid de-
coding stage, we use constrained beam search with
a beam size of 100 (i.e., m = 100). More details
about this part are provided in Appendix A.7.

4.2 HYPE improves retrieval accuracy (RQ1)

Table 1 shows retrieval accuracy of various docid
types with HYPE on NQ320K. Overall, HYPE
consistently improves retrieval accuracy across all
docid types in both seen test and unseen test. This
demonstrates that HYPE’s hierarchical category
paths can be orthogonally applied to enhance
retrieval accuracy across different docid types,
suggesting that integrating these paths into ex-
isting generative retrieval methods can further
improve performance. While HYPE can be ap-
plied to all docid types effectively, the experimental
results show that fitle docid yields the most signif-
icant performance improvement when HYPE is
applied. Our paths, serve as a pseudo-reasoning, al-
lowing the model to navigate step-by-step through
various semantic hierarchical categories before ar-
riving docid. Since titles are concise and inherently
reflect a structured overview of a document, they
aligns well with the HYPE’s hierarchical category
paths, further enhancing retrieval accuracy.
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Figure 3: Human evaluation of pairwise quality com-
parisons for retrieval explanations, generated by HYPE
and baseline models.

Additionally, to investigate whether our hierar-
chical category paths perform effectively on docu-
ments beyond Wikipedia, we conduct experiment
with MS MARCO. Table 2 shows that HYPE
consistently improves retrieval accuracy on MS
MARCO as well. Although the hierarchical cat-
egory paths are constructed using Wikipedia cat-
egory tree as the backbone, the consistent per-
formance gains on MS MARCO emphasize the
robustness and generalizability of HYPE. These
findings suggest that HYPE can be widely applied
to datasets across various domains in the future.

4.3 Hierarchical category paths serve as
effective retrieval explanations (RQ2)

We evaluate the explanatory quality of the hierar-
chical category paths of HYPE through a human
evaluation conducted via Amazon Mechanical Turk
(AMT). We ask three human judges per sample to
compare the quality of the explanations based on
four distinct criterias: overall, specificity, reason-
ability and comprehensiveness. Detailed descrip-
tions of the evaluation criteria and experimental
baselines are provided in Appendix A.S.

In Figure 3, HYPE outperforms both the title
docid baseline and BM25 across all criteria, receiv-
ing high scores for its overall explanation of the
retrieval process. Specifically, HYPE shows sub-
stantial margin of superiority in terms of specificity
and reasonability. This demonstrates that HYPE
provides clearer explanations of retrieval process,
as well as more logical and reasonable explana-
tion. Furthermore, HYPE beats other baselines
in comprehensiveness, indicating that its hierar-
chical category path is effective in explaining not
only narrow, specific details but also broader se-
mantic information. These results highlight that
HYPE’s pseudo-reasoning, which utilizes hier-
archical category paths, provides users with a
effective explanation of the retrieval process.

Baseline R@1 M@5  Conf.

Title Docid 19.7 479 4.0
+ HYPE 24.3 52.8 4.5

Improvement 23.7% 10.4% 12.0%

Table 3: Human reranking performance with and with-
out category paths on NQ320K dev set pairs where the
model retrieves the gold document in the top 5.

4.4 HYPE guides users in making better
search decision by explanations (RQ3)

In real-world search systems, users are typically
provided only with the document title and the first
few lines when deciding which result to open. We
investigate whether explanations of HYPE can help
users effectively identify relevant documents in
such real-world settings. To this end, we con-
duct a human reranking experiment via AMT using
the NQ320K dev set. Specifically, human judges
rerank the top-5 retrieved results by relevance and
rate their confidence (1-5) under two settings: title
only, and title with category path. With human-
reranking results, we measure performance with
Recall@1, MRR @5 and Confidence. Details of the
evaluation setup are provided in Appendix A.6.
Table 3 shows that offering hierarchical cate-
gory paths improve human reranking accuracy,
with Recall@1 improving by 23.7% and MRR @5
by 10.4%. This shows that the hierarchical cate-
gory paths, used as explanations in HYPE, help
real-world users better select relevant documents.
Additionally, Confidence also improves by 12.0%.
These results demonstrate that explanations of
HYPE provide users with clarity and guidance,
enabling not only more accurate selections but
also more confident decisions during search.

S Analysis

Case Study. Table 4 illustrates HYPE’s explana-
tions in cases where a single document is annotated
with multiple queries on different topics. For the
query “the core of the sun in which the sun’s ther-
monuclear energy is produced”, the model gener-
ates paths related to the universe and energy con-
version, clearly explaining the thematic relevance
between the query and the document. However, for
another query, “what stage of the star life cycle is
the sun in”, it generates a path related to stellar evo-
lution, which is different from the previously gen-
erated path but relevant to the query. This shows
that HYPE can provide effective explanations
to users by tailoring them to each query.



Document

Generated Category Paths for Each Query

Title: Sun

The Sun is the star at the center of the Solar System. ... The
core is the only region of the Sun that produces an apprecia-
ble amount of thermal energy through fusion; ... The Sun is
about halfway through its main-sequence stage, during which
nuclear fusion reactions in its core fuse hydrogen into helium.

Query 1: the core of the sun in which the sun’s thermonuclear
energy is produced takes up about

Generated Category Path: universe > energy > energy conversion

Query 2: what stage of the star life cycle is the sun in
Generated Category Path: nature > evolution > stellar evolution

Table 4: Example of the document annotated for multiple queries in the NQ320K dev set. The generative retrieval
model with HYPE generates query-specific category paths based on the topics of the document associated with each
query, explaining why the document is retrieved for the particular query.

Title Summary
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Figure 4: Performance changes of HYPE. The number
of decoded category paths to obtain a ranked docid list.

Analysis of Path-Aware Ranking. To validate
the effectiveness of path-aware ranking strategy,
we analyze the performance changes in retrieval
accuracy with respect to the number of hierarchi-
cal category paths considered by HYPE. Figure 4
presents the analysis results, showing that retrieval
accuracy improves as the number of paths increases
across all baselines. Notably, there is a clear perfor-
mance gap between the setting without path-aware
ranking strategy (i.e., K = 1) and with path-aware
ranking strategy (i.e., K > 2). These results in-
dicate that considering multiple paths through the
path-aware ranking strategy allows the most rel-
evant docids to be prioritized in the final ranked
list, thereby enhancing retrieval accuracy. However,
we observe that using too many paths eventually
leads to a plateau in performance improvement. Be-
yond a certain threshold, additional paths tend to
introduce noise or increase unnecessary complexity.
Consequently, using three paths achieves optimal
retrieval accuracy for most docid types.

Analysis of Efficiency. Providing explanations
in the context of generative retrieval inherently in-
creases inference cost, as it involves additional ex-
planation generation beyond the decoding docids
alone. Considering this, we conduct additional ex-
periments to analyze the impact of HYPE’s path
generation stage on inference cost. Table 5 com-
pares the average inference time per instance for
decoding only docids and decoding docids with
HYPE’s path generation stage. Details of the anal-
ysis setup are provided in Appendix A.8. Overall,

Docid Type Docid Only Docid + HYPE
Summary 0.8127s 0.9134s
Keyword 1.0389s 1.1402s

Table 5: Average inference time per instance for decod-
ing only docid vs decoding both docid and a single path.

when applying HYPE, the inference time increases
slightly compared to decoding only docids. Never-
theless, the hierarchical category path employed by
HYPE effectively enhances explainability and
retrieval accuracy by providing a structured and
step-by-step way to convey the connection between
queries and retrieved documents, while minimiz-
ing the additional computational cost inherently
involved in the explanation generation process.

6 Related Work

Generative retrieval leverages a single pre-trained
generative model, such as T5 (Raffel et al., 2020)
and BART (Lewis et al., 2020), to directly generate
document identifier (docid) relevant to the query,
enabling end-to-end optimization of the retrieval
process (Tay et al., 2022; Wang et al., 2022; Sun
et al., 2023; Wang et al., 2023; Zhang et al., 2023;
Zhou et al., 2022; Lee et al., 2023). Additionally, it
reduces reliance on external indexing, lowering the
system’s demand for storage resources. However,
existing generative retrieval methods directly gen-
erate the docid for a user’s query, making it difficult
to fully understand why the document is retrieved.

7 Conclusion

In this paper, we propose HYPE, a framework de-
signed to enhance the explainability of document
retrieval by utilizing hierarchical category paths.
Our experiments demonstrate that HYPE not only
enhances overall retrieval performance but also
helps users make more accurate decisions during
search by providing effective explanations. We
hope our research paves the way for meaningful
progress in the development of retrieval systems.



Limitations

Despite the promising results and contributions of
HYPE, our work has three key limitations stem-
ming from computational costs and budget con-
straints. First, we do not experiment with alter-
native backbone hierarchies beyond Wikipedia’s
category tree. While it is possible that domain-
specific taxonomies may further improve retrieval
performance in specialized settings, we consider
Wikipedia’s broad and deep hierarchy sufficient for
general-purpose document retrieval. Please refer to
Appendix A.3 for further discussion. Second, due
to cost and scalability constraints, we do not con-
duct human evaluations to assess how different path
depths affect the quality of the explanation. Instead,
we provide a limited analysis of explainability with
respect to path depth using STS score in the Ap-
pendix A.1. Third, we evaluate HYPE using a basic
generative retrieval setup (Section 2) to isolate its
effect. We do not incorporate advanced optimiza-
tion techniques or architectures from recent works,
which may further improve performance of HYPE.

Ethical Statement

This study strictly adhered to ethical guidelines
throughout the human evaluation and data usage
process. All content used in the human evalua-
tion and human reranking—including NQ320K
and Wikipedia documents—was publicly accessi-
ble and did not involve any private or proprietary
data. We did not obtain IRB approval for our study,
following precedents set by prior work (Kim et al.,
2023; Kang et al., 2024a) which conducted simi-
lar human evaluations without IRB oversight. We
ensure that no ethical concerns would arise during
the evaluation. The evaluation and reranking were
conducted on Amazon Mechanical Turk (AMT),
where all participation was anonymous and no per-
sonal information was collected at any stage. For
human evaluation, we hire three different judges
per instance from Amazon Mechanical Turk and
guarantee fair compensation for each judge. We
pay $0.15 for each unit task. Human judges were
fully informed about the task’s purpose, procedure,
and estimated time requirement before beginning
the task. Additionally, all examples were screened
to exclude offensive, hateful, or sensitive content
and were limited to socially and culturally neutral
topics. All datasets used in this study are publicly
available and appropriately licensed. Specifically,
the NQ dataset is distributed under the Apache 2.0

license, and the MS MARCO dataset is released
under the MIT license.
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A Appendix

A.1 Quantitative Analysis of Explainability

We quantitatively evaluate whether HYPE’s hier-
archical category path provides a valid explana-
tion by effectively capturing the semantic relation-
ship between the query and the document. To this
end, we use a semantic textual similarity (STS)
model (Agirre et al., 2012)* to measure the seman-
tic relevance between two sentences, evaluating
the semantic relevance between the query and ex-
planation, as well as between the document and
explanation. Specifically, for each baseline, we use
the model output as an explanation and calculate
the STS scores for both the query-explanation and
document-explanation pairs. We then compute the
geometric mean of these two scores to evaluate
how effectively the explanation captures the rela-
tionship between the query and the document. To
further analyze the role of hierarchical category
paths in explainability, we consider how varying
the maximum level of the paths impacts semantic
relevance. As mentioned in Section 3.1, HYPE
basically leverages Level 4 paths, but we also ex-
periment with varying the maximum level (e.g.,
Level 2, Level 3) to examine how the maximum
level of paths influences the explainability of the
query-document relationship. In addition, we also
include BM25 as a baseline, which is capable of
providing explanations for its retrieval results. For
the explanation of BM25, we consider the top-3
terms that have the highest BM25 scores calculated
between a given query and a document.

As shown in Table 6, applying HYPE improves
overall semantic relevance across all baselines.
This indicates that HYPE’s category path effec-
tively captures and explains the relationship be-
tween the query and the document. We note that
HYPE achieves higher overall relevance than the
term-matching method (i.e., BM25), further prov-
ing the validity of the HYPE’s category path as an
explanation. Moreover, maximum level of hierar-
chical category path significantly influences overall
semantic relevance. Specifically, paths with fewer
levels than the default level (level 4) fail to capture
sufficient semantic relevance between the query
and the document, resulting in limited explainabil-
ity. These results demonstrate that for category
paths to effectively serve as explanations, they must
achieve specificity necessary to sufficiently explain

“We use sentence-transformers/roberta-base-nli-stsb-mean-
tokens as STS model
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Semantic Relevance

Baseline

Query Document Overall
Title Docid 0.52 0.46 0.48
+ HYPE (Level 2)  0.49 0.51 0.49
+ HYPE (Level 3)  0.49 0.54 0.50
+ HYPE 0.50 0.56 0.52
Keyword Docid 0.42 0.54 0.47
+ HYPE (Level2) 041 0.56 0.47
+ HYPE (Level 3)  0.41 0.57 0.47
+ HYPE 0.43 0.58 0.49
Summary Docid 0.46 0.69 0.55
+ HYPE (Level2)  0.45 0.70 0.55
+HYPE (Level 3)  0.45 0.70 0.55
+ HYPE 0.45 0.71 0.57
BM25 0.56 0.31 0.42

Table 6: Semantic relevance between query/explanation
and document/explanation on 1,000 NQ320K dev set
pairs where each baseline successfully retrieves the rel-
evant document at rank 1.

specific and detailed semantic information, as men-
tioned in Section 3.1.

A.2 Pseudo-Reasoning

Generating the hierarchical path resembles step-by-
step reasoning. However, unlike natural language-
based reasoning in LLM, we use the term “pseudo-
reasoning” because the path structure is more akin
to pseudo-code.

A.3 Backbone category hierarchy

Criteria for Selecting the Backbone. To address
the criteria mentioned in Section 3.1—Semantic
Hierarchy, Generalizability, and Specificity—we
utilize Wikipedia’s category tree as the foundation
for our hierarchical structure, designating the Main
Topic classification category as the root node of the
hierarchy.

» Semantic Hierarchy: Are they semantically hier-
archical, allowing step-by-step progression in the
generation process to clearly represent a specific
semantic level?

* Generalizability: Are they able to provide seman-
tic information across a wide range of domains?

* Specificity: Are they capable of sufficiently ex-
plaining specific and detailed information?

Level2 Level3 Level 4
1,330 13,383 95,240

Total
109,993

Level 1
40

Table 7: Statistics of the used category hierarchy, show-
ing the number of nodes at each level (or depth).



Wikipedia category tree Overview. Wikipedia’s
category tree consists of 40 nodes at level 1, cover-
ing broad categories such as Business, Sports, Sci-
ence, Philosophy, Language, Health, Government,
Culture, and others. This feature of encompassing
a wide range of fields ensures that Wikipedia’s cat-
egory tree satisfies the criterion of Generalizability,
as it can be applied across various domains. More-
over, these broad categories are further subdivided
into increasingly specific subcategories as the level
increases. For instance, level 1 Science is divided
into major subcategories such as Branches of Sci-
ence, Scientists, and History of Science at level 2.
Among these, Branches of Science is further refined
into Applied Science, Formal Science, and Social
Science at level 3, which are then expanded into
even more specific subcategories like Computer
Science, Agronomy, Metrology, and Bioinformatics
at level 4. As the levels progress, the structure cap-
tures increasingly detailed semantic information,
effectively fulfilling the criterion of Specificity. Ad-
ditionally, the broad-to-specific hierarchical struc-
ture of Wikipedia’s category tree naturally achieves
Semantic Hierarchy.

Implementation Details for Path. To utilize
Wikipedia’s category tree, we employed Selenium’
to recursively scrape the Wikipedia and extract the
Wikipedia category tree. When linearizing the cat-
egory hierarchy into a hierarchical category path,
each category is connected using the delimiter >.
The delimiter > is chosen among several candidate
delimiters because it showed the highest seman-
tic similarity to the natural language sentence “the
right category is included in the left category”, as
measured by Sentence-T5.

Scalability of Our Backbone Hierarchy. We
believe that Wikipedia’s category tree will func-
tion effectively in most document retrieval sce-
narios. This taxonomy was specifically designed
to systematically categorize real Wikipedia docu-
ments, which cover a wide range of domains and
knowledge. Its broad and deep structure en-
sures that it can encompass diverse domains ef-
fectively, making it a strong backbone hierarchy
for general-purpose retrieval systems.

Adaptability of HYPE. However, we acknowl-
edge that in more specialized domains—such as
expert-driven fields like medicine, law, or scientific
literature—the Wikipedia-based hierarchy may not

>https://pypi.org/project/selenium/
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Dataset #Docs  # Train queries # Test queries
NQ320K 109,739 307,373 7,830
MS MARCO 323,569 366,235 5,187

Table 8: Statistics of the document retrieval datasets
used.

fully capture domain-specific semantics or catego-
rization needs. In such cases, the backbone hier-
archy may need to be replaced or augmented with
a domain-specific taxonomy better suited to the
task. We note that HYPE is compatible with this
setting: domain-specific taxonomies can be inte-
grated in a plug-and-play fashion. For example,
the domain taxonomy used for academic paper re-
trieval (Kang et al., 2024b) could be adopted as an
alternative backbone in that context. Furthermore,
if a well-defined taxonomy does not yet exist for
a specific domain, one can be constructed using
taxonomy induction methods (Zhang et al., 2018;
Lee et al., 2022).

A.4 Dataset Overview

In this work, we use NQ320K and MS MARCO.
For NQ320K, we follow NCI (Wang et al., 2022)
setup and adhered to the seen and unseen test
splits used in GENRET (Sun et al., 2023). For
MS MARCO, we construct dataset based on the
MSMARCO document ranking dataset, follow-
ing setups from Ultron (Zhou et al., 2022), GEN-
RET (Sun et al., 2023), and NOVO (Wang et al.,
2023). Table 8 shows the statistical details of the
datasets used in our experiments.

A.5 Human Evaluation

We assess the quality of the generated explana-
tions by conducting a human evaluation, where we
compare the outputs of HYPE to other baseline
models using Amazon Mechanical Turk (AMT).
In this experiment, we use the title docid baseline
described in Section 4.1, and additionally include
BM25 as a baseline. which is capable of providing
explanations for its retrieval results by highlighting
the top-ranked terms contributing to the retrieval.
We ask human judges to evaluate each sample’s
explanations based on the following four criteria.
* Overall: Which retrieval system output better
explains the retrieval process overall?
* Specificity: Which retrieval system output pro-
vides more specific information?
* Reasonability: Which retrieval system output
represents the retrieval process more logically
and reasonably?



* Comprehensiveness: Which retrieval system
output more comprehensively reflects the con-
tent of the document?

Note that our human evaluation involved a total of
300 human judges, with each sample being inde-
pendently evaluated by 3 different human judges.
This setting is designed by referencing previous
works that conduct human evaluation (Kim et al.,
2023; Lee et al., 2025). We show the interface for
the human evaluation in Figure 5

A.6 Human Reranking

To evaluate whether explanations provided by
HYPE can help users more effectively identify rel-
evant documents in realistic search scenarios, we
conduct a human reranking experiment via Ama-
zon Mechanical Turk (AMT). We prepare two con-
ditions for comparison: (1) a title-only setting and
(2) a title+path setting, where the title is shown
along with a hierarchical category path explanation
generated by HYPE. For each query, five candidate
documents are shown in both conditions, with the
same title across settings; only the presence or ab-
sence of the category path differs, allowing for a
controlled comparison of explanation impact. We
randomly sample 100 query-document instances
from the NQ320K dev set where the title docid
baseline with HYPE successfully retrieves the gold
document within the top-5 results. Human judges
are asked to (1) rank the five candidates based on
their relevance to the query (i.e., human reranking),
and (2) indicate their confidence in the ranked list
using a 5-point Likert scale. Based on the collected
responses, we compute three metrics: Recall@1,
which indicates whether the gold document was
ranked first; MRR @35, which reflects how highly
the gold document was ranked; and Confidence,
which measures how certain participants are in
their rankings. This setup allows us to quantita-
tively assess whether the explanations produced
by HYPE improve both the accuracy and certainty
of user decisions in realistic, information-limited
search environments. We show the interface for the
human reranking in Figure 6

A.7 Implementation Details

We use T5-base (Raffel et al., 2020) as our back-
bone model. For the input of the indexing task,
we utilize the FirstP approach as our document
representations (Section 2). Additionally, for the
indexing task, we employ five synthetic queries,
generated by using docT5query (Nogueira and

14

Lin, 2020) with nucleus sampling with parame-
ters p = 0.8 and £ = 0.8. We use new [DOC]
token to separate the path from the docid, which
we insert between the path and the docid. We op-
timize our model as described in 3.2, while em-
ploying AdamW optimizer with a learning rate of
5e-4 and a batch size of 128, for up to 1M training
steps. During the inference of HYPE, we adopt
path-aware ranking strategy; for the path genera-
tion stage, we generate three category paths (i.e.,
K, = 3), and for the docid generation stage, we
use constrained beam search with a beam size of
100 (i.e., m = 100). To build the summary docid
baseline and keyword docid baseline, we utilize
the off-the-shelf text summarization model based
on BART (Lewis et al., 2020) and the keyword
extraction tool (Grootendorst, 2020).

A.8 Analysis of Efficiency

To quantify the inference cost introduced by gen-
erating hierarchical category paths, we measure
the average inference time per instance using an
NVIDIA RTX 4090 GPU. Specifically, we com-
pare two decoding settings: (1) decoding only the
docid, and (2) decoding both the docid and a sin-
gle hierarchical category path. Our results show
that the additional decoding required for generat-
ing a single path introduces only a marginal in-
crease in inference time, demonstrating that HYPE
’s explainability can be achieved with minimal effi-
ciency loss.

A.9 Prompt

Table 9 shows the prompt used to construct the path
candidate set for the document with LLM.



Prompt: Select candidate path set for document

You’re a taxonomy expert. You will receive a document along with a set of candidate taxonomy
hierarchy paths for the document. Your task is to select the path that can represent the document.
Exclude paths that are too broad or less relevant or contain too specific information such as
year.

You may list up to 3 paths, using only the paths in the candidate set. Do not include any
explanation.

<Document title>: {Document title }

<Document contents>: { Document contents}
<Candidate hierarchy paths>: {pre-candidate path set}
<Selected hierarchy paths>: {Candidate path set}

Table 9: The prompt for building final candidate path set.

We are surveying qualities of document retrieval system's output.

Specifically, you'll be given a query, retrieved document's contents and retrieval system's output. Based on this information, you'll be asked to
compare which retrieval system's output is better, in terms of different perspectives.

Guidelines:
[Q1~4] Choose which retrieval system's output is better regarding the given perspective.

Query

${query}
Retrieved Document

${retrieved_document}

Output candidate 1 Output candidate 2
${output_ours} ${output_other}

Question 1. Which retrieval system output provides more specific information?
Question 2. Which retrieval system output more comprehensively reflects the document?

Question 3. Which retrieval system output represents the retrieval process more logical and reasonable?

Question 4. Which retrieval system output better explains the retrieval process overall?

Optional feedback? (expand/collapse)

Figure 5: Annotator interface of human evaluation on retrieval system output.
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Search Result Ranking Experiment

You will be presented with a search query and 5 search results.
Imagine you entered the given query into a search system, and rank each result based on how relevant the information
is to the query (1 being the most relevant, 5 being the least relevant).
Please assign ranks 1, 2, 3, 4, and 5 to the results. Duplicate ranks are not allowed.
After ranking all results, please rate your confidence in your ranking on a scale of 1-5:
1 - Not confident at all (I'm completely unsure about my ranking)
2 - Slightly confident (I have some doubts about most of my rankings)
3 - Moderately confident (I feel reasonably sure about my ranking choices)
4 - Very confident (I feel certain about most of my ranking decisions)

5 - Extremely confident (I'm absolutely certain about all my ranking choices)

Instructions:
1. Read the search query carefully.
2. Review all 5 search results.
3. Rank the search results by selecting numbers from 1 (most relevant) to 5 (least relevant).
4. Rate your confidence in your ranking on a scale of 1-5.

Search Query:
${query}

Search Results

Please rank these results from 1 (most relevant) to 5 (least relevant) by selecting a rank for each result

. Title: ${title_result_O}

g Title: ${title_result_1}

. Title: ${title_result_2}

. Title: ${title_result_3}

y Title: ${title_result_4}

Confidence Rating: How confident are you in your ranking?
O 1 (Not confidentatall) O 2 O 3 (Moderately confident) O 4 O 5 (Extremely confident)

Optional feedback? (expand/collapse).

Figure 6: Annotator interface of human reranking on retrieval system output.
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