From Sensing to Reasoning: Multi-Modal Large Language Models Guiding Robotic Intelligence in
Autonomous Labs

Self-driving labs (SDLs) and autonomous labs integrate Artificial Intelligence (Al), robotics, and analytics to
accelerate scientific discovery (Al4Science and Quantum; Kitchin). SDLs connect instruments, robotic systems,
and software within a closed-loop architecture characterized by the sequence: sense — reason — act. The primary
bottleneck in this process is not robotic movement, but rather the decision-making involved in interpreting
complex, multimodal signals under stringent protocol and safety constraints.
Traditional machine learning techniques are well-suited for narrow tasks such as object detection and tracking but
struggle with broader, integrative challenges. These challenges particularly involve the fusion of visual data,
textual information, and operational logs in alignment with the semantics of standard operating procedures. Large
Language Models (LLMs) offer a unifying, language-native layer. Multimodal LLMs are capable of interpreting
benchtop images, parsing lab notes, verifying procedural compliance, and articulating reasoning processes (Zhou
et al.; Guo and Wan). In a nutshell, LLMs can serve as protocol-aware reasoning copilots. By harmonizing
sensing and reasoning, LLMs enhance readiness checks, flag protocol violations in real time, and surface
uncertainties—ultimately accelerating experimentation while maintaining human oversight.
This study evaluates both open-source models—such as the LLaMA, Granite, Gemma, and Hermes families—and
proprietary models from the GPT family. Each model was prompted to analyze laboratory images and assess
experimental readiness. The GPT models outperformed open-source counterparts in tasks requiring visual
interpretation, such as detecting transparent bottles and counting objects, demonstrating performance advantages
of 5x and 3x over Granite and LLaVA models, respectively. These results are highlighted in Figure on the left
panel.
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However, as we see in the right panel bar chart, when tested across a broader range of laboratory
scenarios—including standard tasks, infeasible actions, and malicious instructions—the performance of the GPT
family declined. Despite their strengths in image-based tasks, none of the models exceeded 80% accuracy in
comprehensive assessments, and GPT models, in particular, underperformed relative to smaller open-source
models such as Hermes and Granite (2—3 billion parameters) in reasoning tasks. These findings suggest that while
proprietary models lead in perceptual accuracy, they may lag in real-world reasoning capabilities critical for SDL.
deployment.

Overall, our results underscore a significant limitation: LLMs currently lack the robust sensing and reasoning
integration required for reliable, autonomous decision-making in scientific laboratories. Existing research often
overlooks critical aspects such as protocol violations and action logging. To address this gap, future work should
focus on protocol-aware prompting, rigorous safety stress-testing, and real-time feedback loops to enhance model
reliability.

Importantly, our findings indicate that the development of entirely new Al systems is unnecessary. Instead, efforts
should focus on aligning existing LLMs with domain-specific requirements through collaboration with domain
experts. Crucially, LLMs in SDLs should not be regarded as fully autonomous controllers but rather as intelligent
assistants equipped with fallback mechanisms that defer to human expertise when needed—all while ensuring

real-time, low-latency performance.
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