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Abstract

Standard practice for using convolutional neural networks (CNNs) in semantic segmentation
tasks assumes that the image intensities are directly used for training and inference. In
natural images this is performed using RGB pixel intensities, whereas in medical imaging,
e.g. magnetic resonance imaging (MRI), gray level pixel intensities are typically used.
In this work, we explore the idea of encoding the image data as local binary textural
maps prior to the feeding them to CNNs, and show that accurate segmentation models
can be developed using such maps alone, without learning any representations from the
images themselves. This questions common consensus that CNNs recognize objects from
images by learning increasingly complex representations of shape, and suggests a more
important role to image texture, in line with recent findings on natural images. We illustrate
this for the first time on neuroimaging data of the developing neonatal brain in a tissue
segmentation task, by analyzing large, publicly available T2-weighted MRI scans (n=558,
range of postmenstrual ages at scan: 24.3 - 42.2 weeks) obtained retrospectively from the
Developing Human Connectome Project cohort. Rapid changes in visual characteristics
that take place during early brain development make it important to establish a clear
understanding of the role of visual texture when training CNN models on neuroimaging
data of the neonatal brain; this yet remains a largely understudied but important area of
research. From a deep learning perspective, the results suggest that CNNs could simply
be capable of learning representations from structured spatial information, and may not
necessarily require conventional images as input.

Keywords: Segmentation, convolutional neural networks, local binary patterns, texture,
neuroimaging, neonatal, developing brain.

1. Introduction

One widely accepted explanation of the effectiveness of convolutional neural networks (CNNs)
in classification and semantic segmentation tasks is the so-called shape hypothesis (Geirhos
et al., 2019); low-level shape features are combined in increasingly complex hierarchies until
the object can be readily classified or detected (LeCun et al., 2015). Whilst this hypoth-
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esis is supported by a number of empirical findings (Zeiler and Fergus, 2014; Ritter et al.,
2017), recent work in the machine learning literature suggests an important role for visual
texture in object recognition tasks. For instance, Brendel and Bethge showed that CNNs
can achieve high classification accuracy on the publicly available ImageNet (Russakovsky
et al., 2015) data in settings where the model is effectively constrained to recognizing local
textural patches (Brendel and Bethge, 2019). Recent analysis by Geirhos and colleagues
also supports this claim, and illustrates that ImageNet-trained CNNs are strongly biased
towards the recognition of textural representations as opposed to shapes; an observation
termed texture hypothesis by the authors (Geirhos et al., 2019). A preliminary study by
Pawlowski and Glocker also supports the texture hypothesis in the context of medical imag-
ing, and shows that textural information alone could indeed be sufficient for regression and
classification tasks when using T1-weighted brain MRI (Pawlowski and Glocker, 2019).

We contribute to the ongoing debate on the role of texture in deep learning within the
context of neuroimaging of the developing brain. This is an important medical application;
visual characteristics of neonatal and fetal brains are significantly different from those of
adult brains in terms of size, morphology, and white/gray matter intensities (Makropoulos
et al., 2018) à la visual shape and texture. Importantly, changes in visual characteristics
occur rapidly during brain development as a result of the continuous decrease of water
content within the brain and the process of myelination (Serag, 2013); Figure 1.

Figure 1: Axial slices from T2-weighted brain MRI scans of neonates, postmenstrual ages
at scan: 32, 34, 45, 38, and 40 weeks, respectively. Scans were obtained from the
publicly available dHCP neonatal data set. One can see changes in visual texture
rapidly taking place throughout brain development, e.g. as the brain matures,
occurrence of dark intensities present in white matter regions gradually increases.

Studies in the neuroimaging literature suggest that changes in brain texture that take
place during development are actually quantifiable. For instance, the developmental model
presented by Towes et al. (Toews et al., 2012) hypothesized the existence of distinctive
anatomical properties that can be localized in space and time, and can be used to represent
structural development in neonatal MRI; conventional scale-invariant features proposed in
(Lindeberg, 1998) and (Lowe, 2004) were used to successfully achieve this modeling. In fact,
3D scale-invariant features were recently shown to be incredibly powerful in capturing a key-
point signature ‘brainprint’ that could identify similarities in scans corresponding to unique
adult subjects despite ageing and neurodegenerative disease progression (Chauvin et al.,
2020), suggesting that both variations and consistencies in brain texture are quantifiable.
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In addition to modeling the healthy brain, quantifying image textural patterns has shown
success in the characterisation of pathology, as reported in a number of studies in paediatric
neuro-oncology (Gutierrez et al., 2014; Orphanidou-Vlachou et al., 2014; Fetit et al., 2015).
It is therefore important to establish a clear understanding of the role of visual texture
when training deep learning models on neuroimaging data of the developing brain.

Our analysis empirically shows that deep CNNs can be trained to a high level of accuracy
on complex neuroimaging segmentation tasks without being exposed to the underlying
imaging data, but rather to explicit representations of the image’s texture. We achieve this
by encoding the imaging data as visual textural maps using the computationally simple
Local Binary Patterns (LBP) algorithm (Ojala et al., 2002). We then train, validate, and
test the networks directly on the resulting encoded maps, in a tissue segmentation problem.
To this end, we use publicly available T2-weighted MRI scans of the developing neonatal
brain obtained retrospectively from the Developing Human Connectome Project 1 (dHCP)
cohort (Makropoulos et al., 2018; Bastiani et al., 2019).

2. Contribution and overview

This study is not the first to incorporate aspects of LBP with deep networks; work in the
remote sensing literature looked into using a two-stream strategy for designing a CNN, where
texture-encoded images were used as an additional stream that is fused with a standard
RGB image pathway (Anwer et al., 2018). Work in computer vision illustrated that CNNs
could be trained directly on LBP textural maps to achieve high levels of accuracy on face
recognition tasks (Zhang et al., 2017). State-of-the-art work proposed the notion of local
binary pattern networks, which uses binary operations as opposed to convolutions, and
illustrated its utility on optical character recognition tasks (Lin et al., 2019).

To the best of our knowledge, however, our analysis is the first to demonstrate that
CNNs could be used directly on explicit LBP textural maps in the complex task of image
segmentation of developing human brain tissues, and on neuroimaging datasets in general.
By developing accurate tissue segmentation models on explicit textural maps, the work
offers two contributions to the fields of neuroimaging and deep learning:

• Firstly, it takes a step towards understanding the role of visual texture when training
deep segmentation CNNs on heterogeneous neuroimaging data of the developing brain;
an important area of research that has not been previously explored.

• Secondly, it contributes to the understanding of the inner workings of CNNs by show-
ing empirical results that support the texture hypothesis, in line with recent findings
on natural images. Evaluating these results suggests that CNNs do not necessarily
require conventional images as input, and they may simply be capable of learning
representations from well-structured spatial information.

In this regard, it is important to stress that our focus is not necessarily on improving
segmentation accuracy using texture-encoding in this particular study, but rather to show
that it is possible to achieve good performance using only texture-encoded maps as input
to the CNNs for this complex neuroimage segmentation task.

1. developingconnectome.org
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3. Materials and Methods

3.1. Image acquisition and pre-processing

558 three-dimensional, T2-weighted MRI scans were obtained retrospectively from the pub-
licly available Developing Human Connectome Project (dHCP) neonatal cohort. Acquisition
was carried out using a 3T Philips scanner and following a protocol described in (Makropou-
los et al., 2018). Data was available in NIfTI format. Normalization of gray-level intensities
was carried out by ensuring zero-mean and unit-variance within each scan. The scans have
associated tissue labels that were generated using an automated segmentation pipeline. The
pipeline was specifically designed for neonatal brain MRI using the well-established Draw-
EM (Makropoulos et al., 2014) framework and was discussed in (Makropoulos et al., 2018).
The labels were used as ground truth annotations and can be summarized as follows: 1.
background (zero-intensity pixels), 2. cerebrospinal fluid (CSF), 3. cortical gray matter
(cGM), 4. white matter (WM), 5. background bordering brain tissues, 6. ventricles, 7.
cerebellum, 8. deep gray matter (dGM), 9. brainstem, and 10. hippocampus.

3.2. Structuring the dataset

Model-development set: 470 neonatal scans were included with the purpose of developing
and optimizing models capable of segmenting developing brain tissues. Of the 470 scans,
450 were assigned for model training and 20 were used for validation throughout the training
cycles. Subjects’ postmenstrual age range was 24.7-42.1 weeks for the training data, and
27.6-42.2 weeks for the validation data. Held-out test set: 88 additional scans were com-
pletely held out from the model-development set; postmenstrual range was 24.3-42 weeks.

3.3. Generating LBP texture maps

In essence, the LBP algorithm assumes that the visual texture of an image can be charac-
terized using two complementary measures: local spatial patterns and gray-level contrast
(Pietikäinen, 2010). LBP is intensity invariant and computationally simple. It first consid-
ers the neighborhood of a given pixel of interest; variations in pixel intensities and positions
then generate a systematic code that summarizes the local texture within the given pixel’s
neighborhood (Ojala et al., 2002). By computing a pixel-wise LBP code across the image
a local-texture map can be produced, where every unit of the map is a representation of
the spatial variation of intensities in the corresponding pixel’s local neighborhood on the
original image. The LBP code for a given pixel of interest can be formulated as:

LBP (xc, yc) =

P−1∑
p=0

f(ip − ic)2
p, (1)

where P is the number of sampling points, ic is the gray-level intensity of the pixel of inter-
est defined by coordinates (xp, yc), and ip is the gray-level intensity of the pth surrounding
pixel. The binary pattern f(x) is straightforward to compute:

f(x) =

{
1 if x ≥ 0
0 , otherwise

. (2)
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We applied uniform LBP operators to the original (pre-normalization) MRI scans using
a 3x3 pixel neighborhood offset2. Two versions of the maps were computed using radius
values of 1 and 10 pixels, respectively. Scikit-image’s local binary pattern module (Van der
Walt et al., 2014) was used to carry out the computations. The output of the algorithm is
an LBP map that has the same dimensions as the input image; see Figure 2.

Figure 2: (a) Example axial slices from a T2-weighted scan in the dHCP neonatal cohort,
(b) LBP map computed using a 1-pixel radius, (c) LBP maps computed using a
10-pixel radius, and (d) 10-class tissue labels generated by the dHCP structural
pipeline and used as ground-truth for training segmentation models.

3.4. Training deep segmentation CNNs

We used the open-source DeepMedic framework (v0.7.0) (Kamnitsas et al., 2017) to train 10-
class tissue segmentation networks using the tissue labels generated by the dHCP structural
pipeline as ground truth. DeepMedic uses multiple complementary pathways; the primary
one encodes local features, whereas the additional ones capture higher-level contextual
information (Kamnitsas et al., 2017). In our set-up, the primary pathway had 8 layers, and
each layer used a kernel dimension of 3x3x3. Residual connections were also used between
the following layer pairs: 4 and 3, 5 and 6, 7 and 8. Two parallel sub-sampling pathways
were used (8-layers deep); sub-sampling factors of [3, 3, 3] and [5, 5, 5] were applied along

2. Code is publicly available on Github.
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the [x, y, z] axes, respectively. Each of the training cycles comprised 100 epochs, each
consisting of 20 sub-epochs. In every sub-epoch, images were loaded from 5 cases, and 1000
segments were extracted in total. Training batch size was set to 5. Initial learning rate was
set to 0.001 and was halved at predefined points using a scheduler (epochs 17, 22, 27, 32,
37, 42, 47, 52). Changing the mean and standard deviation of training samples was carried
out in order to augment the dataset. Training was accelerated using an NVIDIA Tesla
K80 graphics processing unit (GPU). In order to quantify segmentation performance, Dice
similarity coefficient (DSC) was computed. When training directly on gray level intensities,
the normalized MRI scans were used.

4. Results and Discussion

4.1. Results on validation data

When applied on the 20 full scans in the validation set, the model trained directly on gray
level intensities achieved the following per-class DSC values across all subjects:

DSC: [ 0.9903, 0.8954, 0.9207, 0.9356, 0.8765, 0.7719, 0.8893, 0.9243, 0.9058, 0.7470 ].

This made use of labels generated by the well-validated dHCP structural pipeline in place
of ground truth annotations. The DSC values corresponded to the following 10 classes:

Classes: [ zero-intensity background, CSF, cGM, WM, background bordering brain tis-
sues, ventricles, cerebellum, dGM, brainstem, hippocampus ].

Evaluating the validation DSC values computed from output of the CNN trained on 10-pixel
radius LBP maps showed that it achieved comparably high segmentation performance on
the texture-encoded version of the data, specifically for the zero-intensity background, CSF,
cGM, WM, ventricles, cerebellum, and dGM classes; the DSC values were only 1%-4% lower
than those achieved with the T2-weighted scans. Performance on the background bordering
brain tissues, brainstem and hippocampus tissues was also good, but lower by 5% - 11%
than that achieved using the T2-weighted scans:

DSC: [ 0.9841, 0.8776, 0.8804, 0.9160, 0.8285, 0.7443, 0.8643, 0.8873, 0.8476, 0.6374 ].

Vis-à-vis the CNN trained on 1-pixel radius maps, the network still maintained high DSC
values on validation data, albeit showing a substantial drop for the brainstem and hip-
pocampus tissue classes:

DSC: [ 0.9781, 0.8573, 0.8865, 0.9128, 0.7867, 0.6680, 0.7034, 0.7692, 0.5408, 0.0026 ].
Note that for all three CNNs, inference was carried out on corresponding version of the
data, e.g. the network trained on 1-pixel radius maps was validated on the 1-pixel radius
map versions of the validation-set.
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4.2. Results on held-out test data

We then evaluated the performance of the three models on 88 volumes in a completely
held-out test set (example, see Figure 3). The results showed that all three CNNs achieved
high DSC values on data completely unseen by the models before test time, with the excep-
tion of the brainstem and hippocampus tissue classes when 1-pixel LBP map CNN was used:

Using gray level intensities:
DSC: [ 0.9919, 0.9196, 0.9376, 0.9525, 0.8921, 0.8043, 0.9319, 0.9357, 0.9183, 0.7804 ].
Time for testing process: 11,193 seconds.

Using 10-pixel radius LBP maps:
DSC: [ 0.9869, 0.8825, 0.8949, 0.9221, 0.8458, 0.7610, 0.8954, 0.8926, 0.8377, 0.6505 ].
Time for testing process: 10,807 seconds.

Using 1-pixel radius LBP maps:
DSC: [ 0.9823, 0.8688, 0.9038, 0.9232, 0.8104, 0.6692, 0.7435, 0.7894, 0.5319, 0.0019 ].
Time for testing process: 11,101 seconds.

4.3. Discussion

Visual inspection of the results suggested that the CNN trained on 10-pixel radius LBP maps
resulted in relatively more smooth segmentation maps compared to the one trained with
1-pixel maps; this indicates an element of trade-off between the complexity of the computed
LBPs and how refined the segmentation output is. Additionally, the drop in performance on
the hippocampus and brainstem classes when using 1 pixel radius as opposed to 10 suggests
that the choice of granularity of the textural maps also has a direct effect on capturing
changes in intensity within the classes of interest. Nevertheless, the performance of all
three networks appeared invariant to PMA at scan, despite differences in texture and shape
patterns across scans that belong to different ages.

Figure 3: Example segmentation performance on (a) T2-weighted axial slice, using CNNs
trained with (b) gray level intensities, (b) LBP maps computed using a 10-pixel
radius, and (d) LBP maps computed using a 1-pixel radius.

To the best of our knowledge, the findings are the first to show that deep CNNs could
be trained directly on textural maps to achieve successful segmentation performance on the

7



Training segmentation networks on texture-encoded input

highly heterogeneous neonatal brain MRI data; these findings are also the first to show this
on neuroimaging datasets in general. From a neuroimaging perspective, this is a crucial
first step towards understanding the role of visual texture when training deep segmentation
models on datasets of the developing brain. From a deep learning perspective, the findings
question common consensus that CNNs perform well in computational perception tasks
by learning complex shape hierarchies, and suggest a more important role to texture, at
least in semantic segmentation tasks. Additionally, and since each unit on an LBP map
is a representation of the textural neighborhood for the corresponding pixel in the original
image, achieving segmentation success on LBP maps suggests that CNNs could simply be
capable of learning representations from structured information, and do not necessarily
require conventional images as input; an interesting area to explore in future work.

In terms of future work, it will also be interesting to explore whether the findings can
generalize to other measures of texture, or whether they are specific to the LBP algorithm.
Additionally, exploring the use of shape filters will be a natural next step. Further, it will
be interesting to vary the complexity of the segmentation task by experimenting with more
detailed segmentation maps that are also publicly available from dHCP, as exploring the
relationship between the complexity of the segmentation task and the radius of the textural
neighbourhood could give further interesting insights.

Having explicit textural and shape inputs to a CNN directly links to an active area
of research referred to as representation disentanglement; please refer to the work by van
Steenkiste for an empirical study on the topic (van Steenkiste et al., 2019), albeit not
on textures. If disentangling the type of representations learned by complex networks
could be carried out easily, this may have a direct impact on model performance when the
training data is perturbed or when the application domain is shifted, potentially resulting in
improved robustness against changes in gray level intensities, image acquisition protocols,
or scanner hardware. Exploring this application within the context of developing brain MRI
will drive our further future efforts.

5. Conclusion

We illustrated the feasibility of training deep segmentation CNNs on texture encoded in-
put, using the computationally simple LBP algorithm, on heterogeneous MRI scans of the
developing neonatal brain.
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