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Abstract

Signal peptides (SPs) are short sequences at the N terminus of proteins that control
their secretion in all living organisms. Secretion is of great importance in biotech-
nology, as industrial production of proteins in host organisms often requires the
proteins to be secreted. SPs have varying secretion efficiency that is dependent
both on the host organism and the protein they are combined with. Therefore, to
optimize production yields, an SP with good efficiency needs to be identified for
each protein. While SPs can be predicted accurately by machine learning models,
such models have so far shown limited utility for predicting secretion efficiency.
We introduce SecretoGen, a generative transformer trained on millions of naturally
occuring SPs from diverse organisms. Evaluation on a range of secretion efficiency
datasets show that SecretoGen’s perplexity has promising performance for selecting
efficient SPs, without requiring training on experimental efficiency data.

1 Introduction

Signal peptides (SPs) are short N-terminal sequences that target proteins to the secretory pathway and
are found in all living organisms. They are of great importance to protein biology and engineering
as they form the main mode of exporting proteins from the cell, so that e.g. enzymes, signalling
molecules or antibodies can fulfill their function in the cell’s environment. SP-mediated protein
secretion is a multi-step process that depends on many different binding partners that together form
the secretory pathway. The success of the process relies on the SP having a biochemical structure
that facilitates recognition by all binding partners [1].

Given the evolutionary divergence of organisms, these structural requirements differ with increasing
evolutionary distance. It has been known for a long time that there are systematic differences between
groups of organisms [2, 3]. Also within a single organism SP structural requirements are not universal,
as the SP needs to be compatible with the sequence of the mature protein [4]. When industrially
producing a protein of interest in a host organism, an SP needs to be found that results in efficient
expression (Figure 1), so that manufacturing is both ecologically and commercially viable.

The underlying biology of this compatibility remains elusive, and available experimental data that
combines SPs with various proteins has so far proven too limited to learn to predict compatibility in a
generalizable way. However, positive data – in the sense of SP-protein pairs that result in secretion –
can be observed in nature, as any naturally occurring combination can be assumed to have evolved
to sufficient efficiency for expressing the protein at the needed level to be viable. We therefore
investigate using generative neural networks to learn the conditional distribution of SPs from positive
data only, and explore their applicability for the efficiency prediction problem.
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Figure 1: The signal peptide engineering problem. Given a protein to be produced, a signal peptide
that results in high secretory expression yields needs to be found.

In summary, we introduce

• SP efficiency prediction as a ranking problem, using four experimental datasets for
evaluation.

• SecretoGen, a 270 million parameter conditional generative transformer trained on 4.9
million predicted SPs.

2 Related works

Barash et al. [5] pioneered the field of generating secretion-optimized SPs by training a hidden
Markov model capable of predicting SP sequences on 416 human samples. Some generated SPs
improved secretion of a model protein compared to natural SPs. Wu et al. [6] proposed to frame
SP generation as a sequence-to-sequence task, conditioning on the mature protein sequence and
generating a corresponding SP autoregressively. Their SPGen model was trained on 25,000 reviewed
sequences from UniProt. 48% of the model-generated SPs were found to be functional in B. subtilis.

3 Methods

3.1 Data

Training data UniProt [7] contains 3,827 experimentally verified SPs. As this number is rather
limited for training generative models, we augment the data by predicting UniProt reference proteomes
using SignalP 6.0 [8]. In total, we obtain 4,940,012 protein sequences paired with SP sequences from
11,097 organisms. Detailed data processing is laid out in A.1.

Efficiency data We curate data from four experiments [6, 9, 10, 11] that experimentally measured
the secretion efficiency of SPs for selected proteins in suitable host organisms (Table 1). We focus
on studies that have at least 100 measurements available within a single experiment. While there
are more studies available that measured secretory yields of different SPs, many are not reusable for
modeling purposes due to the used protein sequences not being reported [12, 13, 14]. For brevity,
studies are referred to by their first author name throughout this work.

Table 1: Benchmark sets for SP efficiency prediction.

Name Count Label Organism Protein Origin of SP sequences

Grasso et al. [9] 4,421 Enrichment B. subtilis alpha-Amylase
from B. amyloliquefaciens Natural and mutants

Wu et al. [6] 162 Binary B. subtilis various enzymes Natural and model generated

Xue et al. [10] 322 Extracellular Yield S. cerevisiae alpha-Amylase
from A. oryzae Natural

Zhang et al. [11] 114 Extracellular Yield B. subtilis Xylanase from B. pumilus Natural
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3.2 Zero-shot efficiency prediction

Ultimately, generative SP models should be capable of designing novel SPs with good protein yields.
However, as this requires experimental validation, it is impractical during model development and
can become a limiting factor. We instead propose to focus on the problem of predicting efficiency,
as this can be evaluated on existing datasets. We frame this as a ranking problem: given a list of
candidate SPs for a protein, predict scores to order the SPs by efficiency. Performance is evaluated as
the Spearman rank correlation coefficient (ρ). In cases where efficiency labels are binary (secretion
successful/failed), we compute the area under the receiver operating characteristic curve (AUC).

3.3 Baseline methods

While this work is the first to propose SP ranking as a task, there are available methods that are
amenable to the problem. Firstly, there are SP predictors, algorithms that detect SPs in natural protein
sequences. While they are not trained to predict efficiency, their SP probability can still be used as a
baseline, as it is capable of prioritizing true SPs over other, non-SP sequences. SP predictors have
proven useful for some engineering applications [15]. We choose SignalP 5.0 [16] and 6.0 [8] as
representative methods. Autoregressive protein LMs (pLMs) can score the perplexity of input amino
acid (AA) sequences. In such models, the SP-protein compatibility problem is therefore phrased as a
generic "N terminus - mature protein" likelihood. We benchmark ProGen2 [17], the largest available
autoregessive pLM (A.3). Lastly, SPGen can be used to compute perplexities of SPs given a protein.

3.4 The SecretoGen model

We aim to model the conditional likelihood of SPs given a protein of interest and a host organism. To
this end, we train a generative sequence-to-sequence transformer that conditions on the AA sequence
m of the protein of interest and a token o denoting the organism. For an SP AA sequence x of
length N , the conditional likelihood p(x|m, o) is factorized autoregressively over the SP’s sequence
x, conditioning the probability of the next AA xi+1 on all its preceding AAs x≤i.

p(x|m, o) =
1

N

N∑
i=1

log p(xi+1|x≤i,m, o) (1)

We achieve this by introducing an organism embedding layer (Emb) that maps the organism of a
sequence to a learned vector representation. This vector then serves as the first input to the decoder
(Dec) which generates the SP sequence. The protein sequence is processed by the encoder (Enc). The
likelihood p(xi+1|x≤i,m, o) of the AA at position i+ 1 is thus computed as

p(xi+1|x≤i,m, o) = Dec(x≤i,Emb(o),Enc(m)) (2)

We use a standard transformer [18] with 12 encoder and 12 decoder layers and a hidden dimension
of 1024 for all our experiments. We exploit the fact that organisms are related by evolution, rather
than just constituting categorical labels, and embed organisms in a hierarchical manner for more
efficient sharing of information between different organisms. We learn embeddings for 8 levels L
of the taxonomy tree (Superkingdom, Kingdom, Phylum, Class, Order, Family, Genus, Species) and
compute the organism embeddings that are used for conditioning as their sum (A.2). All taxonomy
level embeddings el are randomly initialized and learned during training.

Emb(o) =
L∑

l∈L

el (3)

SecretoGen’s parameters θ are optimized using the next token prediction objective on the train set of
naturally evolved {x, m, o} triplets predicted from UniProt.

Loss (x) = −
N∑
i=1

log pθ(xi+1|x≤i,m, o) (4)
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Table 2: SecretoGen ablation models. x = SP, m = mature protein, o = organism.

Model Mature protein Organism ID Test perplexity ↓
p(x|m, o) Yes Yes (8 levels) 9.40
p(x|m, osimple) Yes Yes (1 level) 9.49
p(x|o) No Yes 9.67
p(x|m) Yes No 9.74
p(x) No No 10.12

4 Results

4.1 Including the organism of origin improves SP language modeling performance

We first investigate whether the learned distribution of SPs x is indeed conditional on a) the protein
sequence m and b) the organism o. We train ablations of the SecretoGen model and evaluate the
perplexity of the held out test sequences. The model that conditions on both m and o has the lowest
perplexity, indicating that these two sources of information are useful for capturing the distribution of
SPs (Table 2). Encoding organisms as multiple levels of the taxonomy tree outperforms using the
species ID (=one level) only.

4.2 Zero-shot secretion efficiency prediction

We evaluate the SecretoGen model with full conditioning information and all baseline models on the
SP ranking benchmark datasets. SecretoGen’s perplexity shows the highest performance for ranking
SPs by efficiency on three out of four datasets (Table 3). When evaluating ProGen2 and SPGen, we
find that different model checkpoints show inconclusive performance, with no checkpoint clearly
outperforming another. Surprisingly, except on the Wu dataset, all evaluated models perform better
than random, without having been trained on efficiency data.

Performance varies by dataset, with SecretoGen performing strongly on Grasso, but only weakly on
Zhang, even though both datasets are in B. subtilis. Closer inspection of the quantitative datasets
reveals that both Grasso and Xue exhibit a bimodal distribution of efficiency values, with the lower
mode representing SPs that result in poor secretion (Figure A3). In Zhang, which is the smallest
dataset, this bimodality is less pronounced. SecretoGen ranking performance is to a large part driven
by assigning high perplexity to sequences in the low-efficiency mode, thereby partly acting as a filter
that discards low-efficiency SPs. If less low-efficiency SPs are present in a dataset, performance is
expected to be of the order observed on Zhang.

Table 3: Zero-shot SP efficiency prediction performances. We use perplexities or classifier probabili-
ties for ranking, and evaluate correlation of the ranked list with ground truth experimental efficiency.
ρ = Spearman’s rank correlation coefficient, AUC = Area under the receiver operator characteris-
tic curve. Perplexities are inverted for computing ρ and AUC. Multiple available checkpoints are
evaluated for ProGen2 and SPGen.

Model Quantitative datasets ( ρ ↑) Qualitative datasets (AUC ↑)

Grasso Xue Zhang Wu

Classifiers SignalP 6.0 0.34 0.21 0.21 0.37
SignalP 5.0 0.57 0.27 0.14 0.70

Generative pLMs

ProGen2 (base-fwd) 0.37 0.35 0.17 0.54
ProGen2 (large-fwd) 0.51 0.29 0.15 0.53
ProGen2 (xlarge-fwd) 0.56 0.37 0.17 0.53
ProGen2 (base-rev) 0.46 0.39 0.05 0.48
ProGen2 (large-rev) 0.43 0.44 0.04 0.47
ProGen2 (xlarge-rev) 0.46 0.43 0.01 0.51

Generative SP LMs

SPGen (75) 0.29 0.30 0.10 0.51
SPGen (90) 0.29 0.16 0.28 0.54
SPGen (95) 0.16 0.24 0.18 0.57
SPGen (99) 0.23 0.24 0.18 0.48
SecretoGen 0.61 0.49 0.24 0.70
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5 Discussion

We introduce SecretoGen, a conditional generative model of naturally occurring SPs. Our results
confirm that when modeling SP sequences, it is beneficial to take both the mature protein sequence
and the organism into account. We show that training on predicted data is a viable strategy, and that
the distribution of naturally occurring SP-protein pairs encodes information about efficiency. While
SecretoGen performs better than previous approaches at zero-shot efficiency prediction, we note
that overall, the achieved performance level is still modest. Presumably, further improvement of
performance is needed so that SP selection efforts for protein production applications can be guided
by SecretoGen.

A remaining limitation of the secretion efficiency benchmark collection is that it only covers two
host organisms. While S. cerevisiae and B. subtilis are two of the most popular microbial secretory
expression hosts, other relevant systems such as CHO for mammalian proteins are missing as we
could not identify any study with publicly available data of the required scale. Moreover, for two of
the benchmark datasets, the recombinant problem could be considered comparably mild, as the target
proteins are from the same Bacillus genus as the expression host.
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A Appendix

A.1 Data

A.1.1 Training data

UniProt [7] contains 3,829 experimentally verified signal peptides as of release 2022_04. While this
is sufficient for training discriminative classifiers with good performance, it makes a rather limited
dataset for generative modeling, even more so when the aim is to model the differences between
varying species. To overcome the scarcity of experimental data and enable coverage of many species,
we instead augment the data by predicting UniProt reference proteomes using SignalP 6.0 [8]. From
the reported performance, we expect a false positive rate of 5-15% for the main SP class Sec/SPI,
depending on the organism group, which we consider acceptable for training generative models.
Throughout the paper, the term SP refers to the class Sec/SPI. We predict signal peptides in the
archaeal, bacterial and eukaryotic reference proteomes from UniProt release 2022_05. In total, we
obtain 4,940,012 sequences with signal peptides for 11,097 organisms. We use MMseqs2 [19] to
cluster the data at 30% identity and split it into 20 partitions, balancing for the organisms. We train
on 18 partitions and validate and test on the remaining two, corresponding to a 90/5/5 split. While
this is not a homology split in the strict sense, as there can be identities higher than 30% between
members of two different partitions, it still minimizes train-test homology overlap compared to
random approaches. We opt for MMseqs2 clustering because exact partitioning approaches scale
poorly to a dataset of this size and overestimation of performance is less of a concern for LM
perplexity metrics, compared to supervised models on smaller downstream task datasets.

We trim proteins to their first 120 N-terminal amino acids for training and testing SecretoGen.

A.1.2 Efficiency datasets

Grasso et al. The Grasso [9] dataset contains high-throughput measurements of 4,421 SPs with B.
amyloliquefaciens α-Amylase expressed in B. subtilis. Efficiency was scored as a unitless enrichment
metric based on high throughput sequencing of fluorescence-sorted constructs.

We obtained the train and test data of the Grasso et al. random forest efficiency predictor from
the supplementary materials and extracted the mature protein sequence with correct N terminus
from the provided G1 sequence (AmyQ, P00692). G1 excludes the 3 native mature n-terminal AAs
valine-asparagine-glycine, as these positions form part of the library and are varied in each SP-protein
construct. Insertion of SPs with BsmBI directly fuses them to the N terminus of the protein sequence.
In this dataset, a low WA (weighted average of fluorescence bins) value indicates a high secretion
efficiency. In order to match other efficiency metrics, where a higher value indicates higher efficiency,
we inverted WA as WA′ = 10− WA.

Wu et al. The Wu [6] dataset contains 162 measurements of generated and natural SPs in combi-
nation with various enzymes, expressed in B. subtilis. Efficiency was determined as a binary value
based on fluorescence assays on culture supernatants, indicating whether an SP resulted in secretion
or not.

Synthetic SP and mature protein sequences were obtained from the provided supplementary tables.
AprE, LipB, YbdG, YkvV and YvcE SP sequences were sourced from Zhang et al. [11], as referred
to in the paper. For AprE, we follow Zhang et al. and Brockmeyer et al. [12] and keep a valine at
position -3 (UniProt lists an alanine for -3). The YcnJ SP sequence was not found in Zhang et al.
and sourced from UniProt. A glycine-alanine linker was added to the N terminus of mature protein
sequences. Efficiency data was obtained from the swarmplots provided in the supplement.

Xue et al. The Xue [10] dataset contains 322 measurements of natural SPs with A. oryzae α-
Amylase expressed in S. cerevisiae. Efficiency was determined as units/mL using a fluorescence
assay of the supernatant.

SP sequences, the α-Amylase sequence and efficiency data were obtained through communication
with the authors.
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Table A1: Performance of perplexity and length bias corrected perplexity.

Metric Grasso Xue Zhang Wu

Perplexity 0.61 0.49 0.24 0.70
Z-scored perplexity 0.63 0.49 0.25 0.58

Zhang et al. The Zhang [11] dataset contains 114 measurements of of natural SPs with B. pumilus
α-Amylase expressed in B. subtilis. Efficiency was determined as units/mL using a fluorescence
assay of the supernatant.

SP efficiency data was downloaded in curated format from SPSED [20]. We followed the cloning
protocol to derive the mature protein sequence. Starting from Xylanase sequence KU301789, we
aligned the Xyn-Up primer to remove the native SP. Xyn-Up adds an EcoRI restriction site upstream
of the protein. Complementarily, SPs are amplified using primers that add an EcoRI site downstream
of the SP. The full constructs therefore have a glycine-serine linker between the SP and the mature
protein. The 114 SPs were measured twice, using promoters P43 and Pglvm. The correlation between
the two experiments is 97%. We report results on the Pglvm dataset.

A.2 SecretoGen details

Hyperparameters The SecretoGen model is a 12+12 layer encoder-decoder transformer with 16
attention heads in each layer, a hidden size of 1024 and a feedforward size of 2048. Models were
trained for 30 epochs with a batch size of 1024 and a learning rate of 5× 10−5 with linear warmup
for 20000 steps and linear decay for 180000 steps using Adam. Checkpoints were selected based on
the validation next token prediction loss. Dropout was set to 0.1. Training was done using DeepSpeed
[21] with ZeRO stage 1.

dropout, optimizer etc.

Organism embedding layer Organisms are related by evolution and can be classified in various
taxonomy levels. While in principle it should be possible to learn organism embedding vectors
that correctly recapitulate their relative orientation to another, it might be hard for a model to learn
so if only a very limited amount of data is available for any given organism, as it is the case for
signal peptides. We instead propose to learn these embeddings in a hierarchical manner for more
efficient sharing of information between different organisms. We learn embeddings for 8 levels
L of the taxonomy tree (Superkingdom, Kingdom, Phylum, Class, Order, Family, Genus, Species)
and compute the organism embeddings that are used for conditioning as their sum (Equation A1).
Preliminary results had indicated that learning organism embeddings in this hierarchical manner has
better convergence than learning categorical organism embeddings without sharing of information
(Figure A1).

embeddingorg =

L∑
l∈L

embeddingl (A1)

Length dependency of perplexity While perplexity in itself is adjusted for length (it is divided by
the sequence length), we find that there is a clear length dependency of perplexity values assigned by
SecretoGen, with an optimum at lengths 16-19 (Figure A2). As this dependency is possibly an artefact
of the training data distribution that does not represent a biologically meaningful effect on the level
of individual sequences, we attempted to correct for this effect by following the methodology laid out
in Durbin et al. [22] for correcting length biases in profile HMMs using Z-scores. We z-scored the
perplexity at each length, with the mean and standard deviation of the perplexity estimated on the
training data. On two out of four benchmark datasets, this correction yields a slight improvement,
while it resulted in a substantial reduction on the Wu dataset (Table A1).
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Figure A1: Learning organism embeddings as sums of taxonomy levels leads to better convergence.
Experiments were performed using a smaller transformer model (6+6 layers, dimension 512) and a
preliminary dataset of 4.2 million SPs. The means and standard deviations of three replicate runs
with different random seeds are shown.

Figure A2: Perplexity is length dependent. The distribution of SecretoGen perplexity at each length
is shown for the training set.
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Figure A3: Length-adjusted SecretoGen perplexity vs. SP efficiency. Grasso and Xue show a bimodal
distribution of efficiency values.

A.3 Baseline details

ProGen2 We evaluate multiple checkpoints of ProGen2. The checkpoints differ in their number
of parameters (medium: 762M; large: 2.7B; xlarge: 6.4B). Additionally, ProGen2 models support
computing the perplexity of the reversed sequence, as they were trained both on N-to-C and C-to-N
formatted sequences. We report performance of both the N-to-C mode (fwd) and the C-to-N mode
(rev).

SPGen SPGen provides multiple checkpoints with the same model size, differing in their training
data. The checkpoints (75,90,95,99) refer to different percent sequence identity cutoffs that were
used to remove sequences similar to the enzymes used in the study for evaluation.
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