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Abstract
In this paper, a unified framework for exploration
in reinforcement learning (RL) is proposed based
on an option-critic model. The proposed frame-
work learns to integrate a set of diverse explo-
ration strategies so that the agent can adaptively
select the most effective exploration strategy over
time to realize a relevant exploration-exploitation
trade-off for each given task. The effectiveness
of the proposed exploration framework is demon-
strated by various experiments in the MiniGrid
and Atari environments.

1. Introduction
RL is a powerful framework to obtain an optimal policy
that maximizes the expected return by learning from expe-
riences. However, the convergence to an optimal policy by
model-free RL requires that all state-action pairs should be
visited infinitely often (Sutton & Barto, 2018), but this is
impractical in real-world situations with limited time and
resources. Therefore, efficient exploration has been one of
the core research topics of RL throughout its history and
many sophisticated methods have been proposed recently
for efficient exploration, e.g., temporally-extended explo-
ration (Osband et al., 2016; Dabney et al., 2020; Yu et al.,
2021), intrinsic motivation-based exploration (Bellemare
et al., 2016; Achiam & Sastry, 2017; Burda et al., 2018),
maximum entropy RL (Haarnoja et al., 2017; 2018; Han
& Sung, 2021a;b; Kim et al., 2023; Kim & Sung, 2023),
parallel search (Jaderberg et al., 2017; Jung et al., 2020).
However, there is no single exploration method found yet
that is shown to be universally effective across all tasks. For
example, intrinsic motivation-based exploration, which aug-
ments extrinsic reward with additional exploration-oriented
intrinsic reward, is shown to be effective for hard exploration
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tasks but to have negative effects on some environments with
dense rewards. Temporally-extended exploration, which en-
courages the temporal persistence of exploration, tends to
outperform simple exploration strategies such as ϵ-greedy
and Gaussian noise injection, but struggles to solve hard
exploration tasks. In some cases, ϵ-greedy even performs
better than the aforementioned methods. Thus, for the best
performance, one needs to try various exploration meth-
ods and select the best one for each given task. However,
this is a time-consuming and difficult task. In addition to
the variability of good exploration strategy across tasks,
the required exploration strategy can even vary over time
during the training period within a given task. Thus, one
selected exploration strategy may not be optimal throughout
the whole training period for a given task.

In this paper, we address such variability of good explo-
ration strategy and propose a unified exploration framework
named LESSON, aiming at universality across tasks and
learning phases. In our framework, the agent learns to in-
tegrate a set of diverse exploration strategies so that it can
automatically select the most effective exploration strat-
egy for each phase of learning for each given task from
the context of exploration-exploitation trade-off. To devise
such a unification framework for multiple exploration strate-
gies, we adopt an option-critic model (Bacon et al., 2017).
However, simple application of an option-critic model to
exploration strategies does not yield the desired unifica-
tion. We circumvent this difficulty by employing off-policy
learning and judiciously designing the overall off-policy
structure with objective functions and action value functions
suitable to our off-policy exploration-exploitation trade-off.
We show that LESSON can achieve significant performance
improvement over existing exploration methods. To the best
of our knowledge, LESSON is the first unified framework
that can learn to integrate multiple exploration strategies
for adaptive exploration strategy selection targeting relevant
exploration-exploitation trade-off over the learning phase.

2. Background and Related Works
We consider a Markov decision process (MDP) defined as
a tuple < S,A,P, R, γ >, where S is the state space, A is
the action space, P : S × A × S → [0, 1] is the transition
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probability, R : S × A → R is the reward function, and
γ ∈ [0, 1) is the discount factor. At each time step t, the
agent executes action at ∈ A based on the environment state
st ∈ S. Then, the environment yields an extrinsic reward
ret (st, at) to the agent and makes a transition to a next state
st+1 according to the reward function R and the transition
probability T , respectively. The agent has a policy π and
aims to find an optimal policy that maximizes the expected
return E[G0], where Gt =

∑∞
k=0 γ

kret+k is the discounted
return at time step t.

Exploration in RL Exploration is a crucial aspect of
RL as it allows the agent to gather information about the
environment to improve its decision-making ability. Insuffi-
cient exploration can result in suboptimal policies. Simple
exploration strategies include ϵ-greedy (Van Hasselt et al.,
2016), noise injection (Lillicrap et al., 2015), and entropy
regularization (Schulman et al., 2017). These strategies are
still adopted commonly due to their simplicity and versatil-
ity (Dabney et al., 2020). However, their limited inductive
bias towards transitions under the current policy limits their
use to hard exploration tasks in which significant deviations
from the learned policy are required. To address this limita-
tion, several other approaches such as intrinsic motivation-
based exploration (Bellemare et al., 2016; Achiam & Sastry,
2017; Burda et al., 2018) and temporally-extended explo-
ration (Osband et al., 2016; Dabney et al., 2020; Yu et al.,
2021) have been proposed.

Intrinsic motivation-based exploration is based on adding an
additional bonus, called intrinsic reward, to the extrinsic re-
ward from the environment for better exploration. Intrinsic
rewards in existing works are basically designed based on
the ‘curiosity’ of state capturing state visitation frequency so
that less-visited states are assigned higher intrinsic rewards
and frequently-visited states are assigned lower intrinsic
rewards. One specific approach to designing the intrinsic re-
ward function is the count-based exploration method, which
directly exploits the visitation frequency to determine new
states. Bellemare et al. (2016) proposed using a density
model to approximate the visitation count and utilized it as
an exploration bonus. Another approach is the prediction-
based exploration method, which measures the curiosity
of state based on the error of prediction of the output of
the environment model (Achiam & Sastry, 2017; Stadie
et al., 2015) or a randomly-fixed network (Burda et al.,
2018). The rationale behind this approach is as follows. By
using a predictor that is well-trained with sample trajecto-
ries, the prediction error on state-action pairs frequently-
observed in the sample trajectories is small, whereas that
on state-action pairs less-observed in the sample trajectories
is large. By giving large intrinsic rewards to less-observed
state-action pairs, we can encourage the agent to explore
less-visited uncertain state-action pairs. Random Network
Distillation (RND) (Burda et al., 2018) uses the mean square

error (MSE), ∥f̂(st; θRND)− f(st)∥2, of a neural-network
estimator f̂(st; θRND) predicting the output of a randomly-
initialized fixed neural network f(st) as the intrinsic reward,
where the estimator f̂(st; θRND) is trained to predict the
output of f(st) based on the collected experiences. The
RND-based intrinsic reward is shown to be effective for
hard exploration tasks.

Temporally-extended exploration refers to the concept of
exploration over an extended period of time rather than
exploring the state-action space at each time step indepen-
dently. Several methods have been proposed to leverage this
concept in order to enhance simple exploration strategies.
For example, Osband et al. (2016) proposed a bootstrapping
method with multiple heads of deep Q-network to lever-
age uncertainty estimates for better exploration. Yu et al.
(2021) proposed a two-stage policy which allows the agent
to choose between new actions and the previous actions in
order to achieve close-loop temporal abstraction. Dabney
et al. (2020) introduced a temporally-extended variant of ϵ-
greedy named ϵz-greedy, which first selects a random action
and then repeats the chosen action for a duration generated
by a zeta distribution, rather than choosing a random action
at every time step with probability ϵ.

Option Framework The option framework provides a
method to learn temporally-extended sequences of actions,
referred to as options (Sutton et al., 1999; Bacon et al.,
2017). Option is a generalization of the concept of action,
representing high-level behavior composed of multiple sub-
actions. Each option ω ∈ Ω consists of three components:
πw, Iw, and βw, where Ω is the set of options, πw is an intra-
option policy (we will simply call intra-policy), Iw ⊆ S is
an initiation set defining the set of states on which option ω
is available, and βw : S → [0, 1] is a termination function
which generates the termination probability. In this paper,
we assume Iw = S,∀w ∈ Ω.

To implement algorithms under the option framework, the
call-and-return option execution model has been commonly
adopted (Bacon et al., 2017; Klissarov & Precup, 2021).
In this model, the agent selects an option w according to
an option selection policy πΩ defined over Ω. Then, the
selected option determines the intra-policy πw and the ter-
mination function βw. At each time step t, based on the
chosen option w, the agent selects action a ∼ πw(·|s) with
the determined intra-policy πw. The action yields the next
state st+1 and then the termination function decides whether
the current option is terminated or not according to the ter-
mination probability βω(st+1). If termination is decided, a
new option is selected at the next time step according to the
option selection policy πΩ. Otherwise, the current option is
continued at the next time step. Then, the action for time
step t + 1 is drawn by the intra-policy determined by the
option at time step t+ 1, and the process repeats.
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3. Methodology
The most effective exploration strategy varies over task and
learning phase. To construct a unified exploration strat-
egy that is universal across tasks and learning phases, we
consider multiple component exploration strategies each of
which has a certain advantage in exploration, and integrate
these component exploration strategies in a single combined
exploration strategy. Then, we make the integrated strategy
select the most effective component exploration strategy
adaptively over the training phase for a given task from the
context of exploration-exploitation trade-off. The key chal-
lenge here is that we do not know which component strategy
is most effective at each phase of training, but need to learn
this adaptive selection over time. The proposed unified ex-
ploration method achieves this with the option framework,
targeting widely-used action-value methods for model-free
off-policy RL. Thus, we name the proposed method LES-
SON, abbreviating Learning to integrate the component
Exploration StrategieS with an OptioN framework.

The key ideas of LESSON are as follows:

1) We separate the behavior policy and the target policy, and
replace the behavior policy with a call-and-return option
model mentioned in the previous subsection.

2) We set the N intra-policies of the call-and-return option
model as the greedy policy and N − 1 component explo-
ration strategies.

3) Then, we train train both the option model and the target
policy with their respective objectives based on the trajecto-
ries generated by the option-based behavior policy.

The overall architecture of LESSON is shown in Fig. 1. The
inclusion of the greedy policy as one of the intra-policies of
the option model is crucial because this inclusion enables
exploration-exploitation trade-off in sampling. Furthermore,
the design of the objective function for the option-based
behavior policy is also important because this objective
function implements the exploration-exploitation trade-off
in sampling. The details follow in the upcoming subsections.

3.1. Target Policy

First, we construct the target policy. For the target pol-
icy, we consider the widely-used deep Q-network (DQN)
(Mnih et al., 2015). The target policy learns to maximize
the expected sum of pure extrinsic rewards, which is the
ultimate goal of RL. For this, we define the target action
value function as

QT (st, at) = E

[ ∞∑
l=t

γl−trel

∣∣∣st, at] . (1)

Figure 1. Overall diagram of LESSON: The blue box shows the
behavior policy realized by the proposed option model. The option
selection policy πΩ selects an intra-policy and the corresponding
termination function. The target policy denoted by the red box is
trained using the samples generated by the behavior policy.

Then, the target policy is given by the greedy policy

πT (s) = argmax
a

QT (s, a). (2)

The target action value function is trained to minimize the
square of temporal difference (TD) error (Mnih et al., 2015):

L(θ) = E(sl,al,rl,sl+1)∼D
[
(yDQN

l −QT (sl, al; θ)
2
]

where yDQN
l = rel + γmax

a
QT (sl+1, a; θ

−), (3)

θ− is the parameter of the target network of DQN, and D
is the replay buffer storing the samples generated by the
behavior policy.

3.2. Behavior Policy Construction via Option Model

In off-policy RL, the behavior policy generates samples for
learning whereas actual control is done for the target policy.
For the behavior policy, we employ the option framework
composed of the option selection policy πΩ, N intra-policies
{πωi}Ni=1, and N termination functions {βωi}Ni=1. Then, we
use the call-and-return option execution model (Bacon et al.,
2017). Unlike the option model proposed by Bacon et al.
(2017) which trains all the three option components from
scratch, we predefine the N intra-policies πω1 , · · · , πωN ,

3



LESSON: Learning to Integrate Exploration Strategies for Reinforcement Learning via an Option Framework

and then train the option selection policy πΩ and the termi-
nation functions βω1 , · · · , βωN only.

Design of intra-policies We choose the N -intra-policies
as the greedy policy πω1(s) and N − 1 exploration policies
πω2 , · · · , πωN , where the greedy policy πω1(s) is equivalent
to the target policy πT (s) in (2) trying to maximize the pure
extrinsic reward sum. One key aspect of our design is that
we include the greedy policy πT = πω1 as an intra-policy.
This enables exploration-exploitation trade-off in sampling
by allowing the behavior policy to visit not only new state-
action pairs for exploration but also the state-action pairs
generated by the greedy policy for exploitation. Hence, by
learning optimal selection of one intra-policy out of the
N such intra-policies at each time step, we can realize an
effective trade-off between exploitation by the greedy policy
and exploration by N − 1 exploration policies.

Although N can be general, we choose N = 4 to incor-
porate three conspicuous existing exploration strategies:
random policy, temporally-extended (TE) random policy
and intrinsically-motivated policy. Each intra-policy is ex-
plained in detail below. Note that we can include other
exploration strategies with a larger N if desired.

1) The greedy intra-policy selects the greedy action with
respect to (w.r.t.) the action-value function QT (s, a) in (1).
This policy aims to generate trajectories for exploitation by
the target policy.

2) Random intra-policy selects a random action from the set
of possible actions A independently at each time step until
the option is terminated.

3) TE-random intra-policy selects a random action from the
set of possible actions when this option is chosen and then
repeats the selected action until the option is terminated.

4) Prediction-error maximizing (PEM) intra-policy is in-
sprired by intrinsically-motivated exploration and RND
(Burda et al., 2018). This intra-policy selects the action
that maximizes the sum of prediction-error intrinsic rewards.
For this, we construct a separate Q-function, which esti-
mates the expected sum of prediction-error intrinsic rewards
only:

QPE(st, at) = E

[ ∞∑
l=t

γl−trPE
l |st, at

]
, (4)

where rPE
t = Normalize(∥f̂(st; θRND) − f(st)∥2) is

the normalized prediction-error intrinsic reward. (Refer
to Appendix B.3 for the detail of normalization.) We
train QPE(s, a) by minimizing the one-step TD error
with the intrinsic reward and train the prediction network
f̂(sl+1; θRND) to follow a randomly initialized fixed net-
work f(sl+1) as in (Burda et al., 2018). Then, our PEM
intra-policy is given by πω4 = argmaxaQPE(s, a), i.e., it

aims to maximize the prediction-error sum only. Our PEM
intra-policy focuses purely on exploration with ignoring the
extrinsic reward, which is a different point from the original
RND policy (Burda et al., 2018).

Intra-policies 2) and 3) choose random actions for explo-
ration, where intra-policy 3) is a temporally-extended ver-
sion of intra-policy 2). On the other hand, intra-policy 4)
chooses actions away from those frequently done before
based on previous sample trajectories. Thus, intra-policies
2) and 3) are for sample history-unware random exploration,
whereas intra-policy 4) is for sample history-aware explo-
ration. Here, we selected PEM intra-policy for sample
history-aware exploration, but other sample history-aware
exploration such as count-based exploration can also be
considered. (See Appendix D.) We want to mix these two
distinct approaches. Note that intra-policies 2), 3) and 4) all
focus only on pure exploration. When one of these three
intra-policies is combined with the greedy policy πω1 , the
combination can produce several conventional exploration
methods. For example, when we combine the greedy policy
πω1 and the random policy πω2 with fixed probabilities 1−ϵ
and ϵ, the combination is equivalent to ϵ-greedy. When we
combine the greedy policy πω1 and the TE-random policy
πω3 with fixed probabilities 1 − ϵ and ϵ, the combination
reduces to ϵz-greedy for which the TE duration is deter-
mined by the option termination period rather than a zeta
distribution. Furthermore, the combination of πω1 and πω4

yields a similar policy to the RND policy. Our goal is not to
use such a fixed combination but to learn the most effective
combination over time for a given task through the option
selection policy πΩ and the termination functions {βω}.

3.3. Learning the Option Model

With the predefined intra-policies, we need to learn the op-
tion selection policy πΩ and the termination functions {βω}
for the behavior policy. For this, we propose the following
objective function for the behavior policy implemented by
the call-and-return option execution model:

J(πΩ, {βw}) = E

[ ∞∑
t=0

γt(ret + αrit)

]
, (5)

where ret is the extrinsic reward for exploitation and rit is
the intrinsic reward for exploration. The reason for this
design of the objective function for πΩ and {βω} is that
the behavior policy should not only sample for exploration
but also for exploitation for a trade-off between these two,
where α is the coefficient controlling the trade-off.

For the intrinsic reward for exploration rit in (5), we exploit
the existing intrinsic reward of the prediction error proposed
by Burda et al. (2018) again. That is, we set

rit := rPE
t = Normalize(∥f̂(st)− f(st)∥2), (6)
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where f(s) and f̂(s) are already defined in the part of the
PEM intra-policy. Then, the RHS of (5) is the same as the
objective of RND (Burda et al., 2018). However, there exists
a key difference between our use of (5) and Burda et al.’s
use of (5). We use (5) for learning the behavior policy while
having a separate greedy target policy. In constrast, Burda
et al. (2018) use (5) for learning the target policy itself.
Note that (5) without the extrinsic reward ret reduces to the
objective (4) of the PEM intra-policy. However, the PEM
exploration intra-policy is not necessarily selected as the
behavior option over the random policies πω2 and πω3 due
to the extrinsic reward term. This is because the correspond-
ing extrinsic reward resulting from the PEM intra-policy
can be smaller than those produced by the random explo-
ration policies πω2 and πω3 , although the PEM exploration
intra-policy yields the largest intrinsic reward. Thus, in our
formulation the most effective intra-policy is selected from
the viewpoint of exploration-exploitation trade-off.

Learning Option Selection Policy To implement the afore-
mentioned call-and-return option execution model, we adopt
an option-critic model (Bacon et al., 2017). The option-
critic model trains the option execution model based on the
option-value function. In the case of maximizing (5), we
define the option value function as

QΩ(st, ωt) = E

[ ∞∑
l=t

γl−t(rel + αrit)
∣∣st, ωt

]
, (7)

where st and ωt are the state and option at time step t,
respectively, and the expectation trajectory follows the de-
scribed call-and-return option execution model. Then, the
option selection policy πΩ is given as the greedy policy w.r.t.
QΩ, i.e.,

ωt = πΩ(st) = argmax
ω′

QΩ(st, ω
′). (8)

We parameterize the option-value function QΩ with param-
eter θΩ and then train it to minimize the one-step TD error
loss function:

L(θΩ) =E(st,wt,ret+αrit,st+1)∼D
[
(yt −QΩ(st, ωt; θΩ))

2
]
,

(9)

where (Bacon et al., 2017)

yt = ret + αrit + γ

((
1− βωt(st+1)

)
QΩ(st+1, ωt; θ

−
Ω )

+ βωt
(st+1)max

w′
QΩ(st+1, w

′; θ−Ω )

)
.

(10)

Here, D is the replay buffer, and θ−Ω is the parameter
of the target option-value network. For the first term in

Algorithm 1 LESSON
Initialize target action-value function QT,θ, option-value
function QΩ,θΩ , termination functions {βω}, intrinsic re-
ward coefficient α, replay buffer D
Choose ω0 according to option selection policy πΩ(s0)
for each iteration do

for each environment time step t do
Observe st and choose at according to intra-policy
πωt

(at|st)
Take action at and receive ret and st+1

Calculate intrinsic reward rit via (6)
Store (st, at, wt, r

e
t , r

i
t, st+1) in replay buffer D

if βωt decides termination then
Choose new ωt+1 according to πΩ(st+1)

else
ωt+1 ← ωt

end
end
for each update time step t do

Sample et = (st, at, wt, r
e
t , r

i
t, st+1) from D

Update target action-value function QT by applying
SGD to the loss L(θ) in (3)
Update option-value function QΩ by applying SGD
to the loss L(θΩ) in (9)
Update termination functions {βω} by using the
gradient (11)

end
end

the big parenthesis of the right-hand side (RHS) of (10),
QΩ(st+1, ωt) is used because this corresponds to the case
that the current option ωt is not terminated at t+1 with prob-
ability 1− βωt

(st+1). The second term in the parenthesis
corresponds to the case that the current option is terminated
with probability βωt

(st+1) at t+ 1 and a new option is se-
lected according to the greedy policy w.r.t. QΩ(st+1, ·|θ−Ω ).

Learning Termination Functions The termination func-
tion generates the termination probability of the associated
option. To update the termination functions, we use the gra-
dient of the option-value function QΩ w.r.t. to the parameter
θβω of the termination function for each option, which is
given by (Bacon et al., 2017)

∂QΩ

∂θβω

= −E
[
∇θβω

βω(st+1; θβω
)×

(QΩ(st+1, ωt)−max
ω′

QΩ(st+1, ω
′))
]
.

(11)

Note that the gradient form (11) is similar to that of
the conventional policy gradient (Sutton & Barto, 2018).
Due to the form of the gradient in (11), if an option
is not optimal at time step t + 1, then the advantage
QΩ(st+1, ωt)−maxω′ QΩ(st+1, ω

′) becomes negative, the
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termination probability of that option is trained to increase.
Consequently, options with low option values are more
likely to be terminated quickly, while those with high option
values are more likely to be retained.

Note that we fixed α controlling the exploration-exploitation
trade-off in the objective (5) for sampling. However, the
fixed α does not mean the trade-off between exploration
and exploitation is fixed over time for a given task be-
cause the termination functions for the greedy and explo-
ration policies are learned and updated over time. Thus, a
proper time-varying exploration-exploitation trade-off can
be learned over time for given α, as we will see in Sec-
tion 4. The final algorithm of LESSON is summarized in
Algorithm 1. The implementation is based on the ideas
explained here, but some minor implementation detail is
added. The software code of LESSON is available at
https://github.com/beanie00/LESSON.

4. Experiments
To evaluate the performance of LESSON, we compared it
with major baselines. All algorithms are based on DQN
(Mnih et al., 2015) but employ different exploration strate-
gies. The baselines are 1) ϵ-greedy: vanilla DQN, 2) ϵz-
greedy: if exploration is decided at a time step with prob-
ability ϵ, it generates the duration of action-repeat using a
zeta distribution and then repeats the same action for the
determined duration, 3) ϵr-greedy: if exploration is decided
at a time step with probability ϵ, it generates a duration us-
ing a zeta distribution and then selects independent random
actions during the duration, 4) RND-based DQN (RND)
(Burda et al., 2018) adds RND-based intrinsic reward to
extrinsic reward, and uses ϵ-greedy DQN, 5) Equal weight
combining (EWC) selects one of the previous four explo-
ration strategies (1) - (4) randomly with equal probabilities,
and 6) ϵ-BMC (Gimelfarb et al., 2020) is ϵ-greedy DQN,
where ϵ is learned to find a good exploration-exploitation
trade-off over time.

We evaluated the algorithms on fourteen MiniGrid environ-
ments (Chevalier-Boisvert et al., 2018) and four Atari 2600
environments (Bellemare et al., 2012). The detailed setting
of the considered environments is provided in Appendix A.

4.1. Performance Comparison

Figs. 2 and 3 show the performance of LESSON and the
baselines on the MiniGrid environments averaged over 10
random seeds and on the Atari 2600 environments averaged
over 3 random seeds, respectively. Detailed hyperparameter
setting is provided in Appendix B.

It is seen that the best-performing exploration strategy
among the baselines varies over tasks. In the MultiRoom en-
vironment, where the agent should visit other rooms through

narrow paths to reach a goal, RND performs better than
other exploration strategies since RND-based intrinsic re-
ward encourages the agent to visit other rooms once it has al-
ready visited some rooms. In the case of LavaCrossingS9N1,
which involves reaching a goal while avoiding randomly
generated obstacles, ϵr-greedy performs better than RND.
However, in the LavaCrossingS13N1, which increases the
map size compared with LavaCrossingS9N1, it is seen that
RND is more effective than ϵr-greedy. In the Venture envi-
ronment, which aims to find a treasure while fighting with
monsters in several rooms, ϵz-greedy is the best-performing
exploration strategy. These results highlight that the best-
performing exploration strategy is affected by the nature of
the task including the size of the environment. Note that
the performance of ϵ-BMC surpasses that of the e-greedy
algorithm in Atari environments. However, it does not show
comparable performance in most MiniGrid environments.
This may be attributed to the sparsity of rewards in MiniGrid
tasks, which make it challenging for the ϵ-BMC agent to
acquire information about the environment required to learn
ϵ.

While the best-performing exploration strategy varies over
environments, LESSON consistently outperforms the base-
lines in the considered environments since it integrates ex-
ploration strategies to its advantage. In contrast to LESSON,
the simple combining of exploration strategies, EWC, tends
to perform worse than the best-performing exploration strat-
egy since ineffective exploration strategies are equally used
as well as other strategies. Indeed, LESSON provides non-
trivial adaptive integration of exploration strategies.

More results on other MiniGrid tasks are provided in Ap-
pendix C and the result on Atari’s Montezuma’s Revenge is
separately provided in Appendix D.

4.2. Analysis

Exploration Behavior Analysis In order to see how LES-
SON achieves adaptive exploration-exploitation trade-off
for better performance, we conducted an experiment on the
Empty-16x16 environment. This environment is made up
of a two-dimensional grid and an agent. The goal is that
the agent starting from the left upper corner reaches the
green box at the right lower corner as in Fig. 4 (a). The
performance of LESSON and the baselines is shown in Fig.
4 (b), showing that LESSON outperforms others. Fig. 4 (c)
shows the termination probabilities of the four intra-policies
of LESSON as learning progresses. It is seen that LES-
SON adaptively selects the most effective intra-policy as
time progresses. In the early phase of training, the termina-
tion probability of PEM intra-policy is very low compared
with all others. This means that intrinsically-motivated ex-
ploration is mostly adopted in the early phase. As time
elapses, other intra-policies kick in, especially TE-random
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(Ours)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Performance comparison on the MiniGrid tasks. More results are provided in Appendix C.

intra-policy plays a role on top of PEM intra-policy. As
time elapses further, the greedy intra-policy becomes dom-
inant (the red line is close to zero) over other exploration
intra-policies. The reason is as follows. Note that the be-
havior policy of LESSON tries to maximize the sum of
extrinsic and intrinsic returns as seen in (5). However, it is
difficult to get extrinsic rewards initially and the reward is
mostly intrinsic from exploration in the initial phase, but
once the agent starts knowing how to reach the goal after
sufficient exploration, the agent can get large extrinsic re-
wards from the environment. Indeed, LESSON realizes the
desired adaptive exploration-exploitation trade-off over time
for a given task. Fig. 4 (d) shows the number of visitations
for each grid point. The visitation pattern of RND looks
like a quarter circle originating from the left upper corner,
whereas that of ϵz-greedy is a shape consisting of multiple
straight lines. This is because RND tries to visit unvisited
grid points from the past history and exploration starts from
the left upper corner, while ϵz-greedy repeats the same ran-
dom action multiple times until termination. In contrast,
the visitation pattern of LESSON covers all the state space
by combining these two patterns. This behavior is well ob-
served from the termination functions as functions of time in
Fig. 4 (c), where the termination probabilities of PEM and
TE-random intra-policies are small in the middle phase of
learning. By efficiently using RND followed by ϵz-greedy,
LESSON achieves the goal faster than the baselines.

Learning Option-Critic Model Fig. 5 shows the behavior
of the (soft) option selection policy πΩ and the termination
probabilities together for several tasks. Note that the option
selection policy and the termination probabilities together
determine the frequency of use of each intra-policy. It is
seen that the selection probability of the greedy intra-policy
tends to increase during training for all tasks, as expected.
In LavaCrossing and Fetch, where the ϵz-greedy performs
poorly (see Fig. 2 (b) and (e)), the termination probability
of TE-random intra-policy (comprising ϵz-greedy) is higher
than those of other exploration strategies together with a
low selection probability for TE-random intra-policy, as
seen in Fig. 5 (a) and (b). In these tasks, LESSON exploits
the integration of random and PEM intra-policies (i.e., ϵr-
greedy and RND). Note that EWC performs worse than
ϵr-greedy since it equally exploits all exploration strategies
including ineffective ϵz-greedy. In Enduro, on the other
hand, the termination probability of random intra-policy
(comprising ϵr-greedy) is higher than others. In this task,
LESSON exploits both TE-random and PEM intra-policies
(i.e., ϵz-greedy and RND). Indeed, LESSON successfully
learns to use suitable exploration strategies depending on
the task.

Ablation Study: Learning Intra-policies from Scratch
We used a set of pre-defined intra-policies as options for
LESSON rather than learning options from scratch. To
verify the effectiveness of this pre-defined option approach,

7



LESSON: Learning to Integrate Exploration Strategies for Reinforcement Learning via an Option Framework

(Ours)

(a) (b) (c) (d)

Figure 3. Performance comparison on the Atari 2600 tasks

(a) (b) (c) (d)
Figure 4. Comparison of LESSON with the baselines in the Empty-16x16 environment with the goal at the right lower corner: (a) the
view of environment, (b) performance comparison, (c) the termination probabilities βω over time for LESSON, and (d) state visitation
frequency. (Fig.4(a) was obtained by rendering the MiniGrid Empty-16x16 environment while training (Chevalier-Boisvert et al., 2018).)

(a) LavaCrossingS9N1 (b) Fetch-8x8-N3 (c) Enduro

Figure 5. Option selection policy and termination probability during training.

we conducted an experiment that learns options from scratch
with the objective function of LESSON. Such an approach
of learning of options from scratch is originally considered
in the option critic architecture (Bacon et al., 2017). This
learning architecture selects high-level options and actions
based on each option without pre-defining options, and only
pre-defines the number of options as a hyperparameter. We
set the number of options as 4 to be equal to that used
for LESSON in this paper, and trained the option critic by
using an intrinsic reward similar to that of LESSON. Fig. 7

shows the result of this experiment, showing that LESSON
outperforms the option-critic architecture learning options
from scratch. The poor performance of this approach seems
to result from the difficulty associated with comprehending
and acquiring temporal abstraction solely through rewards
(with exploration bonus) in scenarios with sparse settings
like MiniGrid.

Ablation Study: Impact of Each Intra-policy We in-
vestigated the performance of LESSON by eliminating one
intra-policy from Ω = {greedy, random, TE-random and
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Figure 6. Performance of LESSON that excludes one intra-policy
from Ω = {greedy, random, TE-random and PEM}

(Ours)

Figure 7. Performance comparison of LESSON against ϵ-greedy
and option-critic

PEM}. The result is shown in Fig. 6. It is seen that LES-
SON is unable to learn without the inclusion of the greedy
policy. Thus, the inclusion of the greedy policy within
the set of intra-policies, which is one of the main ideas of
LESSON, is necessary to realize exploitation in addition
to exploration for the behavior policy. It is also seen that
performance tends to be degraded most if the most effective
exploration strategy for each environment is excluded.

Ablation Study: Impact of α We investigated the impact
of α determining the ratio between extrinsic and intrinsic
rewards in the objective function (5) for the behavior pol-
icy. Fig. 8 shows the performance of LESSON w.r.t. α.
The coefficient α should be set properly to obtain the de-
sired exploration-exploitation trade-off over time. If α is
too small, then exploration is not performed well and it
takes a long time to learn the task purely based on extrinsic
rewards in sparse reward cases. On the other hand, if α
is too large and hence the intrinsic reward portion is too
large compared with the extrinsic reward portion, then the
behavior policy will try exploration persistently for large
intrinsic rewards even if it knows how to solve the task and
get extrinsic rewards. However, due to our use of the history-
based prediction-error intrinsic reward, when all state-action
pairs are visited sufficiently many times, the estimation er-
ror for all state-action combinations becomes small, the
corresponding intrinsic reward becomes small, and hence

Figure 8. Performance of LESSON with respect to the intrinsic
reward coefficient α.

extrinsic reward becomes dominant eventually. Hence, too
large α also delays the learning. Recall that we always
have a separate greedy target policy learning from samples
from the behavior policy, but the drawn samples affect the
learning speed and performance of the target policy.

5. Conclusion
We have proposed LESSON to automatically choose an
appropriate exploration strategy from a given set to real-
ize an effective exploration-exploitation trade-off over time.
LESSON is based on an option-critic model of which intra-
policies consist of the greedy policy and a set of diverse
exploration strategies. We have designed the option-critic
model judiciously by defining relevant objectives and action
value functions to realize adaptive selection of exploitation
or exploration strategies. Although LESSON has the in-
creased complexity compared to existing other exploration
methods and more learnable parameters, LESSON elimi-
nates the necessity of human trial of multiple exploration
strategies for each given task, and numerical results show
its effectiveness. In this paper, we have demonstrated the
effectiveness of learning to integrate multiple exploration
strategies via an option framework primarily based on deep
Q-learning. However, such exploration integration learning
is not restricted to Q-learning. We expect that application
of the idea of LESSON to other advanced RL algorithms
beyond Q-learning can enhance their learning speed and/or
performance even further.
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A. Environment Specifications
A.1. MiniGrid

MiniGrid (Chevalier-Boisvert et al., 2018) is a collection of 2D grid-world goal-based environments. The agent receives
a sparse reward R1 with a small decrement for each interaction step. In this paper, we set this reward as R1 = 10. The
considered MiniGrid environments are briefly explained below:

(a) Empty-16x16 (b) DoorKey-8x8 (c) UnlockPickup (d) FourRooms (e) LavaGapS5 (f) KeyCorri-
dorS3R1

(g) SimpleCross-
ingS9N1

(h) LavaCross-
ingS9N1

(i) LavaCross-
ingS13N1

(j) PutNear-6x6-
N2

(k) Fetch-8x8-N3 (l) MultiRoom-
N2-S4

(m) Dynamic-
Obstacles-8x8

(n) GoToDoor-
8x8

Figure 9. MiniGrid Environments used in the experiments. These figures were obtained by rendering the MiniGrid environment while
training (Chevalier-Boisvert et al., 2018) .

Empty-16x16 The agent is initially located at the top-left of an empty room, and the goal is to reach the green goal square.

DoorKey-8x8 The agent should pick up a key to unlock a door, and then should navigate to the green goal square.

UnlockPickup The agent should acquire a box that is located in a different room, which can only be accessed through a
locked door.

FourRooms Each of the agent and the green goal is randomly initialized in one of the four rooms. Then, the agent should
search the rooms to reach the green goal.

LavaGapS5 The agent should reach the green goal located in the opposite corner of the room. In order to reach the goal, the
agent should pass through a narrow opening in a vertical strip of deadly lava. If the agent touches the lava, the episode is
terminated.

KeyCorridorS3R1 The agent should search the map to find the key that is hidden in another room, and then should pick up
the object that is located behind the locked door.

SimpleCrossingS9N1, LavaCrossingS9N1, LavaCrossingS13N1 The agent should reach a goal while avoiding obstacles
that randomly block single row or column with one square opening within the grid in each environment. The difference
between SimpleCrossing tasks and LavaCrossing tasks is that collision with an obstacle results in the failure of the episode
in LavaCrossing tasks, whereas the episode continues even if an obstacle is encountered in SimpleCrossing tasks.

PutNear-6x6-N2 The agent receives instructions in the form of a textual string (mission) such as ”picking up the object”
and then ”placing it next to another object”. The agent receives a reward when accurately executing the provided instruction.

Fetch-8x8-N3 A textual string (mission) as part of its observation indicating which object to pick up is provided. The
environment contains various objects of different types and colors, and an incorrect selection of an object results in the
termination of the episode with no reward.

MultiRoom-N2-S4 The environment consists of two rooms and the agent should reach the green goal, which is located in
the next room. In order to obtain access to the next room, the agent needs to open the doors.

Dynamic-Obstacles-8x8 The agent should reach the green goal square while avoiding moving obstacles. If the agent
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collides with an obstacle, the agent receives a large penalty and the episode is terminated.

GoToDoor-8x8 The environment consists of a room with four doors, one on each wall, and a textual string (mission) as
input which indicates the target door to be reached (e.g. ”go to the red door”). When successfully reaching the correct door
as indicated by the mission string, the agent receives a positive reward.

A.2. Atari 2600

Figure 10. A taxonomy for experiments of Atari 2600 games based on the level of the exploration difficulty from (Bellemare et al., 2016).
The environments we experimented are marked with blue ovals.

We conducted experiments on the Arcade Learning Environment (ALE, Bellemare et al. (2012)) at various difficulty levels
and reward settings. ALE offers a comprehensive interface to a wide range of Atari 2600 game environments, which are
known to be challenging even for human players. These games require long-term credit assignment and difficult exploration
(Badia et al., 2020). Atari games are classified into four groups, based on the various characteristics and difficulty, e.g.,
whether local exploration methods such as ϵ-greedy are sufficient or not Bellemare et al. (2016). The classification is shown
in Fig. 10. In order to include a diverse range of experiments, we conducted experiments with one environment from each of
these four groups.

(a) Enduro (b) Seaquest (c) Qbert (d) Venture

Figure 11. Atari 2600 Environments used in the experiments. The source of these figures is https://www.gymlibrary.dev/
environments/atari

Enduro In the National Enduro endurance race, the goal is to overtake a specified number of cars each day in order to
remain in the race. On the first day, the player should overtake 200 cars, and on subsequent days, the number increases to be
300 cars per day. The game ends if the player fails in meeting the required number of overtakes for a given day.

Seaquest In this game, the player controls a submarine and should retrieve divers while avoiding and attacking enemy subs
and sharks. Points are awarded based on performance. The player can earn more as their score increases but can only have
six on screen at a time. When colliding with anything other than a diver, the submarine explodes, and there is a limited
supply of oxygen. If the player fails in surfacing in time or has less than six divers, they lose one diver.

Qbert In this game, the player assumes the role of Q*bert of which objective is to alter the color of all the cubes on a
pyramid to match the designated destination color. The player should accomplish this task by hopping on each cube of the
pyramid in sequence, while avoiding hostile creatures in the pyramid.

Venture The goal of this game is to successfully navigate through a dungeon, collecting treasure in every chamber while
eliminating any monsters that may be present. The player should make a careful strategy and act to achieve this goal.
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B. Implementation Details
In this section, we provide the training details including hyperparameters.

Baselines. The three baselines including ϵr-greedy, ϵz-greedy, and EWC determine the duration of random or fixed action.
The duration is sampled from a zeta distribution, represented by ζ(n) ∝ n−µ, with µ = 2 as in (Dabney et al., 2020).

B.1. Architecture of Neural Networks

MiniGrid. In the considered MiniGrid tasks except for the FourRooms task, the proposed algorithm and the considered
baselines were implemented on the top of Deep Q-Network (DQN). For the FourRooms task, we adopted Deep Recurrent
Q-Network (DRQN) as it is capable of integrating information across frames to detect relevant information, which is
particularly helpful in environments like FourRooms in wich the ability to gather information from the previously visited
rooms is beneficial. The designed neural network architectures are shown in Fig. 12.

Atari. In this case, all the algorithms were implemented on top of DQN, which is modeled based on the CNNPolicy. The
detail parameters regarding the CNNPolicy were determined based on the default architecture in stable-baselines3 (Raffin
et al., 2021).

Figure 12. MiniGrid Agent Architecture

B.2. Hyper-parameters

MiniGrid. The value of ϵ was decreased linearly from 0.9 to 0.05 over 105 steps. The target update period was 1000, the
replay buffer size was 5× 105, and the mini-batch size was 256 trajectories for DQN and 1 episode for DRQN. In all the
environments, we employed the RMSProp optimizer with a learning rate of 0.0001 for the learning agent, and the Adam
optimizer for the RND predictor network. The maximum number of steps in one episode was 40 for MultiRoom-N2-S4, 60
for PutNear-6x6-N2, and 100 for the remaining tasks.

All the networks including the option-critic model and the Q-functions regarding extrinsic reward and intrinsic reward were
trained at intervals of 10 time steps in the considered MiniGrid tasks except for the PutNear-6x6 environment. For the
PutNear-6x6 environment, the option-critic model is trained at intervals of 4 time steps in order to accelerate the change in
termination probabilities.

During the learning process of RND and LESSON agents, the intrinsic reward coefficient α was tuned among the values
(0.001, 0.01, 0.1, 1) and for LESSON agents, the temperature parameter τ in option selection policy was tuned among the
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values (0.02, 0.2). The used α and τ value are provided in Table 1.

Table 1. Hyper-parameters values used in MiniGrid

Hyperparameter Intrinsic reward coefficient α Temperature parameter τ
Empty-16x16 (bottom-goal) 0.1 0.02
Empty-16x16 (center-goal) 1 0.02

DoorKey-8x8 0.01 0.02
UnlockPickup 0.1 0.2

FourRooms 0.1 0.02
LavaGapS5 0.1 0.2

KeyCorridorS3R1 0.01 0.2
SimpleCrossingS9N1 0.001 0.02
LavaCrossingS9N1 0.01 0.02

LavaCrossingS13N1 0.01 0.02
PutNear-6x6-N2 0.1 0.02

Fetch-8x8-N3 1 0.2
MultiRoom-N2-S4 0.1 0.2

Dynamic-Obstacles-8x8 0.01 0.02
GoToDoor-8x8 0.1 0.2
DoorKey-8x8 0.01 0.02

(a) Hyper-parameters used in LESSON agents

Hyperparameter Intrinsic reward coefficient α
Empty-16x16 (bottom-goal) 0.01
Empty-16x16 (center-goal) 0.01

DoorKey-8x8 0.01
UnlockPickup 0.1

FourRooms 0.1
LavaGapS5 0.1

KeyCorridorS3R1 0.01
SimpleCrossingS9N1 0.001
LavaCrossingS9N1 0.01

LavaCrossingS13N1 0.01
PutNear-6x6-N2 0.1

Fetch-8x8-N3 1
MultiRoom-N2-S4 0.1

Dynamic-Obstacles-8x8 0.1
GoToDoor-8x8 1

(b) Hyper-parameters used in RND agents

Atari. The value of ϵ was decreased linearly from 1 to 0.1 over 106 time steps. Most of the hyperparameter setting was
based on the default setting of stable-baselines3 (Raffin et al., 2021). However, a few modifications were made. For example,
the training frequency was changed to once per step, the start time-step of training was set to 104, and the replay buffer size
was set to 106. In addition, all networks were updated at each time step.

During the learning process of RND and LESSON agents, the intrinsic reward coefficient α was tuned among the values
(0.01, 0.001), and for LESSON agents, the temperature parameter τ in option selection policy was tuned among the values
(0.01, 0.02). The specific values of used α and τ are provided in Table 2. In the Atari environments, the same value of α
was used for both the RND and LESSON agents.
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Table 2. Hyper-parameters used in Atari 2600

Hyperparameter Intrinsic reward coefficient α Temperature parameter τ
Enduro 0.01 0.02

Seaquest 0.01 0.01
Qbert 0.001 0.02

Venture 0.001 0.02

B.3. Intrinsic reward

The intrinsic reward was generated by the prediction error of the RND network, as described in (Burda et al., 2018). The
additional networks, referred to as ”predictor” and ”target”, were implemented as sequential layers of linear units with
final output size of 64. The training of the RND predictor network was performed concurrently with that of the main agent
network, utilizing the same replay batches. To ensure stability in the training process, we normalized the intrinsic reward to
a zero mean Gaussian distribution by using the running mean and standard deviation in a similar way to that mentioned in
(Burda et al., 2018).
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C. Experimental Results
The results of fourteen MiniGrid environments and four Atari environments are provided in Fig. 13 and Fig. ??, respectively.

(Ours)

Figure 13. Performance comparison in the MiniGrid tasks
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D. Experiment Result of Atari Montezuma’s Revenge
D.1. Environment Specification

Montezuma’s Revenge is considered as one of the most challenging exploration environments in the Atari game library.
As shown in Fig. 14 (a), the rooms where the player engages in gameplay contain various obstacles like ladders, ropes,
platforms, enemies, and traps. To progress through the stages, the player must successfully navigate these obstacles by
jumping, climbing, and employing precise timing. Additionally, the game encompasses multiple levels, each possessing its
unique layout and distinctive difficulties. To increase their score and gain access to new regions, the player must explore the
pyramid, discover concealed passages, keys, and other undisclosed secrets.

D.2. Base model and Baselines

Due to its difficulty, DQN based on a simple exploration method such as ϵ-greedy takes too long time in learning Montezuma’s
Revenge. Therefore, we adopted the approach from DQN-PixelCNN (Ostrovski et al., 2017), which shows relatively faster
learning in Montezuma’s Revenge compared with other simple DQN variants.

D.2.1. DQN-PIXELCNN

DQN-PixelCNN is an advanced DQN variant introduced by Ostrovski et al. (2017). This method exploits a density model to
enable count-based exploration. The authors employed PixelCNN, an advanced neural density model designed for image
data, as their neural density model, and efficiently computed pseudo-count, which measures the novelty or unfamiliarity
of states to promote exploration in count-based exploration models. Specifically, by employing PixelCNN as the density
model, the pseudo-count is computed with the equation N̂(x) = ρ(x)n̂(x), where n̂(x) is a cumulative pseudo-count
derived from the PixelCNN model’s updated probability estimation ρ′(x) (Ostrovski et al., 2017). This probability is
computed immediately after training on the input sample x. Then, an intrinsic reward is determined based on the computed
pseudo-count. Then, DQN-PixelCNN performs Q-learning with the weighted sum of extrinsic and intrinsic rewards.

D.2.2. MODIFIED DESIGN OF INTRA-POLICIES OF LESSON

Due to its effectiveness of the PixelCNN-based intrinsic reward generation, we removed the prediction-error maximizing
(PEM) intra-policy based on RND (Burda et al., 2018), but included the pseudo-count maximizing (PCM) intra-policy
based on PixelCNN instead. The PCM intra-policy selects the action that maximizes the sum of pseudo-count, where the
pseudo-count is computed based on PixelCNN of Ostrovski et al. (2017). The other intra-policies, i.e., greedy, random and
TE-random intra-policies, remain as before.

D.2.3. MODIFIED BASELINES

In Section 4 of the main paper, LESSON was evaluated against the following six baselines:

- ϵ-greedy (vanilla DQN),

- two simple DQN variants: ϵz-greedy, ϵr-greedy

- ϵ-BMC, which learns ϵ,

- RND-based DQN,

- and equal weight combining (EWC).

With the use of DQN-PixelCNN, the following modifications were made:

- The RND-based DQN baseline was replaced by DQN-PixelCNN.

- Consequently, EWC now randomly choose one out of ϵ-greedy, ϵr-greedy, ϵz-greedy, and DQN-PixelCNN with equal
probability. Here, ϵ-BMC was excluded for EWC because ϵ in ϵ-BMC changes over time.

D.3. Implementations

DQN-PixelCNN and other baselines were implemented based on the code provided from https://github.com/
NoListen/ERL.
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D.4. Performance

We evaluated LESSON and the baselines with three different seeds, and compared their performance. The result is shown in
Fig. 14 (b).

The experimental result demonstrates that LESSON still shows significantly better performance compared with other
baselines. Especially, LESSON including an PixelCNN-count-based exploration strategy as its intra-policy significantly
outperforms DQN-PixelCNN itself, especially in terms of the learning speed. This result strongly suggests that the mixture
of randomness-based exploration and history-based exploration is very effective for overall exploration in difficult tasks
such as Montezuma’s revenge. LESSON provides a good framework to mix these exploration strategies. Through this
experiment, we validated the effectiveness of LESSON in hard exploration tasks such as Montezuma’s Revenge.

Note that the point of LESSON employing DQN-PixelCNN is not comparable to that of 7570 after 1.6 billion frames
reported in (Burda et al., 2018). This seems to be a consequence from the difference in the target policy. We used an
1-step TD Q-learning baseline for our target policy, whereas Burda et al. (2018) used PPO which exploits n-step advantage
estimation.

Since LESSON is a general framework to integrate multiple distinct exploration strategies together with the greedy target
policy based on option-critic, it can be applied to other state-of-the-art algorithms designed for target policy, which remains
as a future work. We expect that applying LESSON to other state-of-the-art algorithms beyond DQN can enhance their
performance further.

(a) (b) (c)

Figure 14. Performance on Montezuma’s Revenge. (a) the view of environment and (b) performance comparison (c) termination probability
during training. The source of Fig. 14 (a) is https://www.gymlibrary.dev/environments/atari

.
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E. In-Depth Analysis of Exploratory Behaviour
In addition to the exploratory behavior analysis discussed in Section 4.2, we conducted another Empty-16x16 environment
where the green goal is placed at the center of the map. The result is shown in Fig. 15. As seen in Fig. 15 (c), the
termination probability of the greedy policy in the center-goal environment decreases at a faster rate compared with that of
the bottom-goal environment shown in Fig. 4. This result shows that LESSON can automatically control the necessary level
of exploration in contrast to the conventional ϵ-greedy approach which requires manual adjustment of the ϵ parameter to
control exploration.

(a) (b) (c)

(d)

Figure 15. Similarly to Figure 4, a comparison between LESSON and the baseline is presented. In this case, the task of reaching the goal
is performed on the same empty 16x16 grid, but the goal position has been shifted to the center: (a) the view of environment from the
MiniGrid Empty-16x16 environment, (b) performance comparison, (c) termination probabilities of the intra-policies of LESSON during
training, and (d) visualization of visited states.
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