MEAT: Multiview Diffusion Model for
Human Generation on Megapixels with Mesh Attention

Yuhan Wang! Fangzhou Hong! Shuai Yang?

Liming Jiang'
1S-Lab, Nanyang Technological University

Wayne Wu?
ZPeking University

Chen Change Loy!
SUCLA

é MEAT
/

l 4

4

g

Ld

~

MEAT

L

MEAT

N\

%

Figure 1. Given a frontal human image, MEAT can generate dense, view-consistent multiview images at a resolution of 10242,

Abstract

Multiview diffusion models have shown considerable
success in image-to-3D generation for general objects.
However, when applied to human data, existing methods
have yet to deliver promising results, largely due to the chal-
lenges of scaling multiview attention to higher resolutions.
In this paper, we explore human multiview diffusion mod-
els at the megapixel level and introduce a solution called
mesh attention to enable training at 1024? resolution. Us-
ing a clothed human mesh as a central coarse geometric
representation, the proposed mesh attention leverages ras-
terization and projection to establish direct cross-view co-
ordinate correspondences. This approach significantly re-
duces the complexity of multiview attention while maintain-
ing cross-view consistency. Building on this foundation, we
devise a mesh attention block and combine it with keypoint
conditioning to create our human-specific multiview diffu-
sion model, MEAT. In addition, we present valuable in-
sights into applying multiview human motion videos for dif-
fusion training, addressing the longstanding issue of data

scarcity. Extensive experiments show that MEAT effectively
generates dense, consistent multiview human images at the
megapixel level, outperforming existing multiview diffusion
methods. Code and model will be publicly available.

1. Introduction

In this paper, we address the problem of multiview hu-
man generation, which aims to generate realistic, consistent
multi-angle renderings of a human figure. We assume a sin-
gle frontal image is provided. Recent advancements in dif-
fusion models offer a promising new approach to this task,
as they excel at generating high-quality images conditioned
on various inputs. However, achieving realistic human ren-
derings remains highly challenging due to the importance
of resolution for capturing fine details. Specifically, exist-
ing multiview diffusion models [14, 17, 19, 26] for general
objects are typically trained at a resolution of 2562, with
a few recent methods increasing this to 5122 [15] or 5782
[30]. However, this remains insufficient for human data. As
shown in Fig. 2, under the latent diffusion setting, a reso-



Figure 2. VAE and Resolution. Each row represents the same
version of VAE, while each column corresponds to the same reso-
lution of the full-body image after VAE reconstruction. Although
the full-body image rendered at 512 x 512 shows good visual qual-
ity, it falls short when used in diffusion models with VAE. We find
that a resolution of 1024 x 1024 is necessary for optimal results.

Table 1. Multiview Attention Comparison. (1) Dense multiview
attention requires each pixel to integrate all other pixels in differ-
ent views, consuming /N X more memory than self-attention. (2)
Row-wise attention is based on the orthographic assumption, mak-
ing it unsuitable for videos shot with an arbitrary perspective. (3)
Epipolar attention is related to our approach. It requires sampling
3D point candidates for each pixel, with the density K balancing
multiview accuracy and complexity. (4) Our mesh attention elim-
inates this sampling with a centric mesh. We assume the feature
map dimensions are H = W = S, with each view interacting
with all IV views. d represents the grid sampling constant.

Attn. Type ‘ Q K,V Attn. Map ‘ Persp.
Self-Attn | NCS? NCS? NSt |-
Dense MV NCS? NC(NS?) N254 v
Row-wise | (NH)CW  (NH)C(NW) N2g3 X
Epipolar (NS?)C-1 (NS?)C(NKd) NZ2S?Kd v
v

Mesh Attn | (NS2)C-1  (NS?)C(Nd)  N2S2d

lution of 10242 is necessary to achieve satisfactory results,
as the result is highly sensitive to details in areas such as
the face, hands, and clothing. Any lack of detail, unnat-
ural appearance, or inconsistency in these regions signifi-
cantly diminishes the realism. Since these areas each oc-
cupy only a small portion of the overall pixel space, varia-
tional autoencoder (VAE) reconstructions at resolutions be-
low 1024 x 1024 are suboptimal, making it challenging to
train an effective multiview diffusion model.

Directly increasing the working resolution of existing
multiview diffusion models to 1024 x 1024 is impractical
either. To maintain multiview consistency, current meth-
ods generate all views simultaneously and add cross-view
attention within the denoising U-Net to integrate features
from different views. Table | summarizes the attention map
complexity of existing multiview attention methods. Dense

multiview attention [19, 27, 31] has extremely high mem-
ory requirements, making it difficult to apply directly at
megapixel resolutions. Meanwhile, row-wise attention [15]
relies on an orthographic projection assumption, which sig-
nificantly restricts the applicable training data.

To address these challenges, we propose MEAT, a multi-
view diffusion model designed for human novel view gener-
ation on megapixels, conditioned on a frontal image. In par-
ticular, we wish to address the high computational complex-
ity of multiview attention in existing diffusion models. Our
key idea is to leverage a rough central 3D representation that
enables our method to directly establish correspondences
between pixels across different viewpoints using rasteriza-
tion and projection. We refer to this pixel correspondence-
based feature fusion as mesh attention. This optimization
allows us to sample sufficiently dense viewpoints on each
GPU and train the model using 1024 x 1024 images. As
shown in Table 1, our method achieves the lowest com-
plexity and offers graceful complexity growth as resolution
increases. Building on the design principles of Zero-1-to-
3 [17], we generate all target views in parallel and introduce
mesh attention blocks to maintain cross-view consistency.
In addition, we enhance texture and geometric consistency
by incorporating multi-scale VAE latent features and key-
points conditioning.

Apart from introducing the MEAT approach, we also
present a new training source. The typical data source for
multiview diffusion models is textured mesh data. How-
ever, high-quality human scan data at 1024 x 1024 resolu-
tion is extremely scarce and mostly limited to static poses.
Even the largest dataset, THUman2.1 [35], includes only
around 2,500 multiview subjects, making multiview diffu-
sion model training highly susceptible to overfitting. To ad-
dress this, we propose a data processing pipeline that lever-
ages DNA-Rendering [5], a multiview human motion video
dataset, as a training source. The data greatly increases the
diversity of poses available during training. We will discuss
a series of techniques for adapting this dataset to train our
mesh-attention-based multiview diffusion model.

To summarize, our main contributions are as follows:

* We propose mesh attention, which establishes correspon-
dences between pixels using rasterization and projection
of a centric mesh, making it the most efficient cross-view
attention method to date.

¢ Based on mesh attention, we introduce a human-specific
multiview diffusion model, MEAT, capable of generating
consistent 16-view images at megapixel resolution.

* We present techniques for adapting a large-scale multi-
view human motion video dataset as a training source for
multiview diffusion.



2. Related Work

Multiview Diffusion. Research of multiview diffusion
models began with Zero-1-to-3 [17], which first proposed
using camera viewpoints as control conditions for image
diffusion models to achieve novel view synthesis. As a one-
view-at-a-time approach, it often produces inconsistencies
in the generated views due to the stochastic nature of diffu-
sion models. Subsequent approaches shifted to all-view-at-
once generation to mitigate the inconsistency issue.

The first category of methods [14, 15, 19, 27, 29, 31]
treats the generation of each view as a separate branch
of image generation, using multiview attention across
branches to achieve feature fusion and consistency con-
straints. MVDream [27] introduces dense multiview at-
tention for single-object text-to-multiview generation. Im-
ageDream [31] expands this approach to image-conditioned
generation. Wonder3D [19] incorporates normal data and
cross-domain attention to enhance geometric consistency.
Recent methods have started optimizing the complexity of
multiview attention. EpiDiff [14] uses epipolar attention
for efficient pixel-matching candidate retrieval. Era3D [15]
proposes row-wise attention based on the orthographic pro-
jection assumption. Other methods treat multiview images
in alternative forms, such as a tiled big image [26] or a video
[8, 30], leading to different approaches. Our work, MEAT,
further extends parallel multiview generation by enabling
direct cross-view feature integration through rasterization
and projection using a central 3D mesh representation.
Monocular Human Reconstruction. Monocular human
reconstruction methods can be categorized into two groups
based on whether they rely on optimizing a 3D representa-
tion. Optimization-based approaches, like ICON [33] and
ECON [34], achieve purely geometric clothed human re-
construction with aligned SMPL-X [21] parameters, while
TeCH [13] and SIFU [38] additionally support faithful tex-
ture generation. The other category of methods [24, 25, 40]
use feed-forward networks to estimate the 3D occupancy
field and extract the human mesh using the Marching Cubes
algorithm [20], then attach textures through shape-guided
inpainting [3]. A concurrent work, MagicMan, like our
approach, combines a 512-resolution multiview diffusion
model with monocular human reconstruction. MagicMan
and our MEAT can generate dense multiview results that
can be directly applied to 2DGS [12] reconstruction.

3. Methodology

3.1. Preliminaries

Multiview Diffusion Models. Following the structure of
the Latent Diffusion Model (LDM) [23], existing multi-
view diffusion models typically consist of a VAE encoder
&, a denoiser U-Net ¢y, and a VAE decoder D. The en-
coder maps the image xz( into a low-resolution latent space

as zop = E(xp). The decoder D then reconstructs the
image from the latent feature. Multiview diffusion mod-
els can be categorized into two main types: one-view-
at-a-time approaches [17, 26] and all-view-at-once meth-
ods [14, 15, 19,27, 31, 39].

The first category, represented by Zero-1-to-3 [17], trains
the denoiser €y to process one target view at a time. It pre-
dicts the noise € from the noisy latent z; of the target view
image x(, conditioned on the reference view image y and
the associated relative camera rotation R and translation 7.
The training objective is

m‘gnEE(wo),ewN(O,I),t HE - 69(2t7t7y3R7 T)”g . (D

Such models can generate multiple target views sequen-
tially but lack explicit consistency constraints across views.

The second category processes all target views simulta-
neously and integrates features across views using attention
modules, improving cross-view consistency. The training
objective is extended to include N target views:

min B 18 con(0.0).1 le —eo (2N, ty, [R, T]l:N)H%]
2
While this approach achieves better cross-view visual
consistency, it comes at the cost of significant memory
and computational overhead during the cross-view atten-
tion. Our model also follows the all-view-at-once setup
but efficiently produces the non-trivial dense, 1024 x 1024
high-resolution multiview generation through a novel mesh
attention mechanism, which we will detail in Sec. 3.2.
Rasterization. In mesh-based rasterization, each pixel on
the 2D image plane is associated with a ray cast from the
camera into 3D space, intersecting with the mesh surface.
For each pixel p, the rasterization output includes the in-
tersection mask My, the intersected triangle face index ¢,
and the barycentric coordinates Ap = (Ap1, Ap2, Ap3). With
the barycentric coordinates A, and the triangle face vertex
coordinates Py, we can derive the 3D coordinates of the
intersected point on mesh

P, = interp(Ap, Py). 3)

Our mesh attention takes advantage of the aggregation and
projection of P,

3.2. Mesh Attention

We introduce mesh attention, MEAT, to overcome the in-
efficiencies of traditional cross-view attention, where each
pixel must access and integrate information from all other
pixels in different views, resulting in substantial redundant
computation. In practice, pixels across views correspond to
each other according to the 3D structure of the object. Given
an approximate clothed mesh as the centric coarse geomet-
ric representation of the human object, our approach lever-
ages the 3D coordinate transformations to directly identify
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Figure 3. Mesh Attention Block. (a) P, aggregation. When the resolution of the feature map is very low, the ray cast from the center of a
pixel may not intersect with the mesh, although the pixel area itself overlaps with it. (b) Projection. Each projected point is rounded to four
integer pixels, corresponding to d = 4 in Table 1. The projected points on the reference view are also used to retrieve the encoded VAE
features. (c) MEAT block pipeline. We use mesh attention to fuse U-Net features from all N views, and VAE features from the reference.
An additional per-view self-attention block is applied to process the captured multiview features. M stands for masked skip connection.

corresponding 2D pixel locations across different views.
This allows us to aggregate information from these matched
pixels, reducing redundancy and improving cross-view con-
sistency. Details of MEAT are explained below.
Aggregated Rasterization. We can obtain the 3D coor-
dinates of the intersection on the mesh for each pixel p
through rasterization and Eq. (3). However, due to the
potentially low resolution of the diffusion features (e.g.,
16 x 16 mid-block feature maps for 10242 images), pixels
near the object edges, which may contain useful informa-
tion, can be misclassified as having no intersection with the
mesh when using direct rasterization, as shown in Fig. 3(a).
To address this, we aggregate higher-resolution rasteriza-
tion results to obtain the intersection point P, and the mask
M, at the resolution of the feature map.

Consider a pixel p on the feature map that corresponds to
a pixel region S in the higher-resolution rasterization. We
treat P, as the average of all valid Ps within the region S:

Z es MSPS
P, = Saes e, )
d ZSGS MS
Mp = \/SGSMS7 (5)

where V is the “logical or” operation. The higher-resolution
rasterization only needs to be performed once and can be
reused for aggregation at different target resolutions.
Projection and Grid Sampling. After obtaining P, for
a target view pixel p, we can use the calibration matrices
K,, R,, T, of each view v to locate the corresponding pixel
of Py, in other views:

Pv = [KU(Rva + T’U)]:ry (6)

The corresponding features can then be retrieved using grid
sampling. Instead of interpolating the features of neighbor-
ing pixels based on p,, = (z,y), we round z, y up and down
to extract the corresponding four features f, from the fea-
ture map F), of view v:

Jfo = grid_sample(F,, {|z], [z]} x {|y], [¥]1})- @)

Cross-view Attention. For pixel p on the target view with
U-Net feature f, we use cross attention to fuse the features
from other views. To provide location priors, we concate-
nate the harmonic-embedded view camera pose c, to the
raw U-Net features f,. The masked skip connections are
applied to omit pixels that do not intersect with the mesh
from participating in mesh attention.

Q=Wo(f®eig) K, V=Wkv(fin®ecin), (8)
MEAT feat (f, p) = Mp - Attention(Q, K, T)+ f, (9)

where @ denotes channel-wise concatenation.

In addition to the fusion of U-Net features across views,
we use a fully convolutional residual encoder to process
VAE latent z of the reference view into multi-scale feature
tensors F, and inject them through mesh attention. Specifi-
cally, for pixel p on the target view, we use the projection of
P, on the reference view as the pixel location p,..f and em-
ploy grid sampling as defined in Eq. (7) to extract f. from
the VAE features. Mesh attention is applied exclusively to
the reference view in this step.

Qy=Wq, (f ®egr) Ky, V= Wk, v, (fy © creyp), (10)
MEAT yoe(f,p) = My - Attention(Q~, K+, V) + f. (11)

Here, ref and tgt indicate the reference and target view.
The above operations are applied to each pixel of each view.
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Figure 4. Pipeline of MEAT. We insert mesh attention blocks into
up-sampling blocks of the U-Net to fuse multiview features.

After the two per-pixel attention operations, we apply a
self-attention mechanism for each view to process the fused
features. The complete pipeline is shown in Fig. 3(c). In the
classifier-free guidance training scheme, we always retain
the mesh attention module and set 15% of the data’s camera
embeddings and concatenated x( to null, encouraging the
model to fully leverage the mesh attention.

3.3. Multiview Diffusion Model with MEAT

Figure 4 shows the proposed framework for multi-view hu-
man image generation. The framework incorporates some
design principles from Zero-1-to-3 [17]. Specifically, we
employ a view-conditioned diffusion model to synthesize
novel views of an object by learning controls over camera
viewpoints. Unlike Zero-1-to-3, which processes one view
at a time and may encounter view consistency issues, our
framework processes all target views simultaneously and
integrates features across views using the proposed mesh
attention mechanism, detailed in Sec. 3.2. In addition, our
framework incorporates the following designs to improve
performance: 1) Keypoint conditioning, 2) Resolution up-
scaling and choice of VAE, and 3) Linear noise schedule.

Keypoint Conditioning. To develop a model with strong
generalization capabilities, we use DNA-Rendering [5] as
our training dataset. This dataset comprises real human
videos captured from multiple views, offering a diverse
range of poses. However, this also adds complexity to
model learning. To handle these complex poses, we pro-
pose incorporating detected skeleton keypoints of the target
views into the model. Specifically, we add the keypoint fea-

tures (after adjusting their spatial resolutions and channel
numbers) to the U-Net features as a condition. By explicitly
providing such keypoint conditioning, our model no longer
needs to rely solely on camera parameters to estimate hu-
man poses in new views and can instead focus on ensuring
cross-view consistency and generating detailed outputs.
Resolution Upscaling and Choice of VAE. As analyzed
in Sec. 1 and Table 1, most multiview diffusion models are
limited to a low-resolution of 256 x 256, with only a few re-
cent studies reaching 512 x 512. As shown in Fig. 2, higher
resolutions and improved VAE models are crucial for cap-
turing highly detailed human data. To minimize cross-view
inconsistencies and quality degradation caused by VAE re-
construction, we train our model using 1024 x 1024 images
and use SDXL VAE [22] in our framework.

Noise Schedule. Following the recommendation from
Zerol23++ [26], we use a linear schedule for the denois-
ing process instead of a scaled-linear schedule to achieve
better global consistency across multiple views.

3.4. Inference

For in-the-wild image inputs, we crop the image according
to the dataset setting, which we detail in Sec. 4. We then
apply ECON [34] to produce the clothed human mesh and
the corresponding SMPL-X [21] parameters.
Orthographic to Perspective. Since ECON operates un-
der an orthographic camera assumption, we first obtain a
frontal perspective camera by optimization. Based on the
“Look-At" transformation, we assume a fixed field of view
(FoV) for all cameras, directed at the pelvis. We optimize
the frontal camera position to align the rendered SMPL-X
keypoints with those in the image. After that, we sample
camera parameters that cover a 360-degree view of the hu-
man body, maintaining a fixed elevation and distance.
Generation and Reconstruction. With these cameras, we
render a keypoints visualization image for each view and
perform rasterization and aggregation for mesh attention.
We use DDIM [28] scheduler to generate multiview images
and apply 2DGS [12] for direct reconstruction.

4. Adapting DNA-Rendering for Training

We construct our training data using the multiview human
dataset DNA-Rendering [5], which provides 15 FPS mul-
tiview videos of human motion. By sampling one set of
frames every five frames, we generate over 20,000 sets of
multiview images. The first partition, containing 2,000 sam-
ples, is reserved for testing, while the second partition is
used for training. While this larger dataset offers a signifi-
cant advantage, the multiview setting brings additional chal-
lenges. We address two primary issues: (1) adapting the
monocular reconstructed mesh to the calibrated coordinate
system, and (2) cropping the images with corresponding ad-
justments to the camera calibration parameters. For further



details, please refer to the Supp. Mat.

Mesh Adaptation. To ensure consistent mesh quality dur-
ing both training and inference and to prevent the model
from overly relying on the accuracy of the centric geomet-
ric representation, we use monocular reconstruction from
a pre-selected frontal image to extract the centric mesh for
training. We use PIFuHD[25] for its balance of speed and
quality. However, monocular reconstruction typically as-
sumes a specific position and orthographic projection for
the frontal camera, which differs from our dataset where the
frontal camera is perspective and can be positioned variably.
Consequently, we need to determine a transformation TF
to align the mesh with the world coordinate system of the
dataset. P, of each pixel p in the reference view, after trans-
formation TF and reprojection, should return to its origi-
nal position in its own view and reach the feature-matching
point in adjacent views. These two relationships establish
an optimization objective for TF with a unique optimal so-
lution. We use RoMa [6] to detect all feature-matching pairs
and apply gradient descent to solve TF.

Image Cropping. Existing multiview diffusion models
place the object at the origin of the world coordinate sys-
tem when rendering datasets, and position the camera on a
fixed-radius sphere centered at this origin. This approach
simplifies the viewpoint representation to just azimuth and
elevation, reducing training complexity.

During training, we use the 1-meter-high circular cam-
era array of DNA-Rendering to simulate the zero-elevation
rendered data. These cameras are all oriented toward the
calibrated center of the world coordinate system. However,
this center often does not align precisely with the person’s
position, resulting in variable positioning within the images.
This variability introduces ambiguity when using the cam-
era representation of existing multiview diffusion models.

To address this issue, we propose cropping the images
based on the pelvis position. We align the pelvis joint from
SMPL-X in each frame to the center of the pixel grid. To
maintain consistency with the spherical camera arrange-
ment, we assume the subject has the same height in each
pixel plane since all cameras have the same height. We set
the cropping radius to 1.3 x the maximum height difference
between any keypoint and the pelvis in each pixel plane:

R,=13- max [, (P)y — Iy (Ppetvis)y- (12)

The cropped images from each view are then resized to the
same resolution. Since only cropping and resizing are in-
volved, we only need to adjust the principal point coordi-
nates in the camera intrinsics and normalize the camera to
the NDC (Normalized Device Coordinate) system.

5. Experiments

Implementation Details. Our model is initialized with Sta-
ble Zero123 [2] pretrained weights, and optimized using

e-prediction. Our model supports sparse-view training. We
randomly sample seven views, including the reference, in
each training batch. The batch size on each GPU is 1, and
we use 8 NVIDIA-A100-80GB GPUs to train 150,000 it-
erations without gradient accumulation, which takes about
7 days. Our model can generate 16 views simultaneously
during inference. It employs a Trailing sample steps se-
lection method to minimize the signal-to-noise ratio (SNR)
at the beginning of the denoising process. We use DDIM
sampler with 50 steps and a CFG scale of 3.0.

Baselines. For quantitative experiments, we compare our
method with Stable Zero123 [2], SyncDreamer [18], Won-
der3D [19], and SV3D [30]. For Wonder3D with pretrained
weights, as it generates six views at a time, we split the 15
non-reference test views into three batches, each combined
with the reference view for the generation. We re-train Sta-
ble Zero123 and Wonder3D on DNA-Rendering at the res-
olution of 256 x 256. Wonder3D is only trained in the color
domain since ground-truth normal maps are not available.
We only compare the results of MagicMan [9] qualitatively
as its preset views cannot align with the test setting.
Metrics. Since most of previous multi-view diffusion mod-
els only generate at resolution of 256, we also resize our
results to calculate metrics at this resolution for fair com-
parison. Moreover, to show the advantage of high resolu-
tion generation, we also compute metrics at resolution of
1024. For both resolutions, we include PSNR, SSIM [32],
and LPIPS [37] metrics to compare the generated results
with the ground-truth images. For the 1024 category, we use
Patch-FID (P-FID) [4, 7, 16] instead of FID [10] as a met-
ric for generation quality. FID resizes images to 299 x 299
before calculation, which does not reflect MEAT’s advan-
tage at high resolutions. Instead, we split each image into a
4 x 4 grid of 256 x 256 patches and select the middle two
columns, yielding eight patches per image. The calculation
is based on the patch set. In the 256 category, we also use
the PPLC metric proposed by Free3D [39] to evaluate cross-
view consistency in multiview generation. We exclude it in
the 1024 category because upsized blurry results gain an
unfair advantage in this metric.

5.1. Main Results

Quantitative. Table 2 presents the quantitative compari-
son with the baselines. For each method, we generate 16
pre-set viewpoints and compare them with the ground-truth
images. Our method achieves the best results across both
resolutions in reconstruction metrics and leads in generation
quality. Notably, MEAT significantly outperforms existing
methods on the Patch-FID metric, highlighting the value of
megapixel-resolution training. For cross-view consistency
metric (PPLC), Wonder3D, without retraining, achieves
the best performance, with our method closely following.
The results of Wonder3D highlight the significant improve-
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Figure 5. Qualitative Results. MEAT (Ours) demonstrates significant advantages in resolution, detail, and cross-view consistency in novel
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ment in cross-view consistency made possible by combin-
ing cross-domain attention. However, Wonder3D is highly
memory-intensive and difficult to scale to megapixel reso-
lutions. In contrast, our method is much more efficient.

Qualitative. We show the qualitative comparison with
other baselines in Fig. 5. All methods operating at 2562
resolution fail to produce any facial details, and their tex-
ture clarity is noticeably inferior to that of MEAT. The pre-
trained Wonder3D frequently generates highly consistent
back views with limited perspective variation, potentially
giving it an unfair advantage in the PPLC metric. SV3D
shows a clear improvement in resolution but falls short of
our method in geometric consistency, lacking perceptual

awareness of human structure. MagicMan, as a concur-
rent work, stands out among the baselines but still struggles
with visible artifacts and incomplete limbs when generat-
ing side views (e.g., in the third example). Our method
achieves high-resolution, detail-rich, and view-consistent
human novel view synthesis. More examples are available
in the Supp. Mat.

5.2. Ablations and Discussions

The qualitative and quantitative ablation results are shown
in Fig. 6 and Table 3, respectively.

Resolution Upscaling. Directly increasing the training res-
olution to 1024 causes Stable Zerol23 to generate numer-



Table 2. Main Quantitative Results. We highlight the best value in blue , and the second-best value in green .

Method T R 1024 256

etho Ipe ® | PSNR1 SSIM{ LPIPS| P-FID| | PSNRT SSIMt LPIPS| FID| PPLC.
Stable Zero123 [2] Infer. 256 | 9.039  0.7839 03299 7424 | 9.056  0.7033  0.3966 55.16  0.4549
SyncDreamer [18] Infer. 256 | 1212  0.8653 02331 1028 | 1213  0.7998 03231 7142  0.2017
Wonder3D [19]  Infer. 256 | 1658 09084  0.1456  59.79 | 16.68  0.8649 0.1359 3932  0.0897
SV3D [30] Infer. 578 | 1332  0.8843  0.1830 2499 | 1343 08175 02372 20.14 0.1333
Stable Zero123 [2] Train 256 | 17.52 09139  0.1345 6271 | 17.62 08768 0.1173 3453  0.1010
Wonder3D [19]  Train 256 | 1673 09081  0.1449  67.11 | 16.82  0.8684 0.1356 47.59  0.1042
MEAT (Ours) l-stage 1024 | 1891 09271 00751  10.60 | 1941 09043 00791 1656 0.0991
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Figure 6. Qualitative Ablation. MEAT achieves the best cross-
view consistency.

Table 3. Quantitative Ablation. Best value in blue , second-best

in green . “Here PPLC is calculated on 1024 x 1024 resolution.
Method ‘ PSNR 1 SSIM1 LPIPS| FID| P-FID| PPLC* |
SZ123-256| 17.51 09139 0.1344 2371 62.71 —
+res. 1024 1441 0.8873 0.1480 2141 1456  0.1805
+ schedule 16.56 09114 0.1023 16.81 11.21 0.1170
+ keypoints 18.78 0.9238 0.0776 16.19 10.79 0.0995
X VAE Attn | 18.50  0.9233 0.0788 1691 10.76  0.0981
2-stage 19.11 09266 0.0755 1537 9.983  0.0973
Ours 1891 09271 0.0751 17.08 10.60  0.0928

ous artifacts, as shown in Fig. 6-(a). Adjusting the noise
scheduler to reduce the SNR at the beginning of the denois-
ing process is key to mitigating this issue (see Fig. 6-(b)).

Keypoint Conditioning. Without the keypoint condition,
in Fig. 6-(b), the generated results show noticeable mis-
alignment in the left arm, when compared against the ref-
erence view and ground truth. The keypoint conditioning

reduces the model’s difficulty in understanding the human
geometric structure.

Mesh Attention. Adding only keypoint conditioning does
not ensure cross-view consistent texture generation, as each
view is still generated independently (see Fig. 6-(c)). Mesh
attention is the key to address the consistency issue. We
compared three variants with mesh attention. Models with-
out VAE attention tend to produce local consistency anoma-
lies, as is shown in Fig. 6-(d). We examine a 2-stage training
strategy for MEAT, where we first train the U-Net without
mesh attention for 100k iterations, then freeze these param-
eters and train the mesh attention block for another 50k iter-
ations. We find that this model shows slightly better gener-
ation quality in terms of FID, but exhibits noticeable issues
with cross-view consistency. It usually shows inconsisten-
cies in texture patterns, such as color blocks. See Fig. 6-
(e). As is reflected by Fig. 6-(f) and the PPLC metric in
Table 3, 1-stage-trained MEAT shows the best cross-view
consistency. See Supp. Mat. for more comparison.

6. Conclusion

In this paper, we propose MEAT, a human-specific mul-
tiview diffusion model that generates dense novel views
of humans on megapixels conditioned on a frontal im-
age. Our proposed mesh attention uses the monocular-
reconstructed human mesh as a coarse central geomet-
ric representation, establishing cross-view coordinate cor-
respondences through rasterization and projection. It en-
ables highly memory-efficient cross-view attention, which
overcomes the high complexity that hinders increasing the
resolution to 10242 for existing multiview attention meth-
ods. Through a series of techniques, we have, for the first
time, enabled training a multiview diffusion model using
multiview human motion videos, effectively enhancing the
pose diversity of the training dataset. Extensive experi-
ments demonstrate that our generated multi-view human
images exhibit significant advantages in cross-view consis-
tency, clarity, and detail quality.
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Appendix

In the supplementary material, we discuss further details and pro-
vide more results that are not included in the main paper. In Ap-
pendix A, we provide more details of our model setting and struc-
ture. In Appendix B, we discuss further details and provide vi-
sualization for our dataset processing pipeline. In Appendix C,
we present more results on qualitative comparison with monocular
reconstruction methods and illustration of our cross-view consis-
tency preservation ability.

A. Implementation Details.

In this section, we further specify the model implementation de-
tails.

VAE Version. Notably, since the SDXL-VAE [22] can produce
NaN under £p16 precision, we utilize the fpl 6—-£ix version [1]
to support mixed-precision training.

Keypoints Conditioning. We use a small 3-layer convolutional
network to process the keypoints condition, downsampling the
keypoints visualization image by 8x and aligning it with the chan-
nel of the denoiser U-Net after the conv_in block. Each down-
sampling is achieved with two convolutional layers. The final
output is processed with a conv_out convolutional layer, which
is zero-initialized to allow this condition to be smoothly inte-
grated into the U-Net. We found that an additional branch like
ControlNet-[36] is unnecessary. Directly adding the processed
condition to the U-Net features yields satisfactory training results.
VAE Feature Encoder. The VAE feature encoder is very sim-
ilar to the diffusion U-Net down-sampling blocks without Az-
tention layers. At each resolution scale, there are 2 layers of
ResnetDownsampleBlock2D, whose number of channels is
matched with that in the U-Net. We use the last features before
down-sampling in each residual block to be fused into the U-Net
through VAE attention.

B. Dataset

In this section, we discuss further details of the novel ideas
proposed to harness multiview human video dataset DNA-
Rendering [5] for multiview diffusion training.

Frontal Camera Selection. For each frame of multiview im-
ages in the DNA-Rendering [5] dataset, we need to first determine
which view is the “frontal” one. This config is utilized in monoc-
ular reconstruction, training views sampling, and inference. Since
the dataset provides the SMPL-X coefficients and camera calibra-
tion parameters R, and 7T, for each view, we can derive the global
orientation d of the human body, the 3D coordinates G of the
pelvis, and the camera coordinates C’,, where

C,=—-R,'T,.

We define the frontal view as the viewpoint where the angle be-
tween the line connecting the camera’s optical center to the pelvis
and the global orientation is minimized, i.e.

front view <— arg max _4-GCy
v dIIGC|

Mesh Adaptation. With the selected frontal image, we use PI-
FuHD [25] to predict a clothed human mesh. To adapt this mesh

(13)

11

into the DNA-Rendering camera system, we need to determine
the transformation TF to align the mesh with the world coordinate
system. We assume that the transformation TF for each vertex P
consists of a scaling .S, rotation R, and translation ¢:

S = diag(s), s = [s4, 5y, 82], (14)
R = rOt6d(C1,Cz), (15)
p' = TF(P) = R(SP) + t. (16)

We use rot6d rotation representation [41] for more stable opti-
mization. We can then define the re-projection process 11, of a
frontal-view pixel p into the view v.

Hv(p) = HU(TF(p — P)) a7

Here p — P indicates the inverse orthographic rasterization pro-

cess and 11, is the projection to view v as is described in Eq.(6) in

the main paper. Let v = 1 be the frontal view. We use two types

of alignment to build the optimization target:

1. II1(p) - Pixels return to their original positions.

2. 1, (p) - Pixel p on the frontal view is matched with pixel g,
on view v.

We use RoMa [6] to detect such (p, g, ) pairs. All the pixels p that

do not intersect with the mesh are filtered out. The pixel values

are normalized to [0, 1] based on the resolution of the raw image.

Finally, we can solve the transformation TF through:

argmin Y _[lp — T (P)[3 + D _ llgv — I (p)|3-

s,c1,co,t
1C10C2 P P,qv

18)

We initialize these parameters with the assumption of zero
translation, identical scaling, and an aligned coordinate system.
It yields so = [1,1,1],to = 0, and

—1

1 0 0
Ry = 0 =1 0] - Ry (19)
0o 0 -1

Here R,-1 is the calibrated extrinsic rotation matrix of the frontal
camera in the DNA-Rendering [5] dataset. DNA-Rendering
adopts the opencv camera coordinate system convention, which
has an opposite direction of y-axis and z-axis. We show visualiza-
tion results in Fig. 7.

C. More Results

C.1. Cross-view Consistency Preservation

We show the generated results of models with and without mesh
attention modules in Fig. 8. In the multiview diffusion model, the
generation of front-facing regions leverages information from ref-
erence viewpoints, resulting in reduced randomness. Conversely,
the generation of the backside relies more heavily on the model’s
generative capabilities, thereby exhibiting greater randomness in-
herent to diffusion models. As is shown in Fig. 8, one-view-at-a-
time models lacking mesh attention frequently make random se-
lections among different modes in local structures, resulting in in-
consistencies across viewpoints. The mesh attention module effec-
tively mitigates this issue, achieving better cross-view consistency
preservation.



(b) Mesh location after adaptation.

Figure 7. Mesh Adaptation. Although the monocular reconstructed human mesh inevitably exhibits certain deviations from the ground
truth, our mesh adaptation method can robustly align it to the dataset’s coordinate system. Our MEAT model, trained using this data,
effectively mitigates the interference of geometric noise in human meshes during multi-view image generation.
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Figure 8. Cross-view Consistency Preservation. Models without mesh attention adhere to a one-view-at-a-time approach. Due to the
stochastic nature of diffusion models, generating the backside often fails to maintain local structural consistency across different viewpoints.
The mesh attention module significantly enhances the cross-view consistency preservation.

C.2. Monocular Reconstruction Methods

In this section, we compare the novel view generation results of
our MEAT diffusion model with monocular reconstruction meth-
ods like SiTH [11] and SIFU [38]. The qualitative comparison
results are shown in Fig. 9. For monocular reconstruction meth-

12

ods, novel view images are rendered from textured human meshes,
thereby inherently ensuring perfect cross-view consistency.

However, due to the challenges associated with accurate ge-
ometric estimation, monocular reconstructed human meshes of-
ten exhibit reduced realism when dealing with relatively loose



clothing, thus the results after texture mapping are unsatisfactory.
Our MEAT model utilizes such coarse human meshes solely as a
medium for cross-view feature fusion; the generated images them-
selves are not rendered from any explicit geometric representa-
tions, resulting in a noticeable enhancement in realism.
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Figure 9. Comparison with Monocular Reconstruction Methods. In the novel view generation results for human bodies, compared to
monocular reconstructed meshes, the multiview images generated by our MEAT diffusion model exhibit significant advantages in geometric
plausibility, geometric details, texture details, and clarity. Please zoom in for details.
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