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Abstract

Using backward error analysis, we compute implicit training biases in multitask
and continual learning settings for neural networks trained with stochastic gradient
descent. In particular, we derive modified losses that are implicitly minimized dur-
ing training. They have three terms: the original loss, accounting for convergence,
an implicit flatness regularization term proportional to the learning rate, and a last
term, the conflict term, which can theoretically be detrimental to both convergence
and implicit regularization. In multitask, the conflict term is a well-known quantity,
measuring the gradient alignment between the tasks, while in continual learning
the conflict term is a new quantity in deep learning optimization, although a basic
tool in differential geometry: The Lie bracket between the task gradients.

1 Introduction

Overparameterized neural networks trained to interpolate are able to generalize surprisingly well
in spite of the high complexity of their hypothesis space [1]. One key concept to understand this
phenomenon is that of implicit regularization or implicit training biases, which are quantities that are
not explicitly regularized in the loss during training but by other mechanisms, guiding the network
toward simpler solutions [2, 3]. Several groups [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] have recently
used a technique called Backward Error Analysis (BEA) to compute implicit biases as a measure
of the discrepancy between an optimizer iterates and the solutions of Gradient Flow (GF), which
are the unique continuous paths of steepest descent. Because of its flexibility BEA has been used to
compute optimizer implicit biases in many settings: Gradient Descent (GD) [4], Stochastic Gradient
Descent (SGD) [5, 10], Momentum [16], Adam and RMSProp [14], GAN’s [7, 11, 12], and diffusion
processes [9], among others [6, 8, 13, 15].

Our contribution: We add to this body of work by computing implicit biases in multitask learning
[17] and continual learning [18, 19] settings optimized with SGD. In both cases, the output of BEA is
a modified loss implicitly minimized by the optimizer. It consists of the original loss plus additional
terms, which can be split in two parts: 1) a beneficial implicit flatness regularizer proportional to
the learning rate and already observed in single-task learning (in [4, 5] using BEA as well as with
other approaches in [20, 21, 22]), and 2) a conflict term, due to the presence of several tasks, and
which can be detrimental to both convergence and implicit flatness regularization. In multitask, the
conflict term is the inner product between the task gradients, creating an implicit propensity in the
learning dynamics to seek misaligned task gradients, which is known to be detrimental and needs to
be mitigated [23, 24, 25]. In continual learning, the conflict term is the Lie bracket [26] between the
task gradients whose non-vanishing may possibly be related to catastrophic forgetting [18, 19] where
the performance of previous tasks degrades as new ones are learned. We hope to foster interest on
Lie brackets in optimization, which is one of the basic tools in differential geometry [26].
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2 Background on backward error analysis

To illustrate BEA, we now derive an implicit bias of SGD after a single mini-batch update by adapting
the derivation for full-batch GD from [4]. Consider the loss LB(θ) computed on a batch of data
B from a dataset D. At a given step, the SGD iterate is θ′ = θ − h∇LB(θ), while the solution
of GF (which exactly minimizes the batch loss) is the curve θ(t) solving the differential equation
θ̇(t) = −∇LB(θ(t)) with θ(0) = θ. The discretization drift is the difference between the two, i.e.,
∥θ(h) − θ′∥, and it is of order O(h2) for GD (see [27] for details). BEA proposes to compute a
modified equation, in the form of GF plus corrections in terms of powers of the learning rate

θ̇ = −∇LB(θ) + hf1(θ) + h2f2(θ) + · · · (1)

so that the solution θ̃(t) of the modified equation exactly coincides with the GD iterate: θ′ = θ̃(h).
The idea of BEA is to use the continuous modified equation to analyze the discrete optimizer. Note
that if we truncate the modified equation at order n (i.e. removing the terms of order hn and higher),
the discretization drift becomes of order only O(hn+1). Let us compute f1 following [4]: First, we
expand the solution of the modified equation in a Taylor series:

θ̃(h) = θ − h∇θLB(θ) + h2

(
f1(θ) +

1

4
∇θ∥∇θLB(θ)∥2

)
+O(h3) (2)

For θ̃(h) to coincide with θ′ = θ−h∇LB(θ), we need all the terms in power of h2 or higher to vanish.
This gives us the first correction (and recursively the higher ones too as needed; see [4, 6, 13, 27]):
f1(θ) = −∇

(
1
4∥∇LB(θ)∥2

)
. Therefore the gradient update θ′ follows a GF with drift only of order

O(h3) but for a modified loss L̃B , since the modified equation is of the form

θ̇ = −∇
(
LB(θ) +

h

4
∥∇LB(θ)∥2

)
+O(h2), L̃B(θ) := LB(θ) +

h

4
∥∇LB(θ)∥2, (3)

The second term in this modified loss is a flatness bias, called Implicit Gradient Regularization
(IGR) in [4], which prefers optimization paths with shallower slopes (i.e. lower gradients) guiding
the trajectory toward flatter regions, very much in line with other flatness biases in SGD found by
different means [21, 22, 28, 29]. We now turn to applying BEA to multitask and continual settings.

3 Modified loss and implicit biases in Multitask learning settings

Multitask learning trains a neural network jointly on several tasks hoping that knowledge gained
from each task will transfer to the other tasks, helping generalization, and useful in case of data
scarcity [30, 31]. However, it has been observed at times that learning multiple tasks at once
can be detrimental, a circumstance attributed to the loss gradients for each task being misaligned
[23, 24, 25, 32]. BEA shed some theoretical light on this since the implicit multitask dynamics of
SGD given by its modified equation has a term, the conflict term, with propensity to guide the training
in regions with misaligned gradients. In terms of losses, the simplest multitask setting corresponds to
having two losses L1(ϕ1, θ) for the first task and L2(ϕ2, θ) for the second task. The parameters θ
correspond to the part of the network that is shared between the two tasks, while ϕ1 and ϕ2 are the
parameters corresponding to the two task heads. The training setup is to devise a global loss

Lα,β(ϕ1, ϕ2, θ) := αL1(ϕ1, θ) + βL2(ϕ2, θ) (4)
consisting on a weighted average of the two losses and update the network parameters with

ω′ = ω − h∇ωLα,β(ϕ1, ϕ2, θ), with ω = (ϕ1, ϕ2, θ). (5)
Note that the update above can be considered either as a full-batch GD update as in [4], or a single-step
batch update in SGD within an epoch as in Section 2.

Theorem 3.1. At any given SGD step the two-task iterate (5) follows an exact GF ω̇ = −∇ωL̃α,β(ω)
with a modified loss

L̃α,β = Lα,β +
hα2

4
∥∇ω1

L1∥2 +
hβ2

4
∥∇ω2

L2∥2 +
hαβ

2
⟨∇θL1,∇θL2⟩, (6)

with discretization drift ∥ω̃(h) − ω′∥ of order O(h3), where ω̃ is the solution of the modified GF
starting at ω and where ωi := (ϕi, θ) for i = 1, 2,.

Proof. This follows from an immediate application of the supervised modified loss and modified
equation in (3) to the special form of the multitask loss (4).
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Interpretation: The modified loss (6) has two implicit biases: a IGR term and a conflict term

IGR =
α2h

4
∥∇ω1

L1∥2 +
β2h

4
∥∇ω2

L2∥2, conflict =
hαβ

2
⟨∇θL1,∇θL2⟩.

The IGR term is beneficial: It consists of the sum of two implicit flatness regularizers for each task
loss proportional to the learning rate h as in the single-task case, where it has been shown to be
beneficial, guiding optimization paths toward flatter regions with greater generalization power [4, 5].
The conflict term can be detrimental: The implicit dynamics from the multitask modified equation
encourages this term to become negative possibly at the expense of the original losses or the IGR
terms. Regions where the conflict term can be negative are also regions where the gradients of the
two losses w.r.t. the shared parameters are in opposite directions, creating smaller updates for the
shared parameters, resulting in possibly stalled learning. It turns out that mechanisms preventing this
conflict term to become negative (e.g. by projection [23, 24, 32] or direct regularization [25]) have
been identified and used successfully to improve train and test performance in multitask settings.

4 Modified loss and implicit biases in continual learning settings

Continual learning is concerned with learning from a data distribution that is changing over time with
tasks corresponding to locally stationary phases of the evolution [18, 19]. One of its major issues is
catastrophic forgetting, when the updates from latter tasks degrade the performance on earlier tasks.
While catastrophic forgetting is an issue for all modern approaches [18, 19, 33], its causes remain
unclear. As we will see, the BEA modified equation for continual learning may help shed some new
light on this issue. Namely, consider the continual learning setting where we perform two successive
SGD updates θ1 = θ0 − h∇L1(θ0) and θ2 = θ1 − h∇L2(θ1), with the two losses computed on
two successive batches from a changing data distribution. Using BEA, we want to first compute a
modified loss whose continuous minimization approximates well the two successive updates. Then
we want to identify possibly detrimental terms in the modified equation that may be responsible for a
decreased performance on the first batch by the second update. It turns out that such a detrimental
term pops up, controlled by the Lie bracket of the two batch gradients:
Definition 4.1. Given two vector fields on Rn, that is, two differentiable functions F,G : Rn → Rn,
their Lie Bracket is the vector field [F,G] : Rn → Rn defined as follows

[F,G](θ) = ∇G(θ)F (θ)−∇F (θ)G(θ), (7)
where ∇G(θ) and ∇F (θ) are the Jacobians of the vector fields.

Lie brackets are fundamental tools in differential geometry [26]. They help quantify how flows
intertwine. For instance, if the Lie bracket between loss gradients for different tasks vanish, i.e.,
[∇L1,∇L2] = 0, this implies that their gradient flows commute: Following the gradient flow of
first L1 and then L2 yields the same result as the reverse [26], with their flows somehow spanning
"non-interacting" subspaces. The next theorem states that when this happens two consecutive SGD
updates as above can be approximated by GF for a modified loss of the form:

L̃1,2(θ) = L1(θ) + L2(θ) +
h

4
∥∇L1(θ)∥2 +

h

4
∥∇L2(θ)∥2, (8)

where the IGR terms encourage the learning trajectory toward flatter regions for each task. Note
that flatness preservation between tasks seems helpful to combat catastrophic forgetting [34, 35].
However, when [∇L1,∇L2] ̸= 0, a term of order h in the modified equation (theorem below) and
proportional to the Lie bracket can potentially disrupt that implicit flatness regularization induced by
the modified loss above. Since it is the only term of order h that can do so, we conjecture that the
non-vanishing of the Lie bracket between loss gradients pertaining to different tasks may be linked to
catastrophic forgetting in continual learning. The following theorem gives an exact description of
how this Lie bracket affects the implicit gradient regularization dynamics:
Theorem 4.2. Consider two consecutive mini-batch gradient descent updates θ1 and θ2 as above.
The solution θ̃(t) of the modified equation

θ̇(t) = −∇L̃1,2(θ(t)) +
h

2
[∇L1,∇L2](θ(t)) +O(h2), (9)

where L̃1,2 is the modified loss in Equation (8) follows the composition iterate θ2 with discretization
drift ∥θ̃(h)− θ2∥ of order O(h3).
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Proof. To simplify the notation, let us start with two consecutive Euler updates for general vector
fields F and G. First we consider an Euler update for the first vector field: θ1 = θ0 + hF (θ0). Then,
we compose this update with an Euler step in the direction of the second vector field G and expand
the result into a Taylor’s Series:

θ2 = θ1 + hG(θ1)

= θ0 + hF (θ0) + hG(θ0 + hF (θ0))

= θ0 + h(F (θ0) +G(θ0)) + h2∇G(θ0)F (θ0) +O(h3).

Now, we want to find a modified equation of the form

θ̇ = H0(θ) + hH1(θ) + h2H2(θ) + · · · (10)
whose solution starting at θ0 coincides with θ2 after time h. For that, we can compute the Taylor
expansion of the modified equation solution and compare the powers in h to obtain recursive formulas
for the Hi’s. It is easy to verify the the first orders of the solution Taylor’s Series are given by the
following expression:

θ(h) = θ0 + hH0(θ0) + h2(H1(θ0) +
1

2
∇H0(θ0)H0(θ0)) +O(h3). (11)

To have that θ2 = θ(h) at first order, we obtain the following condition: H0(θ0) = F (θ0) +G(θ0).
This yields for the second order the following condition:

H1(θ0) +
1

2
∇H0(θ0)H0(θ0) = ∇G(θ0)H(θ0). (12)

Using the first order condition and expanding, we immediately obtain

H1(θ0) = −1

2
(∇F (θ0)F (θ0) +∇G(θ0)G(θ0)) +

1

2
[F,G](θ0), (13)

where the last term is the Lie bracket between F and G evaluated at θ0. Now if we specialized for the
gradient fields F = −∇L1 and G = −∇L2, we obtain that

H0(θ) = −∇(L1 + L2) (14)

H1(θ) = −∇
(
1

4
∥∇L1∥2 +

1

4
∥∇L2∥2

)
+

1

2
[∇L1,∇L2], (15)

which concludes the theorem.

Remark 4.3. Observe that when the two losses L1 and L2 come from batches pertaining to the
same task (i.e., close to i.i.d.) their gradients are more likely to be aligned. By the anti-symmetry
of the Lie bracket, [∇L1,∇L2] is then more likely to be close to zero. However, when the data
distribution changes, creating a sharp contrast between the two task loss-gradients then the Lie
bracket [∇L1,∇L2] is likely to be large. This seems to be relevant to the stability gap noticed in [19],
when a large and sudden decrease in performance is observed after the first update for the second
task.

5 Conclusion

We computed implicit biases in multitask and continual learning optimized with SGD using backward
error analysis. These biases are local, measuring the discrepancy between one step of SGD and
gradient flow on the batch loss. In both cases we found a beneficial flatness bias proportional to
the learning rate and preferring smaller slopes on the loss surface for each task along the learning
trajectories similar to single-task supervised learning [4, 5]. We also found a detrimental implicit
bias in both cases (due to the presence of several tasks and which we called conflict term) that has
the potential to steer the learning dynamics away from the flatter regions with higher generalization
power. For multitask learning, the detrimental implicit bias is controlled by the inner product of
the task loss-gradients ⟨∇L1,∇L2⟩, which is a known key quantity in multitask learning already
(e.g., [23, 24, 25, 32]). For continual learning the detrimental bias is a new quantity, the Lie bracket
[∇L1,∇L2] between the task loss-gradients measuring how much their respective gradient flows span
independent regions of the parameter space. Despite their wide use in many areas of mathematics, Lie
brackets are new to deep learning optimization to the best of our knowledge. We hope this work will
help foster the use of backward error analysis in deep learning, and serve as a theoretical motivation
to devise methods relying on Lie brackets in continual learning.
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