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Abstract Extreme learning machine (ELM) has been

proposed for solving fast supervised learning problems by

applying random computational nodes in the hidden layer.

Similar to support vector machine, ELM cannot handle

high-dimensional data effectively. Its generalization per-

formance tends to become bad when it deals with high-

dimensional data. In order to exploit high-dimensional data

effectively, a two-stage extreme learning machine model is

established. In the first stage, we incorporate ELM into the

spectral regression algorithm to implement dimensionality

reduction of high-dimensional data and compute the output

weights. In the second stage, the decision function of

standard ELM model is computed based on the low-

dimensional data and the obtained output weights. This is

due to the fact that two stages are all based on ELM. Thus,

output weights in the second stage can be approximately

replaced by those in the first stage. Consequently, the

proposed method can be applicable to high-dimensional

data at a fast learning speed. Experimental results show

that the proposed two-stage ELM scheme tends to have

better scalability and achieves outstanding generalization

performance at a faster learning speed than ELM.

Keywords Spectral regression (SR) � Extreme learning

machine (ELM) � High-dimensional data � Dimensionality

reduction (DR)

1 Introduction

Extreme learning machine (ELM) has been attracting many

researchers in recent years for its outstanding learning

performance [1, 2]. It was originally developed for the

single-hidden-layer feed-forward neural networks (SLFNs)

[3–10], which was extended to the ‘‘generalized’’, i.e., may

not be neuron alike [11, 12]. The hidden layer of ELM does

not need be tuned. Thus, it has less computational com-

plexity. On the other hand, ELM aims to reach not only the

smallest training error but also the smallest norm of output

weights. Consequently, it tends to achieve good general-

ization performance at a faster learning speed than tradi-

tional support vector machine (SVM). In addition, ELM

provides a unified solution to regression and classification

problems.

Supervised learning is a class of learning tasks and

techniques that only make use of labeled data for training.

ELM was originally proposed for solving fast supervised

learning problems, while practical algorithms in supervised

machine learning degrade in performance (prediction

accuracy) when faced with many features that are not

necessary for predicting the desired output. An important

question in the fields of machine learning, knowledge

discovery, computer vision and pattern recognition is how
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to extract a small number of good features. Similar to

SVM, ELM is also sensitive to high-dimensional data,

which not only has a bad influence on the performance of

ELM, but dramatically impact the learning speed of ELM

[13]. One way to address the problem of high-dimensional

data is to utilize dimensionality reduction (DR) techniques.

Spectral regression (SR), which is fundamentally based on

regression and spectral graph analysis [13–15], can avoid

Eigen-decomposition of dense matrices in traditional DR

methods. Consequently, it can be carried out faster than

many classical DR methods, such as principal component

analysis (PCA), linear discriminant analysis (LDA) and

locally linear embedding (LLE), etc. Moreover, it can be

performed either in supervised, unsupervised or semi-

supervised situation. Since SR and ELM are all essentially

based on the regression model and can be performed in

supervised scenarios, motivated by the similarity of their

models, we intend to incorporate ELM into SR to handle

high-dimensional data classification tasks. An improved

SR is proposed in the first stage, in which an embedding

function in ELM feature space can be solved effectively by

the ELM algorithm. In the second stage, the decision

function of the standard ELM model is computed based on

low-dimensional data. It is worth noting that the output

weights of ELM obtained in the first stage can also be

applied to compute the final decision function of the second

stage. Consequently, the proposed method not only over-

comes the influence of high-dimensional data, but main-

tains the advantage of fast learning speed of ELM.

Experimental results on classification demonstrate the

effectiveness and efficiency of the proposed method.

In particular, the following contributions have been

made in this paper.

(1) We incorporate ELM into the spectral regression

algorithm to implement dimensionality reduction of

high-dimensional data, which can further speed up

the kernel spectral regression algorithm.

(2) A two-stage extreme learning machine model is

presented based on the modified spectral regression

algorithm and the proposed method can be applica-

ble to high-dimensional data at a fast learning speed.

Experimental results on real-world data sets verify

the effectiveness and efficiency of this method.

The paper is structured as follows. In Sect. 2 and Sect. 3,

we briefly introduce the extreme learning machine model

and SR, respectively. The proposed two-stage ELM is

introduced in Sect. 4. The experimental results are pre-

sented in Sect. 5. Finally, we give the related conclusions

in Sect. 6. In order to avoid confusion, we give a list of the

main notations used in this paper in Table 1.

2 Extreme learning machine

The output function of ELM for generalized SLFNs in the

case of one output node is [16]

fL xð Þ ¼
XL

i¼1

bihi xð Þ ¼ h xð Þb ð1Þ

where h xð Þ ¼ h1 xð Þ; . . .; hL xð Þ½ � is the output (row) vector

of the hidden layer with respect to the input x and

b ¼ b1; . . .; bL½ �T is the vector of the output weights

between the hidden layer of L nodes and the output node.

ELM is to minimize the training error as well as the norm

of the output weights. The optimal model is as follows

[16]:

Minimize : LELM ¼ 1

2
bk k2þC

2

XN

i¼1
e2i

Subject to : h xið Þb ¼ ti � ei; i ¼ 1; . . .; n:
ð2Þ

where ti is the expected output value of the single output

node and i is the training error value of the single output

node with respect to the training sample xi. If ELM has

multi-output nodes, an m-class classifier is corresponding

to m output nodes. The classification problem for ELM

with multi-output nodes is

Minimize : LELM ¼ 1

2
bk k2þC

2

XN

i¼1
eik k2

Subject to : h xið Þb ¼ tTi � eTi ; i ¼ 1; . . .; n:
ð3Þ

where ti ¼ ½ti;1; . . .; ti;m�Tis the expected output vector of

the m output nodes and ei ¼ ½ei1; . . .; eim�T is the training

error vector of the m output nodes with respect to the

training sample xi. In this case, the output function of ELM

is usually represented by the form of matrices as follows:

fL xð Þ ¼ Hb

where H is the hidden-layer output matrix denoted by

Table 1 Notations of the paper

Notations Descriptions

R
d The input d-dimensional Euclidean space

n The number of total training data points

m The number of classes that the samples belong to

X X ¼ x1; . . .:; xn½ � 2 R
d�n is the training data matrix

y y ¼ y1; . . .; ynð Þ 2 R
n is the 0-1 label vector. yi 2 R is the

lable of xi

G a; b; xð Þ The hidden node function of ELM

H The hidden layer matrix H 2 R
L�n

k k
H

The norm in the random mapping space H
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H ¼

h x1ð Þ
h x2ð Þ
..
.

h xnð Þ

2
6664

3
7775 ¼

h1 x1ð Þ. . .hL x1ð Þ
h1 x2ð Þ. . .hL x2ð Þ

..

...
...
.

h1 xnð Þ. . .hL xnð Þ

2
6664

3
7775: ð4Þ

3 Spectral regression algorithm

Given a training set with l labeled samples x1, x2,…, xl and

(n - l) unlabeled samples xl?1, xl?2, …, xn, where the

sample xi[R
d belongs to one of m classes, and let lk be the

number of labeled samples in the k-th class (the sum of lk is

equal to l). The SR is summarized as follows [17]:

Step 1 Constructing the adjacency graph G: Let X be the

training set and G denote a graph with n nodes, where the i-

th node corresponds to the sample xi. In order to model the

local structure as well as the label information, the graph

G will be constructed through p-nearest neighbor method.

Step 2 Constructing the weight matrix W: Let W be the

sparse symmetric n 9 n matrix, where Wij represents the

weight of the edge joining vertices i and j.

(1) If there is no any edge between nodes i and j, then

Wij = 0;

(2) Otherwise, if both xi and xj belong to the k-th class,

then Wij = 1/lk, else Wij =d � s i; jð Þ, where

d 0\d� 1ð Þ is a given parameter to adjust the weight

between supervised and unsupervised neighbor infor-

mation. Therein, s(i, j) is a similarity evaluation

function between xi and xj. We have two variations

that the first one is Simple-minded function s(i,

j) = 1 and the second one is Heat kernel function:

s i; jð Þ ¼ exp � xi � xj
�� ��2=2r2

� �

where r 2 R.

Step 3 Eigen-decomposing: Let D be the n 9 n diagonal

matrix, whose (i, i)-th element is the sum of the i-th column

(or row) of W. Find y0, y1, …, ym-1, which are the gen-

eralized eigenvectors corresponding to the largest m of the

eigen-problem:

Wy ¼ kDy; ð5Þ

where the first eigenvector y0 is a vector of all ones with

eigenvalue 1.

Step 4 Regularized least squares: Calculate m-1 vectors

a1; . . .; am�1 2 R
L. ak k ¼ 1; . . .;m� 1ð Þ is the solution of

regularized least square problem:

ak ¼ argmin
a

Xn

i¼1

aTxi � yki
� �2þc ak k2

 !
; ð6Þ

where yki is the i-th element of yk. In order to obtain ak, the

following linear equations system can be used to solve

through the classic Gaussian elimination method.

XXT þ cI
� �

ak ¼ Xyk

where I is a n 9 n identity matrix.

Step5: SR Embedding: Let A be an n 9 (m - 1)

obtained transformation matrix through the previously

mentioned processes, where A ¼ a1; . . .; am�1½ �. The testing
samples can be embedded into m - 1 dimensional sub-

space by

x ! z ¼ ATx: ð7Þ

If we choose a nonlinear function in Reproducing Ker-

nel Hilbert Spaces (RKHS), i.e., yi ¼ f xið Þ ¼
Pn

j¼1

ajkðxi; xjÞ.

Find m-1 vectors a1; . . .; am�1 2 R
n. ak k ¼ 1; . . .;m� 1ð Þ

is the solution the linear equations system:

K þ aIð Þak ¼ yk ð8Þ

where K is n 9 n gram matrix Kij ¼ K xi; xj
� �

and

K xi; xj
� �

is the Mercer kernel of RKHS HK. It can be

easily verified that function f xð Þ ¼
Pm

i¼1

akiK x; xið Þ is the

solution of the following regularized kernel least square

problem [17]:

min
f2HK

Xm

i¼1

f xið Þ � yki
� �2þa fk k2K ð9Þ

where aki is the i-th element of vector ak.

Let H ¼ a1; . . .; ac�1½ �, H is a n� m� 1ð Þ transforma-

tion matrix. The samples can be embedded into m - 1

dimensional subspace by

x ! z ¼ HTK :; xð Þ ð10Þ

where K :; xð Þ ¼ K x1; xð Þ; . . .;K xn; xð Þ½ �T .

4 Two-Stage Extreme Learning Machine

4.1 Dimensionality reduction using ELM

In SR, a linear function is used to represent the embed-

ding function. Alternatively, if we consider an output

function in ELM feature space, i.e.,

fL xið Þ ¼
PL

j¼1

bjhj xið Þ ¼ h xið Þb, the embedding function can

be acquired by solving the following least square

problem:

b ¼ argmin
b

Xn

i¼1

h xið Þb� yið Þ2þc bk k2
 !

; ð11Þ

where yi is the i-th element of the label vector y.
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It can be verified that b equals to

b ¼ HT HHT þ cI
� ��1

y; ð12Þ

where H is an n 9 L output matrix of ELM hidden layer

and I is an n 9 n identity matrix. If the number of training

samples is huge, we have

HT HHT þ cI
� ��1¼ HTH þ cI

� ��1
HTH þ cI
� �

HT HHT þ cI
� ��1

¼ HTH þ cI
� ��1

HT HHT þ cI
� �

HHT þ cI
� ��1

¼ HTH þ cI
� ��1

HT

ð13Þ

Substituting (13) into (12), we have

b ¼ HTH þ cI
� ��1

HTy; ð14Þ

where b is an L� 1 transformation vector. The samples can

be embedded into 1-dimensional subspace by

x ! z ¼ bTh xð Þ; ð15Þ

where h xð Þ ¼ h1 xð Þ; . . .; hL xð Þ½ �T .
The reason that the samples are embedded into

1-dimensional subspace is that the output weights vector b

can be repeatedly used in the computation of the final

decision function of ELM in the second stage. Thus, the

proposed method does not need the training process of

ELM, which can speed up training high-dimensional data.

4.2 ELM based on dimensionality reduction

Based on low-dimensional data and the obtained output

weights in the first stage, the decision function of the stan-

dard ELM model in the second stage can be computed effi-

ciently. Consequently, the proposedmethod not only handles

high-dimensional data effectively, but also has the advantage

of fast learning speed. The two-stage ELM framework esti-

mates an unknown function by minimizing [12]

f � ¼ argmin
f2H

C

2

Xn

i¼1

f xið Þ � yið Þ2þ 1

2
fk k2

H

" #
ð16Þ

where H is the random mapping space of ELM, fk k2
H
is the

norm penalty in the random mapping space H and repre-

sents the complexity of the function in H, xi represents a

variable of the 1-dimensional subspace generated by the

first stage. Eq. (16) can be transformed into the following

optimal problem:

b ¼ argmin
b

C

2

Xn

i¼1

h xið Þb� yið Þ2þ 1

2
bk k2

 !
ð17Þ

It should be noted that the form of Eq. 17) is the same as

that of Eq. (11). Since SR is a kind of Locality Preserving

Projections (LPP) in essence, it can maintain the local

structure of samples very well. Thus, the output weight

vector b of Eq. (17) can be approximately acquired by

solving Eq. (11) with the original data. Thus, the proposed

method has fast learning speed by solving one least square

problem. The flow chart of the two-stage ELM method is

shown in Fig. 1.

Similar to ELM, the proposed model gives unified

solutions for regression, binary and multiclass classifica-

tion. But we mainly discuss the classification problem in

this paper. The two-stage ELM algorithm is summarized

in Table 2. In the supervised case, the Eigen-problem of

the first stage is mainly the cost of Gram-Schmidt

method, which requires ðnm2 � 1
3
m3Þ times addition and

multiplication operations. If the number of training sam-

ples is very large, the computational complexity of the

regularized least squares problem in Eq. (11) and (17) is

OðL3Þ, where L � n. Thus, the total computational

High-dimensional Data

Spectral Regression 
based on ELM

Low-dimensional
 Data

ELM based on 
Dimensionality Reduction

The first stage

The second stage

Output weights  

The decision function f(x)

Fig. 1 The flow chart of two-stage ELM

Table 2 The Description of the two-stage ELM Algorithm

Two-stage ELM Algorithm

Input: n labeled high-dimensional data xi; yið Þf gni¼1

Output: Decision function f � xð Þ.
Step 1: Choosing a hidden-node function Gða; b; xÞ, c and L,

randomly generating ai; bið Þf gLi¼1 and computing

H ¼ G x1ð Þ;G x2ð Þ; . . .GðxnÞð ÞT, where
G xð Þ ¼[G a1; b1; xð Þ;G a2; b2; xð Þ; . . .;G aL; bL; xð Þ].

Step 2: According to Eq. (11), computing the output weights b.

Step 3: If the number of the training data sets is very large n 	 L,

selecting (14) to compute the embedding function h xð Þb
otherwise, selecting (12).

Step 4: Computing the low-dimensional data according to the

embedding function.

Step 5: Based on the low-dimensional data, choosing c and L,

randomly generating ai; bið Þf gLi¼1 and computing the hidden

matrix H0.

Step 6: Computing the final decision function f � xð Þ ¼ H0b.
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complexity of the proposed two-stage ELM is

OðL3 þ nm2 � 1
3
m3Þ. Correspondingly, traditional kernel

classification methods based on regularized least squares

generally need to compute the inverse of a kernel matrix,

which has the computational complexity of Oðn3Þ. For the
two-stage ELM algorithm, the decision function needs

cL2 times multiplication operation toward a new sample.

For traditional kernel classification methods based on

regularized least squares, the decision function needs cn2

times multiplication operation given a new sample Con-

sequently, the proposed method has lower computational

complexity and better scalability than traditional kernel

classification methods.

5 Experiments

5.1 Data set

To evaluate the accuracy and efficiency of the proposed

algorithm, we mainly discuss classification problems and

perform the experiments on the several real-world data sets

from the UCI machine learning repository and another

benchmark repository [18–22]. The basic information

about real-world data sets is summarized in Table 3. These

data sets include both high-dimensional and low-dimen-

sional data sets, since the proposed method can also be

applicable to low-dimensional data.

We obtained 170 images for each individual on the

CMU PIE face data set and make each image be 32 9 32

pixels, with 256 gray levels per pixel. For each individual,

l (=10, 20, 30, 40) images were randomly selected for

training and the rest were used for testing. For the Exten-

ded Yale B data set, l (=5, 10, 15, 20, 25, 30) images per

individual were taken to form the training set, and the rest

were considered to be the testing set. For other data sets,

we all used one half data to training the ELM model and

the rest for testing.Finally, we averaged the results over 30

random splits.

5.2 Parameter settings

We compared the proposed two-stage ELM (TSELM) with

standard ELM and ELM based on SR (SRELM). All the

experiments were carried out inMATLAB 7.0.1 environment

running in a 3.10GHZ Intel CoreTM i5-2400with 4-GBRAM.

In our experiments, the Gaussian function expð�b x� ak k2Þ
was selected for each algorithm. A grid search of the trade-off

constant c on f2�18; 2�16; . . .; 248; 250g and the number of

hidden nodes L on f21; 22; . . .; 214; 215g was conducted in

seek of the optimal result for each algorithm using ELM. The

trade-off constant C of SVM was searched in the range of

f2�18; 2�16; . . .; 218; 250g by using five-fold cross-validation.
Since the search time of each algorithm was too long, the

search time of optimal parameters did not be added to the

whole training time for each algorithm to facilitate compari-

son. Finally, we implemented ELM and SVM training and

computed the training time of each algorithm with the final

optimal parameters.

5.3 Performance comparison

The classification accuracy rates of these algorithms on

low-dimensional and high-dimensional data sets are shown

in Tables 4 and 5, respectively. We average the results over

30 random splits and report the mean as well as the stan-

dard deviation. As can be seen from Table 4, the results of

all algorithms are close to each other. This is due to the fact

that ELM is not sensitive to low-dimensional data sets.

Thus, the performance of standard ELM is close to that of

ELM based on dimensionality reduction. The proposed

TSELM algorithm achieves the better recognition accuracy

than ELM, which shows that the performance of ELM can

be improved further by using dimensionality reduction

techniques. Since TSELM replaces the linear embedding

function of SR by the nonlinear output function of ELM, it

can be performed better than SRELM. Recognition accu-

racy rates of all algorithms on high-dimensional data sets

are shown in Table 5. Since SVM and ELM are sensitive to

high-dimensional data sets, the performance of them is

worse than that of SRELM and TSELM. TSELM still

outperforms SRELM by using nonlinear output functions

in SR. The running time (second) of different classification

methods on high-dimensional data sets are shown in

Table 3 Description of the data sets for classification

Data Size (n) Feature (d) Class

Iris 150 4 3

Ionosphere 351 34 2

SatelliteC1-C2 2,236 36 2

CLL-SUB-111 111 11,340 3

PCMAC 1,943 3,289 2

TOX-171 171 5,748 4

Extended Yale B 2,114 1,024 38

CMU PIE 11,560 1,024 68

Table 4 Recognition accuracy rates on low-dimensional data sets

(mean ± SD %)

Data sets SVM ELM SRELM TSELM

Iris 85.3 ± 0.5 86.2 ± 0.6 86.3 ± 0.8 86.7 ± 0.3

Ionosphere 92.6 ± 0.5 94.1 ± 0.4 94.4 ± 0.5 94.7 ± 0.3

SatelliteC1-C2 95.2 ± 0.3 96.6 ± 0.4 96.8 ± 0.4 97.1 ± 0.2
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Table 6, where SRELM and TSELM run much faster than

SVM and ELM. TSELM has the fastest learning speed

among them. Overall, TSELM can have the best perfor-

mance at a faster learning speed.

We further tested the proposed TSELM algorithm on the

high-dimensional CMU PIE face data set. For each given

l (the number of training samples per class), we also

averaged the results over 30 random splits and reported the

mean as well as the standard deviation, which are shown in

Table 7.

From Table 7, we can observe that SRELM and TSELM

all outperform standard ELM, which shows that standard

ELM is sensitive to high-dimensional data and its perfor-

mance can be improved by utilizing effective DR methods.

Since SRELM and TSELM all use the Tikhonov regular-

izer to improve the smoothness of the projection functions,

they are able to achieve better performance than ELM. The

performance of SRELM is a little better than that of ELM,

this is due to the fact that SRELM obtains the projection

function based on linear embedding mapping, which is not

applicable to face image data sets containing manifold

structure data. Correspondingly, TSELM substitutes the

nonlinear embedding functions with the linear ones. Thus,

it can outperform SRELM and the result of the first stage of

TSELM is better than that of SR, which contributes to

improve the whole recognition accuracy.

We further obtained the training and testing time of

ELM based on different DR methods, which are listed in

Table 8, where the training time of ELM refers to the cost

time of computing the final decision function, the training

time of SRELM and TSELM includes the computational

time of the dimension reduction for the training data and

the training time of standard ELM. As can be seen from

Table 8, TSELM and SRELM perform faster than ELM,

which shows that both the classification accuracy and

learning speed of ELM can be enhanced by using the SR

method for high-dimensional data. TSELM performs faster

than SRELM, this is due to the fact that SRELM solves two

least square problems by training the ELM model based on

the SR algorithm, while TSELM only solves on least

square problem by using the obtained output weights in the

first stage directly. The final results all indicate that the

decision function of standard ELM model can be computed

efficiently based on the low-dimensional data and the

obtained output weights in the first stage, which validates

the effectiveness of the proposed method. Figure 2 shows

the classification accuracy rates as well as the running time

(second) for each method on the Extended Yale B data set.

We averaged the results over 30 random splits for each

given l.

As can be seen from Fig. 2, TSELM and SRELM can

efficiently exploit high-dimensional data to discover the

intrinsic geometry structure in the data. They perform

significantly better than ELM. The speed of TSELM is

faster than that of ELM and SRELM as l increases, which

validates the effectiveness and efficiency of TSELM

further.

Overall, compared with ELM and SRELM, the proposed

method can achieve better performance at much faster

learning speed. It not only handles high-dimensional data

effectively, but also inherits the advantage of fast learning

speed of ELM.

6 Conclusion

In this paper, we construct a two-stage ELM model in

terms of the SR algorithm for high-dimensional data clas-

sification tasks. We incorporate ELM into SR and derive

the form of the embedding function applicable to high-

dimensional data. A fast ELM learning algorithm by SR

based on ELM is proposed to improve the effectiveness

and efficiency of the standard ELM method. The proposed

method not only overcomes the influence of high-dimen-

sional data, but also maintains the advantage of fast

learning speed of ELM. Experimental results show that

TSELM has the best performance than ELM and ELM

based on SR for both high-dimensional and low-dimen-

sional data sets. But, the choice of trade-off constant c is

Table 5 Recognition accuracy rates on high-dimensional data sets

(mean ± SD %)

Data sets SVM ELM SRELM TSELM

TOX-171 79.3 ± 1.4 80.4 ± 1.2 83.7 ± 1.0 84.7 ± 0.8

PCMAC 81.5 ± 0.8 82.6.1 ± 0.8 84.4 ± 0.6 85.7 ± 0.5

CLL-SUB-

111

75.6 ± 1.8 77.6 ± 1.4 81.8 ± 1.2 83.3 ± 1.2

Table 6 Running time of different classification methods on high-

dimensional data sets (s)

Data sets SVM ELM SRELM TSELM

TOX-171 20.832 6.673 3.682 3.057

PCMAC 24.625 8.759 4.834 4.249

CLL-SUB-111 32.362 12.247 6.356 5.865

Table 7 Recognition accuracy rates on PIE (mean ± SD%)

Train Size ELM SRELM TSELM

10 9 68 83.2 ± 0.7 85.0 ± 1.3 87.6 ± 0.4

20 9 68 91.1 ± 0.6 92.3 ± 0.7 93.5 ± 0.3

30 9 68 93.4 ± 0.6 93.4 ± 0.7 94.7 ± 0.3

40 9 68 94.6 ± 0.6 94.8 ± 0.4 96.0 ± 0.3
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not discussed further and how to select the optimal value of

the number of hidden nodes is another primary challenge of

our method. In the near future, we will study how to select

the optimal parameters of the proposed model and study

the sparse regularization problem for this method.
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