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Abstract

Respiratory audio, such as coughing and breathing sounds, has predictive power
for a wide range of healthcare applications, yet is currently under-explored. The
main problem for those applications arises from the difficulty in collecting large la-
beled task-specific data for model development. Generalizable respiratory acoustic
foundation models pretrained with unlabeled data would offer appealing advan-
tages and possibly unlock this impasse. However, given the safety-critical nature
of healthcare applications, it is pivotal to also ensure openness and replicability
for any proposed foundation model solution. To this end, we introduce OPERA,
an OPEn Respiratory Acoustic foundation model pretraining and benchmarking
system, as the first approach answering this need. We curate large-scale respiratory
audio datasets (∼136K samples, over 400 hours), pretrain three pioneering gen-
eralizable acoustic models, and build a benchmark consisting of 19 downstream
respiratory health tasks for evaluation. Our pretrained models demonstrate superior
performance (against existing acoustic models pretrained with general audio on
16 out of 19 tasks) and generalizability (to unseen datasets and new respiratory
audio modalities). This highlights the great promise of respiratory acoustic foun-
dation models and encourages more studies using OPERA as an open resource to
accelerate research on respiratory audio for health.

The OPERA website can be found at opera-benchmark.github.io
Our codebase is open-sourced at github.com/evelyn0414/OPERA

1 Introduction

Respiratory audio, such as coughing and breathing sounds generated by the respiratory system’s
airflow, contains multiple physiological characteristics of individuals and therefore its modeling could
be instrumental in health monitoring and disease detection applications [50, 60]. For instance, audio
recordings can be used to estimate respiratory rate and lung function [14, 54, 72], detect snoring and
apnea events during sleep [37, 27, 53], assess the effect of smoking on health [44, 43] and diagnose
diseases like flu and asthma [39, 36, 28, 51].

To enable the widespread adoption of these applications, high-performing algorithms are needed.
Related studies rely on traditional signal processing methods [14, 54, 37, 27, 44, 39, 36], which
require domain knowledge and often exhibit limited performance. Supervised deep acoustic models
have been proposed [72, 28, 61] but their performance heavily depends on the volume and quality
of available labels, which might be difficult and expensive to collect. Hence, foundation models
pretrained with large unlabeled respiratory audio data have a high potential to improve performance
through transfer learning and supervised fine-tuning [13, 69]. However, in contrast with other health
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Figure 1: System overview of OPERA. After data curation, respiratory audio encoders are pretrained
and then evaluated on various downstream health tasks.

data modalities like clinical imaging [49], electronic health records (EHRs) [67], and medical time
series [75, 1, 15], foundation models for respiratory audio are largely under-explored.

Respiratory audio datasets are available but no comprehensive collection has been curated.
Recent years have seen an ever-increasing accumulation of respiratory audio [70, 48, 12], exhibiting
heterogeneous properties such as varying acquisition modalities and sampling rates. These datasets
exhibit significant potential for acoustic model development and evaluation. However, no existing
effort has curated such data systematically.

There is no open respiratory acoustic foundation model, impeding the field’s growth and
understanding. Existing open-source acoustic models like AudioMAE [35] and CLAP [17] are
pretrained on general audio event datasets such as YouTube audio, containing very few (around
0.3%) respiratory sounds [38, 24]. These models may not be able to effectively capture the subtle
nuances of respiratory sounds, which can vary in abrupt bursts, aperiodic components, and frequency
distributions, particularly across different health conditions [50]. Although a model pretrained on
respiratory sounds has been recently presented [6], it is not open-source, making it hard to analyze,
replicate, or compare its workings. The insights on how to effectively train generalizable respiratory
acoustic models also remain limited.

There is no ready-to-use benchmark for respiratory audio research. Current task-specific studies
evaluate their models on purposely collected datasets, leaving the models’ generalizability to other
tasks unclear [6]. A benchmark that combines multiple public datasets across diverse applications
to enable fair and comprehensive evaluations of the developed foundation models is essential but
currently lacking. This is crucial for safety-critical health applications, where models must be
rigorously evaluated before use [68, 65].

To mitigate these gaps, in this paper, we put forward OPERA, an OPEn Respiratory Acoustic
foundation model pretraining and benchmarking system (Figure 1). It curates unlabeled respiratory
audio datasets, pretrain three pioneering foundational models, and evaluates them against existing
pretrained acoustic models across various applications. Specifically, our contributions are:

• We curate a unique large-scale (∼136K samples, 400+ hours), multi-source (5 datasets), multi-
modal (breathing, coughing, and lung sounds) and publicly available (or available on request)
respiratory audio dataset for generalizable model pretraining, orders of magnitude larger than the
number of respiratory audio samples in datasets used for training existing open acoustic models.

• We pretrain 3 generalizable acoustic models with the curated unlabeled data using the most
common self-supervised approaches (a contrastive learning-based transformer, a contrastive
learning-based CNN model, and a generatively pretrained transformer) to study the effect of the
training designs.

• We employ 10 labeled datasets (6 not covered by pretraining) to formulate 19 respiratory health
tasks (12 in health condition inference and 7 in lung function estimation), ensuring fair, compre-
hensive and reproducible downstream evaluation.

• We benchmark the performance of our 3 pretrained models, one commonly used acoustic feature
set, and 3 open pretrained acoustic models on these tasks as a starting point for future exploration.
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Extensive experiments demonstrate that our pretrained models outperform the models pretrained
with general audio on 16 out of 19 benchmark tasks, confirming the power and promise of dedicated
respiratory acoustic foundation models. Results also show that our models are generalizable across
multiple downstream tasks, including new datasets and unseen respiratory audio modalities. This is a
critical advancement towards realizing the potential of respiratory sounds as a mainstream technique
for health monitoring.

Within our three models, we find that the contrastive pretraining model is better for classification-
based downstream tasks, while the generative pretrained model performs better in regression tasks,
possibly due to the nature of their training objectives: contrastive learning can capture the nuances of
the local patterns to make features distinguishable while generative learning focuses more on global
features which are vital for regression. Our transformer models generally outperform the CNN model
because they have stronger modeling capability, though requiring more intensive computation. These
findings provide insightful guidance to the development and application of such types of models.

In summary, this paper introduces the first open-source respiratory acoustic foundation model
pretraining and benchmarking system. This represents a critical first step towards comprehensive
and reproducible audio foundation models for health: future foundation model research can leverage
our system as an experimental resource, and application studies can take advantage of our pretrained
models as feature extractors. This can facilitate progress in both machine learning and healthcare.
These efforts will extend current machine learning capabilities, now able to see (via vision) and read
(via natural languages), to also listen to (via audio) our health.

2 Related Work
2.1 Pretraining in Acoustic Modeling

Models pretrained on large-scale datasets have demonstrated great generalizability in diverse down-
stream tasks, especially when labeled data are limited [8, 16, 25, 35]. For audio-driven health
applications, several general audio pretrained models can be used as feature extractors. One widely
used model is VGGish [30], trained on 5.24 million hours of audio from YouTube videos to predict
30,871 categories of video labels. Other models have been developed for audio event classification
tasks [41, 10, 35]. Among them, AudioMAE [35] is an open model trained via an auto-encoding
objective without requiring any audio labels. Inspired by recent advances in large language models,
language-supervised pretraining has also been explored. CLAP [17] is an open model pretrained in
this manner. We have included these open models in our benchmark.

It is also worth noting that these open models are pretrained on general audio event datasets such as
AudioSet [24], FSD50K [21], and FreeSound [22], which contains few samples of respiratory-related
audio. For instance, AudioSet’s 2 million clips include only 2334 snoring, 871 cough, 834 breathing,
and 1200 sneeze clips, making up only 0.3% of the total. In face of this issue, we curate large-scale
respiratory audio datasets to pretrain our generalizable respiratory acoustic models for comparison.

In terms of pretraining methods, given the difficulty in collecting large-scale labeled health-related
datasets, we consider self-supervised learning (SSL) to leverage unlabelled data for learning mean-
ingful representations [63, 1, 6]. Main SSL methods fall into two categories: contrastive [11, 5, 55]
and generative [29, 35, 47]. Contrastive learning trains models to distinguish between similar and
dissimilar samples, while generative models are trained to reconstruct original audio data or features
from masked or corrupted versions. Since they have been demonstrated to be effective in general
audio, We implement both methods in our system.

A recent work, HeAR [6], curated millions of respiratory audio clips from YouTube videos to pretrain
a model using a generative SSL approach. However, neither the data nor the model are publicly
available, resulting in a lack of transparency and reproducibility. Limited exploration has been
conducted on the reasoning behind the chosen SSL method for various downstream tasks. Our work
investigates, for the first time, open pretraining generalizable respiratory acoustic models to provide a
better understanding of their limits and their potential.

2.2 Benchmarks in Respiratory Audio-based Applications
Current respiratory audio-based health studies typically evaluate their developed models using their
self-formulated protocols [6, 71, 73], instead of following a uniform evaluation pipeline. This leads
to weak reproducibility due to several challenges [28]: lack of implementation details or released
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Table 1: Statistics of the data used for model pretraining (SR: sampling rate; Duration: mean [95%
quantile range]; Crop: cropped length for pretraining).

Data name Collected by SR Modality #Sample Duration (s) Crop (s)
COVID-19 Sounds [70] Microphone 16∼44.1kHz Induced cough (3 times) 40866 6.1[2.6∼11.2] 2

Deep breath (5 times) 36605 20.5[9.7∼31.6] 8
UK COVID-19 [12] Microphone 48kHz Induced cough (3 times) 19533 4.1[2.1∼9.2] 2

Exhalation (5 times) 20719 7.7[4.2∼15.6] 4
COUGHVID [48] Microphone 48kHz Induced cough (up to 10s) 7179 6.9[2.4∼9.9] 2
ICBHI [52] Stethoscope 4∼44.1kHz lung sound (several breath cycles) 538 22.2[20.0∼65.9] 8
HF LUNG [31] Stethoscope 4kHz lung sound (several breath cycles) 10554 15.0[15.0∼15.0] 8

code, absence of reliable training and testing division, and varying implementation frameworks (e.g.,
some in TensorFlow [28] while other in PyTorch [4]) making them difficult to compare.

High-quality benchmarks are essential in machine learning to ensure advancements are reliable and
applicable to real-world problems. While several benchmarks exist for pretrained representation
models on general audio event detection and speech recognition [64, 57, 26, 74], similar benchmarks
are missing in respiratory audio for health, despite their equal importance. The only related bench-
mark [32] in this area compares supervised models for breath phase and adventitious sound detection
using a single dataset, and is thus not applicable for evaluating foundation models. A comprehensive
benchmarking effort of respiratory acoustic foundation models is lacking but has the potential to
really shed light on the power of these techniques in the context of respiratory health tasks.

3 System Overview

As shown in Figure 1, OPERA comprises three main components: data curation (including unlabeled
data for pretraining and labeled data for evaluation), general-purpose pretraining to develop gener-
alizable acoustic models (Encoder), and a benchmark comparing the pretrained models on various
downstream tasks.

In OPERA, we employ five datasets for pretraining and ten datasets for benchmarking. Four of the
downstream datasets overlap with the pretraining resources, but we ensure the testing data is held
out before pretraining and thus is never seen by the models. During the pretraining step, we build
two SSL strategies enabling the use of different encoder architectures. We then use the pretrained
models to extract features and apply linear probing to report the performance for downstream tasks.
Detailed information about data curation and pretraining methods is elaborated on in Section 4, and
the benchmark data curation and evaluation results are summarized in Section 5.

4 Self-supervised Pretraining

4.1 Pretraining Datasets

Five open data resources are curated in OPERA to enable the training of respiratory acoustic
foundation models (Table 1). They were collected by different research institutions using various
protocols, and are all publicly available or accessible upon request. Some recordings were made with
a microphone near the mouth [70, 12, 48], while others used a digital stethoscope attached to the
chest [52, 31]. This allows the pretrained models to see heterogeneous data for better generalizability.

We only include qualified samples (those identified as respiratory audio, not noise) in the pretraining
step. Some labeled audio samples from these datasets, which can be used for downstream evaluations,
are held out. We then trim the remaining audio recordings by removing the beginning and ending
silence to further ensure the quality of the data. The statistics of the data after quality check are
summarized in Table 1 (extended description can be found in Appendix A.1). As a result, the entire
pretraining dataset consists of 135,944 samples, with a total duration of about 404.1 hours.

Before pretraining, all recordings are resampled to 16 kHz and merged into a mono channel. They
are then transformed into spectrograms using 64 Mel filter banks with a 64 ms Hann window that
shifts every 32 ms [58, 76]. For example, a 4s recording will be converted into a spectrogram of
1× 126× 64 dimension. Finally, these spectrograms are used to pretrain our respiratory acoustic
foundation models.
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Figure 2: Self-supervised learning methods used in our system.

4.2 Pretraining Models and Methods
We pre-train our models using a combination of the aforementioned data resources, dividing each
dataset into equally-sized batches for consistent processing. We randomly shuffle the batches and
reserve 10% for validation. Due to inherent variations in audio length within individual batches, we
employ random cropping of spectrograms, with crop lengths specified in Table 1. Considering the
unlabeled nature of the pretraining data, we adopt the most representative SSL methods: contrastive
learning-based and generative pretraining-based objectives to pretrain our models. The rationale
behind this choice is that if an encoder can distinguish the source of audio segments (contrastive) or
reconstruct masked spectrograms (generative), it is expected to have encoded useful and generalizable
acoustic features. The three foundation models we pretrained are:

• OPERA-CT: OPERA-CT is a contrastive learning based [55] transformer model. Two segments
from the same spectrogram are regard as a positive pair, otherwise negative pairs. As shown in
Figure 2(a), an encoder network (a transformer [10]) extracts features from these segments, and a
projector maps them into a low-dimensional representation space, where bilinear similarity is
calculated. The optimization objective aims to maximize the similarity between positive pairs
and minimize it for negative pairs. The encoder has 31M trainable parameters.

• OPERA-CE: Similar to OPERA-CT, CE leverages a contrastive pre-training approach. However,
it utilizes a more lightweight and efficient CNN encoder (EfficientNet-B0) [62], which has
approximately 4M trainable parameters.

• OPERA-GT: OPERA-GT is a generatively pretrained transformer model [3]. As shown in
Figure 2(b), the encoder (a vision transformer with 21M trainable parameters) is utilized to
extract useful features from masked spectrograms, from which the decoder (a lightweight swin-
transformer with 12M trainable parameters) can reconstruct the original spectrograms. To train
the encoder and the decoder, spectrograms are cropped to equal lengths and then split into small
patches. We randomly mask 70% of patches per spectrogram for reconstruction.

Detailed introduction to these three models can be found in Appendix A.2. We train them for up to
200 epochs and save the best model based on the held-out validation set (i.e., its performance on the
pretraining objective). Model checkpoints are also released. More pretraining results and analysis are
available in Appendix A.3.

5 Benchmarking

5.1 Benchmark Datasets and Tasks Setup
Tasks. To facilitate the evaluation of our pretrained models, existing acoustic models, and future
emerging respiratory acoustic foundation models, we introduce a new benchmark. A total of 10
labeled respiratory audio datasets, encompassing 6 respiratory audio modalities, are curated for this
benchmark. Among these 10 datasets, 6 are new and unseen during the pretraining stage.

Using these 10 datasets, we formulate 19 downstream tasks: 12 for health condition inference
and 7 for lung function estimation. The first group covers disease detection such as COVID-19
and COPD (Chronic Obstructive Pulmonary Disease), participant attribute inference like smoker
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Table 2: Downstream task characteristics grouped by task category. Datasets in grey are entirely new
(not used in pretraining), while others have test sets held out unseen. For T13-T19, FVC denotes
forced vital capacity (L), FEV1 is the forced expiratory volume in 1 second, and FEV1/FVC refers to
the ratio of the two.

Dataset ID Task Modality #Sam. (#Sub.) Data Distribution
UK COVID-19 [12] T1 Covid / Non-covid Exhalation 2500 (2500) 840 / 1660

T2 Covid / Non-covid Cough 2500 (2500) 840 / 1660
COVID-19 Sounds [70] T3 Symptomatic / Healthy Breath 4138 (3294) 2029 / 2109

T4 Symptomatic / Healthy Cough 4138 (3294) 2029 / 2109
CoughVID [48] T5 Covid / Non-covid Cough 6175 (n/a) 547 / 5628

T6 Female / Male Cough 7263 (n/a) 2468 / 4795
ICBHI [52] T7 COPD / Healthy Lung sounds 828 (90) 793 / 35

Coswara [7] T8 Smoker / Non-smoker Cough 948 (n/a) 201 / 747
T9 Female / Male Cough 2496 (n/a) 759 / 1737

KAUH [23] T10 Obstructive / Healthy Lung sounds 234 (79) 129 / 105
Respiratory@TR [2] T11 COPD severity Lung sounds 504 (42) 72 / 60 / 84 / 84 / 204

SSBPR [71] T12 Body position recognition Snoring 7468 (20) 1638 / 1454 / 1269 / 1668 / 1439

MMlung [45] T13 FVC Deep breath 40 (40) 3.402 ± 1.032 L
T14 FEV1 Deep breath 40 (40) 2.657 ± 0.976 L
T15 FEV1/FVC Deep breath 40 (40) 0.808 ± 0.190 L
T16 FVC O Vowels 40 (40) 3.402 ± 1.032 L
T17 FEV1 O Vowels 40 (40) 2.657 ± 0.976 L
T18 FEV1/FVC O Vowels 40 (40) 0.808 ± 0.190 L

NoseMic [9] T19 Respiratory rate Breath 1297 (16) 13.915 ± 3.386 bpm

and gender, disease severity classification, and body position in sleep monitoring. Tasks 1-10 are
binary classification, while Tasks 11-12 involve 5 classes. The second group includes spirometry
test performance and respiratory rate estimation, which are regression tasks aimed at predicting
continuous values. Data and task statistics are summarized in Table 2, with detailed descriptions and
licenses provided in Appendix A.1.

All data in this benchmark are publicly available or under controlled access procedures. When
available, we follow the official train-test split (Tasks 1-4 and 12-18); otherwise, we implement a
random participant-independent split to ensure realistic evaluation (Tasks 5-11 and 19). Due to the
limited number of participants in Tasks 13-19, we employ leave-one-subject-out evaluation. For all
other tasks, we adopt a fixed random train-validation-test split.

Baselines. In addition to our pretrained models, we also include a commonly used acoustic feature set
and three open pretrained acoustic models in this benchmark. They are Opensmile [18] (Emobase
acoutic feature set), VGGish [30] (supervised pretrained), AudioMAE [35] (self-supervised pre-
trained) and CLAP [17] (language-supervised pretrained). We consider these four methods as
baselines to be distinguished from our pretrained models. We also pretrain these architectures with
our OPERA data and results can be found in Appendix A.4.

Evaluation protocol. All tasks are evaluated using the standard linear probe protocol [11, 55, 46]:
training a single fully connected layer on top of the representations extracted from the frozen
encoder. Linear evaluation focuses on the quality of learned representations and is applicable to
some very small datasets. AUROC (area under the receiver operating characteristic) is reported for
classification (Task 1-12) and MAE (mean absolute error) is reported for regression (Task 13-19).
For a comprehensive overall evaluation, we report MRR (mean reciprocal rank) [59] across tasks.

For baselines, both the data pre-processing and feature extraction strictly follow their official imple-
mentation. For our pretrained models, the same audio preprocessing is used as in pretraining. We
then segment our audio into short frames to feed into our foundation models to extract features, and
use the averaged representation over these frames as the input for the linear layer [35]. An extended
description of the implementing details can be found in Appendix A.2. Note that the baselines
and our pretrained models are implemented within the same pipeline, making our results easy to
reproduce and our benchmark ready to use.

5.2 Experimental Results
We report the MRR of different task groups in Table 3, with the detailed reciprocal ranks of all
evaluated methods on each task provided in Appendix A.4. The performance metrics for each task are
summarized in Table 4 and Table 5. Our benchmark demonstrates reliability, as our implementation
of baselines achieves comparable performance to those reported in the literature (e.g., existing

6



Table 3: Mean reciprocal ranks on task groups (higher is better). The best model within each group is
highlighted in pink and the second-best is highlighted in blue (p values reported in Appendix A.4).

Task # Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
All 19 0.2912 0.2289 0.2489 0.3435 0.5632 0.4412 0.5298

Health condition inference 12 0.2190 0.1714 0.2058 0.4319 0.6944 0.4153 0.4569
Lung function estimation 7 0.4150 0.3276 0.3228 0.1918 0.3381 0.4857 0.6548

Table 4: AUROC on health condition inference tasks (higher is better). The best model for each task
is highlighted. We report mean and standard deviation from five independent runs. ✓ and * indicates
superiority over the opensmile feature set and the other pretrained baselines respectively.

ID Task Abbr. Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
T1 Covid (Exhale) 0.550 ± 0.015 0.580 ± 0.001 0.549 ± 0.001 0.565 ± 0.001 0.586 ± 0.008 0.551 ± 0.010 0.605 ± 0.001 ✓*
T2 Covid (Cough) 0.649 ± 0.006 0.557 ± 0.005 0.616 ± 0.001 0.648 ± 0.003 0.701 ± 0.002 0.629 ± 0.006 0.677 ± 0.001 ✓*
T3 Symptom (Breath) 0.571 ± 0.006 0.571 ± 0.003 0.583 ± 0.003 0.611 ± 0.006 0.603 ± 0.005 0.610 ± 0.004 0.613 ± 0.002 ✓*
T4 Symptom (Cough) 0.633 ± 0.012 0.605 ± 0.004 0.659 ± 0.001 0.669 ± 0.002 0.680 ± 0.006 0.665 ± 0.001 0.673 ± 0.001 ✓*
T5 Covid (Cough) 0.537 ± 0.011 0.538 ± 0.028 0.554 ± 0.004 0.599 ± 0.007 0.578 ± 0.001 0.566 ± 0.008 0.552 ± 0.003 ✓
T6 Gender (Cough) 0.677 ± 0.005 0.600 ± 0.001 0.628 ± 0.001 0.665 ± 0.001 0.795 ± 0.001 0.721 ± 0.001 0.735 ± 0.000 ✓*
T7 COPD (Lung) 0.579 ± 0.043 0.605 ± 0.077 0.886 ± 0.017 0.933 ± 0.005 0.855 ± 0.012 0.872 ± 0.011 0.741 ± 0.011 ✓
T8 Smoker (Cough) 0.534 ± 0.060 0.507 ± 0.027 0.549 ± 0.022 0.680 ± 0.009 0.685 ± 0.012 0.674 ± 0.013 0.650 ± 0.005 ✓*
T9 Gender (Cough) 0.753 ± 0.008 0.606 ± 0.003 0.724 ± 0.001 0.742 ± 0.001 0.874 ± 0.000 0.801 ± 0.002 0.825 ± 0.001 ✓*
T10 Obstructive (Lung) 0.636 ± 0.082 0.605 ± 0.036 0.616 ± 0.041 0.697 ± 0.004 0.722 ± 0.016 0.741 ± 0.014 0.703 ± 0.016 ✓*
T11 COPD severity (Lung) 0.494 ± 0.054 0.590 ± 0.034 0.510 ± 0.021 0.636 ± 0.045 0.625 ± 0.038 0.683 ± 0.007 0.606 ± 0.015 ✓*
T12 Position (Snoring) 0.772 ± 0.005 0.657 ± 0.002 0.649 ± 0.001 0.702 ± 0.001 0.781 ± 0.000 0.769 ± 0.000 0.742 ± 0.001 ✓*

cough-based COVID-19 detection studies report an AUROC of about 0.65 [12, 70], aligning with
our baseline results in Task 2). Through these extensive experimental results, we now answer the
following three main research questions (RQs):

RQ1. Can pretraining a foundational model with diverse unlabeled respiratory audio data lead
to better performance than baselines designed for general audio?

From results highlighted in Table 3, it is evident that our pretrained respiratory acoustic foundation
models outperform both the acoustic feature set and existing general audio pretrained models.
Among them, OPERA-CT and OPERA-GT achieve the highest MMR scores of 0.5632 and 0.5298,
respectively. Looking at ✓ and * in Table 4 and 5, the best OPERA model outperforms the acoustic
feature set on 17 tasks and the baseline pretrained models on 16 tasks out of the 19 evaluated tasks.
This provides a clear positive answer to RQ1. This advantage likely stems from their exposure to
large-scale and heterogeneous respiratory audio data, showing the power and promise of respiratory
audio foundation models for health applications.

Now let us dive into the task performance at a finer granularity. For classification, an AUROC
exceeding 0.7 is typically desirable to demonstrate the utility of the extracted features [20]. When
examining the AUROC in Table 4, OPERA models achieve an AUROC exceeding 0.7 on 6 of the 12
health condition inference tasks (Task 2, 6-7, 9-10, and 12), whereas the best baseline, CLAP, only
surpasses this threshold on 3 tasks (Task 7, 9-10, and 12). This indicates that our models better encode
health condition-related information from respiratory audio. Regarding lung function estimations
(regression tasks), the model needs to capture the global dynamics from the entire audio sample and
lower MAE indicates better performance. In Table 5, our pretrained models reduce the error in FVC
estimation using breathing sounds (Task 13), FEV1/FVC estimation using breathing sounds (Task
15), FVC estimation using vowel sounds (Task 16), FEV1/FVC estimation using vowel sounds (Task
18), and respiratory rate estimation (Task 19), with performance close to baselines on other tasks.
Furthermore, OPERA-GT also achieves a lower standard deviation across subjects, suggesting better
generalizability and robustness to different subjects, which are of great importance for healthcare
applications.

RQ2. Are the pretrained respiratory acoustic models generalizable to new data?

It is crucial that foundation models can generalize to new and unseen data once developed. In our
benchmark, we have 12 tasks formulated from unseen datasets (Task 8-19) and unseen respiratory au-
dio modalities (Task 12, 16-18) not used for pretraining. Notably, our respiratory acoustic foundation
models demonstrate good generalization capabilities, achieving the best performance on 5 out of 5
classification tasks and 5 out of 7 regression tasks. They are able to outperform the acoustic feature set
and general audio pretrained models which are supposed to exhibit generalizability. Specifically, in

7



Table 5: MAE on lung function estimation tasks (lower is better). Best model per task is highlighted.
We report mean and standard deviation across subjects.

ID Task Abbr. Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
T13 FVC (Breath) 0.985 ± 0.743 0.904 ± 0.568 0.900 ± 0.551 0.896 ± 0.542 0.924 ± 0.583 0.848 ± 0.607 0.892 ± 0.618 ✓*
T14 FEV1 (Breath) 0.756 ± 0.721 0.839 ± 0.563 0.821 ± 0.590 0.840 ± 0.547 0.837 ± 0.563 0.834 ± 0.581 0.825 ± 0.560
T15 FEV1/FVC (Breath) 0.141 ± 0.185 0.131 ± 0.146 0.129 ± 0.146 0.134 ± 0.146 0.128 ± 0.140 0.132 ± 0.141 0.128 ± 0.141 ✓*
T16 FVC (Vowel) 0.850 ± 0.592 0.895 ± 0.559 0.833 ± 0.588 0.883 ± 0.560 0.885 ± 0.553 0.761 ± 0.544 0.878 ± 0.550 ✓*
T17 FEV1 (Vowel) 0.730 ± 0.497 0.842 ± 0.559 0.876 ± 0.561 0.859 ± 0.541 0.780 ± 0.542 0.830 ± 0.561 0.774 ± 0.554 *
T18 FEV1/FVC (Vowel) 0.138 ± 0.166 0.130 ± 0.145 0.131 ± 0.141 0.137 ± 0.147 0.132 ± 0.140 0.136 ± 0.150 0.130 ± 0.138 ✓*
T19 Breathing Rate 2.714 ± 0.902 2.605 ± 0.759 2.641 ± 0.813 2.650 ± 0.947 2.636 ± 0.858 2.525 ± 0.782 2.416 ± 0.885 ✓*

Table 4, Task 8-12 all have an AUROC higher than 0.68. Comparing Task 6 and Task 9 with the same
prediction target, the performance on unseen data (Task 9) is comparable. Therefore, our foundation
models are generalizable, likely due to the minimal assumptions made during SSL pretraining. We
have additional experiments on cross-domain zero-shot performance in Appendix A.4.

RQ3. How to design SSL methods and model architectures of the pretrained respiratory
acoustic encoders with different applications in mind?

Within the OPERA system, we train foundation models using two different SSL strategies: contrastive
and generative. From Table 3, 4, and 5, it can be observed that the models pretrained with a contrastive
objective (OPERA-CT, OPERA-CE) generally achieve superior performance on classification tasks
(i.e., health condition inference), while the generative pretrained models (OPERA-GT and baseline
AudioMAE) perform better on regression tasks (i.e., lung function estimation). This finding aligns
with the inherent nature of the methods, as contrastive learning’s discriminative training goal naturally
aligns with the classification objective, and it discards the decoder in the architecture compared to
generative models. It is also consistent with prior observations on various vision benchmarks [42].

To gain deeper insight, we further use saliency maps to explicitly inspect what our models focus on
in the spectrograms of unseen audio data. Figure 3 presents examples for three tasks. We observe
that the OPERA-CT model tends to focus on a few local areas of the spectrogram, showing distinct
saliency peaks, whereas the GT model analyzes the global distribution with a more even saliency map.
Comparing Figures 3 B.1 and B.2, GT demonstrates greater ability in detecting the continuous decline
in energy after breathing. This explains why CT underperforms compared to the GT variant in lung
function estimation, where global patterns are more critical. Based on this observation, we explored
a hybrid model that combines both pretraining objectives. However, results show no consistent
improvements over the individual objectives. Detailed results are provided in Appendix A.4. This
suggests that such a simple combination is not sufficient, leaving space for further exploration.

We also compare CNN and transformer encoder architectures using the same SSL strategy. Overall,
our results suggest a strong representation ability of the transformer architecture for audio. Specifi-
cally, OPERA-CT performs the best in 7 out of the 12 health condition inference tasks (Figure 18(a)),
with a mean reciprocal rank as high as 0.6944 (Table 3). For lung function estimation tasks, OPERA-
GT performs the best in 3 out of the 7 tasks (Figure 18(b)), with the highest mean reciprocal rank
of 0.6548 (Table 3) and achieves the second on health condition inference tasks. As a lightweight
CNN model, OPERA-CE also demonstrates satisfactory results, with a mean reciprocal of 0.4690,
and performs third and second best in the two groups of tasks respectively (Table 3). This shows the
promise of training a lightweight foundation model for efficient computing and on-device learning
for resource-constrained scenarios.

6 Conclusion and Future Research Directions

In this paper, we present OPERA, the first open-source respiratory acoustic foundation model
pretraining and benchmarking system. OPERA offers a unique curated dataset pool, a ready-to-use
evaluation portal as well as a thorough analysis of performance across architectures and tasks. We
discuss the limitations of our work and how it can serve as a foundation for future explorations.

Limitations. While our benchmark is comprehensive, covering 19 tasks, we note that some labels,
such as the COVID-19 test results in Task 5, were obtained and reported by participants themselves.
As a result, some labels could be less precise than clinically validated data like Task 2. This issue does
not affect the pretrained foundation models, as they are trained without these labels. Additionally,
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A.1. Saliency Map Generated by OPERA-CT for T2 Covid detection. A.2. Saliency Map Generated by OPERA-GT for T2 Covid detection.

(a) Saliency maps for T2 COVID detection with a spectrogram of three coughs. OPERA-CT highlights strong
gradients for low and high-frequency bins in the middle while GT spreads attention across various time frames
and frequency bins, less focused on the coughs.

B.1. Saliency Map Generated by OPERA-CT for T13 FVC estimation. B.2. Saliency Map Generated by OPERA-GT for T13 FVC estimation.

(b) Saliency maps for T13 FVC estimation with a spectrogram of one respiratory cycle. OPERA-CT highlights
high-frequency bins in the upper-right corner, while GT focuses on decayed energy in high-frequency bins,
which is more useful for this task.

C.1. Saliency Map Generated by OPERA-CT for T19 breathing rate estimation. C.2. Saliency Map Generated by OPERA-GT for T19 breathing rate estimation.

(c) Saliency maps for T13 FVC estimation with a spectrogram of four respiratory cycles. Both models
highlight the time frames with silence which are useful for this task.

Figure 3: Saliency maps generated by OPERA-CT and OPERA-GT on three example tasks (T2, T13,
and T19). The yellow color indicates the largest gradient on the spectrogram.

OPERA is not intended for clinical use and should not be considered safe for such applications. Care
should be taken to prevent potential misuse when utilizing the models.

In addition to the study we have done, OPERA can support a number of future explorations:

(1) Studying data-efficient fine-tuning. Section 5 uses linear evaluation with frozen encoders
following standard protocols and accommodating limited downstream data (see Table 2). We select
some tasks with relatively abundant labeled data to examine fine-tuning performance (details in
Appendix A.4). Results for Task 4 are presented in Table 6. Using the same number of labeled data
as in linear probing (1749 samples), all models show improved performance and the three OPERA
models achieve an AUROC above 0.7. With more labeled data for fine-tuning (6648 samples), the
best OPERA-GT model achieves an AUROC of 0.739. Similarly, OPERA-CT’s performance on Task
12 (7468 samples) could be enhanced to 0.994 compared to 0.781 in linear evaluation.

However, most other tasks have a much smaller training set, and thus data efficient large model
fine-tuning approaches are desirable. Methods have been proposed in the machine learning literature
such as adapter tuning [34], prefix tuning [66], prompt tuning [19], and low-rank adaptation [33].
Yet, they are not designed for audio (spectrograms) or acoustic foundation models. Considering the
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Table 6: AUROC (higher is better) for linear probing and finetuning on T4. Best model highlighted.

Method # Train AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT

Linear 1749 0.659 ± 0.001 0.669 ± 0.002 0.680 ± 0.006 0.665 ± 0.001 0.673 ± 0.001
Fine-tune 1749 0.672 ± 0.039 0.691 ± 0.008 0.710 ± 0.003 0.703 ± 0.003 0.715 ± 0.006
Fine-tune 6648 0.723 ± 0.010 0.723 ± 0.009 0.739 ± 0.008 0.733 ± 0.002 0.735 ± 0.005

properties of downstream health-related tasks which often exhibit limited and imbalanced data, novel
audio-specific data efficient fine tuning methods need to be explored.

(2) Investigating scaling law in respiratory acoustic foundation models. Recent research on
foundation models has uncovered their emergent abilities, largely arising from scaling up pretraining
data and model size [56]. It is also interesting to study the scaling laws in respiratory acoustic
foundation models. While the OPERA dataset is already extensive, further expansion would be
valuable for this purpose. Our benchmark can help to quantify how increasing a model’s scale and its
training data can significantly enhance performance on downstream tasks. Based on the currently
404 hours of respiratory audio, our OPERA-CT (31M parameters) and OPERA-GT (21M) models
surpass the lightweight OPERA-CE model (4M). With the rapid accumulation of respiratory audio
datasets [69, 13], more evaluation of scaling laws should be conducted in future.

(3) Exploring novel pretraining strategies for unlabeled health audio. We have pretrained
three models (OPERA-CT, OPERA-GT, OPERA-CE) and compared their performance. More
configurations in terms of model size, architecture, and pretraining methods could be compared
in the future. Among the two representative SSL approaches we adapted for pretraining, there
exist limitations: For contrastive learning, defining positive and negative pairs is challenging due
to downstream task diversity, and our definitions might not be optimal. In generative pretraining,
using alternative objectives to reconstruction might improve performance on discriminative tasks.
Combining these methods could be beneficial but presents challenges in balancing objectives, and
previous studies suggest simple combinations do not improve performance [3]. Audio data also
pose unique challenges like heterogeneous sound types, varying sampling rates and durations, and
complex temporal-frequency correlations, requiring tailored solutions to better pretrain and apply the
foundation models. OPERA provides a framework for exploring these technical challenges.

By introducing this open-source system, we hope to lay the groundwork for responsible, reliable,
and sustainable development of foundation models in respiratory healthcare, paving the way for a
healthier future for generations to come.
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A.1 Datasets Overview

We have used 11 datasets in our benchmark. Their statistics are summarized in Table 1 and Table 2
in the main paper. Here, we supplement their access methods and licenses in Table 7 with a more
detailed description below. It can be noted that all datasets contain an audio set and a metadata part.
Audio data used are anonymous and the metadata do not contain personally identifiable information
or offensive content.

COVID-19 Sounds [70] . The COVID-19 Sounds dataset consists of 53,449 audio samples (over
552 hours in total) crowd-sourced from 36,116 participants through the COVID-19 Sounds app.
This dataset is comprehensive in terms of demographics and spectrum of health conditions. It also
provides participants’ self-reported COVID-19 testing status with 2,106 samples tested positive. It
consists of three modalities including breathing, cough, and voice recordings. Only breathing and
cough modalities are used in this paper.

This dataset is crowdsourced through the COVID-19 Sounds project, approved by the Ethics Com-
mittee of the Department of Computer Science and Technology at the University of Cambridge.
Informed consent was obtained from all the participants. The dataset is accessible under controlled
access through a Data Transfer Agreement and has been widely shared and used [73, 51].

UK COVID-19 [12]. The UK COVID-19 Vocal Audio Dataset is designed for the training and
evaluation of machine learning models that classify SARS-CoV-2 infection status or associated
respiratory symptoms using vocal audio. The UK Health Security Agency recruited voluntary
participants through the national Test and Trace programme and the REACT-1 survey in England
from March 2021 to March 2022, during dominant transmission of the Alpha and Delta SARS-CoV-2
variants and some Omicron variant sublineages. Audio recordings of volitional coughs, exhalations,
and speech (speech not included in open access version, nor used in this paper) were collected in the
‘Speak up to help beat coronavirus’ digital survey alongside demographic, self-reported symptom and
respiratory condition data, and linked to SARS-CoV-2 test results.

The study has been approved by The National StatisticianâĂŹs Data Ethics Advisory Committee
(reference NSDEC(21)01) and the Cambridge South NHS Research Ethics Committee (reference
21/EE/0036) and Nottingham NHS Research Ethics Committee (reference 21/EM/0067). Participants
reviewed the participant information and confirmed their informed consent to take part.

COUGHVID [48]. The COUGHVID dataset provides over 25,000 crowdsourced cough recordings
representing a wide range of participant ages, genders, geographic locations, and COVID-19 statuses.

All of the data collection and annotation was done in compliance with relevant ethical regulations.
Informed consent was obtained by all participants who uploaded their cough sounds and metadata.

ICBHI [52]. The ICBHI Respiratory Sound Database contains audio samples, collected independently
by two research teams in two different countries, over several years. Ethical approval was obtained
from the ethics committees of the appropriate institutions.

Most of the database consists of audio samples recorded by the School of Health Sciences, University
of Aveiro (ESSUA) research team at the Respiratory Research and Rehabilitation Laboratory (Lab3R),
ESSUA and at Hospital Infante D. Pedro, Aveiro, Portugal. The second research team, from the
Aristotle University of Thessaloniki (AUTH) and the University of Coimbra (UC), acquired respiratory
sounds at the Papanikolaou General Hospital, Thessaloniki and at the General Hospital of Imathia
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Table 7: Dataset availability. *ICBHI and HF Lung datasets coming from multiple sources, please
refer to the text description below. COVID-19 Sounds, SSBPR, MMLung and NoseMic are available
upon request. The custom license is detailed in the DTA (data transfer agreement).

Dataset Source Access license

COVID-19 Sounds[70] UoC https://covid-19-sounds.org/blog/neurips_dataset Custom license
UK COVID-19 [12] IC https://zenodo.org/records/10043978 OGL 3.0
CoughVID[48] EPFL https://zenodo.org/records/4048312 CC BY 4.0
ICBHI[52] * https://bhichallenge.med.auth.gr CC0
HF Lung [31] * https://gitlab.com/techsupportHF/HF_Lung_V1 CC BY 4.0

https://gitlab.com/techsupportHF/HF_Lung_V1_IP CC BY-NC 4.0
Coswara[7] IISc https://github.com/iiscleap/Coswara-Data CC BY 4.0
KAUH[23] KAUH https://data.mendeley.com/datasets/jwyy9np4gv/3 CC BY 4.0
Respiratory@TR[2] ITU https://data.mendeley.com/datasets/p9z4h98s6j/1 CC BY 4.0
SSBPR[71] WHU https://github.com/xiaoli1996/SSBPR CC BY 4.0
MMlung[45] UoS https://github.com/MohammedMosuily/mmlung Custom license
NoseMic[9] UoC https://github.com/evelyn0414/OPERA/tree/main/datasets/nosemic Custom license

Figure 4: Examples of different respiratory audio modalities used.

(Health Unit of Naousa), Greece. The database consists of a total of 5.5 hours of recordings in 920
annotated audio samples from 126 subjects.

HF Lung [31] . HF Lung V2 dataset comprises of HF Lung V1 and HF Lung V1 IP: The lung
sound recordings of HF Lung V1 come from two sources. The first source was a database used in a
datathon in Taiwan Smart Emergency and Critical Care (TSECC), 2020, under the license of Creative
Commons Attribution 4.0 (CC BY 4.0), provided by the Taiwan Society of Emergency and Critical
Care Medicine (TSECCM). Lung sound recordings in the TSECC database were acquired from
261 patients. The second source was sound recordings acquired from 18 residents of a respiratory
care ward (RCW) or a respiratory care center (RCC) in Northern Taiwan between August 2018 and
October 2019. The recordings were approved by the Research Ethics Review Committee of Far
Eastern Memorial Hospital (case number: 107052-F). Written informed consent was obtained from
the 18 patients.

The lung sound recordings of HF Lung V1 IP come from two sources. The Lung sound recordings
from the first source are provided by Taiwan Society of Emergency and Critical Care Medicine
(TSECCM) acquired from 32 patients by using a commercial digital stethoscope Littmann 3200 (3M).
The lung sound recordings of the second source are acquired by from 7 residents of a respiratory
care ward (RCW) or a respiratory care center (RCC) in Northern Taiwan between August 2019 and
December 2019. The recordings were approved by the Research Ethics Review Committee of Far
Eastern Memorial Hospital (case number: 107052-F). Written informed consent was obtained from
the 7 patients or their statutory agents.

Coswara [7]. The Coswara dataset contains respiratory sounds recorded between April 2020
and February 2022 from 2635 individuals (1819 SARS- CoV-2 negative, 674 positive, and 142
recovered subjects). The respiratory sounds contained nine sound categories associated with variants
of breathing, cough and speech. The metadata contains demographic information associated with
age, gender and geographic location, as well as the health information relating to the symptoms,
pre-existing respiratory ailments, comorbidity and SaRS-CoV-2 test status.

The data collection procedure was approved by the Institutional Human Ethics Committee, at the
Indian Institute of Science, Bangalore. The informed consent was obtained from all participants who
uploaded their data records. All the data collected was anonymized and excluded any participant
identity information.

KAUH [23]. The KAUH dataset includes sounds from seven ailments (i.e., asthma, heart failure,
pneumonia, bronchitis, pleural effusion, lung fibrosis, and chronic obstructive pulmonary disease
(COPD) as well as normal breathing sounds. The dataset contains the audio recordings from
the examination of the chest wall at various vantage points using an electronic stethoscope. The
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stethoscope placement on the subject was determined by the specialist physician performing the
diagnosis. Each recording was replicated three times corresponding to various frequency filters that
emphasize certain bodily sounds. The dataset can be used for the development of automated methods
that detect pulmonary diseases from lung sounds or identify the correct type of lung sound.

All study participants (or their parents in the case of underage subjects) provided written informed
consent to be included in the study and allowed their data to be shared. This study was approved by
the institutional review board at King Abdullah University Hospital and Jordan University of Science
and Technology, Jordan (Ref. 91/136/2020). The data collection was carried out under the relevant
guidelines and regulations. The authors have the right to share the data publicly.

Respiratory@TR [2]. Respiratory@TR contains lung sounds recorded from left and right sides of
posterior and anterior chest wall and back using two digital stethoscopes in Antakya State Hospital.
The chest X-rays and the pulmonary function test variables and spirometric curves, the St. George
respiratory questionnaire (SGRQ-C) are collected as multimedia and clinical functional analysis
variables of the patients. The 12 channels of lung sounds are focused on upper lung, middle lung,
lower lung and costophrenic angle areas of posterior and anterior sides of the chest. The recordings
are validated and labeled by two pulmonologists evaluating the collected chest X-ray, PFT and
auscultation sounds of the subjects. Labels fall into 5 COPD severities (COPD0, COPD1, COPD2,
COPD3, COPD4). The dataset was released by Iskenderun Technical University, Turkey. Voluntary
admittance was evaluated on a voluntary basis form with minimal information. The patients aged
38 to 68 are selected from different occupational groups, socio-economic status and genders for an
accomplished analysis of the disorders.

SSBPR [71] . SSBPR is a snore-based sleep body position recognition dataset consisting of 7570
snoring recordings, which comprises six distinct labels for sleep body position: supine, supine but
left lateral head, supine but right lateral head, left-side lying, right-side lying and prone. One of the
labels is only present in a few subjects and thus is excluded from the task following the 5-class setup
in [71].

The data were collected from 20 adult patients who underwent overnight PSG at a local Sleep
Medicine Research Center within the hospital. The study was conducted with the approval of the
local medical ethics committee, and patients provided signed consent for their participation, including
audio and video recordings during sleep. The personal information of the study subjects was collected
and stored anonymously to ensure privacy protection.

MMLung [45] . This data was collected from 40 participants (20 male, 20 female) with an age range
of 18-85 years old. All participants are English speakers from the UK. Among them, 12 were healthy
participants, while the others consisted of seven self-reported COPD patients, seven self-reported
asthma patients, and 14 people with other long-term conditions. Ethics approval for this study was
obtained from the University of Southampton.

Three devices were used to collect the data: Google Pixel 6 Smartphone with an app installed for the
data collection, and an Easy on-PC ultrasonic spirometer by ndd Medical Technologies. The audio
data collection from smartphones was conducted in stereo mode at a sampling rate of 44100 Hz. The
data was saved in the WAV format. The collection took place in a silent room conditions. The process
consisted of collecting data for four audio modalities i.e. cough, vowels, mobile spirometry, and
speech via a series of tasks from each participant in a single session. In this paper, we only include
the deep breath and the vowel sound of ‘o’. Ground truth data were collected using a medical-grade
spirometer by a healthcare professional as per European Respiratory Society (ATS/ERS) clinical
standards. However, it should be noted that with any objective measure that is reliant on individual
effort, there may always be unforeseen errors (effort dependent blows). This data is available upon
request.

NoseMic [9] . NoseMic is a subset of the data collected for a respiratory rate estimation project. The
audio data was collected using microphones attached close to the nose, and the respiratory dynamics
were measured with a Zephyr pressure sensor on the chest. The data was collected in stationary
settings, both before and after the participants exercised. A total number of 21 participants were
involved, while data from some participants were excluded because of the poor sensing quality. Audio
recordings before and after running were included in our benchmark. Each recording was segmented
into 30-second windows with a 15-second overlap. The average respiratory rate of each window was
used as the ground truth.
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Figure 5: Age distribution of the pretraining datasets.
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Figure 6: Gender distribution of the pretraining datasets.

A.1.1 Pretraining Data Demographics

Diversity and representativeness of the training data are important for a generalizable model. We
examine the demographic distribution of the five datasets used for model pretraining. The bar plots in
Figure 5 and Figure 6 illustrate the age and gender distributions across four of these datasets. While
the demographic details of HF Lung are not publicly available, the data includes 35 male and 21
female subjects, with an average age of 66.58 (according to the paper [31]).

Among the five datasets, COVID-19 Sounds and CoughVID were collected globally, while UK
COVID-19 and ICBHI were primarily collected in European countries, and HF Lung was collected
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Dataset Modality #Sample(#P
articipants)

Age Gender Medical conditions

COVID-19 
Sounds

Cough 40866
(22162)

0-20: 1413
20-29: 3991
30-39: 5459
40-49: 4928
50-59: 3486
60-69: 1981
70-79: 672
80-89: 89
90+ : 4

Female:  8146
Male: 13733

High Blood Pressure: 2704, Asthma: 1712, Other long-term 
condition: 1217, Diabetes: 733, Other heart disease: 353, 
COPD/Emphysema: 234, Other lung disease: 228, Previous 
heart attack: 217, Valvular heart disease: 162, Previous 
stroke or Transient ischaemic attack: 144, Cancer: 112, 
Angina: 107, HIV or impaired immune system: 106, Previous 
organ transplant: 35, Pulmonary fibrosis: 23, Cystic 
fibrosis: 20，COVID-19 positive: 534

Breath 36605
(20635)

0-19: 1238
20-29: 3741
30-39: 5070
40-49: 4585
50-59: 3310
60-69: 1848
70-79: 634
80-89: 93
90+: 3

Female:  7322
Male: 13074

High Blood Pressure: 2571, Asthma: 1609, Other long-term 
condition: 1112, Diabetes: 697, Other heart disease: 324, 
Other lung disease: 223, COPD/Emphysema: 216, Previous 
heart attack: 212, Valvular heart disease: 156, Previous 
stroke or Transient ischaemic attack: 141, Cancer: 111, 
Angina: 104, HIV or impaired immune system: 92, Previous 
organ transplant: 22, Pulmonary fibrosis: 20, Cystic 
fibrosis: 19, COVID-19 positive: 532

UK 
COVID-19

Cough 19533
(NA)

18-44:  5134
45-64:  8767
65+:      5632

Female: 11460
Male:  8068

COVID-19 positive: 7240
Asthma: 2184
Other respiratory conditions: 569

Exhalation 20719
(NA)

18-44:  5090
45-64:  9440
65+:      6189

Female: 11902
Male:  8815

COVID-19 positive: 7283
Asthma: 2253
Other respiratory conditions: 601 

CoughVID Cough 7179
(NA)

0-20:    405
20-29: 1128
30-39: 1020
40-49:  728
50-59: 343
60+ : 3555

Female: 1342
Male: 2646

Healthy: 3077
Symptomatic:  631
COVID-19: 325
Other respiratory conditions: 729

ICBHI Lung 
sound

538
(79)

0-10: 20
10-19: 9
20-29: 1
50-59: 5
60-69: 18
70+ : 26

Female:  32
Male: 47

Sample-level statistics: Has crackle: 310, has wheeze: 203
Participant-level statistics: Healthy: 12, COPD: 39, 
Pneumonia: 6, URTI: 10, Bronchiectasis: 6, Bronchiolitis: 3, 
LRTI: 2, Asthma: 1

HF Lung Lung 
sound

10554
(299)

>20,
Mean = 66.58

Female: 21
Male: 35

Sample-level statistics:  Wheeze: 2253, Rhonchi: 944, 
Stridor: 253
Participant-level statistics: Acute exacerbation of chronic 
obstructive pulmonary disease: 2, Acute respiratory 
distress syndrome: 1, Acute respiratory failure: 4, Asthma: 
1, Bronchitis: 1, Chronic respiratory failure: 14, Chronic 
obstructive pulmonary disease: 7, Emphysema: 1, Pleural 
effusion: 1, Pneumoconiosis: 1, Pneumonia: 13, Pulmonary 
embolism: 1

B. Demographics for datasets used for pretraining (Figures are included in Appendix). 

Dataset Region

COVID-19 Sounds Global

CoughVID Global

UK COVID-19 European

ICBHI European

HF Lung Asian

A. Geo-distribution for  datasets used for 
pretraining. 

CoughVID

COVID-19 Sounds

Figure 7: Statistics of demographics and medical conditions for datasets used for pretraining.

in Asian regions. Therefore, our curated data presents a comprehensive geo-distribution, covering
participants from different ethnic backgrounds and speaking various languages.

Figure 7 summarizes in detail all demographics and medical conditions for the five datasets used
for model pre-training. The five datasets used cover a wide range of respiratory medical conditions.
COVID-19 Sounds, UK COVID-19, and CoughVID were collected during the pandemic and include
some participants who tested positive or negative for COVID-19. Some of the participants had other
conditions such as asthma, COPD, pulmonary fibrosis, cancer, etc. The ICBHI and HF Lung datasets
include participants who were either healthy or had various respiratory diseases including asthma,
COPD, URTI, Pneumonia, etc. Recordings feature both healthy individuals and those with symptoms
such as wheeze, crackles, or rhonchi.

By integrating these diverse datasets in OPERA, we achieve a more representative and unbiased
demographic distribution compared to any single data source. This highlights the importance of
uniting varied sources for pretraining a foundational model: not only increasing the number of data
samples but also ensuring a more comprehensive distribution.
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Dataset ID Country Age Gender Others

UK COVID-19 T1 UK 45-64: 1192, 18-44: 774, 
65+: 534

Female: 1467, Male: 
1032

T2 UK 45-64: 1116, 18-44: 827, 
65+: 557

Female: 1441, Male: 
1059

COVID-19 Sounds T3-4 Global 16-19: 218,   20-29: 837,
30-39: 1091, 40-49: 993, 
50-59: 536,   60-69: 261, 
70-79: 105,   80+: 14

Female: 2173, Male: 
1907

CoughVID T5 Global 0-19: 603,     20-29: 1661
30-39: 1486, 40-49: 1109
50-59: 487,   60-69: 174
70-79: 48,     80-89: 2

Female: 1988,
Male: 3944

T6 Global 0-19: 676,     20-29: 1964
30-39: 1809, 40-49: 1300
50-59: 567,   60-69: 199
70-79: 54,     80-89: 4

Female: 2468,
Male: 4795

ICBHI T7 Portugal,
UK, Greece

43.0 ± 32.2 Female: 46,
Male: 79

77 adults, 49 children

Coswara T8 Indian 0-19: 54,      20-29: 321
30-39: 223,  40-49: 109
50-59: 123,  60-69: 74
70-79: 33,    80-89: 11

Female: 335, 
Male: 613

T9 Indian 0-19: 139,    20-29: 987
30-39: 604,  40-49: 319
50-59: 279,  60-69: 111
70-79: 44,    80-89: 13

Female: 759, 
Male: 1737

KAUH T10 Jordan 21 to 90 (50.5 ± 19.4) Female: 69,
Male: 43

Respiratory@TR T11 Turkey 38 to 68 Female:11,
Male: 34

SSBPR T12 China 26 to 57 (Avg = 43.1) Female: 10,
Male: 10

a mean body mass index 
(BMI) of 26.57 kg/m2 

MMlung T13 - 18 UK 18-85 (54.5 ± 21.9) Female: 20,
Male: 20

12 healthy, 7 COPD, 7 
asthma, 14 with other 
conditions

NoseMic T19 UK 22-53 (28.8 ± 1.4) Female: 9,
Male: 10

B. Geodemographics for datasets in 19 tasks. 

Dataset Region

COVID-19 Sounds Global

CoughVID Global

UK COVID-19 European

ICBHI European

HF Lung Asian

A. Geodemographics for pretrained 
datasets (more demographic information 
in Appendix 1.1, Figure 4-5). 

CoughVID

COVID-19 Sounds

Figure 8: Statistics of demographics for downstream tasks.

A.1.2 Downstream Task Description

Here we give a detailed description of all 19 tasks formulated in the OPERA benchmark. The
demographic statistics are summarized in Figure 8. The tasks are categorized into three types:

• Binary Classification (Tasks 1-10): Tasks requiring prediction of a binary outcome (positive/neg-
ative, smoker/non-smoker, etc.) based on respiratory audio recordings.

• Multi-Class Classification (Tasks 11, 12): Tasks involving classification of respiratory audio
recordings into one of several predefined categories (5 classes of COPD severity, sleeping position)

• Regression (Tasks 13-19): Tasks aiming to predict continuous values (lung function metrics,
respiratory rate) from respiratory audio data.

Task 1. Each of the audio in UK COVID-19 [12] has a binary label indicating the COVID-19
test result of the participant. This task is to predict whether the test result is positive based on the
exhalation recording, consisting of three successive âĂIJhaâĂİ exhalation sounds.

Task 2. The data source and prediction target is the same as Task 1, while Task 2 is based on the
cough recording consisting of three successive volitional coughs.

Task 3. The audio samples in COVID-19 Sounds [70] have the reported symptoms at the moment of
participation. This task aims at predicting respiratory abnormalities, where the symptomatic group
consists of participants who reported any respiratory symptoms, including dry cough, wet cough,
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fever, sore throat, shortness of breath, runny nose, headache, dizziness, and chest tightness, while
asymptomatic controls are those who reported no symptoms. The audio data consists of 3 to 5 deep
breathing sounds. This task follows the subset and split from [70], with the training set downsampled.

Task 4. The dataset and prediction target is the same as Task 3, but the audio includes three coughs.

Task 5. Each of the audio in CoughVID[48] contains a cough and is associated with labels of
self-reported demographics and COVID-19 status. This task involves predicting the COVID-19 status
based on the cough recording.

Task 6. The dataset and audio modality are the same as Task 5, while the prediction target is gender
as reported in demographics.

Task 7. The ICBHI [52] dataset contains labels of the diagnosis of the subjects. We use the subset of
COPD patients and healthy controls to formulate a binary classification of COPD detection.

Task 8. Each audio in the Coswara [7] dataset contains a binary label of smoker in the metadata.
This task aims to predict the smoker from non-smokers from the cough-shallow audio modality in the
dataset, aligning with the implementation in [6].

Task 9. Each audio in the Coswara [7] dataset contains a label of sex in the metadata. This task
aims to predict this label from the cough-shallow audio modality in the dataset, aligning with the
implementation in [6].

Task 10. The KAUH [23] dataset contains the disease diagnosis labels of the participants. This
task aims to use lung sound audio to distinguish patients with COPD and asthma (obstructive lung
diseases) from healthy controls.

Task 11. The Respiratory@TR [2] dataset associates each audio with a COPD severity label from 0
to 4. This task aims to predict this severity level from lung sounds.

Task 12. The SSBPR [71] dataset associates each snoring audio with a label of the body position:
supine, supine but left lateral head, supine but right lateral head, left-side lying, right-side lying and
prone. The last class is excluded here as it is only present in some of the male participants. Thus this
task aims to predict one of the five body positions from the snoring sounds.

Task 13. Spirometry is a gold standard for diagnosing Long-term respiratory illnesses like COPD
and Asthma. It is a lung health test that requires specialized equipment and trained healthcare experts,
making it expensive and difficult to scale. Moreover, blowing into a spirometer can be quite hard
for people suffering from pulmonary illnesses. To address this problem, researchers aim to develop
audio-based testing methods without requiring the best efforts from patients. MMLung [45] was
collected for this purpose. Task 13 evaluates how accurate the forced vital capacity (FCV) can be
estimated from a deep breath sound.

Task 14. Similar with Task 13 , Task 14 evaluates how accurate the forced expiratory volume in 1
second (FEV1) can be estimated from a deep breath sound.

Task 15. While FEV1 and FVC are very personal, the ratio between them is the proportion of lung
capacity that can be exhaled in the first second. It is expressed as a percentage and is used to diagnose
and determine the severity of obstructive and restrictive lung diseases. Task 15 uses breathing sounds
to estimate this ratio.

Task 16. Task 16 again aims to evaluate an individual’s FVC, similar to Task 13. However, a vowel
sound is used, i.e., the participant speaks out the ‘o’ sound for as long as possible.

Task 17. Task 17 involves the use of ‘o’ vowel sound for FEV1 estimation.

Task 18. This task predicts the ratio between FEV1 and FVC from the collected ‘o’ vowel sounds.

Task 19. Continuous respiratory rate (RR) monitoring is integral to mobile healthcare and fitness
tracking, offering valuable insights into longitudinal health and wellness due to its strong correlations
with both physical and mental health. This task involves the estimation of RR from 30 seconds of
breathing sounds.
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Fig. 1: The model architecture of HTS-AT.

• HTS-AT takes fewer parameters (31M vs. 87M), fewer
GPU memories, and less training time (80 hrs vs. 600 hrs)
than AST’s to achieve the best performance.

• HTS-AT further enables the audio transformer to produce
the localization results of event only with weakly-labeled
data. And it achieves a better performance than the previ-
ous CNN-based model.

2. PROPOSED MODEL

2.1. Hierarchical Transformer with Window Attention

A typical transformer structure consumes lots of GPU mem-
ories and training time, because the length of input tokens
is too long and remains unchanged in all transformer blocks
from beginning to end. As a result, the machine saves the out-
put and its gradient of each block via large GPU memories,
and spends much calculation time maintaining a large global
self-attention matrix. To combat these problems, as depicted
in Figure 1, we propose two key designs: a hierarchical trans-
former structure and a window attention mechanism.

2.1.1. Encode the Audio Spectrogram

In the left of Figure 1, an audio mel-spectrogram is cut into
different patch tokens with a Patch-Embed CNN of kernel
size (P ⇥ P ) and sent into the transformer in order. Dif-
ferent from images, the width and the height of an audio mel-
spectrogram denote different information (i.e. the time and
the frequency bin). And the length of time is usually much
longer than that of frequency bins. Therefore, to better cap-
ture the relationship among frequency bins of the same time
frame, we first split the mel-spectrogram into patch windows
w1, w2, ..., wn and then split the patches inside each window.
The order of tokens follows time!frequency!window as
shown in Figure 1. With this order, patches with different
frequency bins at the same time frame will be organized adja-
cently in the input sequence.

2.1.2. Patch-Merge and Window Attention

In the middle of Figure 1, the patch tokens are sent into sev-
eral groups of transformer-encoder blocks. At the end of each
group, we implement a Patch-Merge layer [17] to reduce the

sequence size. This merge operation is applied by first reshap-
ing the sequence to its original 2D map (T

P ⇥ F
P , D), where D

is the latent state dimension. Then it merges adjacent patches
as ( T

2P ⇥ F
2P , 4D) and finally applies a linear layer to reduce

the latent dimension to ( T
2P ⇥ F

2P , 2D). As illustrated in Fig-
ure 1, the shape of the patch tokens is reduced by 8 times from
(T

P ⇥ F
P , D) to ( T

8P ⇥ F
8P , 8D) after 4 network groups, thus

the GPU memory consumption is reduced exponentially after
each group.

For each transformer block inside the group, we adopt a
window attention mechanism to reduce the calculation. As
shown in different color boxes in the middle right of Figure
1, we first split the patch tokens (in 2D format) into non-
overlapping (M⇥M) attention windows aw1, aw2, ..., awk.
Then we only compute the attention matrix inside each M ⇥
M attention window. As a result, we have k window atten-
tion (WA) matrices instead of a whole global attention (GA)
matrix. The computational complexities of these two mecha-
nisms in one transformer block for f ⇥ t audio patch tokens
with the initial latent dimension D are:

GA: O(ftD2 + (ft)2D) (1)

WA: O(ftD2 + M2ftD) (2)

where the window attention reduces the second complexity
term by ( ft

M2 ) times. For audio patch tokens in a time-
frequency-window order, each window attention module will
calculate the relation in a certain range of continuous fre-
quency bins and time frames. As the network goes deeper,
the Patch-Merge layer will merge adjacent windows, thus
the attention relation is calculated in a larger space. In the
code implementation, we use the swin transformer block with
a shifted window attention [17], a more efficient window
attention mechanism. This also helps us to use the swin
transformer pretrained vision model in the experiment stage.

2.2. Token Semantic Module

The existing AST uses a class-token (CLS) to predict the clas-
sification label, which limits it from further indicating the
start and end times of events as realized in CNN-based mod-
els. In the final layer output, each token contains information
about its corresponding time frames and frequency bins. We
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Figure 9: The hierarchical token-semantic audio transformer architecture, from [10].

A.2 Implementation Details

All of the experiments are implemented in Python 3.10.4, with main supporting libraries: PyTorch,
Librosa, PyTorch Lightning, numpy, with the exact environment detailed in ‘environment.yml’ in the
code repository. All our experiments are conducted using a NVIDIA A100 GPU with 80GB memory.
Our code is accessible from https://github.com/evelyn0414/OPERA.

A.2.1 Pretraining Models and Methods

We pre-train our models on a combination of seven sets of data derived from the first five data
sources in Table 7 (including separate modalities from COVID-19 Sounds and UK COVID-19).
Each set of data is split into batches of equal length to ensure consistent data processing. These
batches maintain both modality and source homogeneity. We then randomly shuffle the batches and
reserve 10% for validation. Due to inherent variations in audio length within individual batches, we
employ random cropping of spectrograms. Crop lengths for each of the seven datasets are detailed
in Table 1, and the crop methods depend on the pretraining methods, which will be elaborated on
below. Two representative SSL approaches are adopted: contrastive learning-based methods and
generative pretraining-based methods, to pretrain three models. The high-level reasoning behind
this is that if an encoder can distinguish the source of audio segments (contrastive) or reconstruct
masked spectrograms (generative), it is expected to encode useful and generalizable acoustic features.
Specifically:

OPERA-CT: OPERA-CT is a contrastive learning-based transformer model. Following [55], we
randomly crop two segments from a spectrogram and regard them as a positive pair. Segments from
different samples within one batch are regarded as negative pairs. As shown in Figure 2(a), an encoder
network (a transformer here) extracts features from these segments, and a projector (a multi-layer
perception) maps them into a low-dimensional representation space, where bilinear similarity is
calculated as,

s(x, x′) = g(f(x))TWg(f(x′)). (1)

The optimization objective aims to maximize the similarity between positive pairs and minimize it
for negative pairs. The loss function for this instance discrimination objective is a multi-class cross
entropy applied to similarities,

L = − log
exp (s(x, x+))∑

x−∈X−(x)∪{x+} exp (s(x, x
−))

, (2)

where x+ is the positive anchor for x and X−(x) refers to negative distractors.

Specifically, the transformer we employ is a hierarchical token-semantic audio transformer [10], which
improves the computing and memory efficiency of the typical vision transformer for spectrograms. A
patch size of 4× 4 is used and the output feature dimension is 768. The encoder has 31M trainable
parameters.

OPERA-CE: Similar to OPERA-CT, CE leverages a contrastive pre-training approach. However, it
utilizes a more lightweight and efficient CNN encoder (EfficientNet-B0) [62]. The architecture is
detailed in Table 8. This encoder outputs a feature dimension of 1280 and has approximately 4M
trainable parameters.
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Table 8: The EfficientNet-B0 architecture.

Layer Kernel Size #channels #layers

Input - 32 1
MBConv1 3x3 16 1
MBConv6 3x3 24 2
MBConv6 5ÃŮ5 40 2
MBConv6 3x3 80 3
MBConv6 5x5 112 3
MBConv6 5x5 192 4
MBConv6 3x3 320 1
Conv head & Avg Pooling 1280 1

Figure 10: OPERA-GT architecture.

OPERA-GT: OPERA-GT is a generative pretrained transformer model. It uses a masked auto-
encoder to extract useful features from masked spectrograms, which a decoder then uses to reconstruct
the original spectrograms, as illustrated in Figure 2(b). Following [3], we employ a vision transformer
as the encoder (21M trainable parameters) and a lightweight swin-transformer (12M trainable
parameters) as the decoder. The detailed architecture is shown in Figure 10.

To train this model, spectrograms from each dataset are cropped to equal lengths, as summarized in
Table 1, and then split into patches of 4× 4. Considering the varying lengths of different modalities,
our model uses a unique patching order and accommodates any input length (no larger than the
number of positional embeddings), as indicated by the arrows in Figure 10. Each patch is converted
into a patch embedding via a 2-dimensional convolutional layer with a kernel size of 4 × 4 and a
channel number of 384. We randomly mask 70% of patches per spectrogram and only feed the
embeddings of the visible patches into the encoder. The encoder is a typical vision transformer with
l = 12 blocks and 2 heads in each block. The output feature dimension is 384.

To reconstruct the spectrograms, both the embeddings of the masked patches and the new embeddings
from the encoder are fed into the decoder. The decoder is a typical swin-transformer with both local
and global attention. The output of the decoder is an array resembling a spectrogram. Mean square
error loss is used for optimization, and only the masked pixels are considered in the loss,

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2, (3)

where y is the vector only with the masked pixels in the i-th spectrogram.

A.2.2 Benchmark implementation details

Within our benchmark of downstream tasks, we have four baselines to compare with the OPERA
models. Opensmile is chosen as a baseline representing the traditional feature extraction methods.
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Table 9: Number of parameters and feature dimension of all the models.

Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
# Parameters (M) - 62 86 80 31 4 21
Input length (s) - 1 10 5 <32 >1.5 <8.18
Feature Dim. 988 128 768 1024 768 1280 384

VGGish, AudioMAE and CLAP are chosen as baselines for this study since they are open-source
pretrained models representing the cutting edge of deep learning approaches.

Opensmile. OpenSMILE [18] is a powerful tool for extracting features from audio data. It offers
pre-defined feature sets designed to capture various aspects of an audio signal. This established toolkit
serves as a strong baseline for traditional feature extraction. It offers a diverse set of handcrafted
features, providing a foundation for comparison.

VGGish. The VGGish model [30] is a modified VGG model using mel spectrograms as input,
pretrained to classify the soundtracks of a dataset of 70M training videos (5.24 million hours) with
30,871 video-level labels.

AudioMAE. AudioMAE [35] leverages self-supervised learning for audio, inspired by image-based
Masked Autoencoders (MAE) [29]. During training, AudioMAE masks a high proportion (70%) of
the spectrogram patches and feeds the remaining unmasked tokens through a transformer encoder,
which then attempts to reconstruct the original spectrogram. This process forces the model to learn
robust features by relying on context and relationships within the spectrogram.

CLAP. The CLAP model is trained under natural language supervision, leveraging text descriptions
to learn about audio concepts. It utilizes two encoders: one for processing audio spectrograms and
another for handling text descriptions. Through a contrastive learning approach, CLAP brings these
audio and text features into a shared space and encourages similarity within the same audio-text pair.

For baselines, both the data pre-processing and feature extraction strictly follow their official imple-
mentation. For our pretrained models, the same audio preprocessing is used as in pretraining. The
required audio input length is also summarized in Table 9.

Our OPERA models can accept audio input of different lengths. Specifically, OPERA-CT has an
interpolation step that transforms all spectrogram inputs to the same size, fitting the hierarchical
structure of the model [10]. Audio longer than the maximum input length of about 32 seconds will
need to be cropped, although this is not relevant to our downstream tasks. OPERA-CT is a CNN
model with a pooling layer, allowing it to always output fixed-length features. However, it requires a
minimum length of 1.5 seconds (the input size must be larger than the kernel size). OPERA-GT, a
transformer model, incorporates a special patching method (see Figure 10) that allows it to accept
varying lengths of audio shorter than its maximum input length of 8.18 seconds. For input audio
exceeding 8 seconds, we segment the audio into short frames with overlaps, feed them into the model,
and use the averaged representation of these frames as the final embedding [35].

Our evaluation employs linear evaluation for all downstream tasks. This technique leverages the
pre-trained model’s weights without modification, preserving their learned features. A new linear
layer, sized according to the feature dimension (see Table 9) and the number of output classes (or 1
dimension for regression) in the specific downstream task, is added on top of the pre-trained model’s
output. This approach offers an efficient way to transfer the knowledge of the pre-trained models
without extensive fine-tuning of the entire model and can be used for tasks with very limited data
size. For classification tasks, a standard cross-entropy loss is used. For regression tasks, an MAE loss
is used. A L2 regularization of 10−5 is employed.
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A.3 Pretraining Results

Pretraining loss. We showcase the training process of our three OPERA models here. Specifically,
Figure 11 exhibits the training loss of different subsets of the data, converging at different speeds
and levels, due to heterogeneity in data quality, data modality, etc. Figure 12 present the evolution
of the loss on the validation set (a set combined a small proportion from all the data resource). It
demonstrates a continued decay until convergence.

(a) OPERA-CT (b) OPERA-CE (c) OPERA-GT

Figure 11: Training loss of the three OPERA models. The OPERA-GT and OPERA-CE use
contrastive instance discrimination loss, while OPERA-GT uses generative mean square error loss.

(a) OPERA-CT (b) OPERA-CE (c) OPERA-GT

Figure 12: Validation loss of the three OPERA models. The OPERA-GT and OPERA-CE use
contrastive instance discrimination loss, while OPERA-GT uses generative mean square error loss.
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Embedding distribution analysis for constructive pretraining. Figure 13 and Figure 14 present
the T-SNE visualization applied to features extracted from the contrastive pretraining models on the
held-out test set of pretraining data. The visualization depicts four random crops of the same audio
sample (the same color) close together in the embedding space. This suggests that the model can
effectively capture the underlying characteristics of the audio data despite variations introduced by
cropping.

(a) COVID-19 Sounds (breath) (b) UK COVID-19 (cough) (c) HF Lung (lung sounds)

Figure 13: T-SNE visualization result of features from OPERA-CT on the held-out validation of
pretraining data. Each dot is an audio segment and the same color represents the same audio recording.
It can be seen that audio segments from the same recording are close to each other while far away
from other recordings in the embedding space.

(a) COVID-19 Sounds (breath) (b) UK COVID-19 (cough) (c) HF Lung (lung sounds)

Figure 14: T-SNE visualization result of features from OPERA-CE on the validation data.
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Spectrogram reconstruction result for generative pretraining. OPERA-GT aims to learn a useful
encoder by extracting features that can be used to reconstruct the entire spectrogram. Figure 12(c)
demonstrates a very small MSE loss on the validation set when the model converges, suggesting
a good reconstruction ability. To show it more straightforward, some examples are visualized in
Figure 15, Figure 16, Figure 17. From the visualization, it is clear that our pretrained encoder can
capture both the local and global distribution of the spectrograms and the decoder can accurately
recover the original information.

(a) Original spectrogram (b) Masked spectrogram (c) Reconstructed spectrogram

Figure 15: Reconstruction result for a breath sound recording (cropped into 8s) from COVID-19
Sounds dataset.

(a) Original spectrogram (b) Masked spectrogram (c) Reconstructed spectrogram

Figure 16: Reconstruction result for a cough sound recording (cropped into 2s) from COUGHVID
dataset.

(a) Original spectrogram (b) Masked spectrogram (c) Reconstructed spectrogram

Figure 17: Reconstruction result for a lung sound recording (cropped into 8s) from ICBHI dataset.
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A.4 Additional Evaluation Results

Table 3 summarized the over mean reciprocal ranks, with the reciprocal ranks of all the 19 tasks
detailed in Figure 18.

(a) Health Condition Inference (b) Lung Function Estimation

Figure 18: Radar plot of reciprocal ranks on two groups of tasks.

A.4.1 Another Metric for Lung Function Estimation Tasks

While AUROC, used for classification, ranges from 0.5 to 1, MAE, used for regression, doesn’t
have a bounded range for comparison. Hence, here we additionally report the relative error for the
estimation measured by MAPE (Mean Absolute Percentage Error) in Table 10. MAPE ranges from 0
to 1, with a lower value indicating better estimations.

Table 10: MAPE on lung function estimation tasks (lower is better). The best model per task is
highlighted. We report mean and standard deviation across subjects.

ID Task Abbr. Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
T13 FVC (Breath) 0.329 ± 0.338 0.298 ± 0.252 0.299 ± 0.245 0.295 ± 0.222 0.304 ± 0.259 0.278 ± 0.261 0.291 ± 0.247 ✓*
T14 FEV1 (Breath) 0.353 ± 0.469 0.394 ± 0.444 0.392 ± 0.480 0.396 ± 0.435 0.399 ± 0.449 0.381 ± 0.447 0.392 ± 0.466
T15 FEV1/FVC (Breath) 0.178 ± 0.219 0.167 ± 0.165 0.164 ± 0.163 0.174 ± 0.177 0.161 ± 0.152 0.166 ± 0.149 0.162 ± 0.150 ✓*
T16 FVC (Vowel) 0.277 ± 0.238 0.294 ± 0.246 0.280 ± 0.253 0.292 ± 0.247 0.292 ± 0.233 0.264 ± 0.260 0.293 ± 0.255 ✓*
T17 FEV1 (Vowel) 0.342 ± 0.363 0.396 ± 0.446 0.417 ± 0.462 0.402 ± 0.409 0.359 ± 0.372 0.398 ± 0.455 0.368 ± 0.440 *
T18 FEV1/FVC (Vowel) 0.175 ± 0.183 0.167 ± 0.164 0.167 ± 0.157 0.176 ± 0.170 0.167 ± 0.153 0.171 ± 0.162 0.167 ± 0.158 ✓*
T19 Breathing Rate 0.212 ± 0.080 0.205 ± 0.080 0.207 ± 0.086 0.207 ± 0.084 0.207 ± 0.099 0.193 ± 0.065 0.186 ± 0.071 ✓*
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A.4.2 Fine-tuning Performance

Apart from the standard linear evaluation, we also explore the effect of fine-tuning in improving the
performance, using some of the tasks with a comparatively sufficient number of samples.

For OPERA-CE, due to the small number of parameters that could easily overfit and forget the
pretraining, we freeze two-thirds of the blocks and only fine-tune the first 5 blocks dealing with the
input data (along with the classification head). For all other models and baselines, we fine-tune the
entire model together with the classifier.

In addition to the result for Task 4 detailed in Section 6, the performance of Task 7 and 12 after
fine-tuning are presented in Table 11 and Table 12. It is obvious that the performance can be greatly
improved after fine-tuning, and the two transformer-based OPERA models demonstrate superior
performance.

Table 11: AUROC (higher is better) for linear probing and finetuning on T7 (COPD detection). Best
model highlighted.

Method # Train AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT

Linear 828 0.886 ± 0.017 0.933 ± 0.005 0.855 ± 0.012 0.872 ± 0.011 0.741 ± 0.011
Fine-tune 828 0.984 ± 0.012 0.980 ± 0.007 0.957 ± 0.024 0.808 ± 0.032 0.986 ± 0.006

Table 12: AUROC (higher is better) for linear probing and finetuning on T12 (snoring based body
position recognition). Best model highlighted.

Method # Train AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT

Linear 7468 0.649 ± 0.001 0.702 ± 0.001 0.781 ± 0.000 0.769 ± 0.000 0.742 ± 0.001
Fine-tune 7468 0.981 ± 0.002 0.935 ± 0.004 0.994 ± 0.001 0.981 ± 0.002 0.986 ± 0.003

A.4.3 Cross-domain Zero-shot Performance

Zero-shot capacity is an particularly interesting trait for foundation models, especially LLM-based
models. Though this is uncommon for models trained solely with unlabeled non-textual data, we also
explore cross-domain zero-shot performance following [40]. We train a linear probe on source Task
A and test it on target Task B, using T6 → T9 and T7 → T10 as examples, given their similarity (ref.
Table 2). Table below shows that OPERA-CT outperforms the baselines.

Table 13: AUROC (higher is better) for cross domain zero-shot performance. Best model highlighted.

Method Opensmile VGGish AudioMAE CLAP OPERA-CT

T6 → T9 0.534 ± 0.048 0.537 ± 0.025 0.472 ± 0.003 0.457 ± 0.005 0.600 ± 0.009
T7 → T10 0.682 ± 0.014 0.588 ± 0.002 0.692 ± 0.003 0.722 ± 0.002 0.823 ± 0.001
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A.4.4 Performance for different model architectures

To investigate whether models trained using OPERA data consistently outperforms models trained
with general audio data, comparison using consistent model architectures is also important. We used
the same ViT from AudioMAE in OPERA-GT. Similarly, for CNNs, we pretrained VGG (same as
VGGish) and CNN14 (as CLAP) using the contrastive objective. While in the main paper we chose
to showcase OPERA-CE for its competitive performance and potential in constrained scenarios, we
include the results here. The better performance of our models suggests the superiority of our curated
respiratory audio data and pretrained models for respiratory health.

Table 14: Average AUROC (higher is better) for the health condition inference tasks.

Model VGG CNN14 ViT

General audio 0.584 0.676 0.627
OPERA data 0.653 0.692 0.674

A.4.5 Performance for a hybrid model

Given that contrastive and generative pretraining objectives bring different strengths and weaknesses,
we also explored training a model that combines both. Using the ViT encoder, we employed a
projection head for contrastive learning and a decoder to reconstruct the spectrogram. Preliminary
results indicate that while this combined objective yields a model with more balanced performance, it
does not consistently outperform the single-objective pretraining approach. We report the performance
in Table 15 and Table 16, which can be compared with Table 4 and Table 5.

Table 15: AUROC (higher is better) of the hybrid model for the health condition inference tasks.

Task ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Hybrid 0.575 0.692 0.622 0.711 0.558 0.730 0.886 0.671 0.759 0.652 0.655 0.737

Table 16: MAE (lower is better) of the hybrid model for the health condition inference tasks.

Task ID T13 T14 T15 T16 T17 T18 T19

Hybrid 0.886 0.797 0.124 0.889 0.805 0.133 2.457
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A.4.6 Significance tests

We conducted significance tests for all tasks and the p values indicating significance is shown in
Table 17. Compared to the baselines, our models show a significant improvement in most cases.
When compared to the best baseline, OPERA-CT performs better (a higher average of AUROC) on 8
tasks, with 5 of these improvements being statistically significant. Our github repo also provides an
easy-to-use significance test function for benchmarking purposes and further use.

Table 17: P-values for significance tests (t-test) for Tasks 1-12. Significant values are highlighted in
yellow (p<0.01). The cases where OPERA models outperform the best baseline are underlined.

Dataset ID Best baseline OPERA-CT OPERA-CE OPERA-GT
UK COVID-19 T1 VGGish 0.0001 0.0002 0.4230

T2 CLAP 0.0000 0.0022 0.0000
COVID-19 Sounds T3 CLAP 0.0075 0.2155 0.9161

T4 CLAP 0.0558 0.0000 0.0011
CoughVID T5 CLAP 0.0003 0.0003 0.0000

T6 CLAP 0.0000 0.0000 0.0000
ICBHI T7 CLAP 0.0000 0.0000 0.0000
Coswara T8 CLAP 0.1586 0.8547 0.0000

T9 Opensmile 0.0000 0.0000 0.0000
KAUH T10 CLAP 0.0183 0.0003 0.9875
Respiratory@TR T11 CLAP 0.7182 0.0439 0.4200
SSBPR T12 Opensmile 0.0027 0.9944 0.0000
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