
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE Entropy MECHANISM OF REINFORCEMENT LEARN-
ING FOR REASONING LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper aims to overcome a major obstacle in scaling reinforcement learning
(RL) for reasoning with large language models (LLMs), namely the collapse of
policy entropy. Such phenomenon is consistently observed across vast RL runs
without entropy intervention, where the policy entropy dropped sharply at the early
training stage, leading to an overly confident policy model. As a consequence, this
diminished exploratory ability is always accompanied with the saturation of policy
performance. In practice, we establish a transformation equation R = −a expH+
b, between entropy H and downstream performance R, where a, b are fitting
coefficients. This empirical law strongly indicates that, the policy performance is
traded from policy entropy, thus bottlenecked by its exhaustion, and the ceiling
is fully predictable (H = 0, R = −a + b). Our finding necessitates entropy
management for continuous exploration toward scaling compute for RL. To this end,
we investigate entropy dynamics both theoretically and empirically. Our derivation
highlights that, the change in policy entropy is driven by the covariance between
action probability and the change in logits, which is proportional to its advantage
when using Policy Gradient-like algorithms (Williams, 1992). For example, a
high-probability action with high advantage would reduce policy entropy, while a
rare action with high advantage would increase policy entropy. Empirical study
shows that, the values of covariance term and entropy differences matched exactly,
supporting the theoretical conclusion. Moreover, the covariance term stays mostly
positive throughout training, further explaining why policy entropy would decrease
monotonically. Through understanding the mechanism behind entropy dynamics,
we motivate to control entropy by restricting the update of high-covariance tokens.
Specifically, we propose two simple yet effective techniques, namely Clip-Cov
and KL-Cov, which clip and apply KL penalty to tokens with high covariances
respectively. Experiments show that these methods encourage exploration, thus
helping policy escape entropy collapse and achieve better downstream performance.

1 INTRODUCTION

Applied to recent reasoning-centric large language models (LLMs), reinforcement learning (RL)
escapes narrow, task-specific confines: the models’ sweeping generalization introduces a new axis that
vastly enlarges the exploratory landscape. This shift has yielded impressive reasoning gains (OpenAI,
2024a; DeepSeek-AI et al., 2025), yet the dilemma persists—scaling training compute for learning
from experience (reinforcement learning) (Silver & Sutton, 2025) rather than imitation learning
(pre-training and finetuning) remains non-trivial. Among the challenges emerges a major obstacle,
the diminishment of policy entropy.

The core challenge in RL is the exploitation-exploration trade-off (Sutton, 1988), balancing the reuse
of proven strategies against the search for novel ones. For exploration, a key concept quantifying
the exploratory potential is policy entropy, which measures the uncertainty in the policy’s action
selection process. In RL literature, the ability to mitigate the decline of policy entropy is regarded as
essential to most algorithms (Williams & Peng, 1991; Williams, 1992; Eysenbach & Levine, 2021),
and policy entropy has been intensively steered and actively controlled via regularization (Ziebart
et al., 2008; Schulman et al., 2017b; Haarnoja et al., 2018).

For LLMs, while the typical behavior of policy entropy remains largely understudied (Yu et al., 2025;
He et al., 2025), we find an intriguing and consistent pattern from broad experiments: Policy entropy
sharply declines to near 0 in a few training steps, demonstrating that the policy becomes extremely

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

95% improvement

5% improvement

95% consumption

5% consumption

Does RL for LLM just Trade Entropy for Performance ?

Performance

Entropy

Figure 1: Left: Entropy collapse and performance saturation. Over 95% entropy drop/performance
gains take place at the early stage of RL training. The model then reaches a plateau with little
improvement. Right: The predictable relationship between validation performance and policy entropy.
Without intervention, the policy “trades” entropy for performance exponentially, showing clear
ceilings that hinder further policy enhancement.

certain. Consequently, the inability to explore new paths leads to a performance plateau, where
the validation performance also struggles to improve at the same time. Quantitatively, we further
reveal that, without entropy intervention like entropy loss or KL regularization, the downstream
performance is fully predictable from policy entropy, and the fitted curve is a simple exponential
function R = −a expH + b, as shown in Figure 1. Basically, the policy is trading uncertainty
(entropy) for rewards (Yue et al., 2025) in a predictable manner.

This empirical law results in two critical corollaries: (1) Like Scaling Laws (Kaplan et al., 2020;
Hoffmann et al., 2022), the exploitation-exploration curve is predetermined given the policy model
and training data. This allows us to predict policy performance at the early stage of RL and predict the
performance of large models given small models (OpenAI, 2024b) (Sec. 2.4). (2) More importantly,
this equation indicates that the upper bound of the policy performance is also deterministic with the
exhaustion of policy entropy (H = 0, R = −a + b), so the return of scaling training compute for
RL could be marginal. What’s worse, naively applying entropy regularization methods are proven
ineffective (App. E). In short, scalable RL calls for breaking the entropy bottleneck.

Solving this issue requires principled understandings of the mechanisms behind this observation,
i.e., why policy entropy decreases monotonically? To this end, we analyze the dynamics of policy
entropy both theoretically and empirically. Our key findings highlight that, for softmax policy like
LLMs, the entropy change between two consecutive steps is proportional to the covariance of the
log-probability and corresponding logit change for an action (Liu, 2025). Furthermore, under Policy
Gradient (Williams, 1992)-like and Natural Policy Gradient (Kakade, 2001)-like algorithms, the
logit difference is proportional to the action advantage. Intuitively, an action with high advantage
and high probability would reduce policy entropy, while a rare action with a high advantage would
increase entropy. This theoretical conclusion is validated by experimental results. At the early stage,
the policy demonstrates high covariance on training data, implicating the policy’s confidence is
well-calibrated (Kadavath et al., 2022), thus can safely exploit trajectories with high confidence,
strengthening belief and minimize entropy (Zuo et al., 2025; Zhang et al., 2025; Agarwal et al., 2025).
As training progresses, the covariance gradually declines but still maintains positive, continually
dragging policy entropy even lower.

The analysis of entropy dynamics demonstrates that, the high covariance is detrimental to scalable RL,
which provides us guidelines about uplifting policy entropy—limit the step sizes of high-covariance
tokens. We thereby motivate to design two corresponding strategies aiming at entropy control, namely
Clip-Cov and KL-Cov, to replace the clip and PPO-KL methods in surrogate loss (Schulman
et al., 2017b). Clip-Cov randomly selects a small portion of tokens with positive covariances
and detach their gradients. KL-Cov, on the other hand, applies KL penalty on tokens with the
largest covariances. Experiment results show that, we can actively control policy entropy by tuning
threshold parameters. Consequently, the policy model escapes the low entropy trap and achieves
better performance on mathematical reasoning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 THE PREDICTABLE “COLLAPSE” OF POLICY ENTROPY

TAKEAWAY

Without intervention, e.g., entropy or KL regularization, policy entropy is traded for reward
predictably during RL. The empirical quantitative relationship between validation reward R
and policy entropy H can be expressed as R = −a exp(H) + b.

In this section, we manage to answer the research question: What is the typical behavior of policy
entropy during RL for LLMs? Through extensive experiments, we observe a consistent “entropy
collapse” phenomenon (Sec. 2.3), and further extend it to an empirically predictable relation between
policy entropy and validation performance (Sec. 2.4).

2.1 PRELIMINARIES

We consider tuning LLMs with RL on verifiable tasks, such as math and coding, to avoid reward
hacking. Given an input prompt x, an LLM πθ autoregressively generates an output sequence
y, which consists of T tokens {y1, · · · , yt, · · · , yT }. We use RL to optimize the LLM policy to
maximize the cumulative rewards r received from the verifier:

max
θ

J(θ) := Ex∼D,y∼πθ(x) [r(y)] (1)

where D is the training distribution.

To optimize the objective function, it is a common practice to use the Policy Gradient algo-
rithm (Williams, 1992) for gradient estimation:

∇θJ(θ) = Ex∼D,y∼πθ(x)

[
T∑

t=0

∇θ log πθ(yt|y<t)At

]
. (2)

Here At is the advantage of current action and is implemented differently across RL algorithms. If
we only have rewards for the full trajectory, the vanilla REINFORCE algorithm (Williams, 1992)
directly defines At = r(y). To reduce variance, GRPO (Shao et al., 2024) and RLOO (Kool et al.,
2019; Ahmadian et al., 2024) further incorporates group-wise normalization. For example, GRPO
samples K responses for each prompt and estimates the advantage as follows:

At =
r (y)− mean

(
r
(
y1:K

))
std (r (y1:K))

. (3)

To handle off-policy data and constrain the policy update size, PPO (Schulman et al., 2017b) proposed
to optimize a surrogate loss.

L(θ) =Et

[
min

(
πθ(yt|y<t)

πθold(yt|y<t)
At, clip

(πθ(yt|y<t)

πθold(yt|y<t)
, 1− ϵ, 1 + ϵ

)
At

)]
(4)

Policy Entropy. Policy entropy quantifies the predictability or randomness inherent in the actions
selected by an agent. Given policy model πθ, training dataset D, we measure the average token-level
entropy of the policy model on training data, which is defined as follows:

H(πθ,D) = −ED,πθ
[log πθ(yt|y<t)] = − 1

|D|
∑
x∈D

1

|y|

|y|∑
t=1

Eyt∼πθ
[log πθ(yt|y<t, x)] (5)

Such entropy quantifies the uncertainty level of the policy on current prompts and is widely adopted
in maximum entropy RL as a regularization term (Ziebart et al., 2008; Haarnoja et al., 2017; 2018).
In practice, we calculate the entropy for each batch sampled from the training dataset.

2.2 EXPERIMENT SETTINGS

We adopt a unified protocol covering 4 model families and 11 base models (0.5-32B parameters),
verifiable task domains of math and coding evaluated on 8 public benchmarks, and 4 RL algorithms.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We start RL from the base models following the “Zero” setting (DeepSeek-AI et al., 2025) with the
veRL framework (Sheng et al., 2024). For RL algorithms, we employ GRPO (Shao et al., 2024),
REINFORCE++ (Hu, 2025), and PRIME (Cui et al., 2025). The details of the used models, datasets,
and hyperparameters can be found in Appendix B.1.

2.3 A FIRST GLANCE: ENTROPY COLLAPSE AND PERFORMANCE SATURATION

27%

76%
93%

6%

Figure 2: Avg. entropy consumption and per-
formance gain (%) in 11 RL runs with differ-
ent models.

Across all experiments, we observe a consistent pat-
tern: policy entropy drops sharply at the beginning of
training, declining monotonically toward zero. Mean-
while, the policy’s validation performance presents
an inverse trend, then plateaus.

Figure 2 illustrates the average normalized en-
tropy consumption/performance gain in percentage
throughout 2400-gradient step RL runs with 11 dif-
ferent models. We can see that 73% of the entropy
consumption and 76% of the performance gain oc-
curred in just the first 200 gradient steps (1/12 of
training), and the first 800 (1/3) steps account for
over 93% performance gains together with 94% en-
tropy losses. This means that over 2/3 of the training
steps yielded marginal returns.

2.4 FITTING THE CURVES BETWEEN ENTROPY AND PERFORMANCE

10 1100

Entropy (log)

0

10

20

30

40

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Qwen2.5 Model Family

32B
7B
3B
1.5B
0.5B
Fit

10 1100

Entropy (log)

5
0
5

10
15
20
25
30

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Mistral Model Family

Small-3-24B
Nemo-Base-12B
v0.3-7B
Fit

10 1100

Entropy (log)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)
LLaMA and DeepSeek Model Family

Deepseek-Math-7B-Base
Llama3.1-8B
Llama3.2-3B
Fit

Figure 3: Fitting curves between policy entropy and validation performance on math task.

Motivated by the observed entropy collapse phenomenon, we conduct a more detailed quantitative
analysis. Through extensive experiments, we find the downstream performance (accuracy) and
entropy can be fitted in the exponential function:

R = −a exp(H) + b, (6)

where R represents the validation performance and H is entropy. The fitting results of different model
families with GRPO are presented in Figure 3 and 7. It is worth noting that, the fitted curves precisely
describe the performance-entropy relationships over all conducted experiments, with models spanning
all kinds of sizes, families, and different tasks. Only 2 coefficients are needed for fitting the curve of
over 200 data points, showing a high degree of regularity. Detailed results on more tasks, datasets,
and algorithms can be found in App. B.2. We further analyzed the predictability in App. B.3.

2.5 DISCUSSION

The Predictability. To now, we have established predictability between (1) policy performance and
entropy; (2) coefficients in (1) and model sizes. Such predictability reminds us of Scaling Laws for
language models (Kaplan et al., 2020; Hoffmann et al., 2022) and RLHF (Gao et al., 2022). It seems
that, RL with LLMs keeps trading entropy for reward throughout training. However, other works that
adopt different policy models (Luo et al., 2025) or use off-policy data (Yan et al., 2025) observed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

distinct entropy patterns. Therefore, this predictability is not arguably universal, and we call for a
more in-depth analysis of the entropy behavior under different conditions.

The Ceiling. There is an intensive discussion questioning whether RL merely elicits the latent behav-
iors that were already learned in pre-training, thus cannot break the ceiling of the base model (Yue
et al., 2025). Our results conditionally support this claim that, if policy entropy diminishes, the ceiling
not only exists, but also can be predicted. However, we argue that it is not the intrinsic limitation of
RL that sets up the ceiling, but the entropy mechanism of LLMs leads to the result.

3 DYNAMICS ANALYSIS OF POLICY ENTROPY

TAKEAWAY

For softmax policy including LLMs, the change of policy entropy is determined by the
covariance between the log-probability and the change in logits of actions. For Policy
Gradient and Natural Policy Gradient, the change in logits is proportional to the action
advantage, meaning that a high covariance leads to a quick decrease of policy entropy, as
observed in RL for LLM reasoning.

We have unveiled that the entropy collapse issue will greatly obstacle RL scaling for LLM reasoning.
To solve it, we need a more principled understanding of the dynamics of policy entropy, i.e., when will
entropy decrease and when will entropy increase. In this section, we focus on the entropy dynamics,
especially the step-wise entropy difference H(πk+1

θ)−H(πk
θ).

3.1 ENTROPY DYNAMICS OF SOFTMAX POLICY

For step k, we try to calculate the entropy difference before and after one step parameter update, i.e.,
H(πk+1

θ) and H(πk
θ). For this, we first consider an intrinsic property of LLMs that they are softmax

policies, which means the policies are parameterized by πθ(a|s) = exp(zs,a)∑
a′∈A exp(zs,a′)

. Here s ∼ dπθ

and a ∼ πk
θ (·|s) represent state and action, zs,a is the output logit of action a given state s. For any

softmax policy, we have the following Lemma:

Lemma 1 (Entropy difference of softmax policy) (Proof in Appendix C.2, adapted from Liu
(2025)) Assume that policy πθ is a tabular softmax policy, where each state-action pair (s, a)
is associated with an individual logit parameter zs,a = θs,a, the difference of policy entropy given
state s between two consecutive steps under first-order approximation satisfies

H(πk+1
θ)−H(πk

θ) ≈ Es∼dπθ

[
H(πk+1

θ |s)−H(πk
θ |s)

]
≈ Es∼dπθ

[
−Cova∼πk

θ (·|s)
(
log πk

θ (a|s), zk+1
s,a − zks,a

)]
Here zk+1

s,a − zks,a is the change in the output logits between step k and step k + 1. This Lemma
indicates that, the change of policy entropy approximately equals the negative covariance between
log-probability of the action and the change of logits. That is to say, when an action a receives a
high probability from the policy before updating, and its corresponding logit is also increasing after
updating, then it will decrease the policy entropy.

3.2 ENTROPY DYNAMICS UNDER POLICY GRADIENT / NATURAL POLICY GRADIENT

From Lemma 1, the step-wise difference of output logits zk+1
s,a −zks,a contributes to change of entropy,

which is related with the specific training algorithm in use. Here, we further derive the logits change
under Policy Gradient (Williams, 1992) and Natural Policy Gradient (Kakade, 2001) algorithms.

Assuming that we are updating the actor policy via Policy Gradient, then zk+1
s,a − zks,a = −η ·∇zJ(θ),

where J(θ) denotes the objective function and η denote the learning rate. ∇zJ(θ) is calculated with
Eq. 2, we have the following proposition:

Proposition 1 (Difference of policy logits in vanilla policy gradient) (Proof in Appendix C.3) Let
the actor policy πθ be a tabular softmax policy and updated using Eq. 2 via gradient backtracking
with learning rate η, the difference of zs,a between two consecutive steps satisfies

zk+1
s,a − zks,a = η πθ(a | s) A(s, a)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Applying Proposition 1 to Lemma 1, we can further describe entropy change with:

Theorem 1 (Entropy change under policy gradient) Let the actor policy πθ be a tabular softmax
policy, and πθ be updated via vanilla policy gradient, the difference of policy entropy given state s
between two consecutive steps satisfies

H(πk+1
θ |s)−H(πk

θ |s) ≈ −η · Cova∼πk
θ (·|s)

(
log πk

θ (a|s) , πk
θ (a|s) ·A(s, a)

)
Theorem 1 reveals how policy entropy changes under the policy gradient method. Intuitively, an
action a receives both high/low probability and high/low advantage would lower the entropy, and
vice versa. Liu (2025) conducted derivation for Natural Policy Gradient.

Theorem 2 (Entropy change under natural policy gradient) (Proof in Appendix C.4) Let the ac-
tor policy πθ be a tabular softmax policy, and πθ is updated via natural policy gradient (Kakade,
2001), the difference of policy entropy given state s between two consecutive steps satisfies

H(πk+1
θ |s)−H(πk

θ |s) ≈ −η · Cova∼πk
θ (·|s)

(
log πk

θ (a|s) , A(s, a)
)

Conclusion. From Theorem 1 and Theorem 2, we obtain the intuitive insight that, in principle, a
strong positive correlation between the action probability P (a) under the current policy and the
corresponding advantage value A(a), on average, leads to a decrease in policy entropy. Conversely,
a negative correlation tends to increase the entropy. This deeper understanding of the dynamics of
policy entropy provides a theoretical foundation for designing practical strategies for entropy control.

3.3 EMPIRICAL VERIFICATION

In this section, we conduct experiments to validate the theoretical conclusion, specifically, Theorem 1.

Settings. We apply GRPO with policy gradient, i.e. on-policy learning without PPO surrogate loss,
on Qwen2.5-7B. In this context, we adopt the bandit setting where the prompt x is the state, and
whole response y is the action. Then the covariance term becomes:

Cova∼πθ(·|s) (log πθ(a | s), πθ(a | s) ·A(s, a)) = Covy∼πθ(·|x) (log πθ(y | x), πθ(y | x) ·A(y,x)) (7)
During training, we calculate the group-wise covariance for each prompt, and average across a batch

of prompts. We further normalize the log-prob by the length of the response.

0 500 1000 1500 2000
Steps

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Co
va

ria
nc

e

0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

En
tro

py

Covariance
Difference of Entropy

Figure 4: Dynamics of policy entropy difference
and covariance during GRPO training. They show
similar trends, as predicted by theory.

Experiment Results. We record two key met-
rics, Cov(·) and H(πθ), across training and
analyse their relationship. According to The-
orem 1, we have −d(H) ∝ Cov(·). As shown
in Figure 4, the empirical curves of −d(H) and
Cov(·) exhibit highly similar dynamics. Early
in training, entropy H decreases rapidly, ac-
companied by a relatively large positive Cov(·).
As training progresses, entropy decay slows
and Cov(·) stabilizes, reflecting convergence
of the policy. Notably, Cov(·) remains positive
throughout training, leading to a persistent en-
tropy decrease and finally collapse.

4 ENTROPY CONTROL BY COVARIANCE REGULARIZATION

TAKEAWAY

We can control policy entropy by restricting the update of tokens with high covariances,
e.g., clipping (Clip-Cov) or applying KL penalty (KL-Cov). These simple techniques
prevent policy from entropy collapse thus promoting exploration.

The analysis of entropy dynamics gives us guidelines for entropy control, regularizing the update
step size of high-covariance actions. In this section, we introduce two simple yet effective techniques,
KL-Cov and Clip-Cov, that control entropy precisely and achieve better downstream performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 SUPPRESSING TOKENS WITH HIGH COVARIANCES

Table 1: Covariance distribu-
tion of Qwen2.5-7B in train-
ing step 1.

Group Mean Value
Top 0.02% 5.654
Top 0.2% 3.112
Top 2% 1.385
Top 20% 0.351
All 0.003

To get the entropy controlled, we conduct experiments on the com-
mon approaches in the RL literature, however, results show that
those approaches struggles to solve the entropy bottleneck of LLMs
(See Appendix E). The unsuccessful attempt to incorporate entropy
regularization into the policy loss drives us to seek a more fundamen-
tal approach to control entropy. As previously elaborated, the policy
entropy dynamic is closely connected with the covariance between
action probability and advantage. Meanwhile, as shown in Table 1,
a small portion of tokens exhibit extremely high covariance, far ex-
ceeding the average. That is saying that these outlier tokens take a
dominant part in triggering the entropy collapse. To mitigate their
adverse effect, we aim to impose constraints on their contribution to the policy loss. In RL literature,
two variants of PPO employ either clipping or KL penalty to constrain the policy updates (Schulman
et al., 2017b), preventing overly aggressive changes. Drawing inspiration from these approaches, we
propose two simple but effective covariance-aware methods Clip-Cov and KL-Cov.

Natural policy gradient is rarely used in post-training of LLMs for its time-consuming second-order
optimization. But its introduction of target function with KL distance as constraint shares similarity
with TRPO (Schulman et al., 2015) and PPO. Thus, we apply Theorem 2 into RL training.

Supposing a batch of N rollout tokens, πθ(yi) denotes the output probability of the policy model
for token yi given its corresponding prefix. According to Theorem 2, we firstly define token-wise
centered cross-product between log probability and advantage as:

Cov(yi) = (log πθ(yi)−
1

N

N∑
j=1

log πθ(yj)) · (A(yi)−
1

N

N∑
j=1

A(yj)) (8)

The Cov is the covariance of each token in N . Its expectation is the covariance in Theorem 2.

Clip-Cov. In the Clip-Cov strategy, we clip a small fraction of high-covariance tokens out from
policy gradient updates as follows. With Eq. 8 calculated, we randomly select k ·N of high-covariance
tokens according to the covariance value:

Iclip = I ∼ Uniform (i | Cov(yi) ∈ [ωlow, ωhigh]}, ⌊k ·N⌋) (9)

Where I is short for index, k denotes the clip ratio. ωlow, ωhigh are two predefined bounds for
covariance, respectively. Both are set much higher than the average covariance (>500×). Finally,
tokens with the chosen indexes will be detached from the policy gradient, which is:

LClip-Cov(θ) =

{
Et

[
πθ(yt|y<t)

πθold
(yt|y<t)

At

]
, t /∈ Iclip

0, t ∈ Iclip

(10)

where the t is the t-th token in one rollout response and each t uniquely corresponds to a index i.

KL-Cov. The KL-Cov strategy is simpler. Specifically, similar to Clip-Cov, we first compute the
covariance as in Eq. 8. Then, we rank and select tokens within the top-k proportion of covariance:

IKL = {i | Rank(Cov(yi)) ≤ k ·N}, (11)

The k here denotes the proportion of tokens that will be subjected to the KL penalty and k ≪ 1. At
last, we impose the KL penalty (KL divergence between the current policy and the rollout policy) on
the selected tokens, the policy loss is computed as:

LKL-Cov(θ) =

Et

[
πθ(yt|y<t)

πθold
(yt|y<t)

At

]
, t /∈ IKL

Et

[
πθ(yt|y<t)

πθold
(yt|y<t)

At − βDKL(πθold(yt|y<t)||πθ(yt|y<t))
]
, t ∈ IKL

(12)

Where β is the coef. to control the weight for KL penalty. Pseudo-code is presented in Algorithm 1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

256 768 1280 1792 2304 2816
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

En
tro

py

GRPO
GRPO w. Clip_higher
GRPO w. Clip_Cov
GRPO w. KL_Cov

256 768 1280 1792 2304 2816
Steps

600

800

1000

1200

1400

1600

1800

Re
sp

on
se

 L
en

gt
h

GRPO
GRPO w. Clip_higher
GRPO w. Clip_Cov
GRPO w. KL_Cov

256 768 1280 1792 2304 2816
Steps

26

28

30

32

34

36

38

40

Av
g.

 Te
st

 A
cc

(%
)

GRPO
GRPO w. Clip_higher
GRPO w. Clip_Cov
GRPO w. KL_Cov

128 256 384 512 640 768 896 1024 1152
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

En
tro

py

GRPO
GRPO w. Clip_higher
GRPO w. Clip_Cov
GRPO w. KL_Cov

128 256 384 512 640 768 896 1024 1152
Steps

500
1000
1500
2000
2500
3000
3500
4000

Re
sp

on
se

 L
en

gt
h GRPO

GRPO w. Clip_higher
GRPO w. Clip_Cov
GRPO w. KL_Cov

128 256 384 512 640 768 896 1024 1152
Steps

25

30

35

40

45

50

Av
g.

 Te
st

 A
cc

(%
)

GRPO
GRPO w. Clip_higher
GRPO w. Clip_Cov
GRPO w. KL_Cov

Figure 5: Training Qwen2.5-7B (Top) / Qwen2.5-32B (bottom) with GRPO with/without our methods.
Left: Entropy dynamics. Our methods uplift policy entropy from collapse, enabling sustained
exploration. Middle: Our methods also incentivize longer responses compared with vanilla GRPO.
Right: Our methods consistently outperform baselines on testsets.

Table 2: Detailed results of GRPO, GRPO with clip-higher technique and our methods. For AIME
and AMC, the results are avg.@32. Bold denotes the best results.

Method AIME24 AIME25 AMC MATH-500 OMNI-MATH OlympiadBench Minerva Avg.
Llama3.1-8B

GRPO 0.3 0.4 7.3 25.8 7.2 5.6 9.2 6.8
w. Clip-higher 0.0 0.0 8.5 23.0 7.3 4.7 12.1 6.9
w. Clip-Cov 0.4 0.3 8.9 23.4 8.6 7.3 12.5 7.8
w. KL-Cov 0.4 0.7 9.1 23.0 7.3 4.1 13.2 7.2

Qwen2.5-7B

GRPO 21.2 9.6 58.7 78.8 27.9 40.7 36.7 38.6
w. Clip-higher 18.1 11.5 56.6 79.2 29.8 43.3 40.4 38.8
w. CLIP-Cov 22.1 15.8 58.2 80.4 30.5 44.1 41.1 40.4
w. KL-Cov 22.6 12.9 61.4 80.8 29.1 42.6 38.2 40.6

Qwen2.5-32B

GRPO 21.8 16.2 69.7 84.2 35.2 43.6 45.5 45.8
w. Clip-higher 35.6 22.3 69.5 77.2 35.1 42.5 43.0 47.2
w. CLIP-Cov 32.3 22.7 67.2 87.0 42.0 57.2 46.0 50.3
w. KL-Cov 36.8 30.8 74.5 84.6 39.1 49.0 46.3 52.2

Qwen3-8B

GRPO 31.7 22.9 65.3 87.6 39.5 54.6 45.2 48.7
w. Clip-higher 33.8 27.1 73.1 89.0 39.9 52.2 46.3 51.8
w. Clip-Cov 31.9 24.5 71.8 90.0 43.7 60.4 46.7 52.8
w. KL-Cov 36.7 26.5 72.4 87.8 43.7 58.4 47.4 53.5

4.2 EXPERIMENTS

Settings. Because of the capability differences across base models, we train Llama3.1-8B with
GSM8K, while other models are trained using the DAPO-MATH dataset. For baselines, we compare
the original GRPO, and GRPO with Clip-higher, which tunes the upper threshold ϵ in PPO loss to
0.28 (Yu et al., 2025). More details about the training hyperparameters can be found in Appendix F.2.

Results and Analysis. We present the experimental results in Table 2, one can see that our two
approaches both achieve non-trivial improvements across all benchmarks. Compared to GRPO, our
method outperforms it by 2.0% on average for the 7B model and by 6.4% for the 32B model.

As shown in Figure 5, our method is able to maintain a considerably higher level of entropy throughout
training. For example, when the baseline’s entropy reaches a plateau and can no longer be consumed,
the KL-Cov method still sustains an entropy level over 10× higher. Meanwhile, the response length
of the policy model steadily increases, and its performance on the test set consistently surpasses
that of the baseline. This indicates that our policy model is able to explore more “freely” during

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

training. Compared to the clip-higher technique, although it can also increase entropy and lead
to performance improvement in the early stage of training, it gradually becomes unstable, with
performance saturating and declining. In contrast, our method obtains more stable entropy curves
throughout training, ultimately achieving non-trivial improvements over the baselines.

Moreover, we observe that our method yields more substantial gains on Qwen2.5-32B. Specifically, we
achieve improvements of 15.0% and 14.6% compared to GRPO on the most challenging benchmarks,
AIME24 and AIME25, respectively. We infer that this is because the 32B model possesses greater
potential from pretraining compared to the 7B model. Once the “exploration curse” caused by entropy
collapse is lifted, the larger model is able to explore more diverse and higher-quality policies.

256 768 1280 1792 2304
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

En
tro

py

ratio=7
ratio=5
ratio=4
ratio=2
baseline

256 768 1280 1792 2304
Steps

0.0

0.1

0.2

0.3

0.4

0.5

En
tro

py

kl-coef=1
kl-coef=0.5
kl-coef=0.1
kl-coef=0.05
kl-coef=0

Figure 6: Differences in entropy dynamics of Qwen2.5-7B under varying KL coefficients and Clip
ratios, evaluated Clip-Cov (left) and KL-Cov (right) settings, respectively.

4.3 GET POLICY ENTROPY CONTROLLED

We also evaluate the capability of our methods in controlling policy entropy as shown in Figure 6.
For Clip-Cov, the level of policy entropy can be adjusted by tuning the ratio of clipped samples,
where more clipped samples result in higher entropy. For KL-Cov, we can modulate the entropy by
controlling the KL coefficient β, i.e., the weight of the KL penalty. Specifically, a larger coefficient
brings higher entropy. Comparing them, KL-Cov reaches stabler entropy curves than Clip-Cov,
which might be preferable for stabilizing the training process.

4.4 DISCUSSION

Connection with Clip-higher. Our main baseline, clip-higher (Yu et al., 2025), can also incentivize
higher policy entropy. In fact, this technique shares similar functionality with our methods. By raising
the upper threshold of the importance sampling ratio, clip-higher includes more low-probability
tokens for policy updates. Also, the upper threshold only affects the tokens with positive advantages,
which means clip-higher is actually adding more low-covariance (low probability, high advantage,
with average covariance of ∼-0.03) tokens in gradient calculation. We take a step further by directly
using the covariance as the threshold, thus controlling the entropy more precisely.

The Philosophy of Entropy Control. In experiments, we find that the policy entropy is sensitive
to hyperparameter settings. Specifically, our methods only interfere with a very small fraction of
tokens (10−4 to 10−3), yet totally change the entropy curve. This means several “pivotal” tokens are
crucial for the entropy of LLMs. However, we don’t observe a relationship between the intervened
entropy and model performance. It still remains open whether there exists an optimal entropy value
to balance the exploration and training stability.

5 CONCLUSION

In this study, we try to address the challenge of policy entropy collapse in reinforcement learning
for large language model reasoning. We empirically demonstrate that performance gains are often
achieved by sacrificing exploratory capacity, which in turn imposes a foreseeable limit on improve-
ment. To gain a deeper understanding, we conduct a theoretical investigation into entropy dynamics
and introduce two simple regularization techniques, Clip-Cov and KL-Cov, to directly manage
high-covariance tokens and thereby counteract entropy collapse. Looking further, RL has been
identified as the next scaling axis after pre-training. However, scaling computing for RL requires
more than entropy minimization. We hope this research could provide valuable insights into the role
of entropy, fostering RL to reach a higher level of intelligence.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have provided sufficient details to for reproduction, including algorithm pseudocode in Algo-
rithm 1, experiment configurations and hyperparameters in Section 2, Section 4 and Appendix. We
have uploaded our code in Supplementary Material.

REFERENCES

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effective-
ness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards, 2025. URL https://arxiv.org/
abs/2502.01456.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems. arXiv preprint arXiv:2103.06257, 2021.

10

https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for
large language models. arXiv preprint arXiv:2410.07985, 2024.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, 2022.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench: A
challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.211. URL https://aclanthology.org/2024.acl-long.
211/.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xi-
aoyu Zhang, Fuxiang Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng,
Tianwen Wei, Cheng Cheng, Bo An, Yang Liu, and Yahui Zhou. Skywork open
reaonser series. https://capricious-hydrogen-41c.notion.site/
Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680,
2025. Notion Blog.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jacob Hilton, Jie Tang, and John Schulman. Scaling laws for single-agent reinforcement learning.
arXiv preprint arXiv:2301.13442, 2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
LÃl’lio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, TimothÃl’e Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
know what they know. arXiv preprint arXiv:2207.05221, 2022.

11

https://aclanthology.org/2024.acl-long.211/
https://aclanthology.org/2024.acl-long.211/
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems, 14,
2001.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for
free! In DeepRLStructPred@ICLR, 2019. URL https://api.semanticscholar.org/
CorpusID:198489118.

Nathan Lambert, Jacob Daniel Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hanna Hajishirzi.
Tülu 3: Pushing frontiers in open language model post-training. ArXiv, abs/2411.15124, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Jiacai Liu. How does rl policy entropy converge during iteration? https://zhuanlan.
zhihu.com/p/28476703733, 2025. URL https://zhuanlan.zhihu.com/p/
28476703733.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
model by scaling rl. Notion Blog, 2025.

Meta. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Meta-Llama-3.2. Llama 3.2: Revolutionizing edge ai and vision with
open, customizable models. URL https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices.

MistralAI-NeMo. Mistralai-nemo. URL https://mistral.ai/news/mistral-nemo.

MistralAI-Small-3. Mistralai-small-3. URL https://mistral.ai/news/
mistral-small-3.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PmLR, 2016.

OpenAI. Openai o1 system card. ArXiv, abs/2412.16720, 2024a.

OpenAI. Gpt-4 technical report, 2024b. URL https://arxiv.org/abs/2303.08774.

12

https://api.semanticscholar.org/CorpusID:198489118
https://api.semanticscholar.org/CorpusID:198489118
https://zhuanlan.zhihu.com/p/28476703733
https://zhuanlan.zhihu.com/p/28476703733
https://zhuanlan.zhihu.com/p/28476703733
https://zhuanlan.zhihu.com/p/28476703733
https://arxiv.org/abs/2407.21783
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices
https://mistral.ai/news/mistral-nemo
https://mistral.ai/news/mistral-small-3
https://mistral.ai/news/mistral-small-3
https://arxiv.org/abs/2303.08774

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Oleh Rybkin, Michal Nauman, Preston Fu, Charlie Snell, Pieter Abbeel, Sergey Levine, and Aviral
Kumar. Value-based deep rl scales predictably. arXiv preprint arXiv:2502.04327, 2025.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-learning.
arXiv preprint arXiv:1704.06440, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 2025.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3:
9–44, 1988.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Marc Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of the
26th annual international conference on machine learning, pp. 1049–1056, 2009.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268, 1991.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A diverse,
challenging, and verifiable synthetic dataset for coding, 2025. URL https://arxiv.org/
abs/2503.02951.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025.

13

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Honglin Yu, Weinan Dai, Yuxuan Song, Xiang Wei, Haodong Zhou, Jingjing Liu, Wei Ma,
Ya-Qin Zhang, Lin Yan, Mu Qiao, Yong-Xu Wu, and Mingxuan Wang. Dapo: An open-source
llm reinforcement learning system at scale. 2025. URL https://api.semanticscholar.
org/CorpusID:277104124.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
Liu, and Hao Peng. Free process rewards without process labels. International conference on
machine learning, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? ArXiv,
abs/2504.13837, 2025.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder rl via automated test-case synthesis, 2025. URL https://arxiv.org/abs/
2502.01718.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu
Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

14

https://api.semanticscholar.org/CorpusID:277104124
https://api.semanticscholar.org/CorpusID:277104124
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2502.01718

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORK

Policy Entropy in Reinforcement Learning. Stemmed in information theory, entropy provides a
principled mechanism to manage the exploitation-exploration tradeoff. Entropy-regularized rein-
forcement learning, also referred as maximum entropy RL (Ziebart et al., 2008; Toussaint, 2009),
adopts a regularization term in reward to encourage high-entropy actions. This regularization term
was widely-inherited in RL algorithms (Mnih et al., 2015; 2016; Schulman et al., 2017a;b; Haarnoja
et al., 2017; 2018), and is viewed as a necessity. On the other hand, in RL for LLMs, there exist
different opinions on whether entropy regularization should be preserved (Ouyang et al., 2022; Shao
et al., 2024; Hu et al., 2025; He et al., 2025). Our experiments indicate that, it is necessary to control
entropy, but we can design better objectives than entropy loss.

Predictability of Reinforcement Learning for Reasoning Language Models. The first part of this
work reveals the predictability of RL for LLM reasoning. The development of LLMs is largely guided
by the neural scaling laws, which bridge model performances with computational budgets, model
sizes, and the amount of training data (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al.,
2022). With scaling experiments on smaller models, the loss and task performance of larger models
could be accurately predicted. In RL, Hilton et al. (2023); Rybkin et al. (2025) studied the scaling
behavior of policy performances versus computing on non-LLM models, but the predictability of RL
for LLMs has yet to be investigated. Gao et al. (2022) proposed to predict reward scores from KL
divergence in RL on LLMs, which was used for modeling overoptimization effect of a proxy reward
model. This work aligns with our conclusion considering that, 1) the verifiable reward eliminates the
gap between the proxy reward model and ground truth; 2) the similarity between KL divergence and
policy entropy.

Reinforcement Learning for LLMs. Reinforcement learning has emerged as a major approach for
LLM post-training (Ouyang et al., 2022; Meta, 2024; Team et al., 2023; Qwen et al., 2025; Jiang
et al., 2023). Recent works have achieved further breakthrough on enhancing the reasoning capability
of LLMs using RL with verifiable rewards (OpenAI, 2024a; Lambert et al., 2024; DeepSeek-AI et al.,
2025; Team et al., 2025), drawing great attention in research community (Cui et al., 2025; Liu et al.,
2025; Hu et al., 2025; He et al., 2025). However, there still lacks systematic study on the underlying
mechanisms of RL for LLMs, which constitutes the primary goal of our work.

B DETAILED RESULTS AND DISCUSSION OF THE FITTING EXPERIMENTS

B.1 EXPERIMENT SETTINGS

Models. The models adopted in our experiments span 4 model families and 11 widely used open-
source base models. Specifically, these consist of the Qwen2.5 family (Qwen2.5-0.5B, 1.5B, 3B, 7B,
32B) (Qwen et al., 2025), the Mistral family (Mistral-7B-v0.3 (Jiang et al., 2023), Mistral-Nemo-
Base-2407 (MistralAI-NeMo), Mistral-Small-3.1-24B-Base-2501 (MistralAI-Small-3)), the LLaMA
family (LLaMA3.2-3B (Meta-Llama-3.2), LLaMA3.1-8B (Meta, 2024)), and DeepSeek-Math-7B-
Base (Shao et al., 2024)).

Tasks and Datasets. We primarily focus on math and coding problems with verifiable rewards. Due
to inherent differences in the initial reasoning abilities between model families, we train models using
data of different difficulty levels to stabilize the RL process. Meanwhile, we use the same data during
downstream performance evaluation to maintain consistency. For math tasks, the evaluation datasets
include MATH500 (Hendrycks et al., 2021), AIME 2024 (Li et al., 2024), AMC (Li et al., 2024),
OlympiadBench (He et al., 2024), and OMNI-MATH (Gao et al., 2024). For code tasks, we split the
testset of Eurus-2-RL-Code (Cui et al., 2025) and KodCode (Xu et al., 2025).

Specifically, Due to inherent differences in the initial reasoning abilities between model families,
we train models using data of different difficulty levels to stabilize the RL process Specifically, for
math tasks, we train the Qwen family and Mistral-24B model using Eurus-2-RL-Math (Cui et al.,
2025), while other model families are trained using GSM8K (Cobbe et al., 2021). The downstream
performance is evaluated using MATH500 (Hendrycks et al., 2021), AIME 2024 (Li et al., 2024),
AMC (Li et al., 2024), OlympiadBench (He et al., 2024), and OMNI-MATH (Gao et al., 2024). For

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

code tasks, we train the Qwen family and Mistral-24B model using AceCode (Zeng et al., 2025),
Eurus-2-RL-Code (Cui et al., 2025), and Kodcode1.

Hyperparameters. For hyperparameters, we use a learning rate of 5×10−7 for the policy model and
10−6 for the implicit PRM (Yuan et al., 2025) in PRIME. Both policy and PRMs use a batch size of
256 and a micro-batch size of 128. The rollout stage collects 256 prompts with 8 sampled responses.
By default, we set the reference KL divergence coefficient to 0. The ϵ in policy loss (Equation 4) is
0.2. We filter out prompts that receive all correct or incorrect responses.

B.2 DETAILED FITTING RESULTS

Fitting Results on Coding Task. We present the fitting results of coding task in Figure 7.

10 1100

Entropy (log)
0

10

20

30

40

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Qwen2.5 Model Family

32B
7B
3B
1.5B
0.5B
Fit

10 210 1100

Entropy (log)
5

0

5

10

15

20

25

30

35

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Mistral Model Family

Small-3-24B
Nemo-Base-12B
v0.3-7B
Fit

10 1100

Entropy (log)

5

0

5

10

15

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

LLaMA and DeepSeek Model Family

Deepseek-Math-7B
Llama3.1-8B
Llama3.2-3B
Fit

Figure 7: Fitting curves between policy entropy and validation performance in coding task. We
conduct validation every 4 rollout steps until convergence.

Fitting Results of Different Datasets and Algorithms. In this section, we present more fitting
experiment results. The results of training with different datasets and algorithms are presented at
Figure 8a and Figure 8b, respectively.

10 1

Entropy (log)

20

25

30

35

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

DAPO-MATH
GSM8K
Eurus-RL-Data
Eurus-RL-Data-Difficult

(a) Different datasets.

10 1100

Entropy (log)

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

GRPO
RLOO
PRIME
REINFORCE++
Fit

(b) Different algorithms.

Figure 8: Training Qwen2.5-7B with different datasets and algorithms.

Fitting Results of Instruct Models. We also conduct fitting experiments on instruct models, and the
fitting function remains valid in our experiments. We present the fitting results in Figure 9.

B.3 PREDICTING PERFORMANCE FROM POLICY ENTROPY

As we can precisely fit a curve between policy entropy and validation performance, one straightfor-
ward application of this fitting is to predict policy performance at low entropy with observations from
high entropy data points. To verify that the functional form can be applied at the early stage of RL
training, we take a step further by fitting the function within limited training steps and using the fitted
function to predict the final performance.

1We process the data with style instruct and complete into a format that can be handled by unit tests. For the
online-judge style, we removed this portion of the data as it was derived from instruct style data.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

10 1

Entropy (log)
15

20

25

30

35

40

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Qwen2.5 Model Family

1.5B-Instruct
3B-Instruct
7B-Instruct
Fit

Figure 9: Training Qwen2.5 instruct models on math task.

10 1100

Entropy (log)

10

15

20

25

30

35

40

45

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

1.5B
3B
7B
32B
Fit
Pred.

(a) Math Task

10 1100

Entropy (log)

5
10
15
20
25
30
35
40
45

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

1.5B
3B
7B
32B
Fit
Pred.

(b) Code Task

Figure 10: Predicting the final performance of Qwen2.5 family with only 15% training steps with the
fitted function. The average RMSE is 0.9% and 1.2% for all predicted steps, 0.5% and 1.9% for final
step performance, respectively.

Take Qwen2.5 family as an example, we fit the function form with coefficients a and b using only
the first 36 training steps. Using this function, we perform an advance prediction for the subsequent
200 training steps. As shown in Figure 10, for the math and coding task, we achieve an average
Root Mean Square Error (RMSE) of 0.9% and 1.2% during prediction, 0.5% and 1.9% for final
performance, respectively. It suggests that the late stage performance of the policy can be estimated
early in training, without the need to run the full RL process. Moreover, we can also obtain the final
performance of the policy when it becomes static. With H = 0, R = −a + b, which is the upper
bound of the policy given the training data.

B.4 UNDERSTANDING THE COEFFICIENTS

The Coefficients are Algorithm-irrelevant. We investigate whether different RL algorithms would
affect the fitted function. Figure 8b plots the fitted curves with GRPO, RLOO, and PRIME. We find
that, although these algorithms apply distinct advantage estimation methods, they do not influence
the fitted entropy-performance function. This indicates that the coefficients a, b reflect some intrinsic
properties of the policy model and training data.

Predicting Coefficients when Scaling Parameters.

Taking a closer look at the coefficients a, b, their meanings are clear. By differentiating the equation,
we derive dR/dH = −a exp(H), which means a is the rate at which the model converts entropy
into downstream performance. Also, as stated above, −a+ b is the maximum validation score the
model can achieve when entropy is fully depleted. Intuitively, a, b should be relevant with model
sizes, where larger models could trade entropy for reward more efficiently, as well as achieve higher
performance.

To validate this, we again adopt Qwen2.5 model family, since they have similar architecture and un-
dergo similar training process. In Figure 11, we plot the model parameter count (without embedding)
versus a, b on math and coding tasks. It is observed that, both a and b vary smoothly with policy
size at a log-linear rate. This log-linear relationship between model sizes and coefficients is also

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1 0 1 2 3
Model Size (log)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Va
lu

e
of

 C
oe

f a

True value
Fitted value

(a) Coef. a for math task

1 0 1 2 3
Model Size (log)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Va
lu

e
of

 C
oe

f b

True values
Fitted value

(b) Coef. b for math task

1 0 1 2 3
Model Size (log)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Va
lu

e
of

 C
oe

f a

True value
Fitted value

(c) Coef. a for code task

1 0 1 2 3
Model Size (log)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Va
lu

e
of

 C
oe

f b

True values
Fitted value

(d) Coef. b for code task

Figure 11: Fitted curves between coefficients and model sizes of Qwen2.5 model family. The model
sizes are parameter counts (B) without embeddings. a, b are obtained from experiments in Sec. 2.4.
We use log-linear function to fit the curve.

observed in Gao et al. (2022). It allows us to extrapolate the coefficients of larger models based on the
training dynamics of smaller models, extending the predictability to the dimension of model sizes. In
other words, it enables us to predict the final performance of larger LMs through RL training without
actually training them, once we train smaller models within the same family and get their coefficients.
Figure 8a also illustrates that the coefficients are related with training data.

C PROOF

C.1 USEFUL LEMMAS

Lemma 2 (Derivative of softmax function)

∂ log πθ(a | s)
∂θs,a′

= 1 {a = a′} − πθ (a
′ | s)

Lemma 3 (Expectation of Advantage function given state s)

E
a∼πθ(·|s)

[Aπθ (s, a)] = E
a∼πθ(·|s)

[Qπθ (s, a)− V πθ (s)]

= E
a∼πθ(·|s)

[Q(s, a)]− E
a∼πθ(·|s)

[V (s)]

= V (s)− V (s)

= 0

C.2 PROOF FOR LEMMA 1

Lemma 1: Let the actor policy πθ be a tabular softmax policy, the difference of information entropy
given state s between two consecutive steps satisfies

H(πk+1
θ |s)−H(πk

θ |s) ≈ −Cova∼πk
θ (·|s)

(
log πk

θ (a|s) , zk+1
s,a − zks,a

)
Proof adapted from (Liu, 2025) .

In tabular softmax policy, each state-action pair (s, a) is associated with an individual logit parameter
zs,a = θs,a. We assume that we are updating logits z via zk+1 = zk + η · ∇J(πθ). Given η is
relatively small, leveraging Taylor’s expansion under first-order approximation, we have

H(πk+1
θ | s) ≈ H(πk

θ | s) + ⟨∇H(πk
θ | s), (zk+1 − zk)⟩

We then to derive what ∇H(πk
θ | s) is, according to the definition of H, we have

∇θH(πθ | s) = ∇θH(πθ(· | s))
= ∇θ(−Ea∼πθ(·|s) [log πθ(a | s)])
= −Ea∼πθ(·|s) [∇θ log πθ(a | s) + log πθ(a | s)∇θ log πθ(a | s)]
= −Ea∼π(·|s) [log πθ(a | s)∇θ log πθ(a | s)]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Then we have,

⟨∇θH(θk | s), (zk+1 − zk)⟩ = −⟨Ea∼π(·|s) [log πθ(a | s)∇θ log πθ(a | s)] , (θk+1 − θk)⟩
= −Ea∼π(·|s)

[
log πθ(a | s)⟨∇θ logπθ

(a | s), θk+1 − θk⟩
]

= −Ea∼π(·|s)

[
log πθ(a | s)

∑
a′∈A

∂ log πθ(a | s)
∂θs,a′

· (θk+1
s,a′ − θks,a′)

]

= −Ea∼π(·|s)

[
log πθ(a | s)

∑
a′∈A

(1 {a = a′} − π (a′ | s)) · (θk+1
s,a′ − θks,a′)

]

= −Ea∼π(·|s)

[
log πθ(a | s)

[
(θk+1

s,a − θks,a)−
∑
a′∈A

π(a′ | s)(θk+1
s,a′ − θks,a′)

]]
= −Ea∼π(·|s)

[
log πθ(a | s)(θk+1

s,a − θks,a)
]
+ Ea∼π(·|s)

[
log πθ(a | s) · Ea′∼π(·|s)

[
θk+1
s,a′ − θks,a′

]]
= −Ea∼π(·|s)

[
log πθ(a | s)(θk+1

s,a − θks,a)
]
+ Ea∼π(·|s) [log πθ(a | s)] · Ea′∼π(·|s)

[
θk+1
s,a′ − θks,a′

]
= −Cova∼π(·|s)

(
log π(a | s), θk+1 − θk

)
= −Cova∼π(·|s)

(
log π(a | s), zk+1 − zk

)
C.3 PROOF FOR PROPOSITION 1

Proposition 1: Let the actor policy πθ be tabular softmax policy and updated using Eq. 2, the
difference of zs,a between two consecutive steps satisfies

zk+1
s,a − zks,a = η · πθ(a | s) ·A(s, a)

Proof.

In tabular softmax policy, each state-action pair (s, a) is associated with an individual logit parameter
zs,a = θs,a. Through gradient backtracking, zs,a is updated via zk+1

s,a = zks,a + η · ∇θs,aJ(θ),
therefore, we have

zk+1
s,a − zks,a = η · ∇θs,aJ(θ)

= η · E
a′∼πθ(·|s)

[
∇θs,a log πθ(a

′ | s) ·A(s, a′)
]

= η · E
a′∼πθ(·|s)

∂ log πθ(a
′ | s)

∂θs,a︸ ︷︷ ︸
Lemma 2

·A(s, a′)


= η ·

∑
a′∈A

[πθ(a
′ | s) · (1 {a = a′} − πθ(a | s)) ·A(s, a′)]

= η · πθ(a | s) ·

(1− πθ(a | s)) ·A(s, a)−
∑

a′∈A,a′ ̸=a

πθ(a
′ | s) ·A(s, a′)



= η · πθ(a | s) ·

A(s, a)−
∑
a′∈A

πθ(a
′ | s) ·A(s, a′)︸ ︷︷ ︸

Lemma 3


= η · πθ(a | s) · [A(s, a)− 0]

= η · πθ(a | s) ·A(s, a)

C.4 PROOF FOR THEOREM 2

Theorem 2: Let the actor policy πθ be tabular softmax policy, and πθ is updated via natural policy
gradient Kakade (2001), the difference of information entropy given state s between two consecutive

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

steps satisfies

H(πk+1
θ |s)−H(πk

θ |s) ≈ −η · Cova∼πk
θ (·|s)

(
log πk

θ (a|s) , A(s, a)
)

Proof.

According to Lemma 1, we first derive the difference of logits z in natural policy gradient. We learn
from (Agarwal et al., 2021) that, when we are updating policy using natural policy gradient via
gradient backtracking, zk+1

s,a − zks,a satisfies,

zk+1
s,a − zks,a = η ·A(s, a)

Applying this into Lemma 1, we have

H(πk+1
θ |s)−H(πk

θ |s) ≈ −η · Cova∼πk
θ (·|s)

(
log πk

θ (a|s) , A(s, a)
)

D ADDITIONAL ANALYSIS OF COVARIANCE DYNAMICS

0 250 500 750 1000 1250 1500 1750
Steps

0.000

0.002

0.004

0.006

0.008

Co
va

ria
nc

e

Accuracy=0.125
Accuracy=0.5
Accuracy=0.875

Figure 12: Covariance dynamics across difficulty groups. Easier prompts with higher accuracy show
higher covariance, while harder prompts yield smaller covariance.

To further explore the behavior of covariance, we categorize training examples by difficulty using
accuracy. As shown in Figure 12, Cov(·) tends to be smaller in magnitude for harder examples,
aligning with intuition: when the model struggles to learn, high-probability actions are not reliably
associated with higher returns. In contrast, for easier examples, where the model is more confident
and calibrated, Cov(·) is larger, indicating stronger alignment between action probabilities and
advantage estimates.

E EFFECT OF ENTROPY REGULARIZATION

256 768 1280 1792
Steps

0.0

1.0

2.0

3.0

4.0

5.0

En
tro

py

w. entropy_coef=0.01
w. entropy_coef=0.005
w. entropy_coef=0.001
w. entropy_coef=0.0001
w. entropy_coef=0

Zoomed-in View

256 768 1280 1792
Steps

22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

w. entropy_coef=0.01
w. entropy_coef=0.005
w. entropy_coef=0.001
w. entropy_coef=0.0001
w. entropy_coef=0

Figure 13: The policy entropy and validation accuracy of adding entropy loss where Lent = L −
αH(πθ). L is the original loss and α is the coefficient of entropy loss.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

256 768 1280 1792
Steps

0.0

0.1

0.2

0.3

0.4

0.5

En
tro

py

w. kl_coef=0.1
w. kl_coef=0.05
w. kl_coef=0.01
w. kl_coef=0.001
w. kl_coef=0

Zoomed-in View

256 768 1280 1792
Steps

22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

w. kl_coef=0.1
w. kl_coef=0.05
w. kl_coef=0.01
w. kl_coef=0.001
w. kl_coef=0

Figure 14: The policy entropy and validation accuracy of adding KL penalty between policy and
reference model where LKL = L+ βDKL(πθ||πref). L is the original loss and β is the coefficient of
KL loss.

A common approach in the RL literature to control policy entropy is to apply entropy loss (Schulman
et al., 2017b) or KL penalty. We conduct experiments to see whether it is effective for LLMs.

Figure 13 and Figure 14 present the results. It is shown that entropy loss is highly sensitive to
coefficients, and it does not outperform other baselines. Despite the reference KL achieves stable
entropy values, it fails to improve policy and instead leads to a degradation in performance. Therefore,
naively adopting entropy regularization techniques from conventional RL struggles to solve the
entropy bottleneck of LLMs. These regularization terms are either hyper-parameter sensitive (He
et al., 2025) or degrade policy performance. Therefore, most recent works do not include them as
well (Cui et al., 2025; Hu et al., 2025; Liu et al., 2025; Yu et al., 2025).

F MORE DETAILS OF THE PROPOSED METHODS

In this section, we present more details of training with our proposed Clip-Cov and KL-Cov,
including the pseudo code and the training hyperparameters.

F.1 PSEUDO CODE OF THE PROPOSED METHODS

F.2 TRAINING HYPERPARAMETERS

In each rollout step, we sample 8 responses per prompt for a batch of 256 prompts using a temperature
of 1, and subsequently perform 8 policy updates on the collected responses. We also filter out the
prompts with all-correct/incorrect responses. The test datasets include MATH500, AIME 2024,
AIME 2025 (Li et al., 2024), AMC, OMNI-MATH, OlympiadBench, and Minerva (Lewkowycz et al.,
2022). During evaluation, we set the rollout temperature to 0.6 for AIME and AMC, while using
greedy decoding for all other test sets. In Clip-Cov, the clip ratio r is 2×10−4, with ωlow and ωhigh

equals 1 and 5, respectively. For KL-Cov, the k is set as 2× 10−3 and 2× 10−4 for Qwen2.5-7B
and 32B, respectively, the KL coefficient β is set as 1. The max generation length is 8192.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

def compute_policy_loss(old_log_prob, log_prob, advantages,
select_ratio, method, **args):
ratio = exp(log_prob - old_log_prob)
pg_losses1 = -ratio * advantages

+ # calculate token wise centered cross - product
+ covs = (log_prob - log_prob.mean()) * (advantages - advantages.

mean())
+ select_num = int(select_ratio * len(pg_losses1))

if method == "clip_cov":
pg_losses2 = -clip(ratio, args["clip_range_lb"], args["

clip_range_ub"]) * advantages

+ # randomly select index to be detached
+ clip_idx = random_select(covs[covs > args["cov_lb"] & covs <

args["cov_ub"]], num=select_num)
+ pg_losses1[clip_idx].detach_()
+ pg_losses2[clip_idx].detach_()

pg_loss = maximum(pg_losses1, pg_losses2).mean()

if method == "kl_cov":
kl_coef = args["kl_coef"]
kl_penalty = (log_prob - old_log_prob).abs()

- pg_losses = pg_losses1 + kl_coef * kl_penalty

+ # find out index with highest conviriance
+ select_idx = topk(covs, k=select_num, largest=True)
+ # apply KL penalty of these samples
+ pg_losses1[select_idx] += kl_coef * kl_penalty[select_idx]

pg_loss = pg_losses1.mean()

return pg_loss

Algorithm 1: The pseudo-code of the policy loss computation with Clip-Cov and KL-Cov. The
implementation only need to modify several lines of code.

22

	Introduction
	The Predictable ``Collapse'' of Policy Entropy
	Preliminaries
	Experiment Settings
	A First Glance: Entropy Collapse and Performance Saturation
	Fitting the Curves between Entropy and Performance
	Discussion

	Dynamics Analysis of Policy Entropy
	Entropy Dynamics of Softmax Policy
	Entropy Dynamics under Policy Gradient / Natural Policy Gradient
	Empirical Verification

	Entropy Control by Covariance Regularization
	Suppressing Tokens with High Covariances
	Experiments
	Get Policy Entropy Controlled
	Discussion

	Conclusion
	Related Work
	Detailed Results and Discussion of the Fitting Experiments
	Experiment Settings
	Detailed Fitting Results
	Predicting Performance from Policy Entropy
	Understanding the Coefficients

	Proof
	Useful Lemmas
	Proof for Lemma 1
	Proof for Proposition 1
	Proof for Theorem 2

	Additional analysis of covariance dynamics
	Effect of Entropy Regularization
	More Details of the Proposed Methods
	Pseudo Code of the Proposed Methods
	Training Hyperparameters

