

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE *Entropy* MECHANISM OF REINFORCEMENT LEARNING FOR REASONING LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper aims to overcome a major obstacle in scaling reinforcement learning (RL) for reasoning with large language models (LLMs), namely the collapse of policy *entropy*. Such phenomenon is consistently observed across vast RL runs without entropy intervention, where the policy entropy dropped sharply at the early training stage, leading to an overly confident policy model. As a consequence, this diminished exploratory ability is always accompanied with the saturation of policy performance. In practice, we establish a transformation equation $R = -a \exp \mathcal{H} + b$, between entropy \mathcal{H} and downstream performance R , where a, b are fitting coefficients. This empirical law strongly indicates that, the policy performance is traded from policy entropy, thus bottlenecked by its exhaustion, and the ceiling is fully predictable ($\mathcal{H} = 0, R = -a + b$). Our finding necessitates entropy management for continuous exploration toward scaling compute for RL. To this end, we investigate entropy dynamics both theoretically and empirically. Our derivation highlights that, the change in policy entropy is driven by the covariance between action probability and the change in logits, which is proportional to its advantage when using Policy Gradient-like algorithms (Williams, 1992). For example, a high-probability action with high advantage would reduce policy entropy, while a rare action with high advantage would increase policy entropy. Empirical study shows that, the values of covariance term and entropy differences matched exactly, supporting the theoretical conclusion. Moreover, the covariance term stays mostly positive throughout training, further explaining why policy entropy would decrease monotonically. Through understanding the mechanism behind entropy dynamics, we motivate to control entropy by restricting the update of high-covariance tokens. Specifically, we propose two simple yet effective techniques, namely Clip-Cov and KL-Cov, which clip and apply KL penalty to tokens with high covariances respectively. Experiments show that these methods encourage exploration, thus helping policy escape entropy collapse and achieve better downstream performance.

1 INTRODUCTION

Applied to recent reasoning-centric large language models (LLMs), reinforcement learning (RL) escapes narrow, task-specific confines: the models’ sweeping generalization introduces a new axis that vastly enlarges the exploratory landscape. This shift has yielded impressive reasoning gains (OpenAI, 2024a; DeepSeek-AI et al., 2025), yet the dilemma persists—scaling training compute for *learning from experience* (reinforcement learning) (Silver & Sutton, 2025) rather than *imitation learning* (pre-training and finetuning) remains non-trivial. Among the challenges emerges a major obstacle, the diminishment of *policy entropy*.

The core challenge in RL is the exploitation-exploration trade-off (Sutton, 1988), balancing the reuse of proven strategies against the search for novel ones. For exploration, a key concept quantifying the exploratory potential is *policy entropy*, which measures the uncertainty in the policy’s action selection process. In RL literature, the ability to mitigate the decline of policy entropy is regarded as essential to most algorithms (Williams & Peng, 1991; Williams, 1992; Eysenbach & Levine, 2021), and policy entropy has been intensively steered and actively controlled via regularization (Ziebart et al., 2008; Schulman et al., 2017b; Haarnoja et al., 2018).

For LLMs, while the typical behavior of policy entropy remains largely understudied (Yu et al., 2025; He et al., 2025), we find an intriguing and consistent pattern from broad experiments: Policy entropy sharply declines to near 0 in a few training steps, demonstrating that the policy becomes extremely

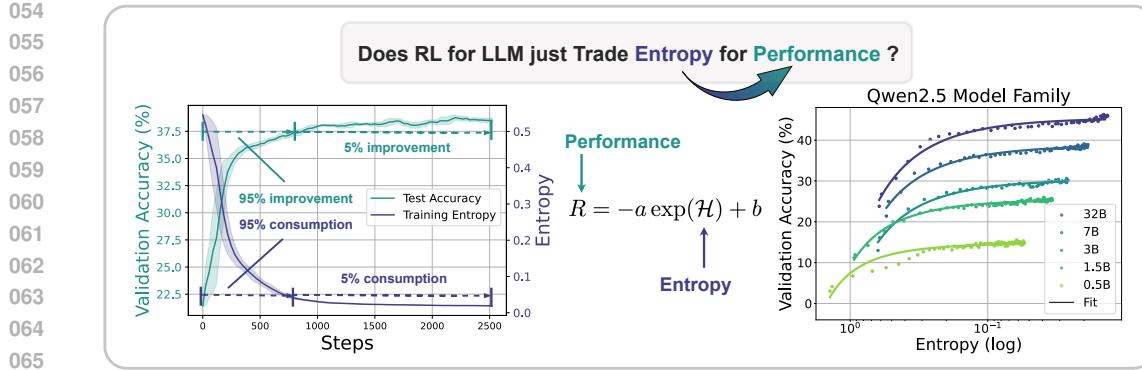


Figure 1: *Left:* Entropy collapse and performance saturation. Over 95% entropy drop/performance gains take place at the early stage of RL training. The model then reaches a plateau with little improvement. *Right:* The predictable relationship between validation performance and policy entropy. Without intervention, the policy “trades” entropy for performance exponentially, showing clear ceilings that hinder further policy enhancement.

certain. Consequently, the inability to explore new paths leads to a performance plateau, where the validation performance also struggles to improve at the same time. Quantitatively, we further reveal that, without entropy intervention like entropy loss or KL regularization, **the downstream performance is fully predictable from policy entropy, and the fitted curve is a simple exponential function $R = -a \exp(H) + b$, as shown in Figure 1**. Basically, the policy is trading uncertainty (entropy) for rewards (Yue et al., 2025) in a predictable manner.

This empirical law results in two critical corollaries: (1) Like Scaling Laws (Kaplan et al., 2020; Hoffmann et al., 2022), the exploitation-exploration curve is predetermined given the policy model and training data. This allows us to predict policy performance at the early stage of RL and predict the performance of large models given small models (OpenAI, 2024b) (Sec. 2.4). (2) More importantly, this equation indicates that the upper bound of the policy performance is also deterministic with the exhaustion of policy entropy ($H = 0, R = -a + b$), so the return of scaling training compute for RL could be marginal. What’s worse, naively applying entropy regularization methods are proven ineffective (App. E). **In short, scalable RL calls for breaking the entropy bottleneck.**

Solving this issue requires principled understandings of the mechanisms behind this observation, i.e., *why policy entropy decreases monotonically?* To this end, we analyze the dynamics of policy entropy both theoretically and empirically. Our key findings highlight that, for softmax policy like LLMs, the entropy change between two consecutive steps is proportional to the covariance of the log-probability and corresponding logit change for an action (Liu, 2025). Furthermore, under Policy Gradient (Williams, 1992)-like and Natural Policy Gradient (Kakade, 2001)-like algorithms, the logit difference is proportional to the action advantage. Intuitively, an action with high advantage and high probability would reduce policy entropy, while a rare action with a high advantage would increase entropy. This theoretical conclusion is validated by experimental results. At the early stage, the policy demonstrates high covariance on training data, implicating the policy’s confidence is well-calibrated (Kadavath et al., 2022), thus can safely exploit trajectories with high confidence, strengthening belief and minimize entropy (Zuo et al., 2025; Zhang et al., 2025; Agarwal et al., 2025). As training progresses, the covariance gradually declines but still maintains positive, continually dragging policy entropy even lower.

The analysis of entropy dynamics demonstrates that, the high covariance is detrimental to scalable RL, which provides us guidelines about uplifting policy entropy—limit the step sizes of high-covariance tokens. We thereby motivate to design two corresponding strategies aiming at entropy control, namely Clip-Cov and KL-Cov, to replace the clip and PPO-KL methods in surrogate loss (Schulman et al., 2017b). Clip-Cov randomly selects a small portion of tokens with positive covariances and detach their gradients. KL-Cov, on the other hand, applies KL penalty on tokens with the largest covariances. Experiment results show that, we can actively control policy entropy by tuning threshold parameters. Consequently, the policy model escapes the low entropy trap and achieves better performance on mathematical reasoning.

108
109
2 THE PREDICTABLE “COLLAPSE” OF POLICY ENTROPY110
111
112 **TAKEAWAY**113
114
115
Without intervention, e.g., entropy or KL regularization, policy entropy is *traded for reward*
116
117
118
119
predictably during RL. The empirical quantitative relationship between validation reward R
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987<br

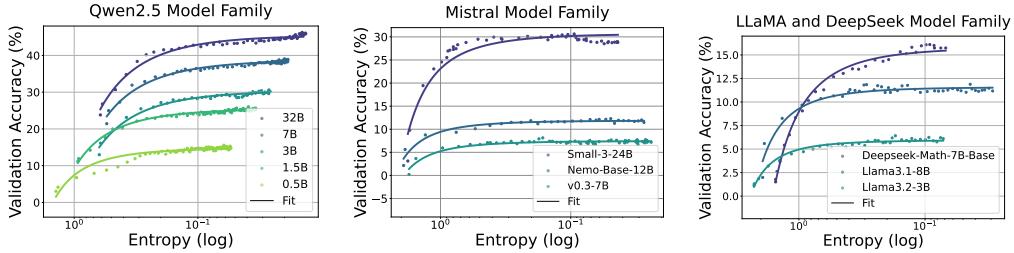
162 We start RL from the base models following the “Zero” setting (DeepSeek-AI et al., 2025) with the
 163 veRL framework (Sheng et al., 2024). For RL algorithms, we employ GRPO (Shao et al., 2024),
 164 REINFORCE++ (Hu, 2025), and PRIME (Cui et al., 2025). The details of the used models, datasets,
 165 and hyperparameters can be found in Appendix B.1.
 166

167 2.3 A FIRST GLANCE: ENTROPY COLLAPSE AND PERFORMANCE SATURATION

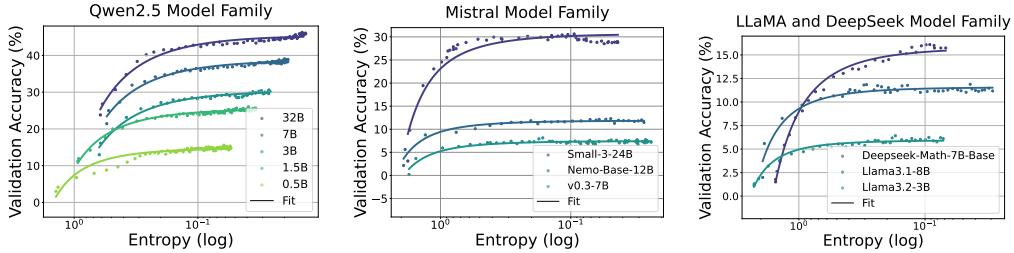
169 Across all experiments, we observe a consistent pattern: policy entropy drops sharply at the beginning of
 170 training, declining monotonically toward zero. Meanwhile, the policy’s validation performance presents
 171 an inverse trend, then plateaus.
 172

174 Figure 2 illustrates the average normalized entropy consumption/performance gain in percentage
 175 throughout 2400-gradient step RL runs with 11 different models. We can see that 73% of the entropy
 176 consumption and 76% of the performance gain occurred in just the first 200 gradient steps (1/12 of
 177 training), and the first 800 (1/3) steps account for over 93% performance gains together with 94% entro-
 178 py losses. This means that over 2/3 of the training
 179 steps yielded marginal returns.
 180

184 2.4 FITTING THE CURVES BETWEEN ENTROPY AND PERFORMANCE



185 Figure 2: Avg. entropy consumption and performance gain (%) in 11 RL runs with different models.
 186



195 Figure 3: Fitting curves between policy entropy and validation performance on math task.
 196

198 Motivated by the observed entropy collapse phenomenon, we conduct a more detailed quantitative
 199 analysis. Through extensive experiments, we find the downstream performance (accuracy) and
 200 entropy can be fitted in the exponential function:

$$201 R = -a \exp(\mathcal{H}) + b, \quad (6)$$

203 where R represents the validation performance and \mathcal{H} is entropy. The fitting results of different model
 204 families with GRPO are presented in Figure 3 and 7. It is worth noting that, the fitted curves precisely
 205 describe the performance-entropy relationships over all conducted experiments, with models spanning
 206 all kinds of sizes, families, and different tasks. Only 2 coefficients are needed for fitting the curve of
 207 over 200 data points, showing a high degree of regularity. Detailed results on more tasks, datasets,
 208 and algorithms can be found in App. B.2. We further analyzed the predictability in App. B.3.
 209

210 2.5 DISCUSSION

212 **The Predictability.** To now, we have established predictability between (1) policy performance and
 213 entropy; (2) coefficients in (1) and model sizes. Such predictability reminds us of Scaling Laws for
 214 language models (Kaplan et al., 2020; Hoffmann et al., 2022) and RLHF (Gao et al., 2022). It seems
 215 that, RL with LLMs keeps trading entropy for reward throughout training. However, other works that
 216 adopt different policy models (Luo et al., 2025) or use off-policy data (Yan et al., 2025) observed

216 distinct entropy patterns. Therefore, this predictability is not arguably universal, and we call for a
 217 more in-depth analysis of the entropy behavior under different conditions.
 218

219 **The Ceiling.** There is an intensive discussion questioning whether RL merely elicits the latent behav-
 220 iors that were already learned in pre-training, thus cannot break the ceiling of the base model (Yue
 221 et al., 2025). Our results conditionally support this claim that, if policy entropy diminishes, the ceiling
 222 not only exists, but also can be predicted. However, we argue that it is not the intrinsic limitation of
 223 RL that sets up the ceiling, but the entropy mechanism of LLMs leads to the result.
 224

225 3 DYNAMICS ANALYSIS OF POLICY ENTROPY

226 TAKEAWAY

227 For softmax policy including LLMs, the change of policy entropy is determined by the
 228 **covariance** between the log-probability and the change in logits of actions. For Policy
 229 Gradient and Natural Policy Gradient, the change in logits is proportional to the action
 230 advantage, meaning that a high covariance leads to a quick decrease of policy entropy, as
 231 observed in RL for LLM reasoning.
 232

233 We have unveiled that the entropy collapse issue will greatly obstacle RL scaling for LLM reasoning.
 234 To solve it, we need a more principled understanding of the *dynamics of policy entropy*, i.e., when will
 235 entropy decrease and when will entropy increase. In this section, we focus on the entropy dynamics,
 236 especially the step-wise entropy difference $\mathcal{H}(\pi_\theta^{k+1}) - \mathcal{H}(\pi_\theta^k)$.
 237

238 3.1 ENTROPY DYNAMICS OF SOFTMAX POLICY

239 For step k , we try to calculate the entropy difference before and after one step parameter update, i.e.,
 240 $\mathcal{H}(\pi_\theta^{k+1})$ and $\mathcal{H}(\pi_\theta^k)$. For this, we first consider an intrinsic property of LLMs that they are softmax
 241 policies, which means the policies are parameterized by $\pi_\theta(a|s) = \frac{\exp(z_{s,a})}{\sum_{a' \in \mathcal{A}} \exp(z_{s,a'})}$. Here $s \sim d_{\pi_\theta}$
 242 and $a \sim \pi_\theta^k(\cdot|s)$ represent state and action, $z_{s,a}$ is the output logit of action a given state s . For any
 243 softmax policy, we have the following Lemma:
 244

245 **Lemma 1 (Entropy difference of softmax policy)** (Proof in Appendix C.2, adapted from Liu
 246 (2025)) Assume that policy π_θ is a tabular softmax policy, where each state-action pair (s, a)
 247 is associated with an individual logit parameter $z_{s,a} = \theta_{s,a}$, the difference of policy entropy given
 248 state s between two consecutive steps under first-order approximation satisfies
 249

$$250 \mathcal{H}(\pi_\theta^{k+1}) - \mathcal{H}(\pi_\theta^k) \approx \mathbb{E}_{s \sim d_{\pi_\theta}} [\mathcal{H}(\pi_\theta^{k+1}|s) - \mathcal{H}(\pi_\theta^k|s)] \approx \mathbb{E}_{s \sim d_{\pi_\theta}} \left[-\text{Cov}_{a \sim \pi_\theta^k(\cdot|s)} (\log \pi_\theta^k(a|s), z_{s,a}^{k+1} - z_{s,a}^k) \right]$$

251 Here $z_{s,a}^{k+1} - z_{s,a}^k$ is the change in the output logits between step k and step $k + 1$. This Lemma
 252 indicates that, the change of policy entropy approximately equals the negative covariance between
 253 log-probability of the action and the change of logits. That is to say, when an action a receives a
 254 high probability from the policy before updating, and its corresponding logit is also increasing after
 255 updating, then it will decrease the policy entropy.
 256

257 3.2 ENTROPY DYNAMICS UNDER POLICY GRADIENT / NATURAL POLICY GRADIENT

258 From Lemma 1, the step-wise difference of output logits $z_{s,a}^{k+1} - z_{s,a}^k$ contributes to change of entropy,
 259 which is related with the specific training algorithm in use. Here, we further derive the logits change
 260 under Policy Gradient (Williams, 1992) and Natural Policy Gradient (Kakade, 2001) algorithms.
 261

262 Assuming that we are updating the actor policy via Policy Gradient, then $z_{s,a}^{k+1} - z_{s,a}^k = -\eta \cdot \nabla_z J(\theta)$,
 263 where $J(\theta)$ denotes the objective function and η denote the learning rate. $\nabla_z J(\theta)$ is calculated with
 264 Eq. 2, we have the following proposition:
 265

266 **Proposition 1 (Difference of policy logits in vanilla policy gradient)** (Proof in Appendix C.3) Let
 267 the actor policy π_θ be a tabular softmax policy and updated using Eq. 2 via gradient backtracking
 268 with learning rate η , the difference of $z_{s,a}$ between two consecutive steps satisfies
 269

$$z_{s,a}^{k+1} - z_{s,a}^k = \eta \pi_\theta(a | s) A(s, a)$$

270 Applying Proposition 1 to Lemma 1, we can further describe entropy change with:
 271

272 **Theorem 1 (Entropy change under policy gradient)** *Let the actor policy π_θ be a tabular softmax
 273 policy, and π_θ be updated via vanilla policy gradient, the difference of policy entropy given state s
 274 between two consecutive steps satisfies*

$$275 \quad \mathcal{H}(\pi_\theta^{k+1}|s) - \mathcal{H}(\pi_\theta^k|s) \approx -\eta \cdot \text{Cov}_{a \sim \pi_\theta^k(\cdot|s)} (\log \pi_\theta^k(a|s), \pi_\theta^k(a|s) \cdot A(s, a))$$

277 Theorem 1 reveals how policy entropy changes under the policy gradient method. Intuitively, an
 278 action a receives both high/low probability and high/low advantage would lower the entropy, and
 279 vice versa. Liu (2025) conducted derivation for Natural Policy Gradient.

280 **Theorem 2 (Entropy change under natural policy gradient)** *(Proof in Appendix C.4) Let the ac-
 281 tor policy π_θ be a tabular softmax policy, and π_θ is updated via natural policy gradient (Kakade,
 282 2001), the difference of policy entropy given state s between two consecutive steps satisfies*

$$283 \quad \mathcal{H}(\pi_\theta^{k+1}|s) - \mathcal{H}(\pi_\theta^k|s) \approx -\eta \cdot \text{Cov}_{a \sim \pi_\theta^k(\cdot|s)} (\log \pi_\theta^k(a|s), A(s, a))$$

285 **Conclusion.** From Theorem 1 and Theorem 2, we obtain the intuitive insight that, in principle, a
 286 strong positive correlation between the action probability $P(a)$ under the current policy and the
 287 corresponding advantage value $A(a)$, on average, leads to a decrease in policy entropy. Conversely,
 288 a negative correlation tends to increase the entropy. This deeper understanding of the dynamics of
 289 policy entropy provides a theoretical foundation for designing practical strategies for entropy control.

291 3.3 EMPIRICAL VERIFICATION

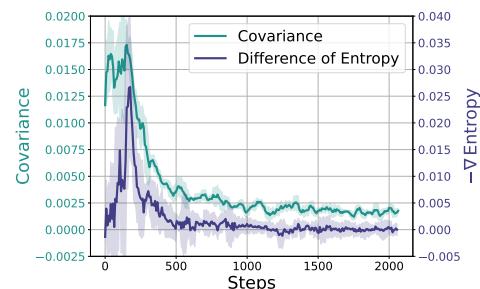
292 In this section, we conduct experiments to validate the theoretical conclusion, specifically, Theorem 1.
 293

294 **Settings.** We apply GRPO with policy gradient, *i.e.* on-policy learning without PPO surrogate loss,
 295 on Qwen2.5-7B. In this context, we adopt the bandit setting where the prompt x is the state, and
 296 whole response y is the action. Then the covariance term becomes:

$$297 \quad \text{Cov}_{a \sim \pi_\theta(\cdot|s)} (\log \pi_\theta(a|s), \pi_\theta(a|s) \cdot A(s, a)) = \text{Cov}_{y \sim \pi_\theta(\cdot|x)} (\log \pi_\theta(y|x), \pi_\theta(y|x) \cdot A(y, x)) \quad (7)$$

298 During training, we calculate the group-wise covariance for each prompt, and average across a batch
 299 of prompts. We further normalize the log-prob by the length of the response.

300 **Experiment Results.** We record two key met-
 301 metrics, $\text{Cov}(\cdot)$ and $\mathcal{H}(\pi_\theta)$, across training and
 302 analyse their relationship. According to The-
 303 orem 1, we have $-d(\mathcal{H}) \propto \text{Cov}(\cdot)$. As shown
 304 in Figure 4, the empirical curves of $-d(\mathcal{H})$ and
 305 $\text{Cov}(\cdot)$ exhibit highly similar dynamics. Early
 306 in training, entropy \mathcal{H} decreases rapidly, ac-
 307 companied by a relatively large positive $\text{Cov}(\cdot)$.
 308 As training progresses, entropy decay slows
 309 and $\text{Cov}(\cdot)$ stabilizes, reflecting convergence
 310 of the policy. Notably, $\text{Cov}(\cdot)$ remains positive
 311 throughout training, leading to a persistent en-
 312 tropy decrease and finally collapse.



313
 314 Figure 4: Dynamics of policy entropy difference
 315 and covariance during GRPO training. They show
 316 similar trends, as predicted by theory.

4 ENTROPY CONTROL BY COVARIANCE REGULARIZATION

TAKEAWAY

317 We can control policy entropy by **restricting the update of tokens with high covariances**,
 318 e.g., clipping (Clip-Cov) or applying KL penalty (KL-Cov). These simple techniques
 319 prevent policy from entropy collapse thus promoting exploration.

320 The analysis of entropy dynamics gives us guidelines for entropy control, regularizing the update
 321 step size of high-covariance actions. In this section, we introduce two simple yet effective techniques,
 322 KL-Cov and Clip-Cov, that control entropy precisely and achieve better downstream performance.

324
325

4.1 SUPPRESSING TOKENS WITH HIGH COVARIANCES

326

To get the entropy controlled, we conduct experiments on the common approaches in the RL literature, however, results show that those approaches struggles to solve the entropy bottleneck of LLMs (See Appendix E). The unsuccessful attempt to incorporate entropy regularization into the policy loss drives us to seek a more fundamental approach to control entropy. As previously elaborated, the policy entropy dynamic is closely connected with the covariance between action probability and advantage. Meanwhile, as shown in Table 1, a small portion of tokens exhibit extremely high covariance, far exceeding the average. That is saying that these outlier tokens take a dominant part in triggering the entropy collapse. To mitigate their adverse effect, we aim to impose constraints on their contribution to the policy loss. In RL literature, two variants of PPO employ either clipping or KL penalty to constrain the policy updates (Schulman et al., 2017b), preventing overly aggressive changes. Drawing inspiration from these approaches, we propose two simple but effective covariance-aware methods Clip-Cov and KL-Cov.

336

Natural policy gradient is rarely used in post-training of LLMs for its time-consuming second-order optimization. But its introduction of target function with KL distance as constraint shares similarity with TRPO (Schulman et al., 2015) and PPO. Thus, we apply Theorem 2 into RL training.

340

Supposing a batch of N rollout tokens, $\pi_\theta(y_i)$ denotes the output probability of the policy model for token y_i given its corresponding prefix. According to Theorem 2, we firstly define token-wise centered cross-product between log probability and advantage as:

347
348
349

$$Cov(y_i) = (\log \pi_\theta(y_i) - \frac{1}{N} \sum_{j=1}^N \log \pi_\theta(y_j)) \cdot (A(y_i) - \frac{1}{N} \sum_{j=1}^N A(y_j)) \quad (8)$$

350

The Cov is the covariance of each token in N . Its expectation is the covariance in Theorem 2.

351
352
353
354

Clip-Cov. In the Clip-Cov strategy, we clip a small fraction of high-covariance tokens out from policy gradient updates as follows. With Eq. 8 calculated, we randomly select $k \cdot N$ of high-covariance tokens according to the covariance value:

355

$$I_{\text{clip}} = I \sim \text{Uniform}(i \mid Cov(y_i) \in [\omega_{\text{low}}, \omega_{\text{high}}]), [k \cdot N]) \quad (9)$$

356
357
358
359

Where I is short for index, k denotes the clip ratio. $\omega_{\text{low}}, \omega_{\text{high}}$ are two predefined bounds for covariance, respectively. Both are set much higher than the average covariance ($>500\times$). Finally, tokens with the chosen indexes will be detached from the policy gradient, which is:

360
361
362

$$L_{\text{Clip-Cov}}(\theta) = \begin{cases} \mathbb{E}_t \left[\frac{\pi_\theta(y_t | y_{<t})}{\pi_{\theta_{\text{old}}}(y_t | y_{<t})} A_t \right], & t \notin I_{\text{clip}} \\ 0, & t \in I_{\text{clip}} \end{cases} \quad (10)$$

363

where the t is the t -th token in one rollout response and each t uniquely corresponds to a index i .

364

KL-Cov. The KL-Cov strategy is simpler. Specifically, similar to Clip-Cov, we first compute the covariance as in Eq. 8. Then, we rank and select tokens within the top- k proportion of covariance:

367

368
369

$$I_{\text{KL}} = \{i \mid \text{Rank}(Cov(y_i)) \leq k \cdot N\}, \quad (11)$$

370
371
372
373

The k here denotes the proportion of tokens that will be subjected to the KL penalty and $k \ll 1$. At last, we impose the KL penalty (KL divergence between the current policy and the rollout policy) on the selected tokens, the policy loss is computed as:

374
375
376
377

$$L_{\text{KL-Cov}}(\theta) = \begin{cases} \mathbb{E}_t \left[\frac{\pi_\theta(y_t | y_{<t})}{\pi_{\theta_{\text{old}}}(y_t | y_{<t})} A_t \right], & t \notin I_{\text{KL}} \\ \mathbb{E}_t \left[\frac{\pi_\theta(y_t | y_{<t})}{\pi_{\theta_{\text{old}}}(y_t | y_{<t})} A_t - \beta \mathbb{D}_{\text{KL}}(\pi_{\theta_{\text{old}}}(y_t | y_{<t}) \parallel \pi_\theta(y_t | y_{<t})) \right], & t \in I_{\text{KL}} \end{cases} \quad (12)$$

Where β is the coef. to control the weight for KL penalty. Pseudo-code is presented in Algorithm 1.

Table 1: Covariance distribution of Qwen2.5-7B in training step 1.

Group	Mean Value
Top 0.02%	5.654
Top 0.2%	3.112
Top 2%	1.385
Top 20%	0.351
All	0.003

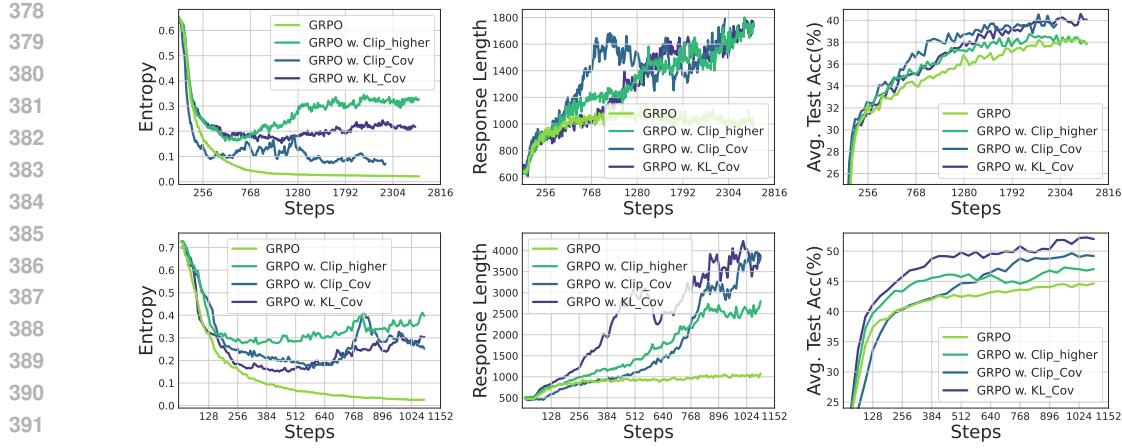


Figure 5: Training Qwen2.5-7B (Top) / Qwen2.5-32B (bottom) with GRPO with/without our methods. *Left*: Entropy dynamics. Our methods uplift policy entropy from collapse, enabling sustained exploration. *Middle*: Our methods also incentivize longer responses compared with vanilla GRPO. *Right*: Our methods consistently outperform baselines on testsets.

Table 2: Detailed results of GRPO, GRPO with clip-higher technique and our methods. For AIME and AMC, the results are avg.@32. **Bold** denotes the best results.

Method	AIME24	AIME25	AMC	MATH-500	OMNI-MATH	OlympiadBench	Minerva	Avg.
<i>Llama3.1-8B</i>								
GRPO	0.3	0.4	7.3	25.8	7.2	5.6	9.2	6.8
w. Clip-higher	0.0	0.0	8.5	23.0	7.3	4.7	12.1	6.9
w. Clip-Cov	0.4	0.3	8.9	23.4	8.6	7.3	12.5	7.8
w. KL-Cov	0.4	0.7	9.1	23.0	7.3	4.1	13.2	7.2
<i>Qwen2.5-7B</i>								
GRPO	21.2	9.6	58.7	78.8	27.9	40.7	36.7	38.6
w. Clip-higher	18.1	11.5	56.6	79.2	29.8	43.3	40.4	38.8
w. CLIP-Cov	22.1	15.8	58.2	80.4	30.5	44.1	41.1	40.4
w. KL-Cov	22.6	12.9	61.4	80.8	29.1	42.6	38.2	40.6
<i>Qwen2.5-32B</i>								
GRPO	21.8	16.2	69.7	84.2	35.2	43.6	45.5	45.8
w. Clip-higher	35.6	22.3	69.5	77.2	35.1	42.5	43.0	47.2
w. CLIP-Cov	32.3	22.7	67.2	87.0	42.0	57.2	46.0	50.3
w. KL-Cov	36.8	30.8	74.5	84.6	39.1	49.0	46.3	52.2
<i>Qwen3-8B</i>								
GRPO	31.7	22.9	65.3	87.6	39.5	54.6	45.2	48.7
w. Clip-higher	33.8	27.1	73.1	89.0	39.9	52.2	46.3	51.8
w. Clip-Cov	31.9	24.5	71.8	90.0	43.7	60.4	46.7	52.8
w. KL-Cov	36.7	26.5	72.4	87.8	43.7	58.4	47.4	53.5

4.2 EXPERIMENTS

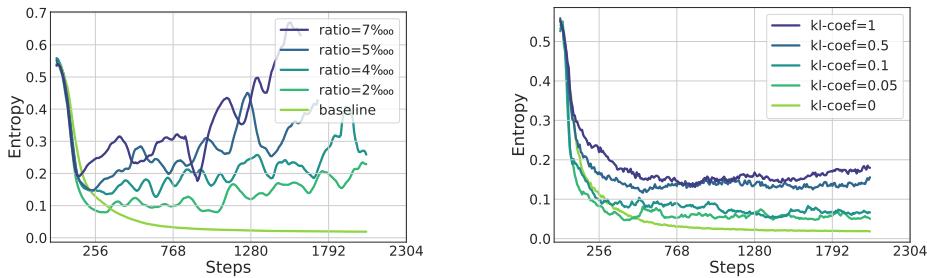
Settings. Because of the capability differences across base models, we train Llama3.1-8B with GSM8K, while other models are trained using the DAPO-MATH dataset. For baselines, we compare the original GRPO, and GRPO with Clip-higher, which tunes the upper threshold ϵ in PPO loss to 0.28 (Yu et al., 2025). More details about the training hyperparameters can be found in Appendix F.2.

Results and Analysis. We present the experimental results in Table 2, one can see that our two approaches both achieve non-trivial improvements across all benchmarks. Compared to GRPO, our method outperforms it by 2.0% on average for the 7B model and by 6.4% for the 32B model.

As shown in Figure 5, our method is able to maintain a considerably higher level of entropy throughout training. For example, when the baseline’s entropy reaches a plateau and can no longer be consumed, the KL-Cov method still sustains an entropy level over 10 \times higher. Meanwhile, the response length of the policy model steadily increases, and its performance on the test set consistently surpasses that of the baseline. This indicates that our policy model is able to explore more “freely” during

432 training. Compared to the clip-higher technique, although it can also increase entropy and lead
 433 to performance improvement in the early stage of training, it gradually becomes unstable, with
 434 performance saturating and declining. In contrast, our method obtains more stable entropy curves
 435 throughout training, ultimately achieving non-trivial improvements over the baselines.

436 Moreover, we observe that our method yields more substantial gains on Qwen2.5-32B. Specifically, we
 437 achieve improvements of **15.0%** and **14.6%** compared to GRPO on the most challenging benchmarks,
 438 AIME24 and AIME25, respectively. We infer that this is because the 32B model possesses greater
 439 potential from pretraining compared to the 7B model. Once the “exploration curse” caused by entropy
 440 collapse is lifted, the larger model is able to explore more diverse and higher-quality policies.



441
 442 Figure 6: Differences in entropy dynamics of Qwen2.5-7B under varying KL coefficients and Clip
 443 ratios, evaluated Clip-Cov (left) and KL-Cov (right) settings, respectively.

444 4.3 GET POLICY ENTROPY CONTROLLED

445 We also evaluate the capability of our methods in controlling policy entropy as shown in Figure 6.
 446 For Clip-Cov, the level of policy entropy can be adjusted by tuning the ratio of clipped samples,
 447 where more clipped samples result in higher entropy. For KL-Cov, we can modulate the entropy by
 448 controlling the KL coefficient β , *i.e.*, the weight of the KL penalty. Specifically, a larger coefficient
 449 brings higher entropy. Comparing them, KL-Cov reaches stabler entropy curves than Clip-Cov,
 450 which might be preferable for stabilizing the training process.

451 4.4 DISCUSSION

452 **Connection with Clip-higher.** Our main baseline, clip-higher (Yu et al., 2025), can also incentivize
 453 higher policy entropy. In fact, this technique shares similar functionality with our methods. By raising
 454 the upper threshold of the importance sampling ratio, clip-higher includes more low-probability
 455 tokens for policy updates. Also, the upper threshold only affects the tokens with positive advantages,
 456 which means clip-higher is actually adding more low-covariance (low probability, high advantage,
 457 with average covariance of ~ 0.03) tokens in gradient calculation. We take a step further by directly
 458 using the covariance as the threshold, thus controlling the entropy more precisely.

459 **The Philosophy of Entropy Control.** In experiments, we find that the policy entropy is sensitive
 460 to hyperparameter settings. Specifically, our methods only interfere with a very small fraction of
 461 tokens (10^{-4} to 10^{-3}), yet totally change the entropy curve. This means several “pivotal” tokens are
 462 crucial for the entropy of LLMs. However, we don’t observe a relationship between the intervened
 463 entropy and model performance. It still remains open whether there exists an optimal entropy value
 464 to balance the exploration and training stability.

465 5 CONCLUSION

466 In this study, we try to address the challenge of policy entropy collapse in reinforcement learning
 467 for large language model reasoning. We empirically demonstrate that performance gains are often
 468 achieved by sacrificing exploratory capacity, which in turn imposes a foreseeable limit on improvement.
 469 To gain a deeper understanding, we conduct a theoretical investigation into entropy dynamics
 470 and introduce two simple regularization techniques, Clip-Cov and KL-Cov, to directly manage
 471 high-covariance tokens and thereby counteract entropy collapse. Looking further, RL has been
 472 identified as the next scaling axis after pre-training. However, scaling computing for RL requires
 473 more than entropy minimization. We hope this research could provide valuable insights into the role
 474 of entropy, fostering RL to reach a higher level of intelligence.

486 REPRODUCIBILITY STATEMENT
487488 We have provided sufficient details to for reproduction, including algorithm pseudocode in Algo-
489 rithm 1, experiment configurations and hyperparameters in Section 2, Section 4 and Appendix. We
490 have uploaded our code in Supplementary Material.
491492 REFERENCES
493494 Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
495 gradient methods: Optimality, approximation, and distribution shift. *Journal of Machine Learning
496 Research*, 22(98):1–76, 2021.497 Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness
498 of entropy minimization in llm reasoning. *arXiv preprint arXiv:2505.15134*, 2025.
499500 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
501 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
502 from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.503 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
504 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
505 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.506 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
507 Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
508 Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
509 Ding. Process reinforcement through implicit rewards, 2025. URL <https://arxiv.org/abs/2502.01456>.
510511 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
512 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
513 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
514 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
515 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
516 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
517 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
518 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
519 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
520 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
521 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
522 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
523 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang,
524 Shuiying Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
525 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
526 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
527 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
528 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
529 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
530 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
531 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
532 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
533 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
534 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
535 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
536 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
537 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
538 Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
539 URL <https://arxiv.org/abs/2501.12948>.Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems. *arXiv preprint arXiv:2103.06257*, 2021.

540 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
 541 Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for
 542 large language models. *arXiv preprint arXiv:2410.07985*, 2024.

543

544 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
 545 *International Conference on Machine Learning*, 2022.

546

547 Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
 548 deep energy-based policies. In *International conference on machine learning*, pp. 1352–1361.
 549 PMLR, 2017.

550

551 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 552 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference
 553 on machine learning*, pp. 1861–1870. Pmlr, 2018.

554

555 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
 556 Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench: A
 557 challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
 558 problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd
 559 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 560 3828–3850, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
 10.18653/v1/2024.acl-long.211. URL <https://aclanthology.org/2024.acl-long.211>.

561

562 Jujie He, Jiacai Liu, Chris Yuhan Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xi-
 563 aoyu Zhang, Fuxiang Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng,
 564 Tianwen Wei, Cheng Cheng, Bo An, Yang Liu, and Yahui Zhou. Skywork open
 565 reaonser series. <https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680>,
 566 2025. Notion Blog.

567

568 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 569 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
 570 preprint arXiv:2103.03874*, 2021.

571

572 Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
 573 Md Mostafa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
 574 empirically. *arXiv preprint arXiv:1712.00409*, 2017.

575

576 Jacob Hilton, Jie Tang, and John Schulman. Scaling laws for single-agent reinforcement learning.
 577 *arXiv preprint arXiv:2301.13442*, 2023.

578

579 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 580 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 581 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

582

583 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv
 584 preprint arXiv:2501.03262*, 2025.

585

586 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 587 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 588 model. *arXiv preprint arXiv:2503.24290*, 2025.

589

590 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 591 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 592 LÃ©lio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Thibaut Lavril,
 593 Thomas Wang, TimothÃ©e Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

594

595 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
 596 Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
 597 know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

594 Sham M Kakade. A natural policy gradient. *Advances in neural information processing systems*, 14,
 595 2001.
 596

597 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 598 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 599 *arXiv preprint arXiv:2001.08361*, 2020.

600 Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for
 601 free! In *DeepRLStructPred@ICLR*, 2019. URL <https://api.semanticscholar.org/CorpusID:198489118>.
 602

603 Nathan Lambert, Jacob Daniel Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
 604 Brahman, Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya
 605 Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
 606 Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hanna Hajishirzi.
 607 Tulu 3: Pushing frontiers in open language model post-training. *ArXiv*, abs/2411.15124, 2024.
 608

609 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 610 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 611 reasoning problems with language models. *Advances in Neural Information Processing Systems*,
 612 35:3843–3857, 2022.
 613

614 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 615 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 616 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 617 13:9, 2024.

618 Jiacai Liu. How does rl policy entropy converge during iteration? <https://zhuanlan.zhihu.com/p/28476703733>, 2025. URL <https://zhuanlan.zhihu.com/p/28476703733>.
 619

620 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 621 Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*,
 622 2025.

623 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
 624 Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
 625 model by scaling rl. *Notion Blog*, 2025.

626 Meta. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
 627

628 Meta-Llama-3.2. Llama 3.2: Revolutionizing edge ai and vision with
 629 open, customizable models. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices>.
 630

631 MistralAI-NeMo. Mistralai-nemo. URL <https://mistral.ai/news/mistral-nemo>.
 632

633 MistralAI-Small-3. Mistralai-small-3. URL <https://mistral.ai/news/mistral-small-3>.
 634

635 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 636 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 637 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.
 638

639 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
 640 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 641 learning. In *International conference on machine learning*, pp. 1928–1937. PMLR, 2016.
 642

643 OpenAI. Openai o1 system card. *ArXiv*, abs/2412.16720, 2024a.
 644

645 OpenAI. Gpt-4 technical report, 2024b. URL <https://arxiv.org/abs/2303.08774>.
 646

648 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 649 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 650 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 651 27744, 2022.

652 Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 653 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 654 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 655 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 656 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 657 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 658 <https://arxiv.org/abs/2412.15115>.

659 Oleh Rybkin, Michal Nauman, Preston Fu, Charlie Snell, Pieter Abbeel, Sergey Levine, and Aviral
 660 Kumar. Value-based deep rl scales predictably. *arXiv preprint arXiv:2502.04327*, 2025.

662 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 663 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,
 664 2015.

666 John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-learning.
 667 *arXiv preprint arXiv:1704.06440*, 2017a.

668 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 669 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017b.

671 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 672 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 673 mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

675 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 676 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint
 677 arXiv: 2409.19256*, 2024.

678 David Silver and Richard S Sutton. Welcome to the era of experience. *Google AI*, 2025.

680 Richard S Sutton. Learning to predict by the methods of temporal differences. *Machine learning*, 3:
 681 9–44, 1988.

683 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 684 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 685 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

686 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 687 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 688 llms. *arXiv preprint arXiv:2501.12599*, 2025.

690 Marc Toussaint. Robot trajectory optimization using approximate inference. In *Proceedings of the
 691 26th annual international conference on machine learning*, pp. 1049–1056, 2009.

692 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 693 learning. *Machine learning*, 8:229–256, 1992.

695 Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning
 696 algorithms. *Connection Science*, 3(3):241–268, 1991.

697 Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A diverse,
 698 challenging, and verifiable synthetic dataset for coding, 2025. URL <https://arxiv.org/abs/2503.02951>.

701 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 Learning to reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025.

702 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 703 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 704 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 705 Wang, Honglin Yu, Weinan Dai, Yuxuan Song, Xiang Wei, Haodong Zhou, Jingjing Liu, Wei Ma,
 706 Ya-Qin Zhang, Lin Yan, Mu Qiao, Yong-Xu Wu, and Mingxuan Wang. Dapo: An open-source
 707 llm reinforcement learning system at scale. 2025. URL <https://api.semanticscholar.org/CorpusID:277104124>.

708

709 Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
 710 Liu, and Hao Peng. Free process rewards without process labels. *International conference on
 711 machine learning*, 2025.

712

713 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
 714 reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *ArXiv*,
 715 abs/2504.13837, 2025.

716

717 Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhui Chen. Acecoder:
 718 Acing coder rl via automated test-case synthesis, 2025. URL <https://arxiv.org/abs/2502.01718>.

719

720 Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
 721 is already half the answer: Fully unsupervised llm reasoning incentivization. *arXiv preprint
 722 arXiv:2504.05812*, 2025.

723

724 Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
 725 reinforcement learning. In *Aaai*, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

726

727 Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Binqing Qi, Youbang Sun, Ganqu
 728 Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. *arXiv preprint
 729 arXiv:2504.16084*, 2025.

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A RELATED WORK
757

759 **Policy Entropy in Reinforcement Learning.** Stemmed in information theory, entropy provides a
760 principled mechanism to manage the exploitation-exploration tradeoff. Entropy-regularized rein-
761 force learning, also referred as maximum entropy RL (Ziebart et al., 2008; Toussaint, 2009),
762 adopts a regularization term in reward to encourage high-entropy actions. This regularization term
763 was widely-inherited in RL algorithms (Mnih et al., 2015; 2016; Schulman et al., 2017a;b; Haarnoja
764 et al., 2017; 2018), and is viewed as a necessity. On the other hand, in RL for LLMs, there exist
765 different opinions on whether entropy regularization should be preserved (Ouyang et al., 2022; Shao
766 et al., 2024; Hu et al., 2025; He et al., 2025). Our experiments indicate that, it is necessary to control
767 entropy, but we can design better objectives than entropy loss.

768 **Predictability of Reinforcement Learning for Reasoning Language Models.** The first part of this
769 work reveals the predictability of RL for LLM reasoning. The development of LLMs is largely guided
770 by the neural scaling laws, which bridge model performances with computational budgets, model
771 sizes, and the amount of training data (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al.,
772 2022). With scaling experiments on smaller models, the loss and task performance of larger models
773 could be accurately predicted. In RL, Hilton et al. (2023); Rybkin et al. (2025) studied the scaling
774 behavior of policy performances versus computing on non-LLM models, but the predictability of RL
775 for LLMs has yet to be investigated. Gao et al. (2022) proposed to predict reward scores from KL
776 divergence in RL on LLMs, which was used for modeling overoptimization effect of a proxy reward
777 model. This work aligns with our conclusion considering that, 1) the verifiable reward eliminates the
778 gap between the proxy reward model and ground truth; 2) the similarity between KL divergence and
779 policy entropy.

780 **Reinforcement Learning for LLMs.** Reinforcement learning has emerged as a major approach for
781 LLM post-training (Ouyang et al., 2022; Meta, 2024; Team et al., 2023; Qwen et al., 2025; Jiang
782 et al., 2023). Recent works have achieved further breakthrough on enhancing the reasoning capability
783 of LLMs using RL with verifiable rewards (OpenAI, 2024a; Lambert et al., 2024; DeepSeek-AI et al.,
784 2025; Team et al., 2025), drawing great attention in research community (Cui et al., 2025; Liu et al.,
785 2025; Hu et al., 2025; He et al., 2025). However, there still lacks systematic study on the underlying
786 mechanisms of RL for LLMs, which constitutes the primary goal of our work.

787 B DETAILED RESULTS AND DISCUSSION OF THE FITTING EXPERIMENTS
788789 B.1 EXPERIMENT SETTINGS
790

792 **Models.** The models adopted in our experiments span 4 model families and 11 widely used open-
793 source base models. Specifically, these consist of the Qwen2.5 family (Qwen2.5-0.5B, 1.5B, 3B, 7B,
794 32B) (Qwen et al., 2025), the Mistral family (Mistral-7B-v0.3 (Jiang et al., 2023), Mistral-Nemo-
795 Base-2407 (MistralAI-NeMo), Mistral-Small-3.1-24B-Base-2501 (MistralAI-Small-3)), the LLaMA
796 family (LLaMA3.2-3B (Meta-Llama-3.2), LLaMA3.1-8B (Meta, 2024)), and DeepSeek-Math-7B-
797 Base (Shao et al., 2024)).

798 **Tasks and Datasets.** We primarily focus on math and coding problems with verifiable rewards. Due
799 to inherent differences in the initial reasoning abilities between model families, we train models using
800 data of different difficulty levels to stabilize the RL process. Meanwhile, we use the same data during
801 downstream performance evaluation to maintain consistency. For math tasks, the evaluation datasets
802 include MATH500 (Hendrycks et al., 2021), AIME 2024 (Li et al., 2024), AMC (Li et al., 2024),
803 OlympiadBench (He et al., 2024), and OMNI-MATH (Gao et al., 2024). For code tasks, we split the
804 testset of Eurus-2-RL-Code (Cui et al., 2025) and KodCode (Xu et al., 2025).

805 Specifically, Due to inherent differences in the initial reasoning abilities between model families,
806 we train models using data of different difficulty levels to stabilize the RL process. Specifically, for
807 math tasks, we train the Qwen family and Mistral-24B model using Eurus-2-RL-Math (Cui et al.,
808 2025), while other model families are trained using GSM8K (Cobbe et al., 2021). The downstream
809 performance is evaluated using MATH500 (Hendrycks et al., 2021), AIME 2024 (Li et al., 2024),
AMC (Li et al., 2024), OlympiadBench (He et al., 2024), and OMNI-MATH (Gao et al., 2024). For

code tasks, we train the Qwen family and Mistral-24B model using AceCode (Zeng et al., 2025), Eurus-2-RL-Code (Cui et al., 2025), and Kodcode¹.

Hyperparameters. For hyperparameters, we use a learning rate of 5×10^{-7} for the policy model and 10^{-6} for the implicit PRM (Yuan et al., 2025) in PRIME. Both policy and PRMs use a batch size of 256 and a micro-batch size of 128. The rollout stage collects 256 prompts with 8 sampled responses. By default, we set the reference KL divergence coefficient to 0. The ϵ in policy loss (Equation 4) is 0.2. We filter out prompts that receive all correct or incorrect responses.

B.2 DETAILED FITTING RESULTS

Fitting Results on Coding Task. We present the fitting results of coding task in Figure 7.

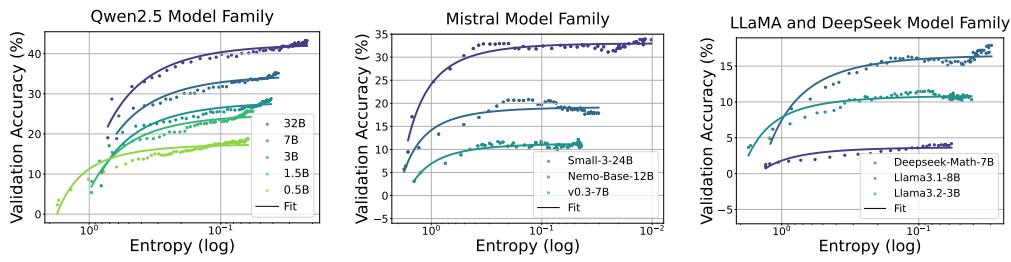


Figure 7: Fitting curves between policy entropy and validation performance in coding task. We conduct validation every 4 rollout steps until convergence.

Fitting Results of Different Datasets and Algorithms. In this section, we present more fitting experiment results. The results of training with different datasets and algorithms are presented at Figure 8a and Figure 8b, respectively.

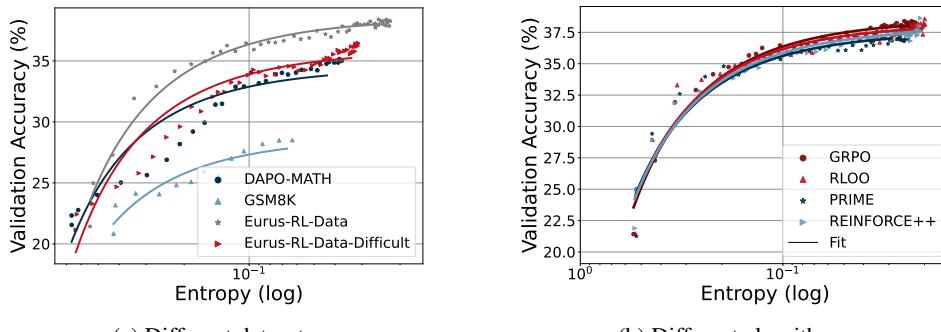


Figure 8: Training Qwen2.5-7B with different datasets and algorithms.

Fitting Results of Instruct Models. We also conduct fitting experiments on instruct models, and the fitting function remains valid in our experiments. We present the fitting results in Figure 9.

B.3 PREDICTING PERFORMANCE FROM POLICY ENTROPY

As we can precisely fit a curve between policy entropy and validation performance, one straightforward application of this fitting is to predict policy performance at low entropy with observations from high entropy data points. To verify that the functional form can be applied at the early stage of RL training, we take a step further by fitting the function within limited training steps and using the fitted function to predict the final performance.

¹We process the data with style instruct and complete into a format that can be handled by unit tests. For the online-judge style, we removed this portion of the data as it was derived from instruct style data.

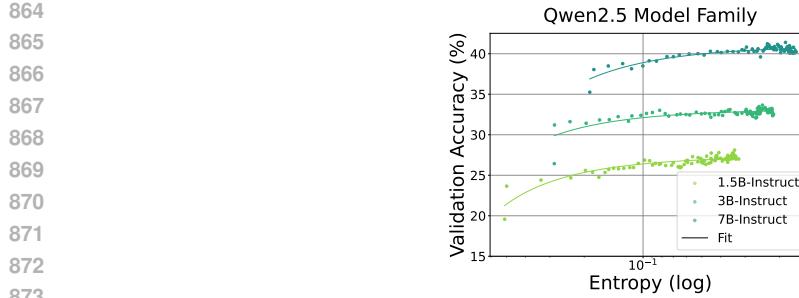


Figure 9: Training Qwen2.5 instruct models on math task.

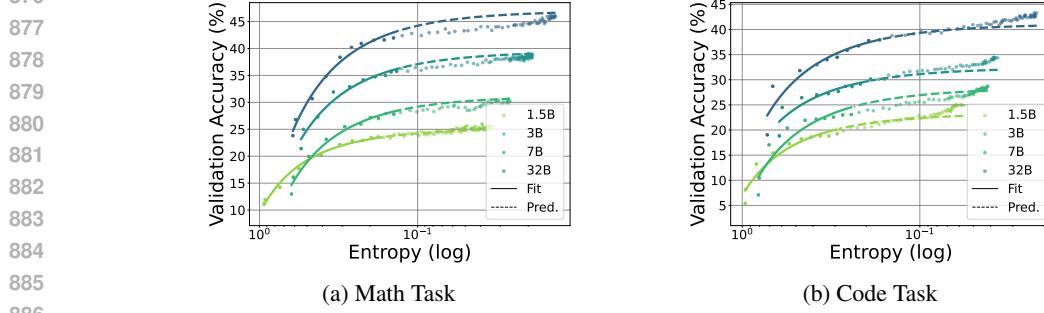


Figure 10: Predicting the final performance of Qwen2.5 family with only 15% training steps with the fitted function. The average RMSE is 0.9% and 1.2% for all predicted steps, 0.5% and 1.9% for final step performance, respectively.

Take Qwen2.5 family as an example, we fit the function form with coefficients a and b using only the first 36 training steps. Using this function, we perform an advance prediction for the subsequent 200 training steps. As shown in Figure 10, for the math and coding task, we achieve an average Root Mean Square Error (RMSE) of 0.9% and 1.2% during prediction, 0.5% and 1.9% for final performance, respectively. It suggests that the late stage performance of the policy can be estimated early in training, without the need to run the full RL process. Moreover, we can also obtain the final performance of the policy when it becomes static. With $\mathcal{H} = 0$, $R = -a + b$, which is the upper bound of the policy given the training data.

B.4 UNDERSTANDING THE COEFFICIENTS

The Coefficients are Algorithm-irrelevant. We investigate whether different RL algorithms would affect the fitted function. Figure 8b plots the fitted curves with GRPO, RLOO, and PRIME. We find that, although these algorithms apply distinct advantage estimation methods, they do not influence the fitted entropy-performance function. This indicates that the coefficients a, b reflect some intrinsic properties of the policy model and training data.

Predicting Coefficients when Scaling Parameters.

Taking a closer look at the coefficients a, b , their meanings are clear. By differentiating the equation, we derive $dR/d\mathcal{H} = -a \exp(\mathcal{H})$, which means a is the rate at which the model converts entropy into downstream performance. Also, as stated above, $-a + b$ is the maximum validation score the model can achieve when entropy is fully depleted. Intuitively, a, b should be relevant with model sizes, where larger models could trade entropy for reward more efficiently, as well as achieve higher performance.

To validate this, we again adopt Qwen2.5 model family, since they have similar architecture and undergo similar training process. In Figure 11, we plot the model parameter count (without embedding) versus a, b on math and coding tasks. It is observed that, both a and b vary smoothly with policy size at a log-linear rate. This log-linear relationship between model sizes and coefficients is also

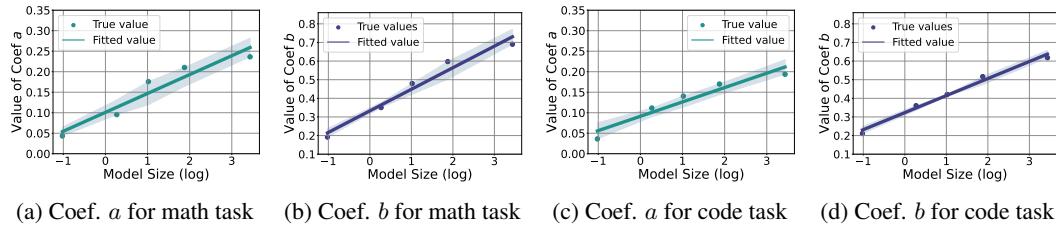


Figure 11: Fitted curves between coefficients and model sizes of Qwen2.5 model family. The model sizes are parameter counts (B) without embeddings. a, b are obtained from experiments in Sec. 2.4. We use log-linear function to fit the curve.

observed in Gao et al. (2022). It allows us to extrapolate the coefficients of larger models based on the training dynamics of smaller models, extending the predictability to the dimension of model sizes. In other words, it enables us to predict the final performance of larger LMs through RL training without actually training them, once we train smaller models within the same family and get their coefficients. Figure 8a also illustrates that the coefficients are related with training data.

C PROOF

C.1 USEFUL LEMMAS

Lemma 2 (Derivative of softmax function)

$$\frac{\partial \log \pi_\theta(a | s)}{\partial \theta_{s,a'}} = \mathbf{1}\{a = a'\} - \pi_\theta(a' | s)$$

Lemma 3 (Expectation of Advantage function given state s)

$$\begin{aligned} \mathbb{E}_{a \sim \pi_\theta(\cdot | s)} [A^{\pi_\theta}(s, a)] &= \mathbb{E}_{a \sim \pi_\theta(\cdot | s)} [Q^{\pi_\theta}(s, a) - V^{\pi_\theta}(s)] \\ &= \mathbb{E}_{a \sim \pi_\theta(\cdot | s)} [Q(s, a)] - \mathbb{E}_{a \sim \pi_\theta(\cdot | s)} [V(s)] \\ &= V(s) - V(s) \\ &= 0 \end{aligned}$$

C.2 PROOF FOR LEMMA 1

Lemma 1: Let the actor policy π_θ be a tabular softmax policy, the difference of information entropy given state s between two consecutive steps satisfies

$$\mathcal{H}(\pi_\theta^{k+1} | s) - \mathcal{H}(\pi_\theta^k | s) \approx -\text{Cov}_{a \sim \pi_\theta^k(\cdot | s)} (\log \pi_\theta^k(a | s), z_{s,a}^{k+1} - z_{s,a}^k)$$

Proof adapted from (Liu, 2025).

In tabular softmax policy, each state-action pair (s, a) is associated with an individual logit parameter $z_{s,a} = \theta_{s,a}$. We assume that we are updating logits z via $z^{k+1} = z^k + \eta \cdot \nabla J(\pi_\theta)$. Given η is relatively small, leveraging Taylor's expansion under first-order approximation, we have

$$\mathcal{H}(\pi_\theta^{k+1} | s) \approx \mathcal{H}(\pi_\theta^k | s) + \langle \nabla \mathcal{H}(\pi_\theta^k | s), (z^{k+1} - z^k) \rangle$$

We then derive what $\nabla \mathcal{H}(\pi_\theta^k | s)$ is, according to the definition of \mathcal{H} , we have

$$\begin{aligned} \nabla_\theta \mathcal{H}(\pi_\theta | s) &= \nabla_\theta \mathcal{H}(\pi_\theta(\cdot | s)) \\ &= \nabla_\theta (-\mathbb{E}_{a \sim \pi_\theta(\cdot | s)} [\log \pi_\theta(a | s)]) \\ &= -\mathbb{E}_{a \sim \pi_\theta(\cdot | s)} [\nabla_\theta \log \pi_\theta(a | s) + \log \pi_\theta(a | s) \nabla_\theta \log \pi_\theta(a | s)] \\ &= -\mathbb{E}_{a \sim \pi(\cdot | s)} [\log \pi_\theta(a | s) \nabla_\theta \log \pi_\theta(a | s)] \end{aligned}$$

972 Then we have,
973

$$\begin{aligned}
\langle \nabla_{\theta} \mathcal{H}(\theta^k \mid s), (z^{k+1} - z^k) \rangle &= -\langle \mathbb{E}_{a \sim \pi(\cdot \mid s)} [\log \pi_{\theta}(a \mid s) \nabla_{\theta} \log \pi_{\theta}(a \mid s)], (\theta^{k+1} - \theta^k) \rangle \\
&= -\mathbb{E}_{a \sim \pi(\cdot \mid s)} [\log \pi_{\theta}(a \mid s) \langle \nabla_{\theta} \log \pi_{\theta}(a \mid s), \theta^{k+1} - \theta^k \rangle] \\
&= -\mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[\log \pi_{\theta}(a \mid s) \sum_{a' \in \mathcal{A}} \frac{\partial \log \pi_{\theta}(a \mid s)}{\partial \theta_{s, a'}} \cdot (\theta_{s, a'}^{k+1} - \theta_{s, a'}^k) \right] \\
&= -\mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[\log \pi_{\theta}(a \mid s) \sum_{a' \in \mathcal{A}} (\mathbf{1}\{a = a'\} - \pi(a' \mid s)) \cdot (\theta_{s, a'}^{k+1} - \theta_{s, a'}^k) \right] \\
&= -\mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[\log \pi_{\theta}(a \mid s) \left[(\theta_{s, a}^{k+1} - \theta_{s, a}^k) - \sum_{a' \in \mathcal{A}} \pi(a' \mid s) (\theta_{s, a'}^{k+1} - \theta_{s, a'}^k) \right] \right] \\
&= -\mathbb{E}_{a \sim \pi(\cdot \mid s)} [\log \pi_{\theta}(a \mid s) (\theta_{s, a}^{k+1} - \theta_{s, a}^k)] + \mathbb{E}_{a \sim \pi(\cdot \mid s)} [\log \pi_{\theta}(a \mid s) \cdot \mathbb{E}_{a' \sim \pi(\cdot \mid s)} [\theta_{s, a'}^{k+1} - \theta_{s, a'}^k]] \\
&= -\mathbb{E}_{a \sim \pi(\cdot \mid s)} [\log \pi_{\theta}(a \mid s) (\theta_{s, a}^{k+1} - \theta_{s, a}^k)] + \mathbb{E}_{a \sim \pi(\cdot \mid s)} [\log \pi_{\theta}(a \mid s)] \cdot \mathbb{E}_{a' \sim \pi(\cdot \mid s)} [\theta_{s, a'}^{k+1} - \theta_{s, a'}^k] \\
&= -\text{Cov}_{a \sim \pi(\cdot \mid s)} (\log \pi(a \mid s), \theta^{k+1} - \theta^k) \\
&= -\text{Cov}_{a \sim \pi(\cdot \mid s)} (\log \pi(a \mid s), z^{k+1} - z^k)
\end{aligned}$$

989 C.3 PROOF FOR PROPOSITION 1
990

991 **Proposition 1:** Let the actor policy π_{θ} be tabular softmax policy and updated using Eq. 2, the
992 difference of $z_{s, a}$ between two consecutive steps satisfies

$$z_{s, a}^{k+1} - z_{s, a}^k = \eta \cdot \pi_{\theta}(a \mid s) \cdot A(s, a)$$

993 *Proof.*

994 In tabular softmax policy, each state-action pair (s, a) is associated with an individual logit parameter
995 $z_{s, a} = \theta_{s, a}$. Through gradient backtracking, $z_{s, a}$ is updated via $z_{s, a}^{k+1} = z_{s, a}^k + \eta \cdot \nabla_{\theta_{s, a}} J(\theta)$,
996 therefore, we have

$$\begin{aligned}
z_{s, a}^{k+1} - z_{s, a}^k &= \eta \cdot \nabla_{\theta_{s, a}} J(\theta) \\
&= \eta \cdot \mathbb{E}_{a' \sim \pi_{\theta}(\cdot \mid s)} [\nabla_{\theta_{s, a}} \log \pi_{\theta}(a' \mid s) \cdot A(s, a')] \\
&= \eta \cdot \mathbb{E}_{a' \sim \pi_{\theta}(\cdot \mid s)} \left[\underbrace{\frac{\partial \log \pi_{\theta}(a' \mid s)}{\partial \theta_{s, a}}}_{\text{Lemma 2}} \cdot A(s, a') \right] \\
&= \eta \cdot \sum_{a' \in \mathcal{A}} [\pi_{\theta}(a' \mid s) \cdot (\mathbf{1}\{a = a'\} - \pi_{\theta}(a \mid s)) \cdot A(s, a')] \\
&= \eta \cdot \pi_{\theta}(a \mid s) \cdot \left[(1 - \pi_{\theta}(a \mid s)) \cdot A(s, a) - \sum_{a' \in \mathcal{A}, a' \neq a} \pi_{\theta}(a' \mid s) \cdot A(s, a') \right] \\
&= \eta \cdot \pi_{\theta}(a \mid s) \cdot \left[A(s, a) - \underbrace{\sum_{a' \in \mathcal{A}} \pi_{\theta}(a' \mid s) \cdot A(s, a')}_{\text{Lemma 3}} \right] \\
&= \eta \cdot \pi_{\theta}(a \mid s) \cdot [A(s, a) - 0] \\
&= \eta \cdot \pi_{\theta}(a \mid s) \cdot A(s, a)
\end{aligned}$$

1023 C.4 PROOF FOR THEOREM 2
1024

1025 **Theorem 2:** Let the actor policy π_{θ} be tabular softmax policy, and π_{θ} is updated via natural policy
1026 gradient [Kakade \(2001\)](#), the difference of information entropy given state s between two consecutive

1026 steps satisfies

1027

$$1028 \quad \mathcal{H}(\pi_\theta^{k+1}|s) - \mathcal{H}(\pi_\theta^k|s) \approx -\eta \cdot \text{Cov}_{a \sim \pi_\theta^k(\cdot|s)} (\log \pi_\theta^k(a|s), A(s, a))$$

1029

1030 *Proof.*

1031 According to Lemma 1, we first derive the difference of logits z in natural policy gradient. We learn
 1032 from (Agarwal et al., 2021) that, when we are updating policy using natural policy gradient via
 1033 gradient backtracking, $z_{s,a}^{k+1} - z_{s,a}^k$ satisfies,

1034

$$1035 \quad z_{s,a}^{k+1} - z_{s,a}^k = \eta \cdot A(s, a)$$

1036

1037 Applying this into Lemma 1, we have

1038

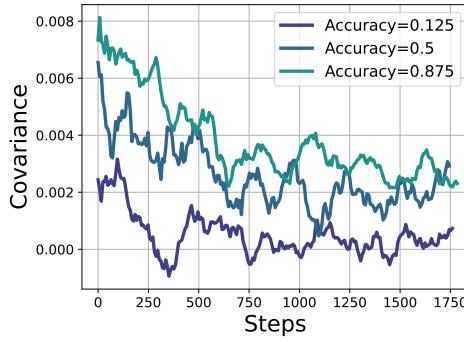
$$1039 \quad \mathcal{H}(\pi_\theta^{k+1}|s) - \mathcal{H}(\pi_\theta^k|s) \approx -\eta \cdot \text{Cov}_{a \sim \pi_\theta^k(\cdot|s)} (\log \pi_\theta^k(a|s), A(s, a))$$

1040

1041

D ADDITIONAL ANALYSIS OF COVARIANCE DYNAMICS

1042



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Figure 12: Covariance dynamics across difficulty groups. Easier prompts with higher accuracy show higher covariance, while harder prompts yield smaller covariance.

To further explore the behavior of covariance, we categorize training examples by difficulty using accuracy. As shown in Figure 12, $\text{Cov}(\cdot)$ tends to be smaller in magnitude for harder examples, aligning with intuition: when the model struggles to learn, high-probability actions are not reliably associated with higher returns. In contrast, for easier examples, where the model is more confident and calibrated, $\text{Cov}(\cdot)$ is larger, indicating stronger alignment between action probabilities and advantage estimates.

E EFFECT OF ENTROPY REGULARIZATION

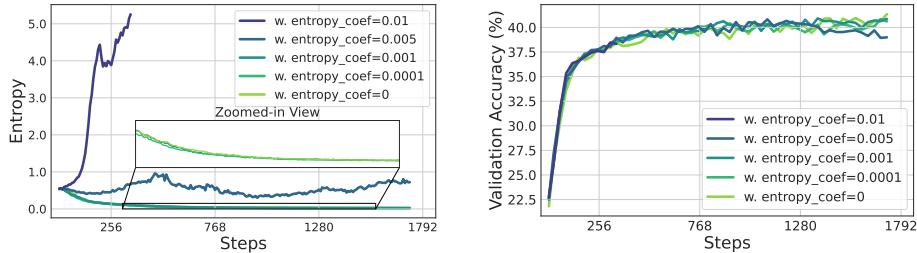


Figure 13: The policy entropy and validation accuracy of adding entropy loss where $L_{\text{ent}} = L - \alpha \mathcal{H}(\pi_\theta)$. L is the original loss and α is the coefficient of entropy loss.



Figure 14: The policy entropy and validation accuracy of adding KL penalty between policy and reference model where $L_{\text{KL}} = L + \beta \mathbb{D}_{\text{KL}}(\pi_\theta || \pi_{\text{ref}})$. L is the original loss and β is the coefficient of KL loss.

A common approach in the RL literature to control policy entropy is to apply entropy loss (Schulman et al., 2017b) or KL penalty. We conduct experiments to see whether it is effective for LLMs.

Figure 13 and Figure 14 present the results. It is shown that entropy loss is highly sensitive to coefficients, and it does not outperform other baselines. Despite the reference KL achieves stable entropy values, it fails to improve policy and instead leads to a degradation in performance. Therefore, naively adopting entropy regularization techniques from conventional RL struggles to solve the entropy bottleneck of LLMs. These regularization terms are either hyper-parameter sensitive (He et al., 2025) or degrade policy performance. Therefore, most recent works do not include them as well (Cui et al., 2025; Hu et al., 2025; Liu et al., 2025; Yu et al., 2025).

F MORE DETAILS OF THE PROPOSED METHODS

In this section, we present more details of training with our proposed Clip-Cov and KL-Cov, including the pseudo code and the training hyperparameters.

F.1 PSEUDO CODE OF THE PROPOSED METHODS

F.2 TRAINING HYPERPARAMETERS

In each rollout step, we sample 8 responses per prompt for a batch of 256 prompts using a temperature of 1, and subsequently perform 8 policy updates on the collected responses. We also filter out the prompts with all-correct/incorrect responses. The test datasets include MATH500, AIME 2024, AIME 2025 (Li et al., 2024), AMC, OMNI-MATH, OlympiadBench, and Minerva (Lewkowycz et al., 2022). During evaluation, we set the rollout temperature to 0.6 for AIME and AMC, while using greedy decoding for all other test sets. In Clip-Cov, the clip ratio r is 2×10^{-4} , with ω_{low} and ω_{high} equals 1 and 5, respectively. For KL-Cov, the k is set as 2×10^{-3} and 2×10^{-4} for Qwen2.5-7B and 32B, respectively, the KL coefficient β is set as 1. The max generation length is 8192.

```

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148     def compute_policy_loss(old_log_prob, log_prob, advantages,
1149                             select_ratio, method, **args):
1150         ratio = exp(log_prob - old_log_prob)
1151         pg_losses1 = -ratio * advantages
1152         # calculate token wise centered cross - product
1153         + covs = (log_prob - log_prob.mean()) * (advantages - advantages.
1154             mean())
1155         + select_num = int(select_ratio * len(pg_losses1))
1156         if method == "clip_cov":
1157             pg_losses2 = -clip(ratio, args["clip_range_lb"], args[""
1158                 "clip_range_ub"]) * advantages
1159             # randomly select index to be detached
1160             + clip_idx = random_select(covs[covs > args["cov_lb"] & covs <
1161                 args["cov_ub"]], num=select_num)
1162             + pg_losses1[clip_idx].detach_()
1163             + pg_losses2[clip_idx].detach_()
1164             pg_loss = maximum(pg_losses1, pg_losses2).mean()
1165             if method == "kl_cov":
1166                 kl_coef = args["kl_coef"]
1167                 kl_penalty = (log_prob - old_log_prob).abs()
1168                 - pg_losses = pg_losses1 + kl_coef * kl_penalty
1169                 + # find out index with highest conviriance
1170                 + select_idx = topk(covs, k=select_num, largest=True)
1171                 + # apply KL penalty of these samples
1172                 + pg_losses1[select_idx] += kl_coef * kl_penalty[select_idx]
1173                 pg_loss = pg_losses1.mean()
1174             return pg_loss
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

```

Algorithm 1: The pseudo-code of the policy loss computation with Clip-Cov and KL-Cov. The implementation only need to modify several lines of code.