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ABSTRACT

This paper aims to overcome a major obstacle in scaling reinforcement learning
(RL) for reasoning with large language models (LLMs), namely the collapse of
policy entropy. Such phenomenon is consistently observed across vast RL runs
without entropy intervention, where the policy entropy dropped sharply at the early
training stage, leading to an overly confident policy model. As a consequence, this
diminished exploratory ability is always accompanied with the saturation of policy
performance. In practice, we establish a transformation equation R = −a expH+
b, between entropy H and downstream performance R, where a, b are fitting
coefficients. This empirical law strongly indicates that, the policy performance is
traded from policy entropy, thus bottlenecked by its exhaustion, and the ceiling
is fully predictable (H = 0, R = −a + b). Our finding necessitates entropy
management for continuous exploration toward scaling compute for RL. To this end,
we investigate entropy dynamics both theoretically and empirically. Our derivation
highlights that, the change in policy entropy is driven by the covariance between
action probability and the change in logits, which is proportional to its advantage
when using Policy Gradient-like algorithms (Williams, 1992). For example, a
high-probability action with high advantage would reduce policy entropy, while a
rare action with high advantage would increase policy entropy. Empirical study
shows that, the values of covariance term and entropy differences matched exactly,
supporting the theoretical conclusion. Moreover, the covariance term stays mostly
positive throughout training, further explaining why policy entropy would decrease
monotonically. Through understanding the mechanism behind entropy dynamics,
we motivate to control entropy by restricting the update of high-covariance tokens.
Specifically, we propose two simple yet effective techniques, namely Clip-Cov
and KL-Cov, which clip and apply KL penalty to tokens with high covariances
respectively. Experiments show that these methods encourage exploration, thus
helping policy escape entropy collapse and achieve better downstream performance.

1 INTRODUCTION

Applied to recent reasoning-centric large language models (LLMs), reinforcement learning (RL)
escapes narrow, task-specific confines: the models’ sweeping generalization introduces a new axis that
vastly enlarges the exploratory landscape. This shift has yielded impressive reasoning gains (OpenAI,
2024a; DeepSeek-AI et al., 2025), yet the dilemma persists—scaling training compute for learning
from experience (reinforcement learning) (Silver & Sutton, 2025) rather than imitation learning
(pre-training and finetuning) remains non-trivial. Among the challenges emerges a major obstacle,
the diminishment of policy entropy.

The core challenge in RL is the exploitation-exploration trade-off (Sutton, 1988), balancing the reuse
of proven strategies against the search for novel ones. For exploration, a key concept quantifying
the exploratory potential is policy entropy, which measures the uncertainty in the policy’s action
selection process. In RL literature, the ability to mitigate the decline of policy entropy is regarded as
essential to most algorithms (Williams & Peng, 1991; Williams, 1992; Eysenbach & Levine, 2021),
and policy entropy has been intensively steered and actively controlled via regularization (Ziebart
et al., 2008; Schulman et al., 2017b; Haarnoja et al., 2018).

For LLMs, while the typical behavior of policy entropy remains largely understudied (Yu et al., 2025;
He et al., 2025), we find an intriguing and consistent pattern from broad experiments: Policy entropy
sharply declines to near 0 in a few training steps, demonstrating that the policy becomes extremely
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Does RL for LLM just Trade Entropy for Performance ?

Performance

Entropy 

Figure 1: Left: Entropy collapse and performance saturation. Over 95% entropy drop/performance
gains take place at the early stage of RL training. The model then reaches a plateau with little
improvement. Right: The predictable relationship between validation performance and policy entropy.
Without intervention, the policy “trades” entropy for performance exponentially, showing clear
ceilings that hinder further policy enhancement.

certain. Consequently, the inability to explore new paths leads to a performance plateau, where
the validation performance also struggles to improve at the same time. Quantitatively, we further
reveal that, without entropy intervention like entropy loss or KL regularization, the downstream
performance is fully predictable from policy entropy, and the fitted curve is a simple exponential
function R = −a expH + b, as shown in Figure 1. Basically, the policy is trading uncertainty
(entropy) for rewards (Yue et al., 2025) in a predictable manner.

This empirical law results in two critical corollaries: (1) Like Scaling Laws (Kaplan et al., 2020;
Hoffmann et al., 2022), the exploitation-exploration curve is predetermined given the policy model
and training data. This allows us to predict policy performance at the early stage of RL and predict the
performance of large models given small models (OpenAI, 2024b) (Sec. 2.4). (2) More importantly,
this equation indicates that the upper bound of the policy performance is also deterministic with the
exhaustion of policy entropy (H = 0, R = −a + b), so the return of scaling training compute for
RL could be marginal. What’s worse, naively applying entropy regularization methods are proven
ineffective (App. E). In short, scalable RL calls for breaking the entropy bottleneck.

Solving this issue requires principled understandings of the mechanisms behind this observation,
i.e., why policy entropy decreases monotonically? To this end, we analyze the dynamics of policy
entropy both theoretically and empirically. Our key findings highlight that, for softmax policy like
LLMs, the entropy change between two consecutive steps is proportional to the covariance of the
log-probability and corresponding logit change for an action (Liu, 2025). Furthermore, under Policy
Gradient (Williams, 1992)-like and Natural Policy Gradient (Kakade, 2001)-like algorithms, the
logit difference is proportional to the action advantage. Intuitively, an action with high advantage
and high probability would reduce policy entropy, while a rare action with a high advantage would
increase entropy. This theoretical conclusion is validated by experimental results. At the early stage,
the policy demonstrates high covariance on training data, implicating the policy’s confidence is
well-calibrated (Kadavath et al., 2022), thus can safely exploit trajectories with high confidence,
strengthening belief and minimize entropy (Zuo et al., 2025; Zhang et al., 2025; Agarwal et al., 2025).
As training progresses, the covariance gradually declines but still maintains positive, continually
dragging policy entropy even lower.

The analysis of entropy dynamics demonstrates that, the high covariance is detrimental to scalable RL,
which provides us guidelines about uplifting policy entropy—limit the step sizes of high-covariance
tokens. We thereby motivate to design two corresponding strategies aiming at entropy control, namely
Clip-Cov and KL-Cov, to replace the clip and PPO-KL methods in surrogate loss (Schulman
et al., 2017b). Clip-Cov randomly selects a small portion of tokens with positive covariances
and detach their gradients. KL-Cov, on the other hand, applies KL penalty on tokens with the
largest covariances. Experiment results show that, we can actively control policy entropy by tuning
threshold parameters. Consequently, the policy model escapes the low entropy trap and achieves
better performance on mathematical reasoning.
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2 THE PREDICTABLE “COLLAPSE” OF POLICY ENTROPY

TAKEAWAY

Without intervention, e.g., entropy or KL regularization, policy entropy is traded for reward
predictably during RL. The empirical quantitative relationship between validation reward R
and policy entropy H can be expressed as R = −a exp(H) + b.

In this section, we manage to answer the research question: What is the typical behavior of policy
entropy during RL for LLMs? Through extensive experiments, we observe a consistent “entropy
collapse” phenomenon (Sec. 2.3), and further extend it to an empirically predictable relation between
policy entropy and validation performance (Sec. 2.4).

2.1 PRELIMINARIES

We consider tuning LLMs with RL on verifiable tasks, such as math and coding, to avoid reward
hacking. Given an input prompt x, an LLM πθ autoregressively generates an output sequence
y, which consists of T tokens {y1, · · · , yt, · · · , yT }. We use RL to optimize the LLM policy to
maximize the cumulative rewards r received from the verifier:

max
θ

J(θ) := Ex∼D,y∼πθ(x) [r(y)] (1)

where D is the training distribution.

To optimize the objective function, it is a common practice to use the Policy Gradient algo-
rithm (Williams, 1992) for gradient estimation:

∇θJ(θ) = Ex∼D,y∼πθ(x)

[
T∑

t=0

∇θ log πθ(yt|y<t)At

]
. (2)

Here At is the advantage of current action and is implemented differently across RL algorithms. If
we only have rewards for the full trajectory, the vanilla REINFORCE algorithm (Williams, 1992)
directly defines At = r(y). To reduce variance, GRPO (Shao et al., 2024) and RLOO (Kool et al.,
2019; Ahmadian et al., 2024) further incorporates group-wise normalization. For example, GRPO
samples K responses for each prompt and estimates the advantage as follows:

At =
r (y)− mean

(
r
(
y1:K

))
std (r (y1:K))

. (3)

To handle off-policy data and constrain the policy update size, PPO (Schulman et al., 2017b) proposed
to optimize a surrogate loss.

L(θ) =Et

[
min

(
πθ(yt|y<t)

πθold(yt|y<t)
At, clip

( πθ(yt|y<t)

πθold(yt|y<t)
, 1− ϵ, 1 + ϵ

)
At

)]
(4)

Policy Entropy. Policy entropy quantifies the predictability or randomness inherent in the actions
selected by an agent. Given policy model πθ, training dataset D, we measure the average token-level
entropy of the policy model on training data, which is defined as follows:

H(πθ,D) = −ED,πθ
[log πθ(yt|y<t)] = − 1

|D|
∑
x∈D

1

|y|

|y|∑
t=1

Eyt∼πθ
[log πθ(yt|y<t, x)] (5)

Such entropy quantifies the uncertainty level of the policy on current prompts and is widely adopted
in maximum entropy RL as a regularization term (Ziebart et al., 2008; Haarnoja et al., 2017; 2018).
In practice, we calculate the entropy for each batch sampled from the training dataset.

2.2 EXPERIMENT SETTINGS

We adopt a unified protocol covering 4 model families and 11 base models (0.5-32B parameters),
verifiable task domains of math and coding evaluated on 8 public benchmarks, and 4 RL algorithms.

3
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We start RL from the base models following the “Zero” setting (DeepSeek-AI et al., 2025) with the
veRL framework (Sheng et al., 2024). For RL algorithms, we employ GRPO (Shao et al., 2024),
REINFORCE++ (Hu, 2025), and PRIME (Cui et al., 2025). The details of the used models, datasets,
and hyperparameters can be found in Appendix B.1.

2.3 A FIRST GLANCE: ENTROPY COLLAPSE AND PERFORMANCE SATURATION

27% 

76%  
93%  

6%  

Figure 2: Avg. entropy consumption and per-
formance gain (%) in 11 RL runs with differ-
ent models.

Across all experiments, we observe a consistent pat-
tern: policy entropy drops sharply at the beginning of
training, declining monotonically toward zero. Mean-
while, the policy’s validation performance presents
an inverse trend, then plateaus.

Figure 2 illustrates the average normalized en-
tropy consumption/performance gain in percentage
throughout 2400-gradient step RL runs with 11 dif-
ferent models. We can see that 73% of the entropy
consumption and 76% of the performance gain oc-
curred in just the first 200 gradient steps (1/12 of
training), and the first 800 (1/3) steps account for
over 93% performance gains together with 94% en-
tropy losses. This means that over 2/3 of the training
steps yielded marginal returns.

2.4 FITTING THE CURVES BETWEEN ENTROPY AND PERFORMANCE
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Figure 3: Fitting curves between policy entropy and validation performance on math task.

Motivated by the observed entropy collapse phenomenon, we conduct a more detailed quantitative
analysis. Through extensive experiments, we find the downstream performance (accuracy) and
entropy can be fitted in the exponential function:

R = −a exp(H) + b, (6)

where R represents the validation performance and H is entropy. The fitting results of different model
families with GRPO are presented in Figure 3 and 7. It is worth noting that, the fitted curves precisely
describe the performance-entropy relationships over all conducted experiments, with models spanning
all kinds of sizes, families, and different tasks. Only 2 coefficients are needed for fitting the curve of
over 200 data points, showing a high degree of regularity. Detailed results on more tasks, datasets,
and algorithms can be found in App. B.2. We further analyzed the predictability in App. B.3.

2.5 DISCUSSION

The Predictability. To now, we have established predictability between (1) policy performance and
entropy; (2) coefficients in (1) and model sizes. Such predictability reminds us of Scaling Laws for
language models (Kaplan et al., 2020; Hoffmann et al., 2022) and RLHF (Gao et al., 2022). It seems
that, RL with LLMs keeps trading entropy for reward throughout training. However, other works that
adopt different policy models (Luo et al., 2025) or use off-policy data (Yan et al., 2025) observed
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distinct entropy patterns. Therefore, this predictability is not arguably universal, and we call for a
more in-depth analysis of the entropy behavior under different conditions.

The Ceiling. There is an intensive discussion questioning whether RL merely elicits the latent behav-
iors that were already learned in pre-training, thus cannot break the ceiling of the base model (Yue
et al., 2025). Our results conditionally support this claim that, if policy entropy diminishes, the ceiling
not only exists, but also can be predicted. However, we argue that it is not the intrinsic limitation of
RL that sets up the ceiling, but the entropy mechanism of LLMs leads to the result.

3 DYNAMICS ANALYSIS OF POLICY ENTROPY

TAKEAWAY

For softmax policy including LLMs, the change of policy entropy is determined by the
covariance between the log-probability and the change in logits of actions. For Policy
Gradient and Natural Policy Gradient, the change in logits is proportional to the action
advantage, meaning that a high covariance leads to a quick decrease of policy entropy, as
observed in RL for LLM reasoning.

We have unveiled that the entropy collapse issue will greatly obstacle RL scaling for LLM reasoning.
To solve it, we need a more principled understanding of the dynamics of policy entropy, i.e., when will
entropy decrease and when will entropy increase. In this section, we focus on the entropy dynamics,
especially the step-wise entropy difference H(πk+1

θ )−H(πk
θ ).

3.1 ENTROPY DYNAMICS OF SOFTMAX POLICY

For step k, we try to calculate the entropy difference before and after one step parameter update, i.e.,
H(πk+1

θ ) and H(πk
θ ). For this, we first consider an intrinsic property of LLMs that they are softmax

policies, which means the policies are parameterized by πθ(a|s) = exp(zs,a)∑
a′∈A exp(zs,a′ )

. Here s ∼ dπθ

and a ∼ πk
θ (·|s) represent state and action, zs,a is the output logit of action a given state s. For any

softmax policy, we have the following Lemma:

Lemma 1 (Entropy difference of softmax policy) (Proof in Appendix C.2, adapted from Liu
(2025)) Assume that policy πθ is a tabular softmax policy, where each state-action pair (s, a)
is associated with an individual logit parameter zs,a = θs,a, the difference of policy entropy given
state s between two consecutive steps under first-order approximation satisfies

H(πk+1
θ )−H(πk

θ ) ≈ Es∼dπθ

[
H(πk+1

θ |s)−H(πk
θ |s)

]
≈ Es∼dπθ

[
−Cova∼πk

θ (·|s)
(
log πk

θ (a|s), zk+1
s,a − zks,a

)]
Here zk+1

s,a − zks,a is the change in the output logits between step k and step k + 1. This Lemma
indicates that, the change of policy entropy approximately equals the negative covariance between
log-probability of the action and the change of logits. That is to say, when an action a receives a
high probability from the policy before updating, and its corresponding logit is also increasing after
updating, then it will decrease the policy entropy.

3.2 ENTROPY DYNAMICS UNDER POLICY GRADIENT / NATURAL POLICY GRADIENT

From Lemma 1, the step-wise difference of output logits zk+1
s,a −zks,a contributes to change of entropy,

which is related with the specific training algorithm in use. Here, we further derive the logits change
under Policy Gradient (Williams, 1992) and Natural Policy Gradient (Kakade, 2001) algorithms.

Assuming that we are updating the actor policy via Policy Gradient, then zk+1
s,a − zks,a = −η ·∇zJ(θ),

where J(θ) denotes the objective function and η denote the learning rate. ∇zJ(θ) is calculated with
Eq. 2, we have the following proposition:

Proposition 1 (Difference of policy logits in vanilla policy gradient) (Proof in Appendix C.3) Let
the actor policy πθ be a tabular softmax policy and updated using Eq. 2 via gradient backtracking
with learning rate η, the difference of zs,a between two consecutive steps satisfies

zk+1
s,a − zks,a = η πθ(a | s) A(s, a)

5
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Applying Proposition 1 to Lemma 1, we can further describe entropy change with:

Theorem 1 (Entropy change under policy gradient) Let the actor policy πθ be a tabular softmax
policy, and πθ be updated via vanilla policy gradient, the difference of policy entropy given state s
between two consecutive steps satisfies

H(πk+1
θ |s)−H(πk

θ |s) ≈ −η · Cova∼πk
θ (·|s)

(
log πk

θ (a|s) , πk
θ (a|s) ·A(s, a)

)
Theorem 1 reveals how policy entropy changes under the policy gradient method. Intuitively, an
action a receives both high/low probability and high/low advantage would lower the entropy, and
vice versa. Liu (2025) conducted derivation for Natural Policy Gradient.

Theorem 2 (Entropy change under natural policy gradient) (Proof in Appendix C.4) Let the ac-
tor policy πθ be a tabular softmax policy, and πθ is updated via natural policy gradient (Kakade,
2001), the difference of policy entropy given state s between two consecutive steps satisfies

H(πk+1
θ |s)−H(πk

θ |s) ≈ −η · Cova∼πk
θ (·|s)

(
log πk

θ (a|s) , A(s, a)
)

Conclusion. From Theorem 1 and Theorem 2, we obtain the intuitive insight that, in principle, a
strong positive correlation between the action probability P (a) under the current policy and the
corresponding advantage value A(a), on average, leads to a decrease in policy entropy. Conversely,
a negative correlation tends to increase the entropy. This deeper understanding of the dynamics of
policy entropy provides a theoretical foundation for designing practical strategies for entropy control.

3.3 EMPIRICAL VERIFICATION

In this section, we conduct experiments to validate the theoretical conclusion, specifically, Theorem 1.

Settings. We apply GRPO with policy gradient, i.e. on-policy learning without PPO surrogate loss,
on Qwen2.5-7B. In this context, we adopt the bandit setting where the prompt x is the state, and
whole response y is the action. Then the covariance term becomes:

Cova∼πθ(·|s) (log πθ(a | s), πθ(a | s) ·A(s, a)) = Covy∼πθ(·|x) (log πθ(y | x), πθ(y | x) ·A(y,x)) (7)
During training, we calculate the group-wise covariance for each prompt, and average across a batch

of prompts. We further normalize the log-prob by the length of the response.
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Figure 4: Dynamics of policy entropy difference
and covariance during GRPO training. They show
similar trends, as predicted by theory.

Experiment Results. We record two key met-
rics, Cov(·) and H(πθ), across training and
analyse their relationship. According to The-
orem 1, we have −d(H) ∝ Cov(·). As shown
in Figure 4, the empirical curves of −d(H) and
Cov(·) exhibit highly similar dynamics. Early
in training, entropy H decreases rapidly, ac-
companied by a relatively large positive Cov(·).
As training progresses, entropy decay slows
and Cov(·) stabilizes, reflecting convergence
of the policy. Notably, Cov(·) remains positive
throughout training, leading to a persistent en-
tropy decrease and finally collapse.

4 ENTROPY CONTROL BY COVARIANCE REGULARIZATION

TAKEAWAY

We can control policy entropy by restricting the update of tokens with high covariances,
e.g., clipping (Clip-Cov) or applying KL penalty (KL-Cov). These simple techniques
prevent policy from entropy collapse thus promoting exploration.

The analysis of entropy dynamics gives us guidelines for entropy control, regularizing the update
step size of high-covariance actions. In this section, we introduce two simple yet effective techniques,
KL-Cov and Clip-Cov, that control entropy precisely and achieve better downstream performance.
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4.1 SUPPRESSING TOKENS WITH HIGH COVARIANCES

Table 1: Covariance distribu-
tion of Qwen2.5-7B in train-
ing step 1.

Group Mean Value
Top 0.02% 5.654
Top 0.2% 3.112
Top 2% 1.385
Top 20% 0.351
All 0.003

To get the entropy controlled, we conduct experiments on the com-
mon approaches in the RL literature, however, results show that
those approaches struggles to solve the entropy bottleneck of LLMs
(See Appendix E). The unsuccessful attempt to incorporate entropy
regularization into the policy loss drives us to seek a more fundamen-
tal approach to control entropy. As previously elaborated, the policy
entropy dynamic is closely connected with the covariance between
action probability and advantage. Meanwhile, as shown in Table 1,
a small portion of tokens exhibit extremely high covariance, far ex-
ceeding the average. That is saying that these outlier tokens take a
dominant part in triggering the entropy collapse. To mitigate their
adverse effect, we aim to impose constraints on their contribution to the policy loss. In RL literature,
two variants of PPO employ either clipping or KL penalty to constrain the policy updates (Schulman
et al., 2017b), preventing overly aggressive changes. Drawing inspiration from these approaches, we
propose two simple but effective covariance-aware methods Clip-Cov and KL-Cov.

Natural policy gradient is rarely used in post-training of LLMs for its time-consuming second-order
optimization. But its introduction of target function with KL distance as constraint shares similarity
with TRPO (Schulman et al., 2015) and PPO. Thus, we apply Theorem 2 into RL training.

Supposing a batch of N rollout tokens, πθ(yi) denotes the output probability of the policy model
for token yi given its corresponding prefix. According to Theorem 2, we firstly define token-wise
centered cross-product between log probability and advantage as:

Cov(yi) = (log πθ(yi)−
1

N

N∑
j=1

log πθ(yj)) · (A(yi)−
1

N

N∑
j=1

A(yj)) (8)

The Cov is the covariance of each token in N . Its expectation is the covariance in Theorem 2.

Clip-Cov. In the Clip-Cov strategy, we clip a small fraction of high-covariance tokens out from
policy gradient updates as follows. With Eq. 8 calculated, we randomly select k ·N of high-covariance
tokens according to the covariance value:

Iclip = I ∼ Uniform (i | Cov(yi) ∈ [ωlow, ωhigh]}, ⌊k ·N⌋) (9)

Where I is short for index, k denotes the clip ratio. ωlow, ωhigh are two predefined bounds for
covariance, respectively. Both are set much higher than the average covariance (>500×). Finally,
tokens with the chosen indexes will be detached from the policy gradient, which is:

LClip-Cov(θ) =

{
Et

[
πθ(yt|y<t)

πθold
(yt|y<t)

At

]
, t /∈ Iclip

0, t ∈ Iclip

(10)

where the t is the t-th token in one rollout response and each t uniquely corresponds to a index i.

KL-Cov. The KL-Cov strategy is simpler. Specifically, similar to Clip-Cov, we first compute the
covariance as in Eq. 8. Then, we rank and select tokens within the top-k proportion of covariance:

IKL = {i | Rank(Cov(yi)) ≤ k ·N}, (11)

The k here denotes the proportion of tokens that will be subjected to the KL penalty and k ≪ 1. At
last, we impose the KL penalty (KL divergence between the current policy and the rollout policy) on
the selected tokens, the policy loss is computed as:

LKL-Cov(θ) =

Et

[
πθ(yt|y<t)

πθold
(yt|y<t)

At

]
, t /∈ IKL

Et

[
πθ(yt|y<t)

πθold
(yt|y<t)

At − βDKL(πθold(yt|y<t)||πθ(yt|y<t))
]
, t ∈ IKL

(12)

Where β is the coef. to control the weight for KL penalty. Pseudo-code is presented in Algorithm 1.

7
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Figure 5: Training Qwen2.5-7B (Top) / Qwen2.5-32B (bottom) with GRPO with/without our methods.
Left: Entropy dynamics. Our methods uplift policy entropy from collapse, enabling sustained
exploration. Middle: Our methods also incentivize longer responses compared with vanilla GRPO.
Right: Our methods consistently outperform baselines on testsets.

Table 2: Detailed results of GRPO, GRPO with clip-higher technique and our methods. For AIME
and AMC, the results are avg.@32. Bold denotes the best results.

Method AIME24 AIME25 AMC MATH-500 OMNI-MATH OlympiadBench Minerva Avg.
Llama3.1-8B

GRPO 0.3 0.4 7.3 25.8 7.2 5.6 9.2 6.8
w. Clip-higher 0.0 0.0 8.5 23.0 7.3 4.7 12.1 6.9
w. Clip-Cov 0.4 0.3 8.9 23.4 8.6 7.3 12.5 7.8
w. KL-Cov 0.4 0.7 9.1 23.0 7.3 4.1 13.2 7.2

Qwen2.5-7B

GRPO 21.2 9.6 58.7 78.8 27.9 40.7 36.7 38.6
w. Clip-higher 18.1 11.5 56.6 79.2 29.8 43.3 40.4 38.8
w. CLIP-Cov 22.1 15.8 58.2 80.4 30.5 44.1 41.1 40.4
w. KL-Cov 22.6 12.9 61.4 80.8 29.1 42.6 38.2 40.6

Qwen2.5-32B

GRPO 21.8 16.2 69.7 84.2 35.2 43.6 45.5 45.8
w. Clip-higher 35.6 22.3 69.5 77.2 35.1 42.5 43.0 47.2
w. CLIP-Cov 32.3 22.7 67.2 87.0 42.0 57.2 46.0 50.3
w. KL-Cov 36.8 30.8 74.5 84.6 39.1 49.0 46.3 52.2

Qwen3-8B

GRPO 31.7 22.9 65.3 87.6 39.5 54.6 45.2 48.7
w. Clip-higher 33.8 27.1 73.1 89.0 39.9 52.2 46.3 51.8
w. Clip-Cov 31.9 24.5 71.8 90.0 43.7 60.4 46.7 52.8
w. KL-Cov 36.7 26.5 72.4 87.8 43.7 58.4 47.4 53.5

4.2 EXPERIMENTS

Settings. Because of the capability differences across base models, we train Llama3.1-8B with
GSM8K, while other models are trained using the DAPO-MATH dataset. For baselines, we compare
the original GRPO, and GRPO with Clip-higher, which tunes the upper threshold ϵ in PPO loss to
0.28 (Yu et al., 2025). More details about the training hyperparameters can be found in Appendix F.2.

Results and Analysis. We present the experimental results in Table 2, one can see that our two
approaches both achieve non-trivial improvements across all benchmarks. Compared to GRPO, our
method outperforms it by 2.0% on average for the 7B model and by 6.4% for the 32B model.

As shown in Figure 5, our method is able to maintain a considerably higher level of entropy throughout
training. For example, when the baseline’s entropy reaches a plateau and can no longer be consumed,
the KL-Cov method still sustains an entropy level over 10× higher. Meanwhile, the response length
of the policy model steadily increases, and its performance on the test set consistently surpasses
that of the baseline. This indicates that our policy model is able to explore more “freely” during
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training. Compared to the clip-higher technique, although it can also increase entropy and lead
to performance improvement in the early stage of training, it gradually becomes unstable, with
performance saturating and declining. In contrast, our method obtains more stable entropy curves
throughout training, ultimately achieving non-trivial improvements over the baselines.

Moreover, we observe that our method yields more substantial gains on Qwen2.5-32B. Specifically, we
achieve improvements of 15.0% and 14.6% compared to GRPO on the most challenging benchmarks,
AIME24 and AIME25, respectively. We infer that this is because the 32B model possesses greater
potential from pretraining compared to the 7B model. Once the “exploration curse” caused by entropy
collapse is lifted, the larger model is able to explore more diverse and higher-quality policies.
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Figure 6: Differences in entropy dynamics of Qwen2.5-7B under varying KL coefficients and Clip
ratios, evaluated Clip-Cov (left) and KL-Cov (right) settings, respectively.

4.3 GET POLICY ENTROPY CONTROLLED

We also evaluate the capability of our methods in controlling policy entropy as shown in Figure 6.
For Clip-Cov, the level of policy entropy can be adjusted by tuning the ratio of clipped samples,
where more clipped samples result in higher entropy. For KL-Cov, we can modulate the entropy by
controlling the KL coefficient β, i.e., the weight of the KL penalty. Specifically, a larger coefficient
brings higher entropy. Comparing them, KL-Cov reaches stabler entropy curves than Clip-Cov,
which might be preferable for stabilizing the training process.

4.4 DISCUSSION

Connection with Clip-higher. Our main baseline, clip-higher (Yu et al., 2025), can also incentivize
higher policy entropy. In fact, this technique shares similar functionality with our methods. By raising
the upper threshold of the importance sampling ratio, clip-higher includes more low-probability
tokens for policy updates. Also, the upper threshold only affects the tokens with positive advantages,
which means clip-higher is actually adding more low-covariance (low probability, high advantage,
with average covariance of ∼-0.03) tokens in gradient calculation. We take a step further by directly
using the covariance as the threshold, thus controlling the entropy more precisely.

The Philosophy of Entropy Control. In experiments, we find that the policy entropy is sensitive
to hyperparameter settings. Specifically, our methods only interfere with a very small fraction of
tokens (10−4 to 10−3), yet totally change the entropy curve. This means several “pivotal” tokens are
crucial for the entropy of LLMs. However, we don’t observe a relationship between the intervened
entropy and model performance. It still remains open whether there exists an optimal entropy value
to balance the exploration and training stability.

5 CONCLUSION

In this study, we try to address the challenge of policy entropy collapse in reinforcement learning
for large language model reasoning. We empirically demonstrate that performance gains are often
achieved by sacrificing exploratory capacity, which in turn imposes a foreseeable limit on improve-
ment. To gain a deeper understanding, we conduct a theoretical investigation into entropy dynamics
and introduce two simple regularization techniques, Clip-Cov and KL-Cov, to directly manage
high-covariance tokens and thereby counteract entropy collapse. Looking further, RL has been
identified as the next scaling axis after pre-training. However, scaling computing for RL requires
more than entropy minimization. We hope this research could provide valuable insights into the role
of entropy, fostering RL to reach a higher level of intelligence.
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REPRODUCIBILITY STATEMENT

We have provided sufficient details to for reproduction, including algorithm pseudocode in Algo-
rithm 1, experiment configurations and hyperparameters in Section 2, Section 4 and Appendix. We
have uploaded our code in Supplementary Material.
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A RELATED WORK

Policy Entropy in Reinforcement Learning. Stemmed in information theory, entropy provides a
principled mechanism to manage the exploitation-exploration tradeoff. Entropy-regularized rein-
forcement learning, also referred as maximum entropy RL (Ziebart et al., 2008; Toussaint, 2009),
adopts a regularization term in reward to encourage high-entropy actions. This regularization term
was widely-inherited in RL algorithms (Mnih et al., 2015; 2016; Schulman et al., 2017a;b; Haarnoja
et al., 2017; 2018), and is viewed as a necessity. On the other hand, in RL for LLMs, there exist
different opinions on whether entropy regularization should be preserved (Ouyang et al., 2022; Shao
et al., 2024; Hu et al., 2025; He et al., 2025). Our experiments indicate that, it is necessary to control
entropy, but we can design better objectives than entropy loss.

Predictability of Reinforcement Learning for Reasoning Language Models. The first part of this
work reveals the predictability of RL for LLM reasoning. The development of LLMs is largely guided
by the neural scaling laws, which bridge model performances with computational budgets, model
sizes, and the amount of training data (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al.,
2022). With scaling experiments on smaller models, the loss and task performance of larger models
could be accurately predicted. In RL, Hilton et al. (2023); Rybkin et al. (2025) studied the scaling
behavior of policy performances versus computing on non-LLM models, but the predictability of RL
for LLMs has yet to be investigated. Gao et al. (2022) proposed to predict reward scores from KL
divergence in RL on LLMs, which was used for modeling overoptimization effect of a proxy reward
model. This work aligns with our conclusion considering that, 1) the verifiable reward eliminates the
gap between the proxy reward model and ground truth; 2) the similarity between KL divergence and
policy entropy.

Reinforcement Learning for LLMs. Reinforcement learning has emerged as a major approach for
LLM post-training (Ouyang et al., 2022; Meta, 2024; Team et al., 2023; Qwen et al., 2025; Jiang
et al., 2023). Recent works have achieved further breakthrough on enhancing the reasoning capability
of LLMs using RL with verifiable rewards (OpenAI, 2024a; Lambert et al., 2024; DeepSeek-AI et al.,
2025; Team et al., 2025), drawing great attention in research community (Cui et al., 2025; Liu et al.,
2025; Hu et al., 2025; He et al., 2025). However, there still lacks systematic study on the underlying
mechanisms of RL for LLMs, which constitutes the primary goal of our work.

B DETAILED RESULTS AND DISCUSSION OF THE FITTING EXPERIMENTS

B.1 EXPERIMENT SETTINGS

Models. The models adopted in our experiments span 4 model families and 11 widely used open-
source base models. Specifically, these consist of the Qwen2.5 family (Qwen2.5-0.5B, 1.5B, 3B, 7B,
32B) (Qwen et al., 2025), the Mistral family (Mistral-7B-v0.3 (Jiang et al., 2023), Mistral-Nemo-
Base-2407 (MistralAI-NeMo), Mistral-Small-3.1-24B-Base-2501 (MistralAI-Small-3)), the LLaMA
family (LLaMA3.2-3B (Meta-Llama-3.2), LLaMA3.1-8B (Meta, 2024)), and DeepSeek-Math-7B-
Base (Shao et al., 2024)).

Tasks and Datasets. We primarily focus on math and coding problems with verifiable rewards. Due
to inherent differences in the initial reasoning abilities between model families, we train models using
data of different difficulty levels to stabilize the RL process. Meanwhile, we use the same data during
downstream performance evaluation to maintain consistency. For math tasks, the evaluation datasets
include MATH500 (Hendrycks et al., 2021), AIME 2024 (Li et al., 2024), AMC (Li et al., 2024),
OlympiadBench (He et al., 2024), and OMNI-MATH (Gao et al., 2024). For code tasks, we split the
testset of Eurus-2-RL-Code (Cui et al., 2025) and KodCode (Xu et al., 2025).

Specifically, Due to inherent differences in the initial reasoning abilities between model families,
we train models using data of different difficulty levels to stabilize the RL process Specifically, for
math tasks, we train the Qwen family and Mistral-24B model using Eurus-2-RL-Math (Cui et al.,
2025), while other model families are trained using GSM8K (Cobbe et al., 2021). The downstream
performance is evaluated using MATH500 (Hendrycks et al., 2021), AIME 2024 (Li et al., 2024),
AMC (Li et al., 2024), OlympiadBench (He et al., 2024), and OMNI-MATH (Gao et al., 2024). For
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code tasks, we train the Qwen family and Mistral-24B model using AceCode (Zeng et al., 2025),
Eurus-2-RL-Code (Cui et al., 2025), and Kodcode1.

Hyperparameters. For hyperparameters, we use a learning rate of 5×10−7 for the policy model and
10−6 for the implicit PRM (Yuan et al., 2025) in PRIME. Both policy and PRMs use a batch size of
256 and a micro-batch size of 128. The rollout stage collects 256 prompts with 8 sampled responses.
By default, we set the reference KL divergence coefficient to 0. The ϵ in policy loss (Equation 4) is
0.2. We filter out prompts that receive all correct or incorrect responses.

B.2 DETAILED FITTING RESULTS

Fitting Results on Coding Task. We present the fitting results of coding task in Figure 7.
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Figure 7: Fitting curves between policy entropy and validation performance in coding task. We
conduct validation every 4 rollout steps until convergence.

Fitting Results of Different Datasets and Algorithms. In this section, we present more fitting
experiment results. The results of training with different datasets and algorithms are presented at
Figure 8a and Figure 8b, respectively.
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(b) Different algorithms.

Figure 8: Training Qwen2.5-7B with different datasets and algorithms.

Fitting Results of Instruct Models. We also conduct fitting experiments on instruct models, and the
fitting function remains valid in our experiments. We present the fitting results in Figure 9.

B.3 PREDICTING PERFORMANCE FROM POLICY ENTROPY

As we can precisely fit a curve between policy entropy and validation performance, one straightfor-
ward application of this fitting is to predict policy performance at low entropy with observations from
high entropy data points. To verify that the functional form can be applied at the early stage of RL
training, we take a step further by fitting the function within limited training steps and using the fitted
function to predict the final performance.

1We process the data with style instruct and complete into a format that can be handled by unit tests. For the
online-judge style, we removed this portion of the data as it was derived from instruct style data.
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Figure 9: Training Qwen2.5 instruct models on math task.
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Figure 10: Predicting the final performance of Qwen2.5 family with only 15% training steps with the
fitted function. The average RMSE is 0.9% and 1.2% for all predicted steps, 0.5% and 1.9% for final
step performance, respectively.

Take Qwen2.5 family as an example, we fit the function form with coefficients a and b using only
the first 36 training steps. Using this function, we perform an advance prediction for the subsequent
200 training steps. As shown in Figure 10, for the math and coding task, we achieve an average
Root Mean Square Error (RMSE) of 0.9% and 1.2% during prediction, 0.5% and 1.9% for final
performance, respectively. It suggests that the late stage performance of the policy can be estimated
early in training, without the need to run the full RL process. Moreover, we can also obtain the final
performance of the policy when it becomes static. With H = 0, R = −a + b, which is the upper
bound of the policy given the training data.

B.4 UNDERSTANDING THE COEFFICIENTS

The Coefficients are Algorithm-irrelevant. We investigate whether different RL algorithms would
affect the fitted function. Figure 8b plots the fitted curves with GRPO, RLOO, and PRIME. We find
that, although these algorithms apply distinct advantage estimation methods, they do not influence
the fitted entropy-performance function. This indicates that the coefficients a, b reflect some intrinsic
properties of the policy model and training data.

Predicting Coefficients when Scaling Parameters.

Taking a closer look at the coefficients a, b, their meanings are clear. By differentiating the equation,
we derive dR/dH = −a exp(H), which means a is the rate at which the model converts entropy
into downstream performance. Also, as stated above, −a+ b is the maximum validation score the
model can achieve when entropy is fully depleted. Intuitively, a, b should be relevant with model
sizes, where larger models could trade entropy for reward more efficiently, as well as achieve higher
performance.

To validate this, we again adopt Qwen2.5 model family, since they have similar architecture and un-
dergo similar training process. In Figure 11, we plot the model parameter count (without embedding)
versus a, b on math and coding tasks. It is observed that, both a and b vary smoothly with policy
size at a log-linear rate. This log-linear relationship between model sizes and coefficients is also
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(c) Coef. a for code task
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Figure 11: Fitted curves between coefficients and model sizes of Qwen2.5 model family. The model
sizes are parameter counts (B) without embeddings. a, b are obtained from experiments in Sec. 2.4.
We use log-linear function to fit the curve.

observed in Gao et al. (2022). It allows us to extrapolate the coefficients of larger models based on the
training dynamics of smaller models, extending the predictability to the dimension of model sizes. In
other words, it enables us to predict the final performance of larger LMs through RL training without
actually training them, once we train smaller models within the same family and get their coefficients.
Figure 8a also illustrates that the coefficients are related with training data.

C PROOF

C.1 USEFUL LEMMAS

Lemma 2 (Derivative of softmax function)

∂ log πθ(a | s)
∂θs,a′

= 1 {a = a′} − πθ (a
′ | s)

Lemma 3 (Expectation of Advantage function given state s)

E
a∼πθ(·|s)

[Aπθ (s, a)] = E
a∼πθ(·|s)

[Qπθ (s, a)− V πθ (s)]

= E
a∼πθ(·|s)

[Q(s, a)]− E
a∼πθ(·|s)

[V (s)]

= V (s)− V (s)

= 0

C.2 PROOF FOR LEMMA 1

Lemma 1: Let the actor policy πθ be a tabular softmax policy, the difference of information entropy
given state s between two consecutive steps satisfies

H(πk+1
θ |s)−H(πk

θ |s) ≈ −Cova∼πk
θ (·|s)

(
log πk

θ (a|s) , zk+1
s,a − zks,a

)
Proof adapted from (Liu, 2025) .

In tabular softmax policy, each state-action pair (s, a) is associated with an individual logit parameter
zs,a = θs,a. We assume that we are updating logits z via zk+1 = zk + η · ∇J(πθ). Given η is
relatively small, leveraging Taylor’s expansion under first-order approximation, we have

H(πk+1
θ | s) ≈ H(πk

θ | s) + ⟨∇H(πk
θ | s), (zk+1 − zk)⟩

We then to derive what ∇H(πk
θ | s) is, according to the definition of H, we have

∇θH(πθ | s) = ∇θH(πθ(· | s))
= ∇θ(−Ea∼πθ(·|s) [log πθ(a | s)])
= −Ea∼πθ(·|s) [∇θ log πθ(a | s) + log πθ(a | s)∇θ log πθ(a | s)]
= −Ea∼π(·|s) [log πθ(a | s)∇θ log πθ(a | s)]
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Then we have,

⟨∇θH(θk | s), (zk+1 − zk)⟩ = −⟨Ea∼π(·|s) [log πθ(a | s)∇θ log πθ(a | s)] , (θk+1 − θk)⟩
= −Ea∼π(·|s)

[
log πθ(a | s)⟨∇θ logπθ

(a | s), θk+1 − θk⟩
]

= −Ea∼π(·|s)

[
log πθ(a | s)

∑
a′∈A

∂ log πθ(a | s)
∂θs,a′

· (θk+1
s,a′ − θks,a′)

]

= −Ea∼π(·|s)

[
log πθ(a | s)

∑
a′∈A

(1 {a = a′} − π (a′ | s)) · (θk+1
s,a′ − θks,a′)

]

= −Ea∼π(·|s)

[
log πθ(a | s)

[
(θk+1

s,a − θks,a)−
∑
a′∈A

π(a′ | s)(θk+1
s,a′ − θks,a′)

]]
= −Ea∼π(·|s)

[
log πθ(a | s)(θk+1

s,a − θks,a)
]
+ Ea∼π(·|s)

[
log πθ(a | s) · Ea′∼π(·|s)

[
θk+1
s,a′ − θks,a′

]]
= −Ea∼π(·|s)

[
log πθ(a | s)(θk+1

s,a − θks,a)
]
+ Ea∼π(·|s) [log πθ(a | s)] · Ea′∼π(·|s)

[
θk+1
s,a′ − θks,a′

]
= −Cova∼π(·|s)

(
log π(a | s), θk+1 − θk

)
= −Cova∼π(·|s)

(
log π(a | s), zk+1 − zk

)
C.3 PROOF FOR PROPOSITION 1

Proposition 1: Let the actor policy πθ be tabular softmax policy and updated using Eq. 2, the
difference of zs,a between two consecutive steps satisfies

zk+1
s,a − zks,a = η · πθ(a | s) ·A(s, a)

Proof.

In tabular softmax policy, each state-action pair (s, a) is associated with an individual logit parameter
zs,a = θs,a. Through gradient backtracking, zs,a is updated via zk+1

s,a = zks,a + η · ∇θs,aJ(θ),
therefore, we have

zk+1
s,a − zks,a = η · ∇θs,aJ(θ)

= η · E
a′∼πθ(·|s)

[
∇θs,a log πθ(a

′ | s) ·A(s, a′)
]

= η · E
a′∼πθ(·|s)

∂ log πθ(a
′ | s)

∂θs,a︸ ︷︷ ︸
Lemma 2

·A(s, a′)


= η ·

∑
a′∈A

[πθ(a
′ | s) · (1 {a = a′} − πθ(a | s)) ·A(s, a′)]

= η · πθ(a | s) ·

(1− πθ(a | s)) ·A(s, a)−
∑

a′∈A,a′ ̸=a

πθ(a
′ | s) ·A(s, a′)



= η · πθ(a | s) ·

A(s, a)−
∑
a′∈A

πθ(a
′ | s) ·A(s, a′)︸ ︷︷ ︸

Lemma 3


= η · πθ(a | s) · [A(s, a)− 0]

= η · πθ(a | s) ·A(s, a)

C.4 PROOF FOR THEOREM 2

Theorem 2: Let the actor policy πθ be tabular softmax policy, and πθ is updated via natural policy
gradient Kakade (2001), the difference of information entropy given state s between two consecutive
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steps satisfies

H(πk+1
θ |s)−H(πk

θ |s) ≈ −η · Cova∼πk
θ (·|s)

(
log πk

θ (a|s) , A(s, a)
)

Proof.

According to Lemma 1, we first derive the difference of logits z in natural policy gradient. We learn
from (Agarwal et al., 2021) that, when we are updating policy using natural policy gradient via
gradient backtracking, zk+1

s,a − zks,a satisfies,

zk+1
s,a − zks,a = η ·A(s, a)

Applying this into Lemma 1, we have

H(πk+1
θ |s)−H(πk

θ |s) ≈ −η · Cova∼πk
θ (·|s)

(
log πk

θ (a|s) , A(s, a)
)

D ADDITIONAL ANALYSIS OF COVARIANCE DYNAMICS
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Figure 12: Covariance dynamics across difficulty groups. Easier prompts with higher accuracy show
higher covariance, while harder prompts yield smaller covariance.

To further explore the behavior of covariance, we categorize training examples by difficulty using
accuracy. As shown in Figure 12, Cov(·) tends to be smaller in magnitude for harder examples,
aligning with intuition: when the model struggles to learn, high-probability actions are not reliably
associated with higher returns. In contrast, for easier examples, where the model is more confident
and calibrated, Cov(·) is larger, indicating stronger alignment between action probabilities and
advantage estimates.

E EFFECT OF ENTROPY REGULARIZATION
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Figure 13: The policy entropy and validation accuracy of adding entropy loss where Lent = L −
αH(πθ). L is the original loss and α is the coefficient of entropy loss.
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Figure 14: The policy entropy and validation accuracy of adding KL penalty between policy and
reference model where LKL = L+ βDKL(πθ||πref). L is the original loss and β is the coefficient of
KL loss.

A common approach in the RL literature to control policy entropy is to apply entropy loss (Schulman
et al., 2017b) or KL penalty. We conduct experiments to see whether it is effective for LLMs.

Figure 13 and Figure 14 present the results. It is shown that entropy loss is highly sensitive to
coefficients, and it does not outperform other baselines. Despite the reference KL achieves stable
entropy values, it fails to improve policy and instead leads to a degradation in performance. Therefore,
naively adopting entropy regularization techniques from conventional RL struggles to solve the
entropy bottleneck of LLMs. These regularization terms are either hyper-parameter sensitive (He
et al., 2025) or degrade policy performance. Therefore, most recent works do not include them as
well (Cui et al., 2025; Hu et al., 2025; Liu et al., 2025; Yu et al., 2025).

F MORE DETAILS OF THE PROPOSED METHODS

In this section, we present more details of training with our proposed Clip-Cov and KL-Cov,
including the pseudo code and the training hyperparameters.

F.1 PSEUDO CODE OF THE PROPOSED METHODS

F.2 TRAINING HYPERPARAMETERS

In each rollout step, we sample 8 responses per prompt for a batch of 256 prompts using a temperature
of 1, and subsequently perform 8 policy updates on the collected responses. We also filter out the
prompts with all-correct/incorrect responses. The test datasets include MATH500, AIME 2024,
AIME 2025 (Li et al., 2024), AMC, OMNI-MATH, OlympiadBench, and Minerva (Lewkowycz et al.,
2022). During evaluation, we set the rollout temperature to 0.6 for AIME and AMC, while using
greedy decoding for all other test sets. In Clip-Cov, the clip ratio r is 2×10−4, with ωlow and ωhigh

equals 1 and 5, respectively. For KL-Cov, the k is set as 2× 10−3 and 2× 10−4 for Qwen2.5-7B
and 32B, respectively, the KL coefficient β is set as 1. The max generation length is 8192.
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def compute_policy_loss(old_log_prob, log_prob, advantages,
select_ratio, method, **args):
ratio = exp(log_prob - old_log_prob)
pg_losses1 = -ratio * advantages

+ # calculate token wise centered cross - product
+ covs = (log_prob - log_prob.mean()) * (advantages - advantages.

mean())
+ select_num = int(select_ratio * len(pg_losses1))

if method == "clip_cov":
pg_losses2 = -clip(ratio, args["clip_range_lb"], args["

clip_range_ub"]) * advantages

+ # randomly select index to be detached
+ clip_idx = random_select(covs[covs > args["cov_lb"] & covs <

args["cov_ub"]], num=select_num)
+ pg_losses1[clip_idx].detach_()
+ pg_losses2[clip_idx].detach_()

pg_loss = maximum(pg_losses1, pg_losses2).mean()

if method == "kl_cov":
kl_coef = args["kl_coef"]
kl_penalty = (log_prob - old_log_prob).abs()

- pg_losses = pg_losses1 + kl_coef * kl_penalty

+ # find out index with highest conviriance
+ select_idx = topk(covs, k=select_num, largest=True)
+ # apply KL penalty of these samples
+ pg_losses1[select_idx] += kl_coef * kl_penalty[select_idx]

pg_loss = pg_losses1.mean()

return pg_loss

Algorithm 1: The pseudo-code of the policy loss computation with Clip-Cov and KL-Cov. The
implementation only need to modify several lines of code.
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