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ABSTRACT

In this paper, we present a hybrid X-shaped vision Transformer, named Xformer,
which performs notably on image denoising tasks. We explore strengthening
the global representation of tokens from different scopes. In detail, we adopt
two types of Transformer blocks. The spatial-wise Transformer block performs
fine-grained local patches interactions across tokens defined by spatial dimen-
sion. The channel-wise Transformer block performs direct global context in-
teractions across tokens defined by channel dimension. Based on the concur-
rent network structure, we design two branches to conduct these two interac-
tion fashions. Within each branch, we employ an encoder-decoder architecture
to capture multi-scale features. Besides, we propose the Bidirectional Connection
Unit (BCU) to couple the learned representations from these two branches while
providing enhanced information fusion. The joint designs make our Xformer
powerful to conduct global information modeling in both spatial and channel
dimensions. Extensive experiments show that Xformer, under the comparable
model complexity, achieves state-of-the-art performance on the synthetic and real-
world image denoising tasks. We also provide code and models at https:
//github.com/gladzhang/Xformer.

1 INTRODUCTION

As a fundamental vision task, image denoising aims to recover the high-quality image from its noisy
counterpart. It has been a very challenging problem as the denoising process is hard to distinguish
the tiny textures and details from the noise. Recently, deep convolutional neural networks (CNNs)
have shown great power to solve this inverse problem (Zhang et al., 2017a; 2020; Tian et al., 2020;
Zhang et al., 2021a; Hu et al., 2021). With the help of convolution operations, deep features can be
extracted to provide powerful image representations. However, the disadvantages of convolution are
also obvious. Due to the poor receptive field scaling, CNN has limited ability to capture long-range
dependencies among visual elements. Moreover, the convolution filters are parameter-dependent
and content-independent and thus experience difficulty to show flexibility for the dynamic inputs. To
address the above shortcomings, several recent works investigate the self-attention (SA) mechanism
to replace the convolution and build the Transformer-based networks (Liang et al., 2021; Chen et al.,
2021; Zamir et al., 2022; Wang et al., 2022; Lee et al., 2022).

Transformer has shown state-of-the-art performance on high-level vision tasks (Xu et al., 2021;
Ali et al., 2021; Zhang & Yang, 2021; Liu et al., 2021; Chu et al., 2021; Wang et al., 2021;
Xie et al., 2021). The SA mechanism has great power to capture content-dependent global rep-
resentations while modeling long-distance relationships. Despite of the growing computational
cost, researchers are investigating the employment of Transformer in solving low-level vision
problems (Liang et al., 2021; Chen et al., 2021). Liang et al. (2021) proposed SwinIR based
on Swin Transformer (Liu et al., 2021) to utilize spatial-wise window-based SA blocks. The
tokens are extracted from a square location. Zamir et al. (2022) proposed Restormer to ap-
ply SA across channel dimension rather than the spatial dimension. It is demonstrated that the
channel-wise SA is able to model global connectivity. For further analysis, these two types of
SA mechanisms are considered to focus on different respects of global information modeling.
In detail, the spatial-wise SA is good at capturing local patch-level information and modeling
fine-detailed spatial features. On the other hand, the channel-wise SA is capable of capturing
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Figure 1: Architecture of our proposed Xformer. The modules include spatial-wise Transformer
block (STB), channel-wise Transformer block (CTB), and bidirectional connection unit (BCU).

global channel-level information and modeling specific channel features. Especially, both types
of information modeling are important for enhancing representation learning in Transformer.

Urban100: img 008

HQ Noisy (σ=50) RDN

SwinIR Restormer Xformer (ours)

Figure 2: Visual examples for Gaussian color im-
age denoising with noise level σ=50 on Urban100.

Therefore, we explore adopting spatial-wise SA
and channel-wise SA together in this paper.
It remains challenging as there are gaps be-
tween these two types of SA mechanisms. We
consider designing a concurrent network with
dual branches. Similar parallel ideas have also
been investigated for other visual tasks in recent
years (Chen et al., 2022; Pan et al., 2022; Peng
et al., 2021). In special, the concurrent structure is beneficial for the network to build direct in-
teractions between different branches. Furthermore, we apply spatial-wise Transformer block and
channel-wise Transformer block in respective branch. Following previous works (Yue et al., 2020;
Cheng et al., 2021; Zamir et al., 2021; 2022), we employ an encoder-decoder structure within each
branch to obtain multi-scale features. In short, the spatial-wise branch can perform fine-grained
local patches interactions across spatial-dimension tokens. The channel-wise branch can perform
direct global context interactions across channel-dimension tokens.

For further investigation, the concurrent network enables dual branches to model patch-level and
channel-level information respectively. However, there are still some limitations. The direct con-
catenating operation in the end fails to effectively use these two types of features. In this way, each
branch cannot capture information from different levels. Therefore, we propose the Bidirectional
Connection Unit (BCU) as the bridge between two branches, which provides information fusion in
an interactive manner. With BCU, the network can couple two styles of deep features. In detail,
we utilize convolution layers with a 3×3 kernel to refine the learned deep features in corresponding
branches. Then, we add the refined features to respective branches. Such a fusion operation can
greatly enhance the global representation of tokens from different dimensions.

Based on the designs above, we present a hybrid X-shaped Transformer for image denoising, named
Xformer, as shown in Fig. 1. We design a concurrent network with two branches. Specifically, we
separately utilize spatial-wise SA blocks and channel-wise SA blocks in respective branch. Besides,
we employ the proposed BCU to bridge these two branches for information fusion. The joint designs
enable our network to obtain stronger global representations in Transformer. More details can be
found in Sec. 3. Our Xformer can achieve superior results against recent leading image denoising
methods. As shown in Fig. 2, our proposed method obtains visually pleasing results while others
suffer from the loss of details. Overall, we summarize our main contributions as follows:

• We propose Xformer, an X-shaped Transformer with hybrid implementations of spatial-
wise and channel-wise Transformer blocks, thereby exploiting the stronger global repre-
sentation of tokens in Transformer-based neural network.

• We propose the Bidirectional Connection Unit (BCU) that is able to effectively couple the
learned representations from two branches of Xformer. This simple design significantly
enhances the global information modeling of our method.

• We employ Xformer to train an efficient and effective Transformer-based network for im-
age denoising. We conduct extensive experiments on the synthetic and real-world noise
removal tasks. Our method can achieve state-of-the-art performance.
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2 RELATED WORK

Image Denoising. Due to the powerful generalizing ability from large-scale data, CNN-based meth-
ods (Zhang et al., 2020; Tian et al., 2020; Zhang et al., 2021a; Hu et al., 2021) have achieved superior
performance over the traditional denoising algorithms (Perona & Malik, 1990; Mairal et al., 2009;
Elad & Aharon, 2006). Zhang et al. (2017a) proposed DnCNN as a representative image denoising
method, which trained mappings from noisy images to noises. For further improvements, many sub-
sequent works used more elaborate network architecture designs, including encoder-decoder struc-
ture (Yue et al., 2020; Cheng et al., 2021; Zamir et al., 2021), non-local modules (Liu et al., 2018a;
Zhang et al., 2019), attention mechanism (Zhang et al., 2021b), and dynamic convolution (Jiang
et al., 2022). Unfortunately, most CNNs suffer from the limited ability to model long-range de-
pendencies, which is crucial for recovering clean images. Very recently, researchers have started to
utilize self-attention strategy to replace the single convolution operation. (Liang et al., 2021; Chen
et al., 2021; Zamir et al., 2022; Wang et al., 2022; Lee et al., 2022).

Vision Transformer. In recent years, Transformer has achieved impressive success in machine
translation tasks (Vaswani et al., 2017). It also performs outstandingly to solve numerous high-
level vision problems (Zhang & Yang, 2021; Chu et al., 2021; Wang et al., 2021; Xie et al., 2021)
due to the content-dependent global receptive field of the network. Dosovitskiy et al. (2021) firstly
proposed ViT to introduce Transformer into image recognition. Inspired by these, more and more
works started to apply Transformer to solve low-level vision tasks (Liang et al., 2021; Chen et al.,
2021; Wang et al., 2022; Zamir et al., 2022). Wang et al. (2022) proposed a general U-shaped
Transformer named Uformer based on U-Net (Ronneberger et al., 2015) for image restoration. Za-
mir et al. (2022) proposed a strong baseline model named Restormer and achieved state-of-the-art
performance in several image restoration tasks. Chen et al. (2021) proposed IPT to apply standard
Transformer blocks while using pre-training on additional datasets. To sum up, these works have
not explored enhancing the global representation of tokens from different dimensions. In contrast,
we design a general X-shaped Transformer to bridge this gap.

Concurrent Network. Compared to the commonly-used serial network, the concurrent network
has parallel branches in the whole network architecture. Therefore, it has the natural advantage of
simultaneously conducting different types of representation learning and building direct interactions
between dual branches. Recently, few efforts have been made to explore this field. Some works
only focused on parallel blocks such as Chen et al. (2022) and Pan et al. (2022). Peng et al. (2021)
defined a representative concurrent network named Conformer to solve some high-level vision prob-
lems. They designed two branches to respectively leverage convolution operators and self-attention
mechanisms. Specifically, the CNN branch preserves fine-detailed local features. The Transformer
branch captures long-range dependencies. In this paper, we also design a concurrent network. Dif-
ferent from it, our proposed Xformer applies different Transformer blocks in two branches and we
focus on low-level vision tasks. Besides, we propose the Bidirectional Connection Unit (BCU) to
greatly enhance the information fusion within two branches.

3 METHOD

3.1 OVERALL PIPELINE

As shown in Fig. 1, our Xformer is a hybrid X-shaped Transformer-based network with two
branches. Following the design of U-Net structures (Cheng et al., 2021; Zamir et al., 2022; Wang
et al., 2022), each branch is treated as a separate U-shaped network with skip connections between
encoders and decoders. We utilize the spatial-wise window-based Transformer blocks (STBs) to
construct the spatial-wise branch. The channel-wise cross-covariance Transformer blocks (CTBs)
are used to construct the channel-wise branch. Then, we design the Bidirectional Connection Unit
(BCU) to bridge the dual branches for feature complementarity. It can bring information fusion for
different branches. Besides, we provide two additional designs. Firstly, we make the last encoder
involving STBs of two branches share parameters for the purpose of computational efficiency. Sec-
ondly, we concatenate the output features from two branches and send them to a new refinement
module involving CTBs. The overall pipeline is as follows.

Given a degraded image I ∈ RH×W×Cin where H , W , and Cin are the height, width, and input
channels, our proposed Xformer first uses a 3×3 convolutional layer (Conv) to obtain the shallow
feature F0 ∈ RH×W×C , where C is the size of new feature dimension. Next, the feature F0 is
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Figure 3: Module architectures of spatial-wise and channel-wise Transformer blocks (STB|CTB).
concurrently sent to two 4-level symmetric encoder-decoder branches. Through these two branches,
it is transformed into two new deep features Fs, Fc ∈ RH×W×C . In detail, each encoder or decoder
contains cascaded Transformer blocks. Encoders take F0 as input and reduce half of the spatial
resolution while doubling the number of feature channels as the stage grows. Decoders take the
low-resolution features as input and reduce half of the feature channels while doubling the size of
feature maps. By counting, input features experience three times of downsampling and upsampling.
Besides, the up-sampled features are concatenated with the corresponding features from encoders
via skip connections for the recovery improvement. The concatenated features further pass through
a 1×1 Conv to reduce channels by half. For information fusion, the down-sampled features after the
first and second encoders pass through the BCU and then integrate to the opposite branch through
element-wise add. Similarly, the reduced features after the first and second decoders pass through the
BCU and are added to the opposite branch. In the end, the new features Fs and Fc are concatenated
and then flow to the refinement module. The output is further transmitted into a 3×3 Conv to obtain
a residual image Ir ∈ RH×W×Cin . Finally, the restored image is generated by Î = I + Ir.

3.2 DUAL BRANCHES

Spatial-wise Branch. As shown in the upper part of Fig. 1, the spatial-wise branch adopts the
encoder-decoder structure with skip connections. The components of encoders and decoders are
cascaded spatial-wise window-based Transformer blocks (STBs). We provide the details of STB in
Fig. 3(a). We make xl as the output at the lth block. We formulate the calculation process of STB as

x′l = W-MSA(LN(xl−1)) + xl−1,

xl = FFN(LN(x′l)) + x′l,
(1)

where W-MSA means the window-based multi-head self-attention. Here we assume that the number
of heads is 1 to transfer MSA to singe-head mode. Given the feature X ∈ RH×W×C generated
by layer normalization (LN) (Ba et al., 2016), W-MSA first split it into non-overlapping G×G

windows to get features Xi ∈ RG2×C for ith window. Next, it performs linear projecting to generate
query (Qi), key (Ki), and value (Vi), yielding Qi=XiWQ, Ki=XiWK , and Vi=XiWV , where
WQ,WK ,WV ∈ RC×C are learnable parameters. We formulate the calculation in ith window as

X̂
i
= Softmax(

QiKiT

√
C

+ B)Vi, (2)

where X̂
i

is the output feature map in ith window and B is the relative position encoding
(RPE) (Shaw et al., 2018; Raffel et al., 2020). Furthermore, the features from all windows are
projected together and reshaped to the new feature map of size RH×W×C , as the last output of W-
SMA. For the Feed-forward network (FFN), we use the basic multi-layer perception (MLP) used
in recent works (Liu et al., 2021; Liang et al., 2021) to deal with the input features. In short, the
STB utilizes non-overlapping windows to generate shorter token sequences for the self-attention
computation, which can enable the network to obtain fine-grained local patches interactions.

Channel-wise Branch. Similarly, this channel-wise branch contains a 4-level encoder-decoder
structure. In special, the encoders and decoders are constructed by cascaded channel-wise Trans-
former blocks (CTBs). The details of CTB are shown in Fig. 3(b). Assuming that xk is the output at
the kth block, the calculation process can be formulated as

x′
k = C-MSA(LN(xk−1)) + xk−1,

xk = FFN(LN(x′
k)) + x′k,

(3)
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where C-MSA means the channel-wise multi-head self-attention. We also assume that the number of
heads is 1 and transfer MSA to a singe-head fashion. Given the normalized feature X ∈ RH×W×C ,
C-MSA first utilizes the projecting module to get prepared query, key and value. In order to intro-
duce contextualized information into self-attention computation, we choose to use 3×3 depth-wise
convolution (Conv) following 1×1 Conv to generate query (Q), key (K), and value (V). We make
Q=WQ

d WQ
p X , K=WK

d WK
p X , and V=WV

d WV
p X , where W

(·)
p means parameters of 1×1 point-

wise Conv and W
(·)
d means parameters of 3×3 depth-wise Conv. Then, the obtained Q, K, V are

reshaped into new feature maps of size RC×N , where N=H×W . The query and key are further nor-
malized to prepare for cross-covariance attention. The new transposed attention map is calculated
by Q and KT with size of RC×C . The calculation process of the C-MSA is formulated as

X̂ = Softmax(QKT /τ)V, (4)

where τ is a learnable temperature parameter and X̂ ∈ RC×N is the output. Then X̂ is reshaped to
the original feature size of RH×W×C . The output further passes through a linear projecting layer.
Added by the shortcut xk−1, new features x′k is transmitted to the following part. For the FFN, we
introduce the gating mechanism and depth-wise convolutions proposed in the recent work (Zamir
et al., 2022) to enrich the feature transferring, which is validated to be effective. Equipped with the
used C-MSA and FFN, the CTB enjoys strong ability to capture direct global context interactions.

3.3 BIDIRECTIONAL CONNECTION UNIT

Motivation. As the dual branches enable the network to capture both patch-level and channel-level
information, the information fusion is treated as an important step to enhance global information
modeling. Simple concatenating operation is not able to effectively utilize information from differ-
ent branches. The direct connection of dual branches is not the best choice. Therefore, we propose
the Bidirectional Connection Unit (BCU) to couple the deep features from their respective feed-
forward processes for feature complementarity. We demonstrate that the proposed BCU plays an
important role to provide enhanced information fusion.

Specific Design. We design the BCU to bridge the two branches in an interactive manner. We
carry out the specific feature complementarity like the form of absolute position encoding (Vaswani
et al., 2017). On one hand, we add the global context information brought by channel-wise self-
attention to the feature maps of the spatial-wise branch. On the other hand, we add the fine-grained
patch-level information brought by local patches interactions to the feature maps of the channel-
wise branch. In detail, the BCU contains two simple convolution layers. Specifically, we use a
3×3 depth-wise convolution layer to refine the deep features from the spatial-wise branch for the
purpose of saving computational consumption. We use a common 3×3 convolution layer to refine
features from the channel-wise branch to provide more channel-dimension interactions. With the
3×3 kernel size, the feature refinement process can provide extra contextualized information. The
specific implementation is shown in Fig. 1.

3.4 IMPLEMENTATION DETAILS

Specific Settings. Firstly, we set the layer numbers of both branches the same, which are [2, 4,
4, 6, 4, 4, 2]. The number of CTBs in the refinement stage is set to 4. Secondly, we set the
number of heads in corresponding layers to [1, 2, 4, 8, 4, 2, 1]. The head number of CTBs in the
refinement stage is set to 1. Meanwhile, the channels number of shallow features generated by the
first convolution layer is set to 48. The expansion size of hidden layers in FFN is set to 2.66. Thirdly,
the window size in spatial-wise Transformer blocks is set to 16. Note that we also utilize the shifted-
window strategy (Liu et al., 2021). Besides, we use pixel-unshuffle and pixel-shuffle operations (Shi
et al., 2016) for downsampling and upsampling. Lastly, following the recent work (Zamir et al.,
2022), we use the progressive training strategy for fair comparisons.

Loss Function. Following most recent works (Lai et al., 2017; Zhang et al., 2020; Zamir et al.,
2022), we use L1 loss function to optimize our proposed Xformer. For image denoising, the goal of
training Xformer is to minimize the L1 loss, which is formulated as

L = ∥ÎHQ − IHQ∥1, (5)

where ÎHQ is the output of our Xformer and IHQ is the corresponding ground-truth image.
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Method All STB All CTB STB+CTB

Params (M) 26.03 28.81 25.23
FLOPs (G) 38.1 42.3 42.2
PSNR (dB) 29.87 29.67 29.94

SSIM 0.8851 0.8830 0.8865

(a) Ablation study of block setting.

Method w/o BCU BCU-1 BCU-2 Complete BCU

Params (M) 24.70 24.71 25.22 25.23
FLOPs (G) 40.9 40.9 42.2 42.2
PSNR (dB) 29.82 29.84 29.92 29.94

SSIM 0.8842 0.8848 0.8859 0.8865

(b) Ablation study of BCU settings.

Method w/o Shift w/ Shift

Params (M) 25.23 25.23
FLOPs (G) 42.2 42.2
PSNR (dB) 29.88 29.94

SSIM 0.8852 0.8865

(c) Whether to use shift.
ID STB CTB BCU Structure Params (M) FLOPs (G) PSNR (dB) SSIM

1 ✓ single-branch 26.48 40.6 29.84 0.8853
2 ✓ single-branch 26.11 38.7 29.68 0.8829
3 ✓ ✓ two-branches 24.70 40.9 29.82 0.8842
4 ✓ ✓ ✓ two-branches 25.23 42.2 29.94 0.8865

(d) Ablation study of designed models with different branches.

Method SwinIR Restormer Xformer (ours)

Params (M) 11.50 26.11 25.23
FLOPs (G) 201.2 38.7 42.2
McMaster 30.22 30.30 30.38
Urban100 29.82 30.02 30.36

(e) Params-FLOPs-PSNR comparisons.

Table 1: Ablation experiments (a-d) and model complexity comparisons (e). For ablation, we train models on
Gaussian color image denoising task with σ=50 for 100k iterations and test on Urban100.

Features from the last CTB Features from the last STB

Urban100 HR w/o BCU w/ BCU w/o BCU w/ BCU

Features from the last CTB Features from the last STB

Urban100 HR w/o BCU w/ BCU w/o BCU w/ BCU

Figure 4: Visualization of feature maps from the last STB and CTB in the encoder-decoder module
of dual branches. We compare different situations about whether to use BCU.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

Data and Evaluation. We conduct experiments on two denoising tasks, including synthetic image
denoising using noisy images generated with additive white Gaussian noise and real image denoising
using real-world noisy images. For Gaussian denoising, following the previous work (Liang et al.,
2021), we use DIV2K (Timofte et al., 2017), Flickr2K (Lim et al., 2017), BSD500 (Arbelaez et al.,
2010), and WED (Ma et al., 2016) as training data. Set12 (Zhang et al., 2017a), BSD68 (Martin
et al., 2001), Kodak24 (Franzen, 1999), McMaster (Zhang et al., 2011), and Urban100 (Huang
et al., 2015) are the testing data. For real image denoising, same with Restormer (Zamir et al.,
2022), we use SIDD (Abdelhamed et al., 2018) to train our model. The evaluation is performed on
1,280 patches of the SIDD validation set (Abdelhamed et al., 2018) and 50 pairs of images from the
DND (Plotz & Roth, 2017). Note that we evaluate the performance with the commonly-used PSNR
and SSIM (Wang et al., 2004) metrics. Besides, we also provide comparisons of FLOPs and model
size. We set the input image size to 3×128×128 when calculating FLOPs.

Training Settings. We perform data augmentation on the training data through random horizontal
or vertical flips and rotation of 90◦, 180◦, and 270◦. Using progressive training strategy proposed by
Restormer (Zamir et al., 2022), we set the batch size and patch size pairs to [(64,1282), (40,1602),
(32,1922), (16,2562), (8,3202), (8,3842)] at training iterations [0k, 92k, 156k, 204k, 240k, 276k].
AdamW (Loshchilov & Hutter, 2019) is used to optimize our model with β1 = 0.9, β2 = 0.999,
and weight decay 10−4. We train our model for total 300k iterations and the initial learning rate is
set to 3×10−4 and gradually reduced to 10−6 through the cosine annealing (Loshchilov & Hutter,
2017). Our Xformer is implemented on PyTorch (Paszke et al., 2017) using 4 Nvidia A100 GPUs.
4.2 ABLATION STUDY

For ablation experiments, we train all the models on Gaussian color image denoising task with noise
level σ=50. We train these models for 100k iterations. The evaluations are performed on Urban100
dataset. We also report the model size and FLOPs. The results are shown in Tab. 1.

Impact of STB and CTB. We design the ablation study to support using both STB and CTB.

Ablation design. As shown in Tab. 1a, we present three different network designs. Specifically,
using all STB or CTB means that we replace all the Transformer blocks in Xformer with STB or
CTB. For fair comparisons, we design these models with comparable complexity.

Analyses and conclusion. As we can see, the model using all CTB gets poor performance since
it pays less attention to patch-level information. Furthermore, the model using all STB obtains
suboptimal performance. However, using STB and CTB together in dual branches can achieve the
best performance gains. The joint application of hybrid Transformer blocks can simultaneously
obtain patch-level and channel-level information, which is very important.
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Figure 5: Visual comparisons on Gaussian color and gray image denoising (σ=50).

Impact of BCU. We further discuss the impact of the BCU by the ablation study.

Ablation design. We set four different experimental conditions. As shown in Tab. 1b, we compare
the results of models without BCU, using single-direction BCU, and using complete BCU. Note
that using single-direction BCU means that we only use the DWConv or the Conv to provide the
information transmission from a single direction. Furthermore, BCU-1 denotes the model using
DWConv and BCU-2 denotes the model using Conv.

Analyze the importance of using BCU. As we can see, the model with complete BCU achieves PSNR
gain of 0.12 dB over that without BCU, which indicates that the BCU is an important component.

Analyze the necessity of the interactive manner. The models using single-direction BCU have sub-
optimal performance. Moreover, we find that the model with BCU-2 yields 0.08 dB gain over that
with BCU-1. It reveals that the information flow from the channel-wise branch has a bigger impact.

Visual analyses and conclusion. We provide visual results in Fig. 4. We visualize the deep features
from the last STB or CTB in corresponding branches. We can see that the STB and CTB in the
network with BCU can capture more extra information and thus show better visual results. We
conclude that our proposed BCU can provide effective information fusion for the dual branches.
With BCU, our proposed network can achieve promising performance.

Impact of Different Branches. We also discuss the importance of different branches.

Ablation design. We design the networks with comparable model size and FLOPs. As shown in
Tab. 1d, we present four different networks, including using STB-based branch, using CTB-based
branch, using dual branches without BCU, and using dual branches with BCU. The model using
single branch is degraded to a complete U-shaped network like the architecture of Restormer.

Analyze the results of using single branch. The model using STB-based branch performs better than
that using CTB-based one. It demonstrates that the patch-level information deserves more attention.

Analyze the results of using dual branches without BCU. We find that the model using dual branches
without BCU gets limited performance. It confirms the statement we discuss in Sec. 3.3. The
simple concatenating operation fails to effectively utilize the obtained information. Thus, the direct
connection of dual branches even brings unsatisfied results.

Analyze the results of using dual branches with BCU. As we can see, with BCU, our model using
dual branches can achieve greatly enhanced performance. It further validates that the BCU plays an
important role in fusing patch-level and channel-level information in our concurrent network.

Conclusion. Thanks to these two joint designs, our proposed method can explore enhancing global
information modeling in Transformer and thus outperform previous promising methods.

Impact of Shift. Table 1c shows the comparisons about whether to use shift. As we can see, the
model using shift operation obtains better performance gains. It is because shift operation can bring
more global receptive fields for window-based self-attention. Therefore, we choose to use shift.

4.3 GAUSSIAN IMAGE DENOISING RESULTS

We provide the comparisons of our Xformer with recent representative image denoising methods
on both Gaussian color and grayscale image denoising tasks. As shown in Tabs. 2 and Tab. 3,
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Dataset σ BM3D DnCNN IRCNN FFDNet NLRN MWCNN RNAN RDN DRUNet SwinIR Restormer Xformer (ours)

15 32.37 32.86 32.76 32.75 33.16 33.15 - - 33.25 33.36 33.42 33.46
Set12 25 29.97 30.44 30.37 30.43 30.80 30.79 - - 30.94 31.01 31.08 31.16

50 26.72 27.18 27.12 27.32 27.64 27.74 27.70 27.60 27.90 27.91 28.00 28.10
15 31.08 31.73 31.63 31.63 31.88 31.86 - - 31.91 31.97 31.96 31.98

BSD68 25 28.57 29.23 29.15 29.19 29.41 29.41 - - 29.48 29.50 29.52 29.55
50 25.60 26.23 26.19 26.29 26.47 26.53 26.48 26.41 26.59 26.58 26.62 26.65
15 32.35 32.64 32.46 32.40 33.45 33.17 - - 33.44 33.70 33.79 33.98

Urban100 25 29.70 29.95 29.80 29.90 30.94 30.66 - - 31.11 31.30 31.46 31.78
50 25.95 26.26 26.22 26.50 27.49 27.42 27.65 27.40 27.96 27.98 28.29 28.71

Table 2: PSNR (dB) comparisons for Gaussian grayscale image denoising on three benchmark datasets. The
underlined and bold numbers indicate the second best and the best results.

Dataset σ BM3D DnCNN IRCNN FFDNet RNAN RDN DRUNet P3AN IPT SwinIR Restormer Xformer (ours)

15 33.52 33.90 33.86 33.87 - - 34.30 - - 34.42 34.40 34.43
CBSD68 25 30.71 31.24 31.16 31.21 - - 31.69 - - 31.78 31.79 31.82

50 27.38 27.95 27.86 27.96 28.27 28.31 28.51 28.37 28.39 28.56 28.60 28.63
15 34.28 34.60 34.69 34.63 - - 35.31 - - 35.34 *35.35 35.39

Kodak24 25 32.15 32.14 32.18 32.13 - - 32.89 - - 32.89 *32.93 32.99
50 28.46 28.95 28.93 28.98 29.58 29.66 29.86 29.69 29.64 29.79 *29.87 29.94
15 34.06 33.45 34.58 34.66 - - 35.40 - - 35.61 35.61 35.68

McMaster 25 31.66 31.52 32.18 32.35 - - 33.14 - - 33.20 33.34 33.44
50 28.51 28.62 28.91 29.18 29.72 - 30.08 - 29.98 30.22 30.30 30.38
15 33.93 32.98 33.78 33.83 - - 34.81 - - 35.13 35.13 35.29

Urban100 25 31.36 30.81 31.20 31.40 - - 32.60 - - 32.90 32.96 33.21
50 27.93 27.59 27.70 28.05 29.08 29.38 29.61 29.51 29.71 29.82 30.02 30.36

Table 3: PSNR (dB) comparisons for Gaussian color image denoising on four benchmark datasets. The
underlined and bold numbers indicate the second best and the best results. * denotes results which are obtained
by testing with officially provided pre-trained models.

BM3D (Dabov et al., 2007) is the classical denoising method. The CNN-based methods in-
clude DnCNN (Zhang et al., 2017a), IRCNN (Zhang et al., 2017b), FFDNet (Zhang et al., 2018),
NLRN (Liu et al., 2018a), MWCNN (Liu et al., 2018b), RNAN (Zhang et al., 2019), RDN (Zhang
et al., 2020), DRUNet (Zhang et al., 2021a), and P3AN (Hu et al., 2021). The Transformer-based
methods include SwinIR (Liang et al., 2021), IPT (Chen et al., 2021), and Restormer (Zamir et al.,
2022). All the results are obtained by open available data. We get some results by using officially
provided pre-trained models. Following most recent works (Liang et al., 2021; Zamir et al., 2022),
we set the additional noise level to 15, 25, and 50. We also provide the visual comparisons in Fig. 5.
The results of model parameters and FLOPs comparisons are shown in Tab. 1e.

Quantitative Comparisons. We present the PSNR results of all compared approaches in Tab. 2
and Tab. 3. The corresponding scores are obtained by testing on several benchmark datasets for
Gaussian grayscale and color image denoising. As we can see, our Xformer achieves the best PSNR
performance across all evaluation datasets. Specifically, for the evaluation on high-resolution Ur-
ban100 dataset (Huang et al., 2015) under the challenging noise level 50, Xformer obtains 0.42
dB performance gain over the previous best Transformer-based network Restormer (Zamir et al.,
2022), as shown in Tab. 2. Similarly, Table 3 also shows that the best performance is achieved
by Xformer for Gaussian color image denoising. Compared to the results of SwinIR (Liang et al.,
2021), Xformer has better performance gains while maintaining 4.76× fewer FLOPs. It is also worth
mentioning that our proposed method has the comparable model size and FLOPs with Restormer.
In short, the experimental results demonstrate that our proposed Xformer becomes a new promising
Transformer-based network for the Gaussian image denoising.

Visual Comparisons. The visual comparisons for Gaussian color and grayscale image denoising on
some challenging examples are shown in Figs. 5. The noise level is set to 50 and results are obtained
by testing on Urban100. We can see that our Xformer is able to remove heavy noise corruption for
color image denoising. Compared to some previous denoising methods, our method obtains visually
pleasing results. Besides, for the gray image denoising, the detailed textures and high-frequency
components of the original images are reserved by using our method. However, others suffer from
the heavy blurring and missing details. It demonstrates that our Xformer performs excellently for
both color and grayscale image denoising for visual results.
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Dataset Method BM3D DnCNN CBDNet RIDNet AINDNet VDN SADNet DANet CycleISP MIRNet DeamNet DAGL MAXIM Uformer Restormer Xformer

SIDD PSNR 25.65 23.66 30.78 38.71 39.08 39.28 39.46 39.47 39.52 39.72 39.47 38.94 39.96 39.89 40.02 39.98
SSIM 0.685 0.583 0.801 0.951 0.954 0.956 0.957 0.957 0.957 0.959 0.957 0.953 0.960 0.960 0.960 0.960

DND PSNR 34.51 32.43 38.06 39.26 39.37 39.38 39.59 39.58 39.56 39.88 39.63 39.77 39.84 40.04 40.03 40.19
SSIM 0.851 0.790 0.942 0.953 0.951 0.952 0.952 0.955 0.956 0.956 0.953 0.956 0.954 0.956 0.956 0.957

Table 4: PSNR (dB) and SSIM comparisons for real image denoising on two benchmark datasets. The
underlined and bold numbers indicate the second best and the best results.

Model Size Comparisons. Table 1e provides comparisons of parameters number and FLOPs
with existing state-of-the-art methods. We calculate the FLOPs assuming that the input size is
3×128×128. The PSNR scores are reported on the popular benchmark datasets McMaster (Zhang
et al., 2011) and Urban100 (Huang et al., 2015) under Gaussian color image denoising with noise
level σ=50. We mainly compare our proposed method to recent Transformer-based networks, in-
cluding SwinIR and Restormer. We find that our Xformer enjoys very low FLOPs when compared
to SwinIR. Meanwhile, it is seen that our method has comparable model size and FLOPs with
Restormer. However, our Xformer can achieve the best performance among them. In special, it
obtains 0.34 dB higher PSNR score over Restormer on Urban100. It indicates that our method has
an acceptable computational and memory cost while performing promising image denoising.

4.4 REAL IMAGE DENOISING RESULTS

As shown in Tab. 4, We show the quantitative comparisons of our Xformer with other state-of-the-
art methods on real-world image denoising task. In detail, we report the evaluation results from the
classic denoising method BM3D (Dabov et al., 2007), CNN-based methods DnCNN (Zhang et al.,
2017a), CBDNet (Guo et al., 2019), RIDNet (Anwar & Barnes, 2019), AINDNet (Kim et al., 2020),
VDN (Yue et al., 2019), SADNet (Chang et al., 2020), DANet (Yue et al., 2020), CycleISP (Zamir
et al., 2020a), MIRNet (Zamir et al., 2020b), DeamNet (Ren et al., 2021), DAGL (Mou et al.,
2021), MAXIM (Tu et al., 2022), and Transformer-based methods Uformer (Wang et al., 2022)
and Restormer (Zamir et al., 2022). Following the recent work (Zamir et al., 2022), we only use
SIDD (Abdelhamed et al., 2018) dataset to train our models. Then, the trained models are directly
used to perform evaluations on the DND (Plotz & Roth, 2017) benchmark. As DND does not provide
ground-truth labels, the corresponding results are obtained by uploading images to the online server.
Note that all the results are obtained from the open-source data.

Quantitative Comparisons. Table 4 shows the PSNR and SSIM scores of recent approaches on
real-world image denoising. As we can see, our proposed Xformer outperforms all the state-of-the-
art methods on the DND dataset (Plotz & Roth, 2017) and achieves comparable performance on the
SIDD dataset (Abdelhamed et al., 2018). Compared to all the CNN-based methods, our Xformer has
the obvious performance improvement. Furthermore, compared to Restormer (Zamir et al., 2022),
our method performs better with comparable mode complexity. Besides, our Xformer achieves
higher performance gains than Uformer (Wang et al., 2022) while maintaining 2.01× fewer model
parameters. In special, Restormer only utilized channel-wise self-attention and paid less attention
to local patches interactions. On the contrary, Uformer focused on spatial-wise self-attention and
neglected the channel-dimension token interactions. In contrast, our proposed Xformer explore
building interactions among tokens from both spatial and channel dimensions. Through fusing both
patch-level and channel-level information, our method is able to obtain better performance.

5 CONCLUSION

In this work, we propose a hybrid X-shaped vision Transformer, named Xformer, for image de-
noising task. We design a concurrent network structure to utilize spatial-wise window-based Trans-
former blocks and channel-wise Transformer blocks respectively in two branches. Our proposed
Xformer can enable each branch to proceed representation learning from the corresponding dimen-
sion, spatial or channel. Besides, we propose the Bidirectional Connection Unit (BCU) to bridge
the separate branches. Specifically, the BCU provides information fusion in an interactive manner
and greatly enhances the global information modeling ability of both branches. We conduct ex-
tensive experiments on the synthetic and real-world image denoising tasks. Experimental results
demonstrate that our Xformer can outperform recent state-of-the-art methods both quantitatively
and visually with comparable model size and computational cost.
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