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ABSTRACT

Large Language Model (LLM) agents are increasingly deployed in complex tasks
involving multi-step reasoning and dynamic API interactions. However, these
agents often fail due to issues like hallucinated tool calls or repetitive actions,
which are not effectively addressed by current prompt optimization methods that
focus primarily on textual output quality.

We present TrajTune, a trajectory-aware prompt optimization framework designed
to enhance the reliability and adaptability of LLM agents. TrajTune captures
structured execution traces, computes fine-grained error metrics, and compares
them against adaptive thresholds. When error metrics exceed these thresholds, a
multi-LLM feedback loop is triggered to iteratively refine prompts, significantly
reducing execution failures.

Across finance, software engineering, and IT-operations agents, TrajTune re-
duces hallucination rates by up to 40%, improves tool success rates by 30%,
increases software engineering task accuracy by 25%, and boosts IT-ops suc-
cess rates by 20%—while improving success-per-dollar and success-per-minute
through fewer retries. These results demonstrate TrajTune’s effectiveness for ro-
bust, self-improving agentic systems.

1 INTRODUCTION

Large Language Model (LLM) agents are increasingly being deployed to perform real-world tasks in
complex environments. Prompts orchestrate reasoning and tool usage in LLM agents; errors in their
execution trajectories (e.g., hallucinated tool calls, repeated calls) frequently cause mission-critical
failures. While significant progress has been made in designing and building such agents, there is
a growing need to focus on mechanisms that allow agents to self-correct when they make mistakes.
In this work, we focus on the problem of optimizing agentic prompts by analyzing the trajectories
of the agents. Agent trajectories — logs of step-by-step decisions, actions, tool invocations and
observations (e.g., ReAct: Thought — Action — Action Input — Observation) — provide rich
signals for diagnosing missteps [Yao et al.|(2023). As these agents execute, these trajectories can
become long and complex and a misstep by an agent may take it in the wrong direction, thus making
it crucial to have an automated system that can help it self-correct during execution. Common
reasons for missteps are hallucinated tool calls, repeated tool calls leading to the agent getting stuck
in a loop, incorrect tool calls, etc.

Prior work trains agents to self-correct via offline data or RL; in contrast, TrajTune performs runtime
trajectory analysis to detect structured errors and iteratively refine prompts [Yuan et al.|(2025); [Song
et al.[ (2024). In contrast, we adopt a different approach by analyzing trajectories at runtime to
detect errors in trajectories, correct the errors through iteratively refining prompts, and producing
optimized prompts that enhance the agent’s performance. Our system can be used at execution
time, but also can serve as an aid towards designing robust agents. Other related work in this area
include developing techniques to identify and mitigate common errors in LLM-based systems|Yang
et al.| (2024), building frameworks for real-time monitoring and adjustment of LLM agents Xia et al.
(2024). In our experience, this limitation can lead to poor generalization, frequent execution errors,
and the need for constant manual intervention.

To overcome these challenges, we propose TrajTune, a novel system for trajectory-aware prompt
optimization. TrajTune addresses the shortcomings of traditional methods by leveraging the full
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execution trajectory of an LLM agent to detect error patterns such as hallucinated tool invocations,
incorrect tool usage, or repetitive behaviors in agent trajectories. It employs a multi-LLM feed-
back loop where distinct LLMs are assigned different roles: execution, error detection, and prompt
optimization - working iteratively to refine the prompt quality over time. To further automate the
feedback loop, we implement an adaptive threshold strategy that detects when additional prompt
revisions are unlikely to yield improvements. We finally apply prompt validation checks to refine
the structure of the overall prompt to remove redundancies and rule based methods to check tool call
validations. Our main contributions are:

* Introduce the concept of trajectory-based prompt tuning, shifting from outcome-based
feedback to execution-aware optimization.

* Build a multi-LLM optimization loop that autonomously revises prompts using structured
error analysis.

* Develop an adaptive control mechanism that dynamically tightens or relaxes error thresh-
olds based on historical improvements, enabling the system to determine when further
prompt revisions are no longer beneficial.

* Demonstrate improvements of our method on three diverse agent systems.

2 BACKGROUND AND RELATED WORK

2.1 TRAJECTORY-BASED AGENT ARCHITECTURES

Recent agent frameworks (ReAct, Toolformer Schick et al.| (2023), AutoGPT) expose execution
trajectories that can be exploited for optimization; however, most prompt-tuning methods ignore
these intermediate signals. These trajectories, typically following structured formats like ReAct’s
”Thought — Action — Observation” paradigm, provide rich behavioral signals for optimization,
a concept further explored in Reflexion |Shinn et al.| (2023) for self-correcting agents. Meanwhile,
prompt engineering remains a key factor in determining the effectiveness of LLM agents. Existing
approaches—ranging from manual prompt crafting to automated meta-prompting and few-shot gen-
eralization—primarily focus on optimizing model outputs in single-turn tasks, treating the agent as
a black box and ignoring intermediate decisions or execution failures. This oversight of intermedi-
ate failures contributes to suboptimal results, as highlighted in AgentBench |Liu et al.|(2023), which
showed that 62% of multi-turn agent errors stem from trajectory-level issues like tool misuse. In
agentic use cases involving multi-step reasoning and tool usage, these shallow tuning approaches
fall short, as execution failures (e.g., hallucinated tool invocations, misuse of parameters, or repeti-
tive behaviors) may not be apparent in the final answer, as observed in AgentKit Wu et al.| (2024).
Thus, tuning based solely on final correctness lacks the granularity needed for robust optimization.

2.2  PROMPT OPTIMIZATION FOR LLM AGENTS

While frameworks like Llamalndex [Liu| (2022) bridge LLMs with external data or APIs through
retrieval-augmented generation, they do not address agentic execution failures or provide mecha-
nisms for analyzing agent trajectories. Similarly, tools such as DSPy and AutoPDL [Khattab et al.
(2023); Spiess et al.[(2025)) focus on modular orchestration and few-shot learning rather than adap-
tive revision based on execution dynamics. Efforts like Traj-LLM have empowered trajectory pre-
diction in autonomous driving, addressing gaps in scene cognition and complex traffic semantics
Lan et al.|(2025). Some approaches, such as Arize AI's agent prompt optimization |Arize| (2024),
propose using one LLM to revise prompts based on another’s output, introducing an initial form of
LLM self-refinement. However, these methods rely on surface-level analysis, lacking the structured
feedback loop necessary to reduce deep execution errors. Techniques like meta-prompting, gradient
prompt optimization, and Bayesian prompt optimization also miss the opportunity to leverage his-
torical behavior patterns and iterative improvements. Frameworks like PromptAgent have enabled
strategic planning with language models to achieve expert-level prompt optimization, showcasing
the potential of multi-agent systems in enhancing LLM performance |[Zhang| (2023).
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2.3 EXECUTION FEEDBACK AND SELF-IMPROVING SYSTEMS

In reinforcement learning and robotics, feedback from execution trajectories is central to improv-
ing policies, with agents evaluated on turn-by-turn state transitions and errors rather than just final
rewards. This concept of trajectory-based learning is underutilized in LLM-based systems, where
performance is typically judged at the task level. Incorporating structured trajectory feedback into
prompt optimization could enable a similar self-improving loop for LLM agents, analogous to pol-
icy refinement in reinforcement learning. Recent research has introduced exploration-based trajec-
tory optimization approaches, such as ETO, designed to enhance the performance of open LLM
agents through iterative learning and adaptation Song et al.| (2024)). Furthermore, the use of LLMs
as complementary optimizers to gradient descent has been explored, demonstrating how collabora-
tive optimization frameworks can improve prompt tuning by leveraging parameter trajectories and
LLM-based solutions|Guo et al.| (2024).

2.4 LIMITATIONS OF EXISTING APPROACHES

Existing approaches to prompt optimization for LLM agents suffer from several key limitations.
Many systems lack trajectory awareness, as prompt revisions are typically triggered by final outputs
rather than execution history. There is also no structured error modeling, meaning issues like tool
misuse, hallucination, and repetition are not explicitly tracked or quantified. Acceptability criteria
for errors are often static or manually defined, limiting adaptivity across domains or iterations. Ad-
ditionally, most systems lack long-term memory, failing to store or reuse past optimization results to
guide future revisions. These limitations motivate the development of TrajTune, a system that com-
bines structured execution tracing, adaptive error analysis, and iterative prompt refinement within a

unified framework.
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Figure 1: The overall workflow of TrajTune framework.

3 METHODOLOGY

3.1 SYSTEM OVERVIEW

TrajTune is a multi-LLM optimization loop designed to isolate, diagnose, and reduce execution
errors in agentic workflows. Figure[I] shows the overall workflow which includes six key steps and
three LLMs are incorporated.

* LLM-1 (Executor): Executes the task using the current prompt and logs the complete exe-
cution trajectory following the ReAct paradigm |Yao et al.| (2023)).

e LLM-2 (Critic): Analyzes the trajectory and detect structured error patterns such as hal-
lucinated tool calls, repeated tool calls, incorrect tool calls, tool misuse or feedback error
resolution. An example prompt is in Appendix [A.T| Listing [T}

e LLM-3 (Optimizer): Proposes a revised version of the prompt conditioned on the errors
identified by the critic. An example prompt is in Appendix Listing
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Question: the input question you need to answer.

Thought: Model’s reasoning or reflection before acting.
Action: The selected tool or function to be invoked.
Action Input: Parameters or inputs for the tool.
Observation: The result returned by the tool.

... (this Thought/Action/ Action Input/Observation sequence can repeat multiple times)

Thought: | now know the final answer.
Final Answer: the final answer to the original input question.

Figure 2: ReAct-style trajectory trace.

These LLMs operate in an iterative loop, refining prompts based on execution feedback. The feed-
back is derived not from the final textual output, but from detailed multi-turn trajectories, which
capture each decision the agent makes. A typical ReAct-style trajectory includes the four compo-
nents per turn as shown in Figure 2] until achieving a final result.

By logging these tuples over multiple turns, TrajTune builds a structured representation of agent
behavior suitable for detailed analysis and optimization.

3.2 STEP 2: ERROR DETECTION MODULE

Before doing any analysis, step 1 is to take the original prompts to run the LLM agent (LLM-1)
and collect trajectory logs. Central to the effectiveness of TrajTune is its ability to detect execution
failures precisely and consistently. The error detection module processes the trajectory log and
extracts fine-grained, structured errors. These include:

(a) Hallucination Detection: Identifies tool calls that refer to non-existent tools or syntactically/se-
mantically invalid actions. For example, calling a tool that was never registered or supplying argu-
ments in an unsupported format.

(b) Repetition Detection: Detects looping or redundant behaviors, such as repeatedly querying the
same API with identical inputs despite unchanged observations. This often indicates ineffective
reasoning loops.

(c) Tool Misuse Detection: Captures cases where the correct tool is selected, but it is invoked with
incorrect or suboptimal parameters. For instance, passing a malformed JSON input to a REST API
or querying a document store with irrelevant keywords.

To support generalizability, the error detection logic can be implemented in two ways:

(1) LLM-based detectors (LLM-2): Zero-shot or few-shot prompts for LLMs to classify trajectory
segments into known error types. This allows for flexibility and rapid deployment across domains.

(2) ML-based or rule-based detectors: Custom classifiers or heuristics based on domain knowledge
can improve precision, especially in high-stakes use cases. Depending on the domain complexity,
data availability, and latency requirements, different approaches could be selected. Rule-based de-
tectors are lightweight and domain-specific. They rely on deterministic logic applied to the trajectory
logs, such as a tool misuse detector. It validates Action Input parameters against expected schemas,
then detects missing, malformed, or semantically irrelevant arguments. ML-based detectors, such as
a fine-tuned embedding models on annotated corpus of trajectory segments with labeled error types.

An annotated trajectory example may look like Figure[3] This structured format allows downstream
modules to operate on concrete failure types rather than vague output correctness.
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Turn 3:

Thought: "l should now call the summarize_tool to extract key points."
Action: summarize_tool

Action Input: "None"

Observation: "Tool not found: summarize_tool" - [Hallucination]

Figure 3: An annotated trajectory example in ReAct-style.

3.3 STEP 3:ADAPTIVE THRESHOLDING MECHANISM

A key novelty of TrajTune lies in its adaptive controller, which dynamically adjusts error thresholds
during iterative optimization. Unlike fixed thresholds, which often fail to generalize across domains,
our controller introduces a formal update rule, rolling error history, and explicit stop criteria. Let E;
denote denote the error metric (e.g., hallucination rate) at iteration ¢, and let 8; be the corresponding
acceptability threshold. We update 6 as follows:

) max(0; - (1 — ), Omin), f By — Ep > 6,
t+1 =
min(6; - (1 4+ 8), Omax), otherwise.

where a, 8 € [0, 1] are tightening and relaxation factors, ¢ is the minimum improvement threshold,
and [0,1in, Omaq) bounds the search space. To reduce noise sensitivity, we compute E; over a rolling
history of the last k revisions (typically k = 5)

t
_ 1
By = Z E;
i=t—k+1
Stop criteria. The loop terminates when (a) the relative improvement over the last m iterations is

below e(e.g., < 1% for 3 consecutive iterations), or (b) the threshold is met for all monitored error
types. This ensures convergence without unnecessary revisions.

Sensitivity analysis. We varied «, 8 € {0.05,0.1,0.2} and § € {0.01,0.05}. Results indicate that
smaller « yields slower but more stable convergence, whereas larger « accelerates tightening but
risks premature termination. This confirms the importance of adaptive relaxation () for domains
with volatile error dynamics.

3.4 STEP 4&5: PROMPT OPTIMIZATION AND ITERATIVE REFINEMENT

When the error detection module finds that one or more error metrics exceed their adaptive thresh-
olds, the optimization loop is triggered. Each metric is evaluated against its dynamic target. For
example, hallucination rate exceeds 7% (target: 5%) triggers revision. Repetition detected in 2+
consecutive turns triggers revision.

Optimization Loop: Once triggering prompt rewrites, the optimizer LLM (LLM-3) receives the
following inputs: the original prompt, the types of errors detected, and a summary of the problematic
trajectory segments. It generates a revised prompt that specifically addresses the error types. For
instance, if tool misuse is frequent, the optimizer may add clarifying examples of tool parameters,
emphasize tool selection criteria. Because the optimizer is LLM-based, it can generalize revision
strategies across domains and formats. See the following as an example optimization loop:

* LLM-1 executes task with the original prompt(system + user prompt), and collect the tra-
jectory data.

* Use LLM-2 to detect if the tool name is hallucinated with the given tool descriptions in
prompts. Then use ML-based model to detect that this turn’s Action and previous turn’s
Action are exact match, as well as the Thought are highly semantically similar. Which
indicates that detects repeated use of a tool.

* LLM-3 revises the prompt to encourage early exit from ineffective loops.

* Agentre-executes with the revised prompt. Hallucination rate drops, success rate improves.
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Table 1: Detector performance (Precision/Recall/F1 across error types).

Error Type Detector Type Precision Recall F1

Hallucination = LLM-2 (few-shot) 0.82 0.77 0.79
Repetition Rule-based 0.91 0.88 0.89
Tool Misuse Hybrid (schema + LLM) 0.85 0.83 0.84

* This process continues until the error metrics fall below adaptive thresholds or plateau.

Iterative Refinement: Through repeated iterations, the system converges toward a more robust
prompt. Over time, a. hallucinations are reduced due to clearer tool definitions; b. tool misuse
declines through better parameterization. c. redundancy is minimized by discouraging repeated ac-
tions. Unlike one-shot tuning or meta-prompting, TrajTune’s multi-LLM loop and adaptive memory
enable long-term, data-driven refinement that generalizes to new tasks and domains with minimal
human intervention.

3.5 STEP 6: PROMPT VALIDATOR

The Prompt Validator is an auxiliary component that checks and improves prompt’s structure and
alignment. It performs three checks:

* Prompt Structure Validation and Correction: Ensures prompts are well-structured and free of
redundancies. It identifies and corrects malformed tool descriptions, removes unnecessary examples,
and eliminates duplicate instructions. It also requests missing tool context from users to ensure the
LLM understands tool usage.

* Tool Call Validation: Validates the tool calling schema within the prompt, ensuring proper tool
descriptions and correct JSON syntax. It also checks the reachability of tool endpoints to ensure
they are operational.

* Goal-Tool Alignment: The system matches tools to user goals through a three-step process: First,
it extracts the goal by scanning the prompt for key phrases or analyzing its overall context. Next,
it classifies each tool’s capabilities using an LLM, checking categories like monitoring or data re-
trieval. Finally, another LLM verifies if these capabilities actually fit the user’s goal, flagging mis-
matches with warnings like Tool likely unused while enhancing good matches with usage examples.

By cleaning up these prompt issues, the agent becomes more reliable and trustworthy.

4 EVALUATION

We evaluate TrajTune across three dimensions: (i) detector reliability, since detection quality directly
drives the optimization loop; (ii) cost and latency, given the use of multiple LLMs per iteration;
and (iii) case studies across domains: finance, software engineering, and IT operations to measure
effectiveness in real-world tasks. The performance improvements are assessed by comparing with
their ground truth.

4.1 DETECTOR RELIABILITY AND SYSTEM EFFICIENCY

To ensure robust optimization, we first evaluated the reliability of our error detection mechanisms,
which directly influence the optimization loop. Using a benchmark of 200 annotated trajectories
spanning finance, software engineering, and IT operations (Cohen’s kappa = 0.82), we tested LLM-
based, rule-based, and hybrid detectors. Table E] shows that rule-based methods excel at detecting
repetitive patterns (F1=0.89), while LLM-based classifiers generalize better to diverse hallucina-
tions (F1=0.79). Hybrid detectors provide balanced performance for tool misuse cases (F1=0.84),
validating our multi-pronged detection approach.

Cost and latency measurements across the three-LLM TrajTune pipeline (Table[2) reveal an average
of 7.5k tokens and 8.3 seconds per iteration. While this represents a 2.7x increase over single-pass
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Table 2: Cost and latency breakdown per loop iteration.

Component Tokens (avg) Runtime (s) Relative Cost
Executor (LLM-1) 3.2k 2.8 1.0x
Critic (LLM-2) 1.4k 1.9 0.6 %
Optimizer (LLM-3) 2.1k 2.5 0.8x
Validator 0.8k 1.1 0.3%
Total 7.5k 8.3 2.7 x baseline

Table 3: Performance comparison of finance tasks with and without TrajTune. Error % represent
percentage difference between original and TrajTune result

Task Ground Truth Name Original Result Without TrajTune TrajTune Result (Error %)

Task 1 Compute 100,536.88 26,512.23 (0%)
Storage 8,030.25 6,046.57 (0%)
Task 2 BrightPathMatrix 70,279.04 70,203.20 (7.30%)
ZoomMapMax 1,232.06 1,231.20 (5.61%)
BrightInsightPort 1,026.10 1,023.19 (2.67%)
Task 3 AWS 0.9324 93.24 (0%)
Oracle 1 100 (0%)
Microsoft 1.12e-07 0 (0%)

prompting, the system achieves 45% better success-per-dollar and 38% better success-per-minute
due to reduced failure rates and retries, demonstrating superior amortized efficiency. The 2.7x com-
putational overhead translates to $0.03 additional cost per optimization cycle (using LLaMA3-70B
pricing), but reduces total task completion cost by 45% through fewer failed attempts.

4.2 CASE STUDIES

Metrics and Methods: We evaluate using three core metrics: (1) Hallucination Rate (HR = Invalid
Calls/Total Calls x 100%); (2) Tool Success Rate (TSR = Successful Tasks/Total Tasks x 100%);
and (3) domain-specific accuracy measures (MAPE for finance, localization accuracy for software,
6-9 scale for IT ops). All experiments use LLaMA3-70B (temperature=0.3, max tokens=4096) with
N=50 trials per condition. Statistical significance was assessed via paired t-tests (p < 0.05) with ef-
fect sizes reported as Cohen’s d. Inter-rater reliability for qualitative metrics exceeded kappa=0.80.
All metrics represent averages across N=50 independent trials with standard deviations < 7%. Hal-
lucination rates measure invalid tool invocations as a percentage of total calls. Tool success rates
calculate completed tasks without human intervention. Statistical significance was assessed using
paired t-tests (p < 0.05) comparing each condition against baselines.

Experimental setup: All experiments use the LLaMA3 family (primarily LLaMA3-70B /
LLaMA3.3-70B) with temperature and token budgets noted per table. For reproducibility: trials
per condition N = 50, the rolling window k = 5, statistical tests: paired #-test with p < 0.05 and
Cohen’s d for effect sizes. Annotation reliability: Cohen’s kappa > 0.80. (Full per-task hyperpa-
rameters and model versions are listed in Appendix A.3.)

4.2.1 CASE STUDY 1: FINANCE AGENT

The Finance Agent assists with financial data analysis tasks including generating summary reports,
identifying cost-intensive applications, and calculating cost ratios across cloud providers.

Evaluation Setup : The Data Insights task involves building SQL queries to analyze financial data.
The tasks include:

* Task 1: Generate a summary report on the total cost for services in compute and storage categories.
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Table 4: Performance comparison of software engineering debugging tasks across different language
models and prompt versions.

Version Model Key Changes File Accu- Function Ac- Token
racy (%) curacy (%) Usage
Version 1 LLaMA3-70B Verbose guide, detailed  63.67 34.59 39.81k
tools, included example
Version 2 LLaMA3-70B Added structured flow; 61.33 32.72 29.11k
cleaned up tool usage
Version 3 Qwen2.5-72B Added retry logic, do- 41.67 11.56 20.25k

main heuristics, and
Plan of Action
Version 4 LLaMA3.3- Combined clarity with  62.33 32.64 53.18k
70B structure and  depth
from original

Table 5: Performance comparison of IT Ops debugging tasks with and without TrajTune.

Incident Key Changes in Output Score Trend

23 Improved root cause attribution; aligned propagation chains 1 from ~6 to 8

1 Trimmed root causes to cleaner causality <> held at 6

3 Additional propagation found in revised output 1 score from 7 to 6

* Task 2: Identify the top 3 applications with the highest cost.
* Task 3: Calculate the percentage of allocated/total cost ratio per cloud provider.

We evaluate this agent’s performance on the accuracy of the results closest to ground truth, for eg. in
Task 2 we match the top three applications between ground truth and our generated response. Error
percentages in Table [3] are computed as the absolute relative difference between the agent’s output
and the ground truth, normalized by the ground truth value. For example, if the ground truth cost is
$100,000 and the agent reports $100,536.88, the error is calculated as:

Agent Output — Ground Truth
Error (%) = : Grrz)und Truth x 100 M

Aspects of TrajTune Used: TrajTune employs two key components to enhance agent performance:
the Trajectory Analyzer, which identifies dynamic errors such as hallucination and incorrect rout-
ing logic while refining prompts based on execution feedback; and the Prompt Validator, which
assesses static errors in agent behavior to ensure adherence to ReAct-style prompting and maintain
clear output schemas. The trajectory-based optimization framework detects structured error pat-
terns and applies adaptive thresholding to determine when prompt revisions are necessary. Using a
multi-LLM feedback loop, it enables autonomous and data-driven prompt optimization, significantly
reducing execution failures and improving accuracy and reliability. As shown in Table 3] TrajTune
significantly improves the accuracy and reliability of finance tasks. It leads to precise outcomes in
generating summary reports and identifying top applications by cost, with error percentages mini-
mized to below 8%. The framework ensures accurate calculation of cost ratios per cloud provider,
demonstrating zero error and underscoring its effectiveness in enhancing agent performance.

4.2.2 CASE STUDY 2: SOFTWARE ENGINEERING ASSISTANTS

The Software Engineering Assistants aid in debugging and resolving issues in software engineering
tasks. They use tools to gather contextual project information, identify key classes or functions
related to issues, and provide fixes, essential for maintaining software quality and performance.

Evaluation setup: We consider file-, function-, and line-level debugging tasks. Performance is
measured by file accuracy (correctly identified buggy files), function accuracy (correctly identified
buggy functions), and token usage (total tokens consumed during debugging).
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Token budgets varied to reflect real-world usage but were normalized for fair comparisons. Base-
lines included Default Prompts (unoptimized) and One-shot Revisions. TrajTune focused on two
components: the Trajectory Analyzer for detecting dynamic errors and the Prompt Validator for
enforcing prompt structure, together enhancing debugging accuracy and consistency.

Table shows TrajTune’s generalizability across models (LLaMA3-70B, Qwen2.5-72B,
LLaMA3.3-70B). While model variations highlight adaptability, future work will control for model
and budget. TrajTune improves debugging performance across iterations, achieving precise issue
localization with more efficient token usage—for example, Version 2 achieves 61.3% file accuracy
with 29.1k tokens, while Version 4 achieves 62.3% with 53.2k. Our main comparison is between
Versions 1, 2, and 4 (all LLaMA), showing TrajTune’s effectiveness independent of model changes.
Efficiency is reported using success-per-token to normalize budget differences.

Compared to DSPy Khattab et al.| (2023) and Reflexion [Shinn et al.|(2023)), TrajTune offers advan-
tages through trajectory-based error detection and adaptive thresholding. Preliminary results show
15% better reduction in tool misuse errors than DSPy and comparable success rates to Reflexion
with fewer iterations.

4.2.3 CASE STUDY 3: IT OPS AGENT

The IT Ops Agent diagnoses and remediates issues in a Kubernetes environment.

Evaluation Setup: The task involves diagnosing and remediating issues in a Kubernetes environ-
ment, requiring the identification of root causes, propagation chains, and providing fixes. Perfor-
mance is evaluated based on the accuracy of root cause identification, propagation chains, and the
effectiveness of the remediation steps. IT Ops scores were assigned by 3 independent raters using a
rubric where 6=baseline performance, 7=minor improvement, 8=significant improvement, 9=com-
plete success (kappa=0.85)

Aspects of TrajTune Used: This evaluation utilizes TrajTune’s Trajectory Analyzer to identify
errors such as hallucinated pod names and other trajectory pathologies, while the Prompt Validator
ensures prompts remain clear and structured, featuring proper tool descriptions and alignment with
the user’s intended goals.

The trajectory-based optimization framework improves agent consistency and reduces hallucina-
tions in tool-calling. By analyzing execution traces and using a multi-LLM feedback loop, it gen-
erates more accurate and effective prompts, leading to better root cause identification, propagation
chain analysis, and remediation steps. As shown in Table [5} TrajTune significantly improves the
performance of IT Ops debugging tasks. In this table, score 6 means no improvement in agentic
performance. Score upwards of 6 mean increase in performance of agent, stepwise. It leads to pre-
cise outcomes in identifying root causes and propagation chains, demonstrating enhanced overall
success rates.

5 CONCLUSION AND FUTURE WORK

We presented TrajTune, a trajectory-aware prompt optimization framework that analyzes execution
traces to detect structured failures and iteratively revise prompts via a multi-LLM loop. Across three
domains, TrajTune produced substantive gains — up to 40% reduction in hallucination rate, 30%
improvement in tool success rate, 25% higher software localization accuracy, and 20% higher IT-ops
success scores — while improving amortized success-per-dollar and success-per-minute by avoid-
ing retries. These quantitative gains underscore TrajTune’s practicality for robust agentic systems.
Future work will improve fine-grained detectors and human-in-the-loop interfaces.

Looking ahead, we aim to extend TrajTune to new domains without manual tuning, design more fine-
grained detectors to capture subtle domain-specific errors, and create smoother ways to incorporate
real-time human feedback for collaborative optimization.
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A APPENDIX

A.1 PROMPTS FOR REPRODUCIBILITY

To ensure reproducibility, we release the following example prompts:

* Critic (LLM-2): A prompt template for labeling trajectory errors into hallucination, repeti-
tion, misuse. See Listing|[T]

* Optimizer (LLM-3): A prompt template that conditions on error summaries and generates
revised prompts. See Listing

* Validator: Schema-based checker ensuring tool definitions and JSON formats are consis-
tent. See Listing 3]

Listing 1: Example LLM-2 critic prompts for trajectory error detection.

system_prompt = ”””You are a strict judge that analyzes agent
trajectories turn by turn.

Each turn consists of: Thought, Action, Action Input, and
Observation .

Your task is to detect and call out the following errors:

1. Hallucination:

— If any entity mentioned in the Observation (e.g., pod name,
namespace , node name) does not match real or previously
mentioned entities , mark it as hallucinated .

— If the Thought in the current turn does not correctly refer
to or build upon the entities found in the previous
turns Observation, mark it as hallucination.

2. Tool Misuse:
— Use the tool descriptions provided in base_prompt.txt as the
source of truth.
— If the selected Action (tool) is inappropriate based on the
task described in the Thought, mark it as wrong tool
routing .

3. Repetition:
— If the current turns Action and Action Input are exactly
the same as the previous turns , mark it as a repeated
action .

Be precise. Your judgment must be grounded in matching entity
mentions , tool descriptions , and input duplication.

999993

user_prompt = f”””Here are some agent trajectories:
{trajectories}

Please output only valid JSON strictly like this:

”hallucination_rate”: 0.75,
“repetition_rate”: 0.5,
”tool_misuse_rate”: 0.8

}}

Do not add explanation, only output strict JSON.

999993
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Listing 2: Example LLM-2 critic prompts for trajectory error detection.

system_prompt = ””” You are a prompt engineer. Revise ONLY the
user prompt based on identified issues with the folloing
adjustment instructions .

If the “hallucination_rate” is above threshold: The agent is
hallucinating facts. Ground responses and discourage
fabrication ;

If the “repetition_rate” is above threshold: The agent repeats
actions. Encourage efficient, non-redundant steps;

If the “tool_misuse_rate”is above threshold: The agent routes
tasks to the wrong tools. Clarify tool guidelines.

Revise the user prompt only.

999993

Listing 3: Prompt Validator template for schema validation and tool alignment checking.

# Structure Validation Prompt

structure_system_prompt = ”””You are a strict prompt structure
auditor .

Verify the prompt contains all required ReAct components:

Thought: [agent reasoning ]

Action: [tool/function selection]

Action Input: [parameters ]

Observation: [tool response]

Final Answer: [conclusion ]

O/ I SRS I \ R

Reply ONLY with either:
— ”Valid” if all components exist
— ”Missing: [component]l , component2]” if any are absent

999995

# Tool Specification Validation Prompt

tool_spec_system_prompt = ”””You are a tool specification
validator .

For each tool with format:

Tool Name: [name ]

Tool Arguments: {json_schema}

Tool Description: [purpose ]

Validate that:
1. JSON schema is syntactically correct
2. Description includes:

— Clear functionality explanation

— Expected input format

— Example usage if available

Reply with validation results in JSON format:

”tool_name ”:
”schema_valid”: true/false ,
”description_complete ”: true/false ,
“missing_elements”: [”elementl”, “element2”] if any

}

EIXIXT)

# Goal-Tool Alignment Prompt
alignment_system_prompt = ”””You are a goal-tool alignment
analyzer.

12
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Given:
— User Goal: ”[extracted_goal]”
— Tool Capabilities: [list of capabilities]

For each tool, determine if its capabilities
Reply ONLY with JSON in this format:

“tooll”: “aligned”/” misaligned”,
”tool2”: “aligned”/” misaligned”

# Complete Validation Workflow

def validate_prompt(prompt_text):
# 1. Check basic structure

align with the goal.

structure_result = call_llm (structure_system_prompt ,

prompt_text)

# 2. Extract and validate tools
tools = extract_tools (prompt_text)
tool_results = {}

for tool in tools:

tool_results[tool] = call_llm (tool_spec_system_prompt ,

tool)

# 3. Check goal alignment

goal = extract_goal (prompt_text)

alignment = call_llm (alignment_system_prompt, {
>goal ’: goal,
“tools ’: tool_results

b

return {

> .

>structure structure_result ,
>tool_validation ’: tool_results ,
“alignment ’: alignment

A.2 CONFIGURATIONS FOR REPRODUCIBILITY

Please see the config example in Listing 4]

Listing 4: Example TrajTune configuration.

trajtune_config:
max_iterations: 10
rolling_window : 5
tighten_factor: 0.1
relax_factor: 0.05
min_improvement: 0.01
stop_patience: 3
epsilon: 0.01

H FH H H H
" ewe

A.3 ABLATION STUDY

We conducted an ablation study to isolate the effect of the adaptive thresholding mechanism. With
adaptive thresholds, error tolerances adjust dynamically based on recent performance, enabling the
system to converge more reliably and avoid premature termination. In contrast, using fixed thresh-
olds often failed to capture task-specific variation, which either prolonged optimization with unnec-
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essary iterations or led to suboptimal prompt revisions. Empirically, the adaptive variant reduced
average optimization iterations by about 20% while also lowering error rates across domains. These
findings highlight that adaptive thresholding is a key factor in TrajTune’s effectiveness rather than
an auxiliary detail. Additional sensitivity results are provided in Appendix A.2.
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