

000 REPRESENTATION LEARNING OF ANCIENT GREEK 001 LETTERFORMS ACROSS TIME 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Learning representations that remain robust across centuries of variation in hand-
007 writing is a key challenge in diachronic representation learning of ancient Greek
008 manuscripts. We introduce three datasets of ancient Greek handwriting for di-
009 achronic representation learning: **Hell-Char**, a curated training set spanning the
010 3rd–1st centuries BCE, and two evaluation sets, **PaLit-Char** (1st–5th c. CE) and
011 **Med-Char** (9th–14th c. CE). To address challenges of symbolic variation, scarce
012 data, and systematic degradation, we propose two methodological innovations: a
013 *similarity-weighted supervised contrastive loss* that biases embeddings by human-
014 perceived confusability, and a *lacuna-driven augmentation* scheme that simulates
015 realistic manuscript corruptions. Trained with these strategies, both a lightweight
016 CNN and a pretrained ResNet achieve strong recognition performance and pro-
017 duce embeddings that more coherently separate character classes than PCA or
018 generic pretrained models. These embeddings enable clustering, identification of
019 stylistic subgroups, and construction of prototype images that visualize diachronic
020 evolution and transitional letterforms. Our results demonstrate that incorpor-
021 ing expert priors and domain-specific corruptions yields robust, interpretable rep-
022 resentations, offering a transferable paradigm for representation learning under
023 scarce, temporally evolving, and noisy conditions.

024 1 INTRODUCTION

025 Palaeographic analysis of historical scripts needs strong automated character representation, a prob-
026 lem that remains challenging for scripts such as ancient Greek. Greek handwriting spans over two
027 and a half millennia, encompassing formal literary hands and highly cursive scripts, with substan-
028 tial variation in stroke shape, scale, slant, and contextual noise (Cavallo, 2009; Crisci & Degni,
029 2011; Irigoin, 1990; Bianconi, 2015). Material degradation and heterogeneous digitization practices
030 further compound these challenges, introducing ambiguities that complicate segmentation, feature
031 extraction, and character recognition and classification, especially under limited and imbalanced
032 datasets. Although a low-level task, automated character representation has high impact for broader
033 palaeographic analysis, supporting text-image alignment, semi-automatic transcription, and tasks
034 such as script typology, dating, and scribal attribution.

035 This study addresses this challenge by focusing on the diachronic evolution of ancient Greek let-
036 ters. We design a lightweight Convolutional Neural Network (CNN) trained with two innovations:
037 a *lacuna-driven augmentation* that simulates realistic manuscript degradations, and a *similarity-
038 weighted supervised contrastive loss* that biases embeddings according to dynamically learned con-
039 fusability between characters. We evaluate the CNN both in terms of recognition performance and
040 embedding quality. Using confusion matrices, we identify consistently easy or difficult letters and
041 highlight cases of visual confusion. Beyond recognition, clustering analyses on the learned em-
042 beddings reveal multiple stylistic subgroups for certain letters, while prototype visualizations per
043 letter–century allow us to study diachronic evolution quantitatively and interpretably. Compared
044 to raw pixels, PCA, or pre-trained features, our CNN embeddings produce a more coherent and
045 discriminative representation of historical Greek handwriting.

046 We summarize our contributions as four key points:

054

055 1. **Historical Greek handwriting datasets:** Three curated datasets spanning the 3rd–14th

056 centuries CE: **Hell-Char** (3rd–1st BCE) for training and benchmarking low-resource,

057 temporally evolving character recognition, and **PaLit-Char** (1st–5th CE) and **Med-Char**

058 (9th–14th CE) for evaluation of generalization across temporal shifts.

059

060 2. **Similarity-weighted supervised contrastive loss:** A representation learning objective that

061 biases embeddings according to dynamically learned visual confusability, improving dis-

062 criminative power for letters with overlapping features.

063

064 3. **Lacuna-driven augmentation:** A domain-informed augmentation scheme that faithfully

065 simulates manuscript degradations (lacunae), increasing robustness to missing or corrupted

066 strokes.

067

068 4. **Computational paleographic analyses:** Using CNN-derived embeddings, we perform

069 clustering, silhouette-based subgroup detection, and prototype visualization per letter-

070 century, providing interpretable insights into diachronic variation and scribal conventions.

071

2 RELATED WORK

072 We are not aware of any other study in the literature that analyses the diachronic evolution of Greek

073 handwritten letters between Antiquity and pre-modern times with machine learning. However, we

074 acknowledge the existence of related fields, such as optical character recognition (OCR), and of

075 other investigations on Greek papyri at the character level, which we discuss next.

076

077 **OCR** Early OCR approaches relied on manual feature extraction methods, such as zoning, projec-

078 tion histograms, and contour profiling, to distinguish between characters. A comprehensive survey

079 by Trier et al. (1996) emphasised the importance of these handcrafted features in OCR, while He

080 et al. (2016) introduced a grapheme-based feature extraction system that modelled diachronic vari-

081 ations while incorporating textual features. The advent of deep learning has further transformed the

082 field. LeCun et al. (1998) demonstrated the effectiveness of convolutional neural networks (CNNs)

083 in classifying handwritten digits, laying the groundwork for modern neural approaches in character

084 recognition. Autoencoders (Hinton & Salakhutdinov, 2006) and contrastive learning (Chen et al.,

085 2020) have gained traction in unsupervised learning, enabling models to learn meaningful represen-

086 tations of handwriting directly from data, without the need for manual feature engineering. Leaning

087 on these advances, several of the latter works have examined deep learning for feature analysis of

088 some aspect of ancient Greek handwritings. Marthot-Santaniello et al. (2023) addressed the issue of

089 clustering historical handwriting by similarity with no metadata explicitly indicating date or style.

090 Their method strongly focuses on character-level, employing a SimSiam deep neural network to

091 quantify similarity between images of single Greek letters (Alpha, Epsilon, and Mu) from different

092 manuscripts. Their stylistic similarity observations were useful to palaeographers as they situated

093 manuscripts in an integrated network and disclosed subtle micro-phenomena of similarity.

094 **CNNs** Li et al. (2015) applied CNNs to OCR-extracted text, combining visual and textual fea-

095 tures to improve dating accuracy. However, their approach assumes the availability of high-quality

096 (historical yet printed) data conducive to accurate OCR results, an assumption that often fails in

097 the context of historical documents such as the Greek papyri addressed in our study. To tackle

098 such challenges, Wahlberg et al. (2016) fine-tuned an ImageNet-pretrained CNN on a corpus of

099 medieval documents, demonstrating improved performance on degraded or irregular scripts. More

100 chronology-specific, West et al. (2024) designed a deep learning pipeline for the automated dating

101 of images of ancient Greek papyrus fragments. Their multi-stage pipeline integrates handwritten

102 text recognition (HTR) for character detection and classification, followed by distinct character-

103 level and fragment-level date prediction models. While single-character dating models are fairly

104 accurate, their aggregated sum of fragment-level models is up to 79% accurate in the prediction

105 of two-century broad date ranges on fragments with large numbers of characters. More recently,

106 Boudraa et al. (2024) proposed a transformer-based pipeline that integrates classical preprocessing

107 techniques with a fine-tuned Vision Transformer and majority-voting for document dating. This

108 study pioneers the integration of Vision Transformers in the context of historical manuscript dating,

109 a domain where CNNs were dominating.

108 **SimCLR** Chen et al. (2020) introduced a simple yet powerful contrastive framework for representation learning. Each image is augmented twice, and the network is trained to maximize agreement
 109 between positive pairs while treating all other samples in the batch as negatives. While effective
 110 as a simple self-supervised technique at scale, SimCLR assumes that all non-matching samples are
 111 equally dissimilar. In fine-grained recognition tasks such as character classification, this uniform
 112 treatment forces visually similar but distinct classes apart (e.g., A vs. Λ), discarding useful struc-
 113 tural information.
 114

115
 116 **Supervised Contrastive Learning (SCL)** Khosla et al. (2020) extended SimCLR to the labelled
 117 setting by grouping all samples of the same class as positives. This produces tighter class-specific
 118 clusters. Importantly, they also showed that combining supervised contrastive embeddings with a
 119 linear classifier trained under cross-entropy further improves classification accuracy compared to
 120 cross-entropy alone. However, SCL still treats all negatives uniformly, regardless of their visual
 121 similarity to the anchor. As a result, classes with inherent affinities (e.g., letters with similar shapes)
 122 are repelled too strongly, yielding embeddings that fail to reflect natural inter-class relationships.
 123 In addition to instance discrimination, weakly SCL (Zheng et al., 2021) introduced a supervised
 124 contrastive component based on weak labels derived from K-nearest neighbor graphs. Instead of
 125 treating all other samples as negatives, this approach dynamically identifies semantically similar
 126 neighbors and reweights them as positives, alleviating the class collision problem. SCL, treats neg-
 127 atives uniformly and makes classes with inherent affinities (e.g., letters with similar shapes) to be
 128 strongly repelled. This leads to embeddings that fail to reflect natural inter-class relationships. This
 129 study addresses this gap.
 130

131 3 METHODOLOGY

132
 133 We analyse handwritten Greek letters from various centuries using CNN-based embeddings trained
 134 with SCL enhanced with letter similarity weighting.
 135

136 3.1 CNN BACKBONE

137
 138 Pavlopoulos et al. (2024) suggested a 2D CNN (fCNN) for dating images of papyri lines, which
 139 comprised a fragmentation-based augmentation strategy. We follow a similar fragmentation-based
 140 strategy, yet our CNN is different in two ways. First, it is adjusted to operate on letters instead of
 141 text lines. Second, the fragmentation augmentation is improved so that synthetic lacunae follow
 142 their natural (curvy) shape, i.e., circular or elliptic, not square. The trained model produces high-
 143 dimensional embeddings $e \in \mathbb{R}^D$ representing the visual structure of each letter. The base CNN
 144 architecture consists of convolutional layers to extract local stroke and shape patterns; ReLU activa-
 145 tions for non-linearity; pooling layers to reduce spatial dimensions while preserving salient features;
 146 fully connected layers to map feature maps into the final embedding vector. These embeddings
 147 abstract style variations while preserving essential letterform characteristics. We also experiment
 148 with ResNet18 pre-trained CNN (He et al., 2016), the ConvNext-V2 self-supervised and globally-
 149 normalised CNN Woo et al. (2023), and the ViT-S16 Vision Transformer Caron et al. (2021).
 150

151 3.2 AUGMENTATION

152
 153 Each character image is converted to grayscale, normalized, and resized to 64×64 pixels. To account
 154 for variability in handwriting and material degradation, we applied rotation (up to 10°), translation,
 155 resizing, color jittering, and lacunae-inspired masking. The lacunae augmentation simulates missing
 156 ink or manuscript damage, improving the model’s robustness to partial character visibility.
 157

158 3.3 SIMILARITY-WEIGHTED SUPERVISED CONTRASTIVE LOSS

159
 160 In addition to the standard cross-entropy loss (i.e., the supervised letter-classification objective ap-
 161 plied to the backbone’s classification head), we train the backbone models using a supervised con-
 trastive loss (SCL), which encourages embeddings of the same letter to cluster together while push-

162 ing apart visually dissimilar letters. Visual similarities between letters, dynamically learned,¹ are
 163 used to weight negative pairs, enabling the model to respect intrinsic inter-letter relationships. This
 164 contrastive loss is not computed on the classification logits, but it is applied to the intermediate fea-
 165 ture embeddings produced by the backbone before the classification layer. Thus, the model jointly
 166 optimises cross-entropy on the classification head and contrastive loss on the shared backbone rep-
 167 resentations. For each anchor embedding \mathbf{e}_i , the loss is defined as:

$$169 \quad \mathcal{L}_i = -\frac{1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp(\mathbf{e}_i \cdot \mathbf{e}_p / \tau)}{\sum_{a \neq i} w_{ia} \exp(\mathbf{e}_i \cdot \mathbf{e}_a / \tau)}$$

$$170$$

$$171$$

172 where $P(i)$ is the set of positive samples (same class as i) and τ is the softmax temperature; $w_{ia} =$
 173 $1 + \lambda \frac{S_{y_i, y_a}}{\bar{S}}$ is the weight for negative pair (i, a) ; S_{y_i, y_a} is the similarity between classes y_i and
 174 y_a , dynamically computed from embeddings; \bar{S} is the mean off-diagonal similarity; and λ controls
 175 the influence of similarity weighting. This loss ensures that embeddings of the same letter cluster
 176 tightly, while visually similar letters exert weaker repulsion.

178 3.4 PROTOTYPE SELECTION (MEDOID)

179 For each group (letter, century), we select a representative *medoid* embedding to serve as a prototype
 180 (T), defined as: $T = \arg \min_i \sum_{j=1}^N (1 - \cos(\mathbf{e}_c, \mathbf{e}_j))$, where N is the number of embeddings in
 181 the group and e_c is the centroid. The medoid ensures a really representative image robust to outliers.

185 4 DATASET DEVELOPMENT

187 4.1 SOURCE

188 The Hell-Date dataset (Ferretti et al., 2025) comprises 194 images sourced from 157 papyri, all writ-
 189 ten in Greek and dated between the years 310 BCE and 3 BCE. The material is particularly relevant
 190 for digital palaeography and papyrological analysis due to its historical span, script diversity, and
 191 accompanying metadata. Each document in the dataset is associated with rich contextual metadata,
 192 including the date of composition, the geographical provenance, and the textual type. Of the 194
 193 available images, 171 are annotated at the character level, forming the primary subset of character
 194 images used in this work. We used this character-level subset but filtered and restructured it for
 195 our purposes; we refer to the restructured subset as Hell-Char. This is the first study to utilize the
 196 character annotations included in Hell-Date, which are further presented below.

197 **The character annotations in Hell-Date** Twenty-nine character classes are present in the annotations
 198 of Hell-Date. In addition to the 24 standard letters of the Greek alphabet, the dataset comprises
 199 3 archaic numeral letters (*stigma*, *qoppa*, and *sampi*). It also uses a general ‘symbol’ category for
 200 all characters that are not alphabetic letters. Last, an ‘unknown’ class was added for uncertain or
 201 ambiguous signs, but it remained empty. Each character instance is also assigned a base-type (BT)
 202 tag, ranging from BT1 to BT5, which indicates its degree of preservation. These tags can be useful
 203 for analysing the correlation between physical degradation and classification performance.

205 4.2 THE HELL-CHAR SUBSET

206 To reduce the imbalance in character frequency and to ensure a more uniform distribution of samples
 207 across classes, we constructed a subset of Hell-Date annotations that we called Hell-Char. Specif-
 208 ically, for each papyrus, at most five instances per character class were randomly selected. The
 209 classes for archaic numerals, symbols, and unknown letters were merged into a single general non-
 210 alphabetic category (‘other’). We limited our analysis to letters tagged BT1 and BT2, which allows
 211 excluding characters that are too degraded and are not recognizable out of context. This procedure
 212 reduces the dominance of overly frequent letters and mitigates sampling bias across documents.

213
 214 ¹The visual similarities could also be defined manually. Our experiments, however, using a prior similarity
 215 matrix based on modern letter shapes, did not lead to improvements.

Figure 1: Letter frequency in our Hell-Char subset.

The resulting subset comprises 13,046 character images from 157 distinct papyri. Figure 1 shows the letter frequency in Hell-Char.

Intrinsic challenges The dataset presents several intrinsic challenges. The character class distribution is still unbalanced (Figure 1); ambiguous or borderline glyphs can make even human classification difficult. For these characteristics, Hell-Char is a valuable and non-trivial benchmark for evaluating character recognition methods in ancient scripts.

5 EMPIRICAL ANALYSIS

5.1 EXPERIMENTAL SETTINGS

The Similarity Matrix We re-estimate the class-similarity matrix periodically (every 3 train epochs). At each update, we pass the entire training set through the current model, compute class prototypes from the normalized embeddings, and derive the cosine similarity between prototypes (diagonal entries are set to zero). This yields a dynamic measure of inter-class similarity that evolves with the representation space. (An exponential moving average can be applied to stabilize updates.) The updated matrix is then used by our Dynamically Supervised Contrastive Loss (DSCL), which down-weights negatives from highly similar classes and up-weights negatives from dissimilar ones.

Lacuna-driven Synthetic Fragmentation We attempt to simulate manuscript deterioration more realistically than standard erasure augmentations by inserting irregular regions that approximate actual lacunae observed in historical documents. For each image, we sample 1–4 lacunae and each covers 2–15% of the area to match the typical size distribution of physical papyrus damage. Lacuna geometry is obtained by drawing anisotropic ellipses whose contours are further distorted via random morphological operations (erosion or dilation), producing organic, non-rectangular shapes characteristic of flaking, humidity damage, parchment wear, or insect deterioration (e.g., worm holes are frequent in papyri). These lacunae are placed at random positions and the masked pixels are replaced with background values, reflecting the absence of ink/papyrus rather than additive noise. This augmentation increases robustness to fragmentary handwriting and introduces realistic variability at negligible computational cost.

Data Split We keep 20% of the data for testing, following a letter-based stratified split. Although we acknowledge that this strategy allows a scribe-based leakage, the selected approach fits better the scope of this work (see Appendix A.4).

5.2 LETTER RECOGNITION

Table 1 shows the performance of backbones when we add fragmentation-based augmentation and contrastive loss. A vanilla CNN, as in Pavlopoulos et al. (2024) but without any fragmentation, achieves an Accuracy of 74%. F1 is exactly the same, indicating the balanced performance across letters despite the class imbalance (Figure 1). The model of Pavlopoulos et al. (2024) performs better than the same model with random erasure in both metrics, but our Lacunae-based augmentation outperforms both. The architecture of ResNet18 (He et al., 2016), when trained from scratch, performs worse in F1 and on par in Accuracy. Pre-trained, however, it outperforms all the models above. When we enhance fCNN with our LF and dynamically-weighted supervised contrastive loss, it outperforms the pre-trained ResNet18. But when we enhance the latter with our Lacunae-based augmentation and our similarity contrastive loss, we achieve the best results. Per-letter classification

270 Table 1: Classification performance on Hell-Char (sorted) of fCNN (Pavlopoulos et al., 2024) and
 271 ResNet18 (He et al., 2016), pre-trained (PT) and/or fine-tuned (FT), when we add: our SCL with
 272 dynamically-learned weights, and fragmentation-based augmentation (none, random, our LF).

274 Model	275 Fragmentation	276 Contrastive Loss	277 Accuracy	278 F1
279 fCNN	280 -	281 -	282 0.742	283 0.74
284 fCNN	285 Random	286 -	287 0.768	288 0.75
289 fCNN	290 LF	291 -	292 0.782	293 0.77
294 ResNet18-FT	295 -	296 -	297 0.788	298 0.74
299 ResNet18-PT+FT	300 -	301 -	302 0.801	303 0.79
304 fCNN	305 LF	306 DSCL	307 0.803	308 0.80
309 ResNet18-PT+FT	310 LF	311 DSCL	312 0.829	313 0.82

284 performance is provided in Appendix A. LF and DSCL improve also the classification performance
 285 of ViT-16S and ConvNeXt-V2 (Appendix E.1), yet they overfit and are not further analysed.

288 5.3 LETTER IMAGE CLUSTERING

290 We observe that CNN image embeddings can be used to represent letters. To assess the quality of
 291 the resulting embeddings, we compared them against baseline features, then feeding algorithms that
 292 should cluster images of the same letter into subcategories. We also engineered features, based on
 293 Otsu’s method (Otsu, 1979), a widely used adaptive thresholding technique, and principal compo-
 294 nent analysis (PCA) (Karl, 1901), keeping as many dimensions as add up to 90% of the original
 295 information (i.e., 500). Characters have consistent alignment and size, hence pixel-based variance
 296 captured by PCA can correspond to meaningful features of the characters (e.g., strokes and overall
 297 shape). Although it destroys 2D structure (edges, texture) and does not focus on separability, PCA
 298 applied to the raw input is a simple preprocessing baseline that is complementary to CNN features
 299 that preserve local structure. The empirical results, shown in Table 2, underscore the importance

300 Table 2: Clustering performance on Hell-Char using different embeddings and different clustering
 301 algorithms, sorted by performance of the best performing Spectral algorithm.

302 Embedding	303 k-means		304 Spectral		305 AH	
	306 NMI	307 ARI	308 NMI	309 ARI	310 NMI	311 ARI
312 ResNet18+LF+DSCL	0.667	0.411	0.836	0.743	0.818	0.726
313 fCNN+LF+DSCL	0.428	0.189	0.631	0.442	0.544	0.292
314 ResNet18+PT+FT	0.480	0.257	0.487	0.225	0.464	0.197
315 Otsu+PCA	0.318	0.152	0.382	0.176	0.356	0.168
316 ResNet18+PT	0.067	0.010	0.094	0.015	0.073	0.008

317 of task-specific embeddings and non-linear clustering for historical handwriting. Our ResNet18,
 318 enhanced with our proposed LF and SCL, consistently outperforms both Otsu+PCA and the pre-
 319 trained ResNet18, achieving markedly higher agreement with paleographic labels across all met-
 320 rics. Otsu+PCA, though superior to raw pretrained features, lags far behind, while ResNet18 fails
 321 entirely, with near-random partitions. The stark contrast highlights two key findings: (i) general-
 322 purpose CNN features trained on modern image corpora do not transfer to paleographic tasks, and
 323 (ii) the manifold structure of handwritten letter embeddings is not captured adequately by centroid-
 324 based partitioning. Together, these results validate the need for domain-tailored architectures and
 325 manifold-aware clustering to recover meaningful structure in diachronic handwriting data.

326 5.4 PATTERN RECOGNITION: REVEALING LETTER FORMS

327 Using Spectral Clustering on the embeddings of our best performing CNN (ResNet18+LF+DSCL;
 328 see Table 1), we applied the Silhouette method (Schubert, 2023) to detect the optimal number of
 329 clusters per letter. For each letter, we varied the number of clusters and retained the configuration

324 with the highest Silhouette score (Rousseeuw, 1987). For one letter (Alpha), the optimal number
 325 exceeded the two clusters, indicating multiple distinct forms.² The resulting letter forms (cluster
 326 medoids) are shown in Figure 2.
 327

328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340 Figure 2: Representative forms of the Greek letter Alpha for which three clusters were detected
 341 using the Silhouette method. Forms for other letters are shown in Appendix B.
 342

343 Clustering letter forms into subtypes is a hard and unsolved task in paleography. The results of
 344 the network may in some cases point to useful characteristics. In the case of Alpha, for which we
 345 showed that several forms exist, the three images seem to represent different characteristics: the first
 346 alpha is filled-in (no empty space in its centre), circular and ligatured to the left; the second one is
 347 circular but not ligatured; the third one is angular. This partition is coherent from a paleographical
 348 point of view. Examples of the representative forms per letter for all letters are in Appendix B.
 349

350 6 OUT OF TEMPORAL DISTRIBUTION APPLICATION

351 The backbone CNN models in this work are trained on letter images from papyri of the last three
 352 centuries BCE. In this period, the epigraphic letter forms (close to our modern capital letters) start
 353 to be modified with increasing cursivity, driven by the practical demands of faster writing. This
 354 increase in cursivity continues over the following centuries and constantly deforms letter shapes;
 355 however, epigraphic letter forms are maintained, especially for calligraphic writing styles called
 356 capital (or uncial) bookhands. In the 9th century, the calligraphic stylisation of cursive forms that had
 357 gradually developed over the previous centuries reached the so-called state of “minuscule script”.
 358 While many minuscule letterforms remain visually close to their capital ancestors, others diverge
 359 significantly (notably Beta, Mu, Gamma, and Delta). During the following centuries, uncial and
 360 minuscule calligraphic forms continued to coexist, sometimes within the same manuscript and even
 361 within a single word.
 362

364 6.1 EVALUATION DATASET DEVELOPMENT

366 **PaLit-Char: Majuscule Literary Papyri** To evaluate how well the model generalizes to letter-
 367 forms close in time to the training data, we constructed the **PaLit-Char** test set. It is a fully balanced
 368 dataset containing 384 images (4 specimens \times 24 letters \times 4 centuries) spanning the 2nd–5th CE.
 369 Images were drawn from securely dated literary papyri in the PaLit dataset (Pavlopoulos et al.,
 370 2024); for the 5th century, where securely dated material is scarce, 48 images were taken from an
 371 additional, palaeographically dated manuscript. While Hell-Char covers cursive handwritings from
 372 the last three centuries BCE, PaLit-Char extends into the early centuries CE and covers calligraphic
 373 writing, offering both chronological continuity and stylistic diversity. This allows us to test whether
 374 features learned on late Hellenistic cursive letters transfer to Roman-period bookhands that retain
 375 strong ties to their predecessors but already display variation.
 376

377 ²Silhouette scores cannot be computed for a single cluster; hence the minimum number considered was two.
 For the remaining letters, additional sub-forms may still exist.

378 **Med-Char: Medieval Minuscule Manuscripts** With the historical evolution described above in
 379 mind—and having first tested the recognition performance of our network on the chronologically
 380 close PaLit-Char—we proceed to test its ability to recognize letterforms from medieval minuscule
 381 manuscripts. This evaluates both the generalizability of learned features across palaeographic peri-
 382 ods and the limits of shape-based classification given the diachronic script variation. To assess this
 383 hypothesis, we compiled a dataset of 574 letter images from manuscripts dated between 835 and
 384 1378 CE, a much later period. We used 24 images per letter, opting for balance across the centuries
 385 in that period,³ and using the best performing ResNet18, enhanced with our LF and SCL, to clas-
 386 sify each image. We call this evaluation dataset **Med-Char**. Contrary to our training set and the
 387 PaLit-Char test set, which contain capital or cursive letters (upper case), Med-Char is a Byzantine
 388 minuscule letter (lower case) dataset. This choice is deliberate: minuscule script is historically de-
 389 rived from majuscule but exhibits substantial graphic divergence, with some letters retaining visual
 390 continuity and others undergoing radical transformation. Testing on Med-Char therefore allows us
 391 to probe the limits of the learned representations under extreme diachronic and stylistic shift. This
 392 provides a benchmark for cross-period generalization.

393 6.2 EXPERIMENTAL ANALYSIS

394 **Closer in Time** On the evaluation data of PaLit-Char, ResNet18+LF+DSCL achieves an Accuracy
 395 and F1 of 0.84, very close to the results of Hell-Char. This is reasonable due to the proximity in time
 396 and nature (the full classification report is in Table 4 in the Appendix). Although F1 dropped for
 397 specific letters (e.g., Phi, Pi, Psi) for others it improved (Alpha and Zeta). The calligraphic nature
 398 (regular, standardized, legible) of PaLit characters can explain this increase.

401 **Far Away in Time** ResNet18+LF+DSCL achieves an Accuracy of 0.45 in Med-Char, revealing a
 402 highly uneven performance across the 24 character classes (see Table 5 in the Appendix). Letters
 403 Chi, Epsilon, Iota and Lambda achieve high F1 (0.88, 0.70, 0.73, and 0.84 respectively), indicating
 404 that the network captures their discriminative features reliably despite temporal variability. Indeed,
 405 for these letters, capital, cursive and minuscule letter shapes are similar to one another. In con-
 406 trast, other letters (Alpha, Delta, Gamma, Upsilon) exhibit extremely low or even zero F1 values,
 407 suggesting systematic confusion with visually similar shapes and high diachronic variability that
 408 undermines generalization. Gamma, for instance, undergoes a strong visual evolution; in Hell-Char,
 409 its shape is specific and close to epigraphic Γ , whereas in Med-Char, it is very different and rather
 410 resembles Upsilon. The remaining letters fall into an intermediate band, with varying degrees of
 411 precision–recall trade-offs: e.g., Kappa, Omicron and Tau show strong Recall (0.75, 0.83 and 0.83)
 412 but lower Precision (0.39, 0.39 and 0.42), while Psi leads to the highest Precision (1.00) yet inflated
 413 Recall (0.14), reflecting over-prediction. As can be seen in Figure 3, misclassification patterns are
 414 temporally structured: errors for Chi are closer to 1300 CE, whereas Iota’s confusion is around 950
 415 CE, implying that historical morphological shifts exert non-uniform effects on recognition difficulty.
 416 Similar patterns occurs for Tau (around 1250 CE) and Theta (1000 CE). Noteworthy is the fact that
 417 fine-tuning on Palit-Char and inferring on Med-Char brings no significant gains (see Appendix D).

418 **Letter-Century Clusters** Figure 4 illustrates a two-dimensional t-SNE projection of the
 419 ResNet18+LF+DSCL embeddings, where each point corresponds to an image patch representing
 420 a handwritten Greek Med-Char character. To reduce clutter and improve interpretability, instead of
 421 showing all individual samples, one prototype image per letter–century pair is overlaid: the pro-
 422 totype is chosen as the sample closest to the centroid of its group in the t-SNE space, thus rep-
 423 resenting the most “typical” example of that cluster. The resulting map highlights how temporal
 424 and graphemic factors shape the embedding space. Within the clusters related to one character,
 425 overlapping or diffuse areas indicate stylistic continuities or transitional forms between centuries,
 426 whereas sharp separations reveal periods of stronger diachronic variation. This approach provides
 427 an interpretable way of assessing the alignment between automated embeddings and paleographic
 428 expectations, enabling both qualitative validation of the clustering behavior and the identification of
 429 anomalies or particularly distinctive exemplars.

430 431 ³We include 24 random instances of each letter per century from multiple manuscripts. Letter Psi was less
 supported and has 22 occurrences.

Figure 3: Boxplot of years per letter for missclassified out-of-distribution images of Med-Char. The count of mistakes is shown inside in red letters.

Figure 4: Two-dimensional t-SNE plot of ResNet18+LF+DSCL embeddings on Med-Char. One prototype image per letter-century group is shown, selected as the sample closest to the centroid, to visualize the cluster structure across both graphemic and temporal dimensions.

Distinctively Isolated Letters The letters that obtained high F1 scores (i.e., Chi, Epsilon, Iota and Lambda), are distinctively isolated in clusters on the exterior of the graph. Their shapes are close to Hellenistic ones from the training set Hell-Char. Also, Gamma is grouped, but its shape is very different from Hellenistic Hell-Char Gamma shape and closely resembles Hellenistic Hell-Char Upsilon and Tau shapes; this can explain the zero Precision and Recall for Gamma. **Visible Clusters: The cases of Zeta and Beta** Two clusters of Zeta are visible. A first one to the left of the graph, mixed with Theta, with a shape that resembles a 3. A second one in the middle of the graph, mixed with Delta and Xi, with a shape close to modern-day ζ . This distinction points out to one reason for confusion in recognizing Zeta: its “3-looking” shape is absent from the training data and therefore,

486 cannot be identified. The same is true for Beta: its B-shaped form groups with Zeta to the left of
 487 the image, whereas its minuscule, u-shaped form groups with other minuscule u-shaped letters such
 488 as Kappa, Mu and Nu to the bottom right of the graph. This u-shaped Beta, absent from Hell-Char,
 489 explains its very low Recall. **Typical Medieval Forms** The bottom-right corner of the graph, with
 490 worse clustering for individual letters, groups typical Medieval letter forms, based on successions of
 491 ‘o’ and ‘u’ shapes. These shapes are quite different from Hell-Char letters shapes, and indeed the let-
 492 ters represented here (Omega, Beta, Kappa, Mu, Nu, Upsilon) do not belong to the top-performing
 493 ones. Kappa and Nu achieved an F1 of 0.51, which can be explained by their mixing Medieval,
 494 minuscule, u-shaped forms with older, capital forms already attested in Hell-Char. These forms, K
 495 and N, can be seen at the margins of the larger cluster on the bottom-right corner.
 496

497 7 DISCUSSION

500 **Novel Methodological Contributions** Erasing input as augmentation in image classification is
 501 not new Zhong et al. (2020) and it has been shown particularly useful for papyri, which are often
 502 fragmented. **Our presented synthetic augmentation** is closer in nature to the real fragments (i.e.,
 503 elliptic v. square) and a comparison between rows 2-3 of Table 7 shows that our approach is better.
 504 **Our proposed SW for SCL**, on the other hand, besides interpretability (representation class simi-
 505 larity), helps the model avoid confusion. In Figure 6, for example, only one (alpha-lambda) out of
 506 the four pairs of high similarity noted in the caption get a high value in the confusion matrix (Fig-
 507 ure 5). Standard SCL treats negatives uniformly, making classes with inherent affinities (e.g., letters
 508 with similar shapes, such as as psi-phi) to be strongly repelled. This leads to embeddings that fail to
 509 reflect natural inter-class relationships. Our results (Table 7) reflect the superiority of our approach.
 510

511 **Scribe Leakage** We frame paleographic problems (e.g., dating or scribe identification) as the
 512 search for a strong script embedding, where classification relies on defining distance thresholds
 513 (same period or scribe). Our current work validates robust letter representations using classifica-
 514 tion. Testing against a chronologically distinct external dataset (Table 4) confirmed the absence of
 515 validation leakage; i.e., accuracy did not drop. While this validates model integrity, it confirms that
 516 our representations do not capture the fidelity required for scribal identification, which remains a
 517 challenging task, very hard to solve D’Alessandro et al. (2025). This limitation is likely imposed by
 518 the low sample density (i.e., a maximum of 120 characters per papyrus).
 519

520 **Resources Contribution** Besides our two technical contributions, we also release Med-Char and
 521 PaLit-Char, two new datasets. Hell-Char is a subset of an existing dataset called Hell-Date, already
 522 released in the past yet never used for applications to the best of our knowledge. Together, these
 523 three resources are expected to assist the field of computational palaeography.
 524

525 8 CONCLUSIONS

526 This work introduces three datasets of historical Greek handwriting (**Hell-Char**, **PaLit-Char**, **Med-Char**), and uses them to examine how modern representation learning captures symbolic variation
 527 across time. Beyond establishing Hell-Char as a benchmark for low-resource, domain-shifted vi-
 528 sual recognition, we propose two methodological innovations: **a similarity-weighted supervised**
 529 **contrastive loss**, which aligns representations with human-perceived character confusability, and
 530 **a lacuna-driven augmentation scheme**, which faithfully simulates manuscript degradations. Em-
 531 pirically, we show that CNN-derived embeddings yield a more discriminative structure than PCA
 532 or generic pre-trained models, while clustering uncovers stylistic subgroups that mirror diachronic
 533 variation and coexisting scribal conventions. Prototype distribution per letter-century further visu-
 534 alize gradual graphical change, providing interpretable bridges between computational analysis and
 535 paleographic interpretation. More broadly, this study highlights the limits of natural-image trans-
 536 fer learning for specialized domains and demonstrates how integrating expert prior knowledge with
 537 domain-specific corruptions can produce robust and faithful embeddings. The resulting framework
 538 is not only valuable for computational paleography but also constitutes a transferable paradigm for
 539 **representation learning under scarce, temporally evolving, and systematically corrupted data**.

540 REPRODUCIBILITY STATEMENT
541

542 Our code and data will be released publicly (CC license) upon acceptance. An anonymized GitHub
543 repository is made for reviewing purposes at <https://anonymous.4open.science/r/letter-evol/> includ-
544 ing the source code (`source.py`), data samples (clippets and CSV per dataset), and notebooks with
545 training and evaluation pipelines.

546
547 REFERENCES
548

549 Daniele Bianconi. Greek Palaeography. In Alessandro Bausi, Pier Giorgio Borbone, Françoise
550 Briquel-Chatonnet, Paola Buzi, Jost Gippert, Caroline Macé, Marilena Maniaci, Zisis Melissakis,
551 Laura E. Parodi, and Witold Witakowski (eds.), *Comparative Oriental Manuscript Studies. An
552 Introduction*, pp. 297–305. Trendition, Hamburg, 2015.

553 Merouane Boudraa, Akram Bennour, Mohammed Al-Sarem, Fahad Ghabban, and Omair Ameer
554 Bakhsh. Contribution to historical manuscript dating: A hybrid approach employing hand-crafted
555 features with vision transformers. *Digital Signal Processing*, 149:104477, 2024. ISSN 1051-
556 2004. doi: 10.1016/j.dsp.2024.104477.

557 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
558 Armand Joulin. Emerging properties in self-supervised vision transformers. In *2021 IEEE/CVF
559 International Conference on Computer Vision (ICCV)*, pp. 4778–4788, 2021.

560 Guglielmo Cavallo. Greek and Latin Writing in the Papyri. In Roger S. Bagnall (ed.), *The Oxford
561 Handbook of Papyrology*, pp. 101–148. Oxford University Press, Oxford, New York, 2009.

563 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
564 contrastive learning of visual representations. In *Proceedings of the 37th International Conference
565 on Machine Learning (ICML)*, 2020. doi: 10.48550/arXiv.2002.05709.

566 Edoardo Crisci and Paola Degni. *La scrittura greca dall'antichità all'epoca della stampa. Una
567 introduzione*. Carocci, Roma, 2011.

569 T D'Alessandro, ND Cilia, C De Stefano, F Fontanella, M Molinara, A Scotto di Freca, and
570 I Marthot-Santaniello. A deep transfer learning approach for writer identification in greek pa-
571 pyri. *ACM Journal on Computing and Cultural Heritage*, 18(3):1–19, 2025.

572 Lavinia Ferretti, Olga Serbaeva Saraogi, Giuseppe De Gregorio, and Isabelle Marthot-Santaniello.
573 Hell-Date. EGRAPSA Hellenistic Dated Papyri Dataset, 2025. URL [https://zenodo.org/](https://zenodo.org/records/15083590)
574 records/15083590.

576 Shanshan He, Lambert R.B. Schomaker, Panagiota Samara, and Jeroen Burgers. Mps data set with
577 images of medieval charters for handwriting-style based dating of manuscripts. <https://doi.org/10.5281/zenodo.1194357>, 2016.

579 Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the dimensionality of data with neural
580 networks. *Science*, 313(5786):504–507, 2006. doi: 10.1126/science.1127647.

582 Jean Irigoin. L'alphabet grec et son geste des origines au IXe siècle après J.-C. In Colette Sirat,
583 Jean Irigoin, and Emmanuel Poulle (eds.), *L'écriture: le cerveau, l'œil et la main*, pp. 299–305.
584 Brepols, Turnhout, 1990.

585 Pearson Karl. Liii. on lines and planes of closest fit to systems of points in space. *The London,
586 Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 2(11):559–572, 1901.
587 doi: 10.1080/14786440109462720.

588 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
589 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In *Advances in Neural
590 Information Processing Systems (NeurIPS)*, 33, pp. 18661–18673, 2020. proceedings.neurips.cc.

592 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
593 to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.
726791.

594 Yuhong Li, David Genzel, Yuta Fujii, and Anand C. Popat. Publication date estimation for printed
 595 historical documents using convolutional neural networks. In *Proceedings of the 3rd International*
 596 *Workshop on Historical Document Imaging and Processing*, pp. 99–106. ACM, 2015.

597

598 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 599 Swin transformer: Hierarchical vision transformer using shifted windows, 2021. URL <https://arxiv.org/abs/2103.14030>.

600

601 Isabelle Marthot-Santaniello, Manh Tu Vu, Olga Serbaeva, and Marie Beurton-Aimar. Stylistic
 602 similarities in greek papyri based on letter shapes: A deep learning approach. In Mickael Coustaty
 603 and Alicia Fornés (eds.), *Document Analysis and Recognition – ICDAR 2023 Workshops*, pp. 307–
 604 323, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-41498-5.

605

606 Nobuyuki Otsu. A threshold selection method from gray-level histograms. *IEEE Transactions on*
 607 *Systems, Man, and Cybernetics*, 9(1):62–66, 1979. doi: 10.1109/TSMC.1979.4310076.

608

609 John Pavlopoulos, Maria Konstantinidou, Elpida Perdiki, Isabelle Marthot-Santaniello, Holger
 610 Essler, Georgios Vardakas, and Aristidis Likas. Explainable dating of greek papyri images. *Ma-*
chine Learning, 113(9):6765–6786, 2024.

611

612 Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analy-
 613 sis. *Journal of computational and applied mathematics*, 20:53–65, 1987.

614

615 Erich Schubert. Stop using the elbow criterion for k-means and how to choose the number of clusters
 616 instead. *ACM SIGKDD Explorations Newsletter*, 25(1):36–42, 2023.

617

618 Øivind Due Trier, Anil K. Jain, and Torfinn Taxt. Feature extraction methods for character recogni-
 619 tion – a survey. *Pattern Recognition*, 29(4):641–662, 1996. doi: 10.1016/0031-3203(95)00118-2.

620

621 Fredrik Wahlberg, Tomas Wilkinson, and Anders Brun. Historical manuscript production date esti-
 622 mation using deep convolutional neural networks. In *2016 15th International Conference on Fron-*
623 tiers in Handwriting Recognition (ICFHR), pp. 205–210, 2016. doi: 10.1109/ICFHR.2016.0048.

624

625 Graham West, Matthew I. Swindall, James H. Brusuelas, Francesca Maltomini, Marius Gerhardt,
 626 Marzia D’Angelo, and John F. Wallin. A deep learning pipeline for the palaeographical dat-
 627 ing of ancient Greek papyrus fragments. In John Pavlopoulos, Thea Sommerschield, Yannis
 628 Assael, Shai Gordin, Kyunghyun Cho, Marco Passarotti, Rachele Sprugnoli, Yudong Liu, Bin
 629 Li, and Adam Anderson (eds.), *Proceedings of the 1st Workshop on Machine Learning for An-*
630 cient Languages (ML4AL 2024), pp. 177–185, Hybrid in Bangkok, Thailand and online, Au-
 631 gust 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.ml4al-1.18. URL
<https://aclanthology.org/2024.ml4al-1.18/>.

632

633 Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
 634 Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In
 635 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 636 pp. 16133–16142, 2023.

637

638 Mengyao Zheng, Fang Wang, Shiyi You, Chuan Qian, Chen Zhang, Xiang Wang, and Chao Xu.
 639 Weakly supervised contrastive learning. In *Proceedings of the IEEE/CVF International Confer-*
640 ence on Computer Vision (ICCV), pp. 4009–4015, 2021. arXiv:2110.04770.

641

642

643 Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
 644 tation. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 13001–
 645 13008, 2020.

646

647

A PER LETTER CLASSIFICATION

648

A.1 PERFORMANCE

649

650 Table 6 shows the classification performance per letter of the best performing ResNet18, pre-trained
 651 and enhanced with our supervised contrastive loss (SCL) with dynamically learned weights and

our Lacunae-based fragmentation (LF). The model achieves 0.83 in Accuracy, with macro- and weighted-F1 following closely, indicating the balanced performance across the 24 Greek letters despite the class imbalance. Several characters are classified with very high F1, e.g. Beta (0.92), Eta (0.92), Kappa (0.92), Omicron (0.90), Chi (0.89), Nu (0.89), Rho (0.89). Letters such as Alpha (0.63 F1), Lambda (0.63 F1) and Zeta (0.70 F1) underperform. Low support may explain why Zeta underperforms (22 instances). Mid-performing classes, such as Theta (0.73 precision, 0.79 recall, 0.76 F1), indicate a possible difficulty of capturing internal script characteristics. Among the circularly-shaped letters (Theta, Omicron, Epsilon and Sigma), Theta is the rarest and is often influenced by the shapes of the others, thus creating sources for confusion.

Table 3: The classification report on Hell-Char, per letter, of ResNet18 enhanced with our LF augmentation and our SCL with dynamically-learned weights.

Class	Precision	Recall	F1-Score	Support
Alpha	0.73	0.55	0.63	139
Beta	0.92	0.91	0.92	67
Chi	0.97	0.82	0.89	85
Delta	0.87	0.84	0.85	113
Epsilon	0.84	0.89	0.86	134
Eta	0.92	0.91	0.92	128
Gamma	0.83	0.75	0.79	105
Iota	0.89	0.72	0.79	141
Kappa	0.89	0.94	0.92	127
Lambda	0.63	0.64	0.63	136
Mu	0.83	0.87	0.85	126
Nu	0.83	0.97	0.89	134
Omega	0.84	0.82	0.83	123
Omicron	0.88	0.92	0.90	126
Phi	0.88	0.84	0.86	83
Pi	0.80	0.91	0.85	127
Psi	0.83	0.89	0.86	17
Rho	0.86	0.91	0.89	133
Sigma	0.74	0.90	0.81	138
Tau	0.73	0.85	0.79	139
Theta	0.73	0.79	0.76	86
Upsilon	0.82	0.73	0.77	133
Xi	0.76	0.83	0.80	47
Zeta	0.78	0.64	0.70	22
Accuracy			0.83	2603
Macro (avg)	0.84	0.82	0.82	2603
Weighted (avg)	0.83	0.83	0.83	2603

A.2 CONFUSION

As it is apparent in the confusion matrix (Fig. 5), images of Alpha and Lambda were hard to classify, possibly due to their visual similarity. Alpha VS Delta, however, as well as Lambda VS Delta, which are also similar, are not confused. Other confused pairs are Iota vs Rho, Sigma VS Epsilon (but not Epsilon VS Sigma), Theta VS Omicron (but not Omicron VS Theta), Upsilon VS Tau, Xi VS Zeta, all pairs with strong visual similarities that are indeed dynamically assigned a high similarity during training. The dynamically learnt similarity matrix is provided in Figure 6. The Sigma-Epsilon confusion can explain why Sigma has a very high recall (0.90) but a low precision (0.74, for an F1 of 0.81).

A.3 COMPENSATION

Irigoin (1990, p. 303-304) proposed that ancient readers compensated for the confusion between a consonant and a vowel through their language knowledge, so that a graphic system needed to

Figure 5: Confusion matrix of ResNet18 with LF and SCL.

maximize the difference between letters with phonologically similar functions (vowels between themselves, or consonants between themselves). The confusion matrix (Figure 5) confirms this hypothesis; thus, Lambda (a consonant) is confused with Alpha (a vowel) but less with Delta (another consonant); similarly, Theta (a consonant) is confused with Omicron (a vowel) but less with Sigma (a consonant). Therefore, the results in clustering show that our method represents letters in a way that is paleographically significant and can help paleographers navigate questions of readability of a script based on confusion patterns.

A.4 OUT OF DISTRIBUTION

The performance of ResNet18+LF+DSCL on out of distribution datasets is shown in Tables 4-5. In PaLit-Char, Accuracy is high across letters except from Psi, which is confused with Phi. In the much later in time Med-Char, Accuracy drops to 0.45 and Psi drops further, along with several other letters. Exceptions are Chi, Epsilon, Iota, Lambda.

B LETTER FORM RECOGNITION

Figure 7 shows the two representative forms per letter for the (23) letters besides Alpha. Given that the Silhouette method operates for more than two clusters, we observe that either one or two letter forms exist per letter.

Figure 6: Dynamic similarity matrix between letters learned during training. Light colours indicate high similarity, such as Alpha-Lambda, Theta-Omicron, Xi-Zeta, Phi-Psi.

Figure 7: Representative forms per Greek letter. Only in Alpha three forms were found. For each other letter, the shown forms may or may not indicate distinct subforms.

C EXPERIMENTAL SETUP

In subsection 5.2, we presented the classification performance of different configurations.

C.1 MODELS

The fCNN architecture comprises three convolutional blocks with 32, 64, and 128 channels, respectively, each employing 3×3 kernels, ReLU activation functions, and 2×2 max-pooling. These are followed by a fully connected layer with 512 hidden units, dropout ($p = 0.5$), and a final softmax classification layer. For the ResNet18 baseline, we adopt the standard architecture proposed by He et al. (2016), initialized with ImageNet-pretrained weights. The Swin Transformer is adapted by modifying its initial convolutional layer to accommodate single-channel grayscale inputs and by re-

810
811
812 Table 4: Classification performance of ResNet18+LF+DSCL on PaLit-Char
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

Class	Precision	Recall	F1-Score	Support
Alpha	0.58	0.94	0.71	16
Beta	0.94	1.00	0.97	16
Chi	1.00	0.88	0.93	16
Delta	1.00	0.75	0.86	16
Epsilon	0.88	0.88	0.88	16
Eta	0.93	0.88	0.90	16
Gamma	0.87	0.81	0.84	16
Iota	0.89	1.00	0.94	16
Kappa	0.88	0.94	0.91	16
Lambda	0.71	0.67	0.69	15
Mu	0.94	0.94	0.94	16
Nu	0.75	0.94	0.83	16
Omega	1.00	0.94	0.97	16
Omicron	0.93	0.88	0.90	16
Phi	0.64	0.88	0.74	16
Pi	0.93	0.81	0.87	16
Psi	1.00	0.19	0.32	16
Rho	0.74	0.88	0.80	16
Sigma	0.87	0.81	0.84	16
Tau	0.65	0.69	0.67	16
Theta	0.79	0.94	0.86	16
Upsilon	0.88	0.88	0.88	16
Xi	0.88	0.94	0.91	16
Zeta	1.00	0.75	0.86	16
Accuracy	0.84	0.84	0.84	383
Macro (avg)	0.86	0.84	0.83	383
Weighted (avg)	0.86	0.84	0.83	383

837
838 placing the default classification head with a custom layer designed to output predictions across 24
839 target classes.
840

841 C.2 TRAINING 842

843 We used the Adam optimizer with default parameters ($\beta_1 = 0.9, \beta_2 = 0.999$). The learning rate was
844 set to 0.001 for the fCNN and 0.0001 for the pre-trained ResNet and SWIN, to avoid catastrophic
845 forgetting. All experiments were conducted with a batch size of 16 and trained for up to 100 epochs,
846 with early stopping applied if the validation loss did not decrease for 10 consecutive epochs. Addi-
847 tionally, we employed a ReduceLROnPlateau scheduler to adjust the learning rate during training.
848

849 D CROSS-DATASET FINE-TUNING 850

851 The results presented in Table 9 show that ResNet18+LF+DSCL, trained on Hell-char and fine-tuned
852 on PaLit-char, underperforms on Med-Char. This phenomenon can be explained by under-
853 standing the evolution of Greek handwriting over the millennia. Indeed, our three datasets Hell-Char,
854 PaLit-Char and Med-Char differ not only based on their chronology, but also based on their formal
855 characteristics.
856

857 In Classical Greece (ca. 5th – 4th century BCE), the Greek alphabet had clear, separated letter
858 shapes that resemble what we call today upper-case or majuscule. Thus, Gamma would look like Γ ,
859 and Delta would look like Δ . These shapes were easy to read but slow to write.

860 During the Hellenistic period (ca. 3rd – 1st century BCE), these slow and clear forms were retained
861 for calligraphic book writing. However, everyday writing with ink developed rapidly written cursive
862 forms of the majuscule that progressively diverged from earlier shapes. These cursive, unstable
863 shapes form the backbone of our training set, Hell-Char. They resemble nothing used in modern-
day typography; some examples can be seen in Figure 7.

864
865
866 Table 5: Classification performance of ResNet18+LF+DSCL on Med-Char.
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890

Class	Precision	Recall	F1-Score	Support
Alpha	0.04	0.04	0.04	24
Beta	0.50	0.12	0.20	24
Chi	0.85	0.92	0.88	24
Delta	0.20	0.08	0.12	24
Epsilon	0.63	0.79	0.70	24
Eta	0.61	0.46	0.52	24
Gamma	0.00	0.00	0.00	24
Iota	0.61	0.92	0.73	24
Kappa	0.39	0.75	0.51	24
Lambda	0.90	0.79	0.84	24
Mu	0.60	0.38	0.46	24
Nu	0.48	0.54	0.51	24
Omega	0.29	0.50	0.36	24
Omicron	0.39	0.83	0.53	24
Phi	0.44	0.58	0.50	24
Pi	0.36	0.17	0.23	24
Psi	1.00	0.14	0.24	22
Rho	0.68	0.54	0.60	24
Sigma	0.40	0.42	0.41	24
Tau	0.42	0.83	0.56	24
Theta	0.32	0.46	0.38	24
Upsilon	0.00	0.00	0.00	24
Xi	0.73	0.46	0.56	24
Zeta	0.67	0.17	0.27	24
Accuracy			0.45	574
Macro (avg)	0.48	0.45	0.42	574
Weighted (avg)	0.48	0.45	0.42	574

891
892
893 In the Roman and Late Antique period (ca. 1st – 8th century CE), calligraphic books continued to
894 use slow, clear uppercase letter forms attested since the Classical times, with small stylistic variations
895 (slant, proportions, thick and thin strokes...). These are the letter shapes present in PaLit-Char, our
896 fine-tuning set. However, cursive handwriting continued to evolve, drastically changing letter shapes
897 over time. These changes are undocumented in our datasets and thus escaped both training and fine-
898 tuning.

899 Around the 9th century CE, a later formal script, the so-called minuscule script, was developed
900 when the appearance of the then-contemporary fast documentary hand was standardized and adopted
901 for book production (Cavallo, 2009, p. 136). This script is based on the later cursive shapes that
902 are undocumented in our training and fine-tuning sets; it is close to modern-day lowercase Greek,
903 with Gamma looking like γ and Delta like δ . Some of its letter shapes are still visually similar to
904 majuscule forms (e.g. Omicron, O and o), but others differ drastically (e.g. Γ and γ). During the
905 9th–14th century CE, this script coexisted with majuscule shapes even within the same manuscript.
906 This mix of minuscule with some majuscule contamination is the script of our test set Med-Char.

907 These massive, historically induced changes in character shapes can explain why, even with fine-
908 tuning, the model failed to generalise across time. Specifically, a model trained on Hell-Char (an
909 early fast cursive) and subsequently fine-tuned on PaLit-Char (a formal majuscule) achieves pro-
910 ficiency in both calligraphic majuscule forms (e.g., A, B, Γ) and the complex Hellenistic cursive
911 shapes. However, when this resulting model is tasked with classifying Med-Char (a formal mi-
912 nuscule, e.g., α , β , γ), it struggles to generalize the morphological shift, as it lacks exposure to
913 the intermediary Roman and Late Antique cursive scripts—the evolutionary foundation from which
914 minuscule scripts were later formalized.

915 This can lead to systematic misclassification, as the model attempts to find the closest known visual
916 proxy instead of leveraging the absent evolutionary steps of later cursive shapes. For instance,
917 Gamma (Precision, Recall and F1 of 0.00) was presumably confused with Upsilon, as Med-Char
Gamma (similar to γ) is very different from Hell-Char and PaLit-Char Gamma (similar to Γ) and

918
919
920 Table 6: Classification performance of ViT+LF+DSCL on Med-Char.
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

Class	Precision	Recall	F1-Score	Support
Alpha	0.00	0.00	0.00	24
Beta	0.03	0.04	0.04	24
Chi	0.53	0.83	0.65	24
Delta	0.50	0.04	0.08	24
Epsilon	0.42	0.46	0.44	24
Eta	0.47	0.33	0.39	24
Gamma	0.00	0.00	0.00	24
Iota	0.37	0.75	0.49	24
Kappa	0.28	0.83	0.42	24
Lambda	1.00	0.04	0.08	24
Mu	0.38	0.12	0.19	24
Nu	0.71	0.42	0.53	24
Omega	0.26	0.62	0.37	24
Omicron	0.34	0.75	0.47	24
Phi	0.19	0.12	0.15	24
Pi	0.59	0.42	0.49	24
Psi	0.00	0.00	0.00	22
Rho	0.83	0.21	0.33	24
Sigma	0.28	0.29	0.29	24
Tau	0.72	0.54	0.62	24
Theta	0.21	0.54	0.31	24
Upsilon	0.00	0.00	0.00	24
Xi	0.39	0.62	0.48	24
Zeta	0.40	0.08	0.14	24
Accuracy			0.34	574
Macro (avg)	0.37	0.34	0.29	574
Weighted (avg)	0.37	0.34	0.29	574

945
946 quite close to Hell-Char and PaLit-Char Upsilon (similar to Y). The generalization task becomes an
947 unguided extrapolation, resulting in low Accuracy.
948

949 E TRANSFORMERS

950
951 In subsections 5.2 and 5.3, we presented CNN models for classification and clustering. In addition
952 to these, we also trained a transformer-based model. Specifically, we fine-tuned the pre-trained
953 Swin Vision Transformer (Liu et al., 2021) and achieved a classification accuracy of 0.84. However,
954 applying SCL loss and Lacunae augmentation did not lead to further improvements. Nevertheless,
955 as shown in Table 10, the clustering performance of the Swin+LF+DSCL model surpasses that of
956 the plain Swin model, indicating that the embeddings are of higher quality despite no improve-
957 ment in classification accuracy. Even this improved performance, however, falls behind that of our
958 ResNet18+LF+DSCL across clustering algorithms and metrics (Table 2).
959

960 E.1 BASELINES WITH GLOBAL DEPENDENCIES

961
962 Besides ResNet-18, we also experimented with ConvNeXt-V2, which employ layer normalisation,
963 global response normalisation, and convolutional masked autoencoders. Furthermore, we experi-
964 mented with ViT-16S, which uses self-attention instead of convolutional layers and captures global
965 dependencies. Table 11 shows that F1 of both models increases when we add our LF and DSCL. As
966 can be seen on Table 12, the best performance across different backbones is achieved by ResNet-18,
967 using the Spectral clustering algorithm. This contradicts the better classification performance of
968 ViT-16S and ConvNeXt-V2 (Table 11), which is likely due to overfitting.
969
970
971

972
973

Table 7: Classification performance of ConvNeXt-V2+LF+DSCL on Hell-Char.

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

Class	Precision	Recall	F1-Score	Support
Alpha	0.78	0.65	0.71	139
Beta	0.69	0.93	0.79	67
Chi	0.74	0.94	0.83	85
Delta	0.78	0.83	0.81	113
Epsilon	0.83	0.88	0.85	138
Eta	0.82	0.90	0.86	124
Gamma	0.82	0.81	0.81	105
Iota	0.86	0.84	0.85	141
Kappa	0.87	0.93	0.90	127
Lambda	0.83	0.65	0.73	117
Mu	0.87	0.94	0.90	126
Nu	0.88	0.92	0.90	134
Omega	0.88	0.87	0.87	126
Omicron	0.88	0.79	0.83	136
Phi	0.85	0.95	0.90	83
Pi	0.90	0.86	0.88	127
Psi	0.48	0.71	0.57	17
Rho	0.90	0.89	0.89	133
Sigma	0.92	0.91	0.91	138
Tau	0.94	0.85	0.89	139
Theta	0.91	0.90	0.90	86
Upsilon	0.95	0.80	0.87	133
Xi	0.87	0.87	0.87	47
Zeta	0.73	0.73	0.73	22
Accuracy			0.85	2603
Macro (avg)	0.83	0.85	0.84	2603
Weighted (avg)	0.86	0.85	0.85	2603

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Table 8: Classification Performance on Hell-Char, per letter, of ViT-16S+LF+DSCL

Class	Precision	Recall	F1-Score	Support
Alpha	0.68	0.73	0.70	139
Beta	0.97	0.91	0.94	67
Chi	0.93	0.98	0.95	85
Delta	0.89	0.84	0.86	113
Epsilon	0.87	0.89	0.88	138
Eta	0.84	0.87	0.85	124
Gamma	0.83	0.75	0.79	105
Iota	0.84	0.84	0.84	141
Kappa	0.89	0.91	0.90	127
Lambda	0.80	0.65	0.72	117
Mu	0.84	0.90	0.87	126
Nu	0.90	0.84	0.87	134
Omega	0.91	0.87	0.89	126
Omicron	0.82	0.91	0.86	136
Phi	0.90	0.96	0.93	83
Pi	0.85	0.91	0.88	127
Psi	0.88	0.82	0.85	17
Rho	0.94	0.80	0.87	133
Sigma	0.88	0.90	0.89	138
Tau	0.86	0.81	0.83	139
Theta	0.88	0.81	0.84	86
Upsilon	0.79	0.90	0.85	133
Xi	0.94	0.94	0.94	47
Zeta	0.87	0.91	0.89	22
Accuracy			0.86	2603
Macro (avg)	0.87	0.86	0.86	2603
Weighted (avg)	0.86	0.86	0.86	2603

1026
1027 Table 9: Classification performance of ResNet18+LF+DSCL trained on Hell-char, fine-tuned on
1028 PaLit-char and tested on Med-Char

1029 Class	1030 Precision	1031 Recall	1032 F1-score	1033 Support
1030 Alpha	0.10	0.12	0.11	24
1031 Beta	0.29	0.17	0.21	24
1032 Chi	0.74	0.96	0.84	24
1033 Delta	0.50	0.08	0.14	24
1034 Epsilon	0.49	0.79	0.60	24
1035 Eta	0.86	0.25	0.39	24
1036 Gamma	0.00	0.00	0.00	24
1037 Iota	0.68	0.88	0.76	24
1038 Kappa	0.81	0.54	0.65	24
1039 Lambda	1.00	0.38	0.55	24
1040 Mu	0.62	0.62	0.62	24
1041 Nu	0.33	0.04	0.07	24
1042 Omega	0.25	0.83	0.38	24
1043 Omicron	0.37	0.96	0.53	24
1044 Phi	0.73	0.79	0.76	24
1045 Pi	0.44	0.17	0.24	24
1046 Psi	0.75	0.55	0.63	22
1047 Rho	0.83	0.62	0.71	24
1048 Sigma	0.48	0.50	0.49	24
1049 Tau	0.55	0.71	0.62	24
1050 Theta	0.44	0.67	0.53	24
1051 Upsilon	0.03	0.04	0.04	24
1052 Xi	0.62	0.75	0.68	24
1053 Zeta	1.00	0.17	0.29	24
1054 Accuracy			0.48	574
1055 Macro (avg)	0.54	0.48	0.45	574
1056 Weighted (avg)	0.54	0.48	0.45	574

1053
1054 Table 10: Clustering performance using different configurations of the SWIN architecture

1055 Embedding	k-means		Spectral		AH	
	NMI	ARI	NMI	ARI	NMI	ARI
1058 SWIN+LF+DSCL	0.633	0.404	0.785	0.700	0.772	0.690
1059 SWIN	0.449	0.243	0.595	0.395	0.575	0.390

1061
1062 Table 11: Classification performance on Hell-Char (sorted) of ViT-16S and ConvNeXt-V2, pre-
1063 trained (PT) and fine-tuned (FT), when we add our DSCL and LF.

1064 Model	1065 Fragmentation	1066 Contrastive Loss	1067 Accuracy	1068 F1
1066 ConvNeXt-V2	–	–	0.848	0.836
1067 ConvNeXt-V2	LF	DSCL	0.851	0.854
1068 ViT-16S	–	–	0.867	0.840
1069 ViT-16S	LF	DSCL	0.856	0.850

1071
1072 Table 12: Clustering performance of different backbones using LF and DSCL, on Hell-Char, sorted
1073 by performance of the (best-performing) Spectral algorithm.

1074 Embedding	k-means		Spectral		AH	
	NMI	ARI	NMI	ARI	NMI	ARI
1075 ResNet18+LF+DSCL	0.667	0.411	0.836	0.743	0.818	0.726
1076 ViT-16S+LF+DSCL	0.796	0.714	0.802	0.727	0.787	0.688
1077 ConvNeXt-V2+LF+DSCL	0.776	0.683	0.786	0.674	0.755	0.626
1078 Swin+LF+DSCL	0.633	0.404	0.785	0.700	0.772	0.690