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ABSTRACT

Learning representations that remain robust across centuries of variation in hand-
writing is a key challenge in diachronic representation learning of ancient Greek
manuscripts. We introduce three datasets of ancient Greek handwriting for di-
achronic representation learning: Hell-Char, a curated training set spanning the
3rd–1st centuries BCE, and two evaluation sets, PaLit-Char (1st–5th c. CE) and
Med-Char (9th–14th c. CE). To address challenges of symbolic variation, scarce
data, and systematic degradation, we propose two methodological innovations: a
similarity-weighted supervised contrastive loss that biases embeddings by human-
perceived confusability, and a lacuna-driven augmentation scheme that simulates
realistic manuscript corruptions. Trained with these strategies, both a lightweight
CNN and a pretrained ResNet achieve strong recognition performance and pro-
duce embeddings that more coherently separate character classes than PCA or
generic pretrained models. These embeddings enable clustering, identification of
stylistic subgroups, and construction of prototype images that visualize diachronic
evolution and transitional letterforms. Our results demonstrate that incorporat-
ing expert priors and domain-specific corruptions yields robust, interpretable rep-
resentations, offering a transferable paradigm for representation learning under
scarce, temporally evolving, and noisy conditions.

1 INTRODUCTION

Palaeographic analysis of historical scripts needs strong automated character representation, a prob-
lem that remains challenging for scripts such as ancient Greek. Greek handwriting spans over two
and a half millennia, encompassing formal literary hands and highly cursive scripts, with substan-
tial variation in stroke shape, scale, slant, and contextual noise (Cavallo, 2009; Crisci & Degni,
2011; Irigoin, 1990; Bianconi, 2015). Material degradation and heterogeneous digitization practices
further compound these challenges, introducing ambiguities that complicate segmentation, feature
extraction, and character recognition and classification, especially under limited and imbalanced
datasets. Although a low-level task, automated character representation has high impact for broader
palaeographic analysis, supporting text-image alignment, semi-automatic transcription, and tasks
such as script typology, dating, and scribal attribution.

This study addresses this challenge by focusing on the diachronic evolution of ancient Greek let-
ters. We design a lightweight Convolutional Neural Network (CNN) trained with two innovations:
a lacuna-driven augmentation that simulates realistic manuscript degradations, and a similarity-
weighted supervised contrastive loss that biases embeddings according to dynamically learned con-
fusability between characters. We evaluate the CNN both in terms of recognition performance and
embedding quality. Using confusion matrices, we identify consistently easy or difficult letters and
highlight cases of visual confusion. Beyond recognition, clustering analyses on the learned em-
beddings reveal multiple stylistic subgroups for certain letters, while prototype visualizations per
letter–century allow us to study diachronic evolution quantitatively and interpretably. Compared
to raw pixels, PCA, or pre-trained features, our CNN embeddings produce a more coherent and
discriminative representation of historical Greek handwriting.

We summarize our contributions as four key points:
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1. Historical Greek handwriting datasets: Three curated datasets spanning the 3rd–14th
centuries CE: Hell-Char (3rd–1st BCE) for training and benchmarking low-resource,
temporally evolving character recognition, and PaLit-Char (1st–5th CE) and Med-Char
(9th–14th CE) for evaluation of generalization across temporal shifts.

2. Similarity-weighted supervised contrastive loss: A representation learning objective that
biases embeddings according to dynamically learned visual confusability, improving dis-
criminative power for letters with overlapping features.

3. Lacuna-driven augmentation: A domain-informed augmentation scheme that faithfully
simulates manuscript degradations (lacunae), increasing robustness to missing or corrupted
strokes.

4. Computational paleographic analyses: Using CNN-derived embeddings, we perform
clustering, silhouette-based subgroup detection, and prototype visualization per letter–
century, providing interpretable insights into diachronic variation and scribal conventions.

2 RELATED WORK

We are not aware of any other study in the literature that analyses the diachronic evolution of Greek
handwritten letters between Antiquity and pre-modern times with machine learning. However, we
acknowledge the existence of related fields, such as optical character recognition (OCR), and of
other investigations on Greek papyri at the character level, which we discuss next.

OCR Early OCR approaches relied on manual feature extraction methods, such as zoning, projec-
tion histograms, and contour profiling, to distinguish between characters. A comprehensive survey
by Trier et al. (1996) emphasised the importance of these handcrafted features in OCR, while He
et al. (2016) introduced a grapheme-based feature extraction system that modelled diachronic vari-
ations while incorporating textual features. The advent of deep learning has further transformed the
field. LeCun et al. (1998) demonstrated the effectiveness of convolutional neural networks (CNNs)
in classifying handwritten digits, laying the groundwork for modern neural approaches in character
recognition. Autoencoders (Hinton & Salakhutdinov, 2006) and contrastive learning (Chen et al.,
2020) have gained traction in unsupervised learning, enabling models to learn meaningful represen-
tations of handwriting directly from data, without the need for manual feature engineering. Leaning
on these advances, several of the latter works have examined deep learning for feature analysis of
some aspect of ancient Greek handwritings. Marthot-Santaniello et al. (2023) addressed the issue of
clustering historical handwriting by similarity with no metadata explicitly indicating date or style.
Their method strongly focuses on character-level, employing a SimSiam deep neural network to
quantify similarity between images of single Greek letters (Alpha, Epsilon, and Mu) from different
manuscripts. Their stylistic similarity observations were useful to palaeographers as they situated
manuscripts in an integrated network and disclosed subtle micro-phenomena of similarity.

CNNs Li et al. (2015) applied CNNs to OCR-extracted text, combining visual and textual fea-
tures to improve dating accuracy. However, their approach assumes the availability of high-quality
(historical yet printed) data conducive to accurate OCR results, an assumption that often fails in
the context of historical documents such as the Greek papyri addressed in our study. To tackle
such challenges, Wahlberg et al. (2016) fine-tuned an ImageNet-pretrained CNN on a corpus of
medieval documents, demonstrating improved performance on degraded or irregular scripts. More
chronology-specific, West et al. (2024) designed a deep learning pipeline for the automated dating
of images of ancient Greek papyrus fragments. Their multi-stage pipeline integrates handwritten
text recognition (HTR) for character detection and classification, followed by distinct character-
level and fragment-level date prediction models. While single-character dating models are fairly
accurate, their aggregated sum of fragment-level models is up to 79% accurate in the prediction
of two-century broad date ranges on fragments with large numbers of characters. More recently,
Boudraa et al. (2024) proposed a transformer-based pipeline that integrates classical preprocessing
techniques with a fine-tuned Vision Transformer and majority-voting for document dating. This
study pioneers the integration of Vision Transformers in the context of historical manuscript dating,
a domain where CNNs were dominating.
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SimCLR Chen et al. (2020) introduced a simple yet powerful contrastive framework for represen-
tation learning. Each image is augmented twice, and the network is trained to maximize agreement
between positive pairs while treating all other samples in the batch as negatives. While effective
as a simple self-supervised technique at scale, SimCLR assumes that all non-matching samples are
equally dissimilar. In fine-grained recognition tasks such as character classification, this uniform
treatment forces visually similar but distinct classes apart (e.g., A vs. Λ), discarding useful struc-
tural information.

Supervised Contrastive Learning (SCL) Khosla et al. (2020) extended SimCLR to the labelled
setting by grouping all samples of the same class as positives. This produces tighter class-specific
clusters. Importantly, they also showed that combining supervised contrastive embeddings with a
linear classifier trained under cross-entropy further improves classification accuracy compared to
cross-entropy alone. However, SCL still treats all negatives uniformly, regardless of their visual
similarity to the anchor. As a result, classes with inherent affinities (e.g., letters with similar shapes)
are repelled too strongly, yielding embeddings that fail to reflect natural inter-class relationships.
In addition to instance discrimination, weakly SCL (Zheng et al., 2021) introduced a supervised
contrastive component based on weak labels derived from K-nearest neighbor graphs. Instead of
treating all other samples as negatives, this approach dynamically identifies semantically similar
neighbors and reweights them as positives, alleviating the class collision problem. SCL, treats neg-
atives uniformly and makes classes with inherent affinities (e.g., letters with similar shapes) to be
strongly repelled. This leads to embeddings that fail to reflect natural inter-class relationships. This
study addresses this gap.

3 METHODOLOGY

We analyse handwritten Greek letters from various centuries using CNN-based embeddings trained
with SCL enhanced with letter similarity weighting.

3.1 CNN BACKBONE

Pavlopoulos et al. (2024) suggested a 2D CNN (fCNN) for dating images of papyri lines, which
comprised a fragmentation-based augmentation strategy. We follow a similar fragmentation-based
strategy, yet our CNN is different in two ways. First, it is adjusted to operate on letters instead of
text lines. Second, the fragmentation augmentation is improved so that synthetic lacunae follow
their natural (curvy) shape, i.e., circular or elliptic, not square. The trained model produces high-
dimensional embeddings e ∈ RD representing the visual structure of each letter. The base CNN
architecture consists of convolutional layers to extract local stroke and shape patterns; ReLU activa-
tions for non-linearity; pooling layers to reduce spatial dimensions while preserving salient features;
fully connected layers to map feature maps into the final embedding vector. These embeddings
abstract style variations while preserving essential letterform characteristics. We also experiment
with ResNet18 pre-trained CNN (He et al., 2016), the ConvNext-V2 self-supervised and globally-
normalised CNN Woo et al. (2023), and the ViT-S16 Vision Transformer Caron et al. (2021).

3.2 AUGMENTATION

Each character image is converted to grayscale, normalized, and resized to 64×64 pixels. To account
for variability in handwriting and material degradation, we applied rotation (up to 10°), translation,
resizing, color jittering, and lacunae-inspired masking. The lacunae augmentation simulates missing
ink or manuscript damage, improving the model’s robustness to partial character visibility.

3.3 SIMILARITY-WEIGHTED SUPERVISED CONTRASTIVE LOSS

In addition to the standard cross-entropy loss (i.e., the supervised letter-classification objective ap-
plied to the backbone’s classification head), we train the backbone models using a supervised con-
trastive loss (SCL), which encourages embeddings of the same letter to cluster together while push-
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ing apart visually dissimilar letters. Visual similarities between letters, dynamically learned,1 are
used to weight negative pairs, enabling the model to respect intrinsic inter-letter relationships. This
contrastive loss is not computed on the classification logits, but it is applied to the intermediate fea-
ture embeddings produced by the backbone before the classification layer. Thus, the model jointly
optimises cross-entropy on the classification head and contrastive loss on the shared backbone rep-
resentations. For each anchor embedding ei, the loss is defined as:

Li = − 1

|P (i)|
∑

p∈P (i)

log
exp(ei · ep/τ)∑

a̸=i wia exp(ei · ea/τ)

where P (i) is the set of positive samples (same class as i) and τ is the softmax temperature; wia =

1 + λ
Syi,ya

S̄
is the weight for negative pair (i, a); Syi,ya is the similarity between classes yi and

ya, dynamically computed from embeddings; S̄ is the mean off-diagonal similarity; and λ controls
the influence of similarity weighting. This loss ensures that embeddings of the same letter cluster
tightly, while visually similar letters exert weaker repulsion.

3.4 PROTOTYPE SELECTION (MEDOID)

For each group (letter, century), we select a representative medoid embedding to serve as a prototype
(T ), defined as: T = argmini

∑N
j=1

(
1 − cos(ec, ej)

)
, where N is the number of embeddings in

the group and ec is the centroid. The medoid ensures a really representative image robust to outliers.

4 DATASET DEVELOPMENT

4.1 SOURCE

The Hell-Date dataset (Ferretti et al., 2025) comprises 194 images sourced from 157 papyri, all writ-
ten in Greek and dated between the years 310 BCE and 3 BCE. The material is particularly relevant
for digital palaeography and papyrological analysis due to its historical span, script diversity, and
accompanying metadata. Each document in the dataset is associated with rich contextual metadata,
including the date of composition, the geographical provenance, and the textual type. Of the 194
available images, 171 are annotated at the character level, forming the primary subset of character
images used in this work. We used this character-level subset but filtered and restructured it for
our purposes; we refer to the restructured subset as Hell-Char. This is the first study to utilize the
character annotations included in Hell-Date, which are further presented below.

The character annotations in Hell-Date Twenty-nine character classes are present in the annota-
tions of Hell-Date. In addition to the 24 standard letters of the Greek alphabet, the dataset comprises
3 archaic numeral letters (stigma, qoppa, and sampi). It also uses a general ‘symbol’ category for
all characters that are not alphabetic letters. Last, an ‘unknown’ class was added for uncertain or
ambiguous signs, but it remained empty. Each character instance is also assigned a base-type (BT)
tag, ranging from BT1 to BT5, which indicates its degree of preservation. These tags can be useful
for analysing the correlation between physical degradation and classification performance.

4.2 THE HELL-CHAR SUBSET

To reduce the imbalance in character frequency and to ensure a more uniform distribution of samples
across classes, we constructed a subset of Hell-Date annotations that we called Hell-Char. Specif-
ically, for each papyrus, at most five instances per character class were randomly selected. The
classes for archaic numerals, symbols, and unknown letters were merged into a single general non-
alphabetic category (‘other’). We limited our analysis to letters tagged BT1 and BT2, which allows
excluding characters that are too degraded and are not recognizable out of context. This procedure
reduces the dominance of overly frequent letters and mitigates sampling bias across documents.

1The visual similarities could also be defined manually. Our experiments, however, using a prior similarity
matrix based on modern letter shapes, did not lead to improvements.
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Figure 1: Letter frequency in our Hell-Char subset.

The resulting subset comprises 13,046 character images from 157 distinct papyri. Figure 1 shows
the letter frequency in Hell-Char.

Intrinsic challenges The dataset presents several intrinsic challenges. The character class distri-
bution is still unbalanced (Figure 1); ambiguous or borderline glyphs can make even human clas-
sification difficult. For these characteristics, Hell-Char is a valuable and non-trivial benchmark for
evaluating character recognition methods in ancient scripts.

5 EMPIRICAL ANALYSIS

5.1 EXPERIMENTAL SETTINGS

The Similarity Matrix We re-estimate the class-similarity matrix periodically (every 3 train
epochs). At each update, we pass the entire training set through the current model, compute class
prototypes from the normalized embeddings, and derive the cosine similarity between prototypes
(diagonal entries are set to zero). This yields a dynamic measure of inter-class similarity that evolves
with the representation space. (An exponential moving average can be applied to stabilize updates.)
The updated matrix is then used by our Dynamically Supervised Contrastive Loss (DSCL), which
down-weights negatives from highly similar classes and up-weights negatives from dissimilar ones.

Lacuna-driven Synthetic Fragmentation We attempt to simulate manuscript deterioration more
realistically than standard erasure augmentations by inserting irregular regions that approximate ac-
tual lacunae observed in historical documents. For each image, we sample 1–4 lacunae and each
covers 2–15% of the area to match the typical size distribution of physical papyrus damage. La-
cuna geometry is obtained by drawing anisotropic ellipses whose contours are further distorted via
random morphological operations (erosion or dilation), producing organic, non-rectangular shapes
characteristic of flaking, humidity damage, parchment wear, or insect deterioration (e.g., worm holes
are frequent in papyri). These lacunae are placed at random positions and the masked pixels are re-
placed with background values, reflecting the absence of ink/papyrus rather than additive noise. This
augmentation increases robustness to fragmentary handwriting and introduces realistic variability at
negligible computational cost.

Data Split We keep 20% of the data for testing, following a letter-based stratified split. Although
we acknowledge that this strategy allows a scribe-based leakage, the selected approach fits better the
scope of this work (see Appendix A.4).

5.2 LETTER RECOGNITION

Table 1 shows the performance of backbones when we add fragmentation-based augmentation and
contrastive loss. A vanilla CNN, as in Pavlopoulos et al. (2024) but without any fragmentation,
achieves an Accuracy of 74%. F1 is exactly the same, indicating the balanced performance across
letters despite the class imbalance (Figure 1). The model of Pavlopoulos et al. (2024) performs
better than the same model with random erasure in both metrics, but our Lacunae-based augmenta-
tion outperforms both. The architecture of ResNet18 (He et al., 2016), when trained from scratch,
performs worse in F1 and on par in Accuracy. Pre-trained, however, it outperforms all the models
above. When we enhance fCNN with our LF and dynamically-weighted supervised contrastive loss,
it outperforms the pre-trained ResNet18. But when we enhance the latter with our Lacunae-based
augmentation and our similarity contrastive loss, we achieve the best results. Per-letter classification
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Table 1: Classification performance on Hell-Char (sorted) of fCNN (Pavlopoulos et al., 2024) and
ResNet18 (He et al., 2016), pre-trained (PT) and/or fine-tuned (FT), when we add: our SCL with
dynamically-learned weights, and fragmentation-based augmentation (none, random, our LF).

Model Fragmentation Contrastive Loss Accuracy F1
fCNN - - 0.742 0.74

fCNN Random - 0.768 0.75
fCNN LF - 0.782 0.77

ResNet18-FT - - 0.788 0.74
ResNet18-PT+FT - - 0.801 0.79

fCNN LF DSCL 0.803 0.80
ResNet18-PT+FT LF DSCL 0.829 0.82

performance is provided in Appendix A. LF and DSCL improve also the classification performance
of ViT-16S and ConvNeXt-V2 (Appendix E.1), yet they overfit and are not further analysed.

5.3 LETTER IMAGE CLUSTERING

We observe that CNN image embeddings can be used to represent letters. To assess the quality of
the resulting embeddings, we compared them against baseline features, then feeding algorithms that
should cluster images of the same letter into subcategories. We also engineered features, based on
Otsu’s method (Otsu, 1979), a widely used adaptive thresholding technique, and principal compo-
nent analysis (PCA) (Karl, 1901), keeping as many dimensions as add up to 90% of the original
information (i.e., 500). Characters have consistent alignment and size, hence pixel-based variance
captured by PCA can correspond to meaningful features of the characters (e.g., strokes and overall
shape). Although it destroys 2D structure (edges, texture) and does not focus on separability, PCA
applied to the raw input is a simple preprocessing baseline that is complementary to CNN features
that preserve local structure. The empirical results, shown in Table 2, underscore the importance

Table 2: Clustering performance on Hell-Char using different embeddings and different clustering
algorithms, sorted by performance of the best performing Spectral algorithm.

k-means Spectral AH

Embedding NMI ARI NMI ARI NMI ARI

ResNet18+LF+DSCL 0.667 0.411 0.836 0.743 0.818 0.726
fCNN+LF+DSCL 0.428 0.189 0.631 0.442 0.544 0.292
ResNet18+PT+FT 0.480 0.257 0.487 0.225 0.464 0.197
Otsu+PCA 0.318 0.152 0.382 0.176 0.356 0.168
ResNet18+PT 0.067 0.010 0.094 0.015 0.073 0.008

of task-specific embeddings and non-linear clustering for historical handwriting. Our ResNet18,
enhanced with our proposed LF and SCL, consistently outperforms both Otsu+PCA and the pre-
trained ResNet18, achieving markedly higher agreement with paleographic labels across all met-
rics. Otsu+PCA, though superior to raw pretrained features, lags far behind, while ResNet18 fails
entirely, with near-random partitions. The stark contrast highlights two key findings: (i) general-
purpose CNN features trained on modern image corpora do not transfer to paleographic tasks, and
(ii) the manifold structure of handwritten letter embeddings is not captured adequately by centroid-
based partitioning. Together, these results validate the need for domain-tailored architectures and
manifold-aware clustering to recover meaningful structure in diachronic handwriting data.

5.4 PATTERN RECOGNITION: REVEALING LETTER FORMS

Using Spectral Clustering on the embeddings of our best performing CNN (ResNet18+LF+DSCL;
see Table 1), we applied the Silhouette method (Schubert, 2023) to detect the optimal number of
clusters per letter. For each letter, we varied the number of clusters and retained the configuration
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with the highest Silhouette score (Rousseeuw, 1987). For one letter (Alpha), the optimal number
exceeded the two clusters, indicating multiple distinct forms.2 The resulting letter forms (cluster
medoids) are shown in Figure 2.

Figure 2: Representative forms of the Greek letter Alpha for which three clusters were detected
using the Silhouette method. Forms for other letters are shown in Appendix B.

Clustering letter forms into subtypes is a hard and unsolved task in paleography. The results of
the network may in some cases point to useful characteristics. In the case of Alpha, for which we
showed that several forms exist, the three images seem to represent different characteristics: the first
alpha is filled-in (no empty space in its centre), circular and ligatured to the left; the second one is
circular but not ligatured; the third one is angular. This partition is coherent from a paleographical
point of view. Examples of the representative forms per letter for all letters are in Appendix B.

6 OUT OF TEMPORAL DISTRIBUTION APPLICATION

The backbone CNN models in this work are trained on letter images from papyri of the last three
centuries BCE. In this period, the epigraphic letter forms (close to our modern capital letters) start
to be modified with increasing cursivity, driven by the practical demands of faster writing. This
increase in cursivity continues over the following centuries and constantly deforms letter shapes;
however, epigraphic letter forms are maintained, especially for calligraphic writing styles called
capital (or uncial) bookhands. In the 9th century, the calligraphic stylisation of cursive forms that had
gradually developed over the previous centuries reached the so-called state of “minuscule script”.
While many minuscule letterforms remain visually close to their capital ancestors, others diverge
significantly (notably Beta, Mu, Gamma, and Delta). During the following centuries, uncial and
minuscule calligraphic forms continued to coexist, sometimes within the same manuscript and even
within a single word.

6.1 EVALUATION DATASET DEVELOPMENT

PaLit-Char: Majuscule Literary Papyri To evaluate how well the model generalizes to letter-
forms close in time to the training data, we constructed the PaLit-Char test set. It is a fully balanced
dataset containing 384 images (4 specimens × 24 letters × 4 centuries) spanning the 2nd–5th CE.
Images were drawn from securely dated literary papyri in the PaLit dataset (Pavlopoulos et al.,
2024); for the 5th century, where securely dated material is scarce, 48 images were taken from an
additional, palaeographically dated manuscript. While Hell-Char covers cursive handwritings from
the last three centuries BCE, PaLit-Char extends into the early centuries CE and covers calligraphic
writing, offering both chronological continuity and stylistic diversity. This allows us to test whether
features learned on late Hellenistic cursive letters transfer to Roman-period bookhands that retain
strong ties to their predecessors but already display variation.

2Silhouette scores cannot be computed for a single cluster; hence the minimum number considered was two.
For the remaining letters, additional sub-forms may still exist.

7
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Med-Char: Medieval Minuscule Manuscripts With the historical evolution described above in
mind—and having first tested the recognition performance of our network on the chronologically
close PaLit-Char—we proceed to test its ability to recognize letterforms from medieval minuscule
manuscripts. This evaluates both the generalizability of learned features across palaeographic peri-
ods and the limits of shape-based classification given the diachronic script variation. To assess this
hypothesis, we compiled a dataset of 574 letter images from manuscripts dated between 835 and
1378 CE, a much later period. We used 24 images per letter, opting for balance across the centuries
in that period,3 and using the best performing ResNet18, enhanced with our LF and SCL, to clas-
sify each image. We call this evaluation dataset Med-Char. Contrary to our training set and the
PaLit-Char test set, which contain capital or cursive letters (upper case), Med-Char is a Byzantine
minuscule letter (lower case) dataset. This choice is deliberate: minuscule script is historically de-
rived from majuscule but exhibits substantial graphic divergence, with some letters retaining visual
continuity and others undergoing radical transformation. Testing on Med-Char therefore allows us
to probe the limits of the learned representations under extreme diachronic and stylistic shift. This
provides a benchmark for cross-period generalization.

6.2 EXPERIMENTAL ANALYSIS

Closer in Time On the evaluation data of PaLit-Char, ResNet18+LF+DSCL achieves an Accuracy
and F1 of 0.84, very close to the results of Hell-Char. This is reasonable due to the proximity in time
and nature (the full classification report is in Table 4 in the Appendix). Although F1 dropped for
specific letters (e.g., Phi, Pi, Psi) for others it improved (Alpha and Zeta). The calligraphic nature
(regular, standardized, legible) of PaLit characters can explain this increase.

Far Away in Time ResNet18+LF+DSCL achieves an Accuracy of 0.45 in Med-Char, revealing a
highly uneven performance across the 24 character classes (see Table 5 in the Appendix). Letters
Chi, Epsilon, Iota and Lambda achieve high F1 (0.88, 0.70, 0.73, and 0.84 respectively), indicating
that the network captures their discriminative features reliably despite temporal variability. Indeed,
for these letters, capital, cursive and minuscule letter shapes are similar to one another. In con-
trast, other letters (Alpha, Delta, Gamma, Upsilon) exhibit extremely low or even zero F1 values,
suggesting systematic confusion with visually similar shapes and high diachronic variability that
undermines generalization. Gamma, for instance, undergoes a strong visual evolution; in Hell-Char,
its shape is specific and close to epigraphic Γ, whereas in Med-Char, it is very different and rather
resembles Upsilon. The remaining letters fall into an intermediate band, with varying degrees of
precision–recall trade-offs: e.g., Kappa, Omicron and Tau show strong Recall (0.75, 0.83 and 0.83)
but lower Precision (0.39, 0.39 and 0.42), while Psi leads to the highest Precision (1.00) yet inflated
Recall (0.14), reflecting over-prediction. As can be seen in Figure 3, misclassification patterns are
temporally structured: errors for Chi are closer to 1300 CE, whereas Iota’s confusion is around 950
CE, implying that historical morphological shifts exert non-uniform effects on recognition difficulty.
Similar patterns occurs for Tau (around 1250 CE) and Theta (1000 CE). Noteworthy is the fact that
fine-tuning on Palit-Char and inferring on Med-Char brings no significant gains (see Appendix D).

Letter-Century Clusters Figure 4 illustrates a two-dimensional t-SNE projection of the
ResNet18+LF+DSCL embeddings, where each point corresponds to an image patch representing
a handwritten Greek Med-Char character. To reduce clutter and improve interpretability, instead of
showing all individual samples, one prototype image per letter–century pair is overlaid: the pro-
totype is chosen as the sample closest to the centroid of its group in the t-SNE space, thus rep-
resenting the most “typical” example of that cluster. The resulting map highlights how temporal
and graphemic factors shape the embedding space. Within the clusters related to one character,
overlapping or diffuse areas indicate stylistic continuities or transitional forms between centuries,
whereas sharp separations reveal periods of stronger diachronic variation. This approach provides
an interpretable way of assessing the alignment between automated embeddings and paleographic
expectations, enabling both qualitative validation of the clustering behavior and the identification of
anomalies or particularly distinctive exemplars.

3We include 24 random instances of each letter per century from multiple manuscripts. Letter Psi was less
supported and has 22 occurrences.
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Figure 3: Boxplot of years per letter for missclassified out-of-distribution images of Med-Char. The
count of mistakes is shown inside in red letters.

Figure 4: Two-dimensional t-SNE plot of ResNet18+LF+DSCL embeddings on Med-Char. One
prototype image per letter-century group is shown, selected as the sample closest to the centroid, to
visualize the cluster structure across both graphemic and temporal dimensions.

Distinctively Isolated Letters The letters that obtained high F1 scores (i.e., Chi, Epsilon, Iota and
Lambda), are distinctively isolated in clusters on the exterior of the graph. Their shapes are close
to Hellenistic ones from the training set Hell-Char. Also, Gamma is grouped, but its shape is very
different from Hellenistic Hell-Char Gamma shape and closely resembles Hellenistic Hell-Char Up-
silon and Tau shapes; this can explain the zero Precision and Recall for Gamma. Visible Clusters:
The cases of Zeta and Beta Two clusters of Zeta are visible. A first one to the left of the graph,
mixed with Theta, with a shape that resembles a 3. A second one in the middle of the graph, mixed
with Delta and Xi, with a shape close to modern-day ζ. This distinction points out to one reason for
confusion in recognizing Zeta: its “3-looking” shape is absent from the training data and therefore,
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cannot be identified. The same is true for Beta: its B-shaped form groups with Zeta to the left of
the image, whereas its minuscule, u-shaped form groups with other minuscule u-shaped letters such
as Kappa, Mu and Nu to the bottom right of the graph. This u-shaped Beta, absent from Hell-Char,
explains its very low Recall. Typical Medieval Forms The bottom-right corner of the graph, with
worse clustering for individual letters, groups typical Medieval letter forms, based on successions of
‘o’ and ‘u’ shapes. These shapes are quite different from Hell-Char letters shapes, and indeed the let-
ters represented here (Omega, Beta, Kappa, Mu, Nu, Upsilon) do not belong to the top-performing
ones. Kappa and Nu achieved an F1 of 0.51, which can be explained by their mixing Medieval,
minuscule, u-shaped forms with older, capital forms already attested in Hell-Char. These forms, K
and N, can be seen at the margins of the larger cluster on the bottom-right corner.

7 DISCUSSION

Novel Methodological Contributions Erasing input as augmentation in image classification is
not new Zhong et al. (2020) and it has been shown particularly useful for papyri, which are often
fragmented. Our presented synthetic augmentation is closer in nature to the real fragments (i.e.,
elliptic v. square) and a comparison between rows 2-3 of Table 7 shows that our approach is better.
Our proposed SW for SCL, on the other hand, besides interpretability (representation class simi-
larity), helps the model avoid confusion. In Figure 6, for example, only one (alpha-lambda) out of
the four pairs of high similarity noted in the caption get a high value in the confusion matrix (Fig-
ure 5). Standard SCL treats negatives uniformly, making classes with inherent affinities (e.g., letters
with similar shapes, such as as psi-phi) to be strongly repelled. This leads to embeddings that fail to
reflect natural inter-class relationships. Our results (Table 7) reflect the superiority of our approach.

Scribe Leakage We frame paleographic problems (e.g., dating or scribe identification) as the
search for a strong script embedding, where classification relies on defining distance thresholds
(same period or scribe). Our current work validates robust letter representations using classifica-
tion. Testing against a chronologically distinct external dataset (Table 4) confirmed the absence of
validation leakage; i.e., accuracy did not drop. While this validates model integrity, it confirms that
our representations do not capture the fidelity required for scribal identification, which remains a
challenging task, very hard to solve D’Alessandro et al. (2025). This limitation is likely imposed by
the low sample density (i.e., a maximum of 120 characters per papyrus).

Resources Contribution Besides our two technical contributions, we also release Med-Char and
PaLit-Char, two new datasets. Hell-Char is a subset of an existing dataset called Hell-Date, already
released in the past yet never used for applications to the best of our knowledge. Together, these
three resources are expected to assist the field of computational palaeography.

8 CONCLUSIONS

This work introduces three datasets of historical Greek handwriting (Hell-Char, PaLit-Char, Med-
Char), and uses them to examine how modern representation learning captures symbolic variation
across time. Beyond establishing Hell-Char as a benchmark for low-resource, domain-shifted vi-
sual recognition, we propose two methodological innovations: a similarity-weighted supervised
contrastive loss, which aligns representations with human-perceived character confusability, and
a lacuna-driven augmentation scheme, which faithfully simulates manuscript degradations. Em-
pirically, we show that CNN-derived embeddings yield a more discriminative structure than PCA
or generic pre-trained models, while clustering uncovers stylistic subgroups that mirror diachronic
variation and coexisting scribal conventions. Prototype distribution per letter–century further visu-
alize gradual graphical change, providing interpretable bridges between computational analysis and
paleographic interpretation. More broadly, this study highlights the limits of natural-image trans-
fer learning for specialized domains and demonstrates how integrating expert prior knowledge with
domain-specific corruptions can produce robust and faithful embeddings. The resulting framework
is not only valuable for computational paleography but also constitutes a transferable paradigm for
representation learning under scarce, temporally evolving, and systematically corrupted data.
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REPRODUCIBILITY STATEMENT

Our code and data will be released publicly (CC license) upon acceptance. An anonymized GitHub
repository is made for reviewing purposes at https://anonymous.4open.science/r/letter-evol/ includ-
ing the source code (source.py), data samples (cliplets and CSV per dataset), and notebooks with
training and evaluation pipelines.
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A PER LETTER CLASSIFICATION

A.1 PERFORMANCE

Table 6 shows the classification performance per letter of the best performing ResNet18, pre-trained
and enhanced with our supervised contrastive loss (SCL) with dynamically learned weights and
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our Lacunae-based fragmentation (LF). The model achieves 0.83 in Accuracy, with macro- and
weighted-F1 following closely, indicating the balanced performance across the 24 Greek letters
despite the class imbalance. Several characters are classified with very high F1, e.g. Beta (0.92),
Eta (0.92), Kappa (0.92), Omicron (0.90), Chi (0.89), Nu (0.89), Rho (0.89). Letters such as Alpha
(0.63 F1), Lambda (0.63 F1) and Zeta (0.70 F1) underperform. Low support may explain why
Zeta underperforms (22 instances). Mid-performing classes, such as Theta (0.73 precision, 0.79
recall, 0.76 F1), indicate a possible difficulty of capturing internal script characteristics. Among
the circularly-shaped letters (Theta, Omicron, Epsilon and Sigma), Theta is the rarest and is often
influenced by the shapes of the others, thus creating sources for confusion.

Table 3: The classification report on Hell-Char, per letter, of ResNet18 enhanced with our LF aug-
mentation and our SCL with dynamically-learned weights.

Class Precision Recall F1-Score Support
Alpha 0.73 0.55 0.63 139
Beta 0.92 0.91 0.92 67
Chi 0.97 0.82 0.89 85
Delta 0.87 0.84 0.85 113
Epsilon 0.84 0.89 0.86 134
Eta 0.92 0.91 0.92 128
Gamma 0.83 0.75 0.79 105
Iota 0.89 0.72 0.79 141
Kappa 0.89 0.94 0.92 127
Lambda 0.63 0.64 0.63 136
Mu 0.83 0.87 0.85 126
Nu 0.83 0.97 0.89 134
Omega 0.84 0.82 0.83 123
Omicron 0.88 0.92 0.90 126
Phi 0.88 0.84 0.86 83
Pi 0.80 0.91 0.85 127
Psi 0.83 0.89 0.86 17
Rho 0.86 0.91 0.89 133
Sigma 0.74 0.90 0.81 138
Tau 0.73 0.85 0.79 139
Theta 0.73 0.79 0.76 86
Upsilon 0.82 0.73 0.77 133
Xi 0.76 0.83 0.80 47
Zeta 0.78 0.64 0.70 22

Accuracy 0.83 2603
Macro (avg) 0.84 0.82 0.82 2603
Weighted (avg) 0.83 0.83 0.83 2603

A.2 CONFUSION

As it is apparent in the confusion matrix (Fig. 5), images of Alpha and Lambda were hard to classify,
possibly due to their visual similarity. Alpha VS Delta, however, as well as Lambda VS Delta, which
are also similar, are not confused. Other confused pairs are Iota vs Rho, Sigma VS Epsilon (but not
Epsilon VS Sigma), Theta VS Omicron (but not Omicron VS Theta), Upsilon VS Tau, Xi VS Zeta,
all pairs with strong visual similarities that are indeed dynamically assigned a high similarity during
training. The dynamically learnt similarity matrix is provided in Figure 6. The Sigma-Epsilon
confusion can explain why Sigma has a very high recall (0.90) but a low precision (0.74, for an F1
of 0.81).

A.3 COMPENSATION

Irigoin (1990, p. 303-304) proposed that ancient readers compensated for the confusion between
a consonant and a vowel through their language knowledge, so that a graphic system needed to
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Figure 5: Confusion matrix of ResNet18 with LF and SCL.

maximize the difference between letters with phonologically similar functions (vowels between
themselves, or consonants between themselves). The confusion matrix (Figure 5) confirms this
hypothesis; thus, Lambda (a consonant) is confused with Alpha (a vowel) but less with Delta (an-
other consonant); similarly, Theta (a consonant) is confused with Omicron (a vowel) but less with
Sigma (a consonant). Therefore, the results in clustering show that our method represents letters in a
way that is paleographically significant and can help paleographers navigate questions of readability
of a script based on confusion patterns.

A.4 OUT OF DISTRIBUTION

The performance of ResNet18+LF+DSCL on out of distribution datasets is shown in Tables 4-5.
In PaLit-Char, Accuracy is high across letters except from Psi, which is confused with Phi. In the
much later in time Med-Char, Accuracy drops to 0.45 and Psi drops further, along with several other
letters. Exceptions are Chi, Epsilon, Iota, Lambda.

B LETTER FORM RECOGNITION

Figure 7 shows the two representative forms per letter for the (23) letters besides Alpha. Given that
the Silhouette method operates for more than two clusters, we observe that either one or two letter
forms exist per letter.
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Figure 6: Dynamic similarity matrix between letters learned during training. Light colours indicate
high similarity, such as Alpha-Lambda, Theta-Omicron, Xi-Zeta, Phi-Psi.

(a) Alpha (b) Beta (c) Gamma (d) Delta (e) Epsilon (f) Zeta (g) Eta (h) Theta

(i) Iota (j) Kappa (k) Lambda (l) Mu (m) Nu (n) Xi
(o) Omi-
cron (p) Pi

(q) Rho (r) Sigma (s) Tau (t) Upsilon (u) Phi (v) Chi (w) Psi (x) Omega

Figure 7: Representative forms per Greek letter. Only in Alpha three forms were found. For each
other letter, the shown forms may or may not indicate distinct subforms.

C EXPERIMENTAL SETUP

In subsection 5.2, we presented the classification performance of different configurations.

C.1 MODELS

The fCNN architecture comprises three convolutional blocks with 32, 64, and 128 channels, respec-
tively, each employing 3× 3 kernels, ReLU activation functions, and 2× 2 max-pooling. These are
followed by a fully connected layer with 512 hidden units, dropout (p = 0.5), and a final softmax
classification layer. For the ResNet18 baseline, we adopt the standard architecture proposed by He
et al. (2016), initialized with ImageNet-pretrained weights. The Swin Transformer is adapted by
modifying its initial convolutional layer to accommodate single-channel grayscale inputs and by re-
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Table 4: Classification performance of ResNet18+LF+DSCL on PaLit-Char

Class Precision Recall F1-Score Support

Alpha 0.58 0.94 0.71 16
Beta 0.94 1.00 0.97 16
Chi 1.00 0.88 0.93 16
Delta 1.00 0.75 0.86 16
Epsilon 0.88 0.88 0.88 16
Eta 0.93 0.88 0.90 16
Gamma 0.87 0.81 0.84 16
Iota 0.89 1.00 0.94 16
Kappa 0.88 0.94 0.91 16
Lambda 0.71 0.67 0.69 15
Mu 0.94 0.94 0.94 16
Nu 0.75 0.94 0.83 16
Omega 1.00 0.94 0.97 16
Omicron 0.93 0.88 0.90 16
Phi 0.64 0.88 0.74 16
Pi 0.93 0.81 0.87 16
Psi 1.00 0.19 0.32 16
Rho 0.74 0.88 0.80 16
Sigma 0.87 0.81 0.84 16
Tau 0.65 0.69 0.67 16
Theta 0.79 0.94 0.86 16
Upsilon 0.88 0.88 0.88 16
Xi 0.88 0.94 0.91 16
Zeta 1.00 0.75 0.86 16

Accuracy 0.84 0.84 0.84 383
Macro (avg) 0.86 0.84 0.83 383
Weighted (avg) 0.86 0.84 0.83 383

placing the default classification head with a custom layer designed to output predictions across 24
target classes.

C.2 TRAINING

We used the Adam optimizer with default parameters (β1 = 0.9, β2 = 0.999). The learning rate was
set to 0.001 for the fCNN and 0.0001 for the pre-trained ResNet and SWIN, to avoid catastrophic
forgetting. All experiments were conducted with a batch size of 16 and trained for up to 100 epochs,
with early stopping applied if the validation loss did not decrease for 10 consecutive epochs. Addi-
tionally, we employed a ReduceLROnPlateau scheduler to adjust the learning rate during training.

D CROSS-DATASET FINE-TUNING

The results presented in Table 9 show that ResNet18+LF+DSCL, trained on Hell-char and fine-tuned
on PaLit-char, underperforms on Med-Char. This phenomenon can be explained by understand-
ing the evolution of Greek handwriting over the millennia. Indeed, our three datasets Hell-Char,
PaLit-Char and Med-Char differ not only based on their chronology, but also based on their formal
characteristics.

In Classical Greece (ca. 5th − 4th century BCE), the Greek alphabet had clear, separated letter
shapes that resemble what we call today upper-case or majuscule. Thus, Gamma would look like Γ,
and Delta would look like ∆. These shapes were easy to read but slow to write.

During the Hellenistic period (ca. 3rd−1st century BCE), these slow and clear forms were retained
for calligraphic book writing. However, everyday writing with ink developed rapidly written cursive
forms of the majuscule that progressively diverged from earlier shapes. These cursive, unstable
shapes form the backbone of our training set, Hell-Char. They resemble nothing used in modern-
day typography; some examples can be seen in Figure 7.
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Table 5: Classification performance of ResNet18+LF+DSCL on Med-Char.

Class Precision Recall F1-Score Support

Alpha 0.04 0.04 0.04 24
Beta 0.50 0.12 0.20 24
Chi 0.85 0.92 0.88 24
Delta 0.20 0.08 0.12 24
Epsilon 0.63 0.79 0.70 24
Eta 0.61 0.46 0.52 24
Gamma 0.00 0.00 0.00 24
Iota 0.61 0.92 0.73 24
Kappa 0.39 0.75 0.51 24
Lambda 0.90 0.79 0.84 24
Mu 0.60 0.38 0.46 24
Nu 0.48 0.54 0.51 24
Omega 0.29 0.50 0.36 24
Omicron 0.39 0.83 0.53 24
Phi 0.44 0.58 0.50 24
Pi 0.36 0.17 0.23 24
Psi 1.00 0.14 0.24 22
Rho 0.68 0.54 0.60 24
Sigma 0.40 0.42 0.41 24
Tau 0.42 0.83 0.56 24
Theta 0.32 0.46 0.38 24
Upsilon 0.00 0.00 0.00 24
Xi 0.73 0.46 0.56 24
Zeta 0.67 0.17 0.27 24

Accuracy 0.45 574
Macro (avg) 0.48 0.45 0.42 574
Weighted (avg) 0.48 0.45 0.42 574

In the Roman and Late Antique period (ca. 1st− 8th century CE), calligraphic books continued to
use slow, clear uppercase letter forms attested since the Classical times, with small stylistic variations
(slant, proportions, thick and thin strokes...). These are the letter shapes present in PaLit-Char, our
fine-tuning set. However, cursive handwriting continued to evolve, drastically changing letter shapes
over time. These changes are undocumented in our datasets and thus escaped both training and fine-
tuning.

Around the 9th century CE, a later formal script, the so-called minuscule script, was developed
when the appearance of the then-contemporary fast documentary hand was standardized and adopted
for book production (Cavallo, 2009, p. 136). This script is based on the later cursive shapes that
are undocumented in our training and fine-tuning sets; it is close to modern-day lowercase Greek,
with Gamma looking like γ and Delta like δ. Some of its letter shapes are still visually similar to
majuscule forms (e.g. Omicron, O and o), but others differ drastically (e.g. Γ and γ). During the
9th−14th century CE, this script coexisted with majuscule shapes even within the same manuscript.
This mix of minuscule with some majuscule contamination is the script of our test set Med-Char.

These massive, historically induced changes in character shapes can explain why, even with fine-
tuning, the model failed to generalise across time. Specifically, a model trained on Hell-Char (an
early fast cursive) and subsequently fine-tuned on PaLit-Char (a formal majuscule) achieves pro-
ficiency in both calligraphic majuscule forms (e.g., A,B,Γ) and the complex Hellenistic cursive
shapes. However, when this resulting model is tasked with classifying Med-Char (a formal mi-
nuscule, e.g., α, β, γ), it struggles to generalize the morphological shift, as it lacks exposure to
the intermediary Roman and Late Antique cursive scripts—the evolutionary foundation from which
minuscule scripts were later formalized.

This can lead to systematic misclassification, as the model attempts to find the closest known visual
proxy instead of leveraging the absent evolutionary steps of later cursive shapes. For instance,
Gamma (Precision, Recall and F1 of 0.00) was presumably confused with Upsilon, as Med-Char
Gamma (similar to γ) is very different from Hell-Char and PaLit-Char Gamma (similar to Γ) and

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Classification performance of ViT+LF+DSCL on Med-Char.

Class Precision Recall F1-Score Support

Alpha 0.00 0.00 0.00 24
Beta 0.03 0.04 0.04 24
Chi 0.53 0.83 0.65 24
Delta 0.50 0.04 0.08 24
Epsilon 0.42 0.46 0.44 24
Eta 0.47 0.33 0.39 24
Gamma 0.00 0.00 0.00 24
Iota 0.37 0.75 0.49 24
Kappa 0.28 0.83 0.42 24
Lambda 1.00 0.04 0.08 24
Mu 0.38 0.12 0.19 24
Nu 0.71 0.42 0.53 24
Omega 0.26 0.62 0.37 24
Omicron 0.34 0.75 0.47 24
Phi 0.19 0.12 0.15 24
Pi 0.59 0.42 0.49 24
Psi 0.00 0.00 0.00 22
Rho 0.83 0.21 0.33 24
Sigma 0.28 0.29 0.29 24
Tau 0.72 0.54 0.62 24
Theta 0.21 0.54 0.31 24
Upsilon 0.00 0.00 0.00 24
Xi 0.39 0.62 0.48 24
Zeta 0.40 0.08 0.14 24

Accuracy 0.34 574
Macro (avg) 0.37 0.34 0.29 574
Weighted (avg) 0.37 0.34 0.29 574

quite close to Hell-Char and PaLit-Char Upsilon (similar to Y). The generalization task becomes an
unguided extrapolation, resulting in low Accuracy.

E TRANSFORMERS

In subsections 5.2 and 5.3, we presented CNN models for classification and clustering. In addi-
tion to these, we also trained a transformer-based model. Specifically, we fine-tuned the pre-trained
Swin Vision Transformer (Liu et al., 2021) and achieved a classification accuracy of 0.84. However,
applying SCL loss and Lacunae augmentation did not lead to further improvements. Nevertheless,
as shown in Table 10, the clustering performance of the Swin+LF+DSCL model surpasses that of
the plain Swin model, indicating that the embeddings are of higher quality despite no improve-
ment in classification accuracy. Even this improved performance, however, falls behind that of our
ResNet18+LF+DSCL across clustering algorithms and metrics (Table 2).

E.1 BASELINES WITH GLOBAL DEPENDENCIES

Besides ResNet-18, we also experimented with ConvNeXt-V2, which employ layer normalisation,
global response normalisation, and convolutional masked autoencoders. Furthermore, we experi-
mented with ViT-16S, which uses self-attention instead of convolutional layers and captures global
dependencies. Table 11 shows that F1 of both models increases when we add our LF and DSCL. As
can be seen on Table 12, the best performance across different backbones is achieved by ResNet-18,
using the Spectral clustering algorithm. This contradicts the better classification performance of
ViT-16S and ConvNeXt-V2 (Table 11), which is likely due to overfitting.
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Table 7: Classification performance of ConvNeXt-V2+LF+DSCL on Hell-Char.

Class Precision Recall F1-Score Support
Alpha 0.78 0.65 0.71 139
Beta 0.69 0.93 0.79 67
Chi 0.74 0.94 0.83 85
Delta 0.78 0.83 0.81 113
Epsilon 0.83 0.88 0.85 138
Eta 0.82 0.90 0.86 124
Gamma 0.82 0.81 0.81 105
Iota 0.86 0.84 0.85 141
Kappa 0.87 0.93 0.90 127
Lambda 0.83 0.65 0.73 117
Mu 0.87 0.94 0.90 126
Nu 0.88 0.92 0.90 134
Omega 0.88 0.87 0.87 126
Omicron 0.88 0.79 0.83 136
Phi 0.85 0.95 0.90 83
Pi 0.90 0.86 0.88 127
Psi 0.48 0.71 0.57 17
Rho 0.90 0.89 0.89 133
Sigma 0.92 0.91 0.91 138
Tau 0.94 0.85 0.89 139
Theta 0.91 0.90 0.90 86
Upsilon 0.95 0.80 0.87 133
Xi 0.87 0.87 0.87 47
Zeta 0.73 0.73 0.73 22
Accuracy 0.85 2603
Macro (avg) 0.83 0.85 0.84 2603
Weighted (avg) 0.86 0.85 0.85 2603

Table 8: Classification Performance on Hell-Char, per letter, of ViT-16S+LF+DSCL

Class Precision Recall F1-Score Support

Alpha 0.68 0.73 0.70 139
Beta 0.97 0.91 0.94 67
Chi 0.93 0.98 0.95 85
Delta 0.89 0.84 0.86 113
Epsilon 0.87 0.89 0.88 138
Eta 0.84 0.87 0.85 124
Gamma 0.83 0.75 0.79 105
Iota 0.84 0.84 0.84 141
Kappa 0.89 0.91 0.90 127
Lambda 0.80 0.65 0.72 117
Mu 0.84 0.90 0.87 126
Nu 0.90 0.84 0.87 134
Omega 0.91 0.87 0.89 126
Omicron 0.82 0.91 0.86 136
Phi 0.90 0.96 0.93 83
Pi 0.85 0.91 0.88 127
Psi 0.88 0.82 0.85 17
Rho 0.94 0.80 0.87 133
Sigma 0.88 0.90 0.89 138
Tau 0.86 0.81 0.83 139
Theta 0.88 0.81 0.84 86
Upsilon 0.79 0.90 0.85 133
Xi 0.94 0.94 0.94 47
Zeta 0.87 0.91 0.89 22

Accuracy 0.86 2603
Macro (avg) 0.87 0.86 0.86 2603
Weighted (avg) 0.86 0.86 0.86 2603
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Table 9: Classification performance of ResNet18+LF+DSCL trained on Hell-char, fine-tuned on
PaLit-char and tested on Med-Char

Class Precision Recall F1-score Support
Alpha 0.10 0.12 0.11 24
Beta 0.29 0.17 0.21 24
Chi 0.74 0.96 0.84 24
Delta 0.50 0.08 0.14 24
Epsilon 0.49 0.79 0.60 24
Eta 0.86 0.25 0.39 24
Gamma 0.00 0.00 0.00 24
Iota 0.68 0.88 0.76 24
Kappa 0.81 0.54 0.65 24
Lambda 1.00 0.38 0.55 24
Mu 0.62 0.62 0.62 24
Nu 0.33 0.04 0.07 24
Omega 0.25 0.83 0.38 24
Omicron 0.37 0.96 0.53 24
Phi 0.73 0.79 0.76 24
Pi 0.44 0.17 0.24 24
Psi 0.75 0.55 0.63 22
Rho 0.83 0.62 0.71 24
Sigma 0.48 0.50 0.49 24
Tau 0.55 0.71 0.62 24
Theta 0.44 0.67 0.53 24
Upsilon 0.03 0.04 0.04 24
Xi 0.62 0.75 0.68 24
Zeta 1.00 0.17 0.29 24
Accuracy 0.48 574
Macro (avg) 0.54 0.48 0.45 574
Weighted (avg) 0.54 0.48 0.45 574

Table 10: Clustering performance using different configurations of the SWIN architecture

k-means Spectral AH

Embedding NMI ARI NMI ARI NMI ARI

SWIN+LF+DSCL 0.633 0.404 0.785 0.700 0.772 0.690
SWIN 0.449 0.243 0.595 0.395 0.575 0.390

Table 11: Classification performance on Hell-Char (sorted) of ViT-16S and ConvNeXt-V2, pre-
trained (PT) and fine-tuned (FT), when we add our DSCL and LF.

Model Fragmentation Contrastive Loss Accuracy F1
ConvNeXt-V2 – – 0.848 0.836
ConvNeXt-V2 LF DSCL 0.851 0.854
ViT-16S – – 0.867 0.840
ViT-16S LF DSCL 0.856 0.850

Table 12: Clustering performance of different backbones using LF and DSCL, on Hell-Char, sorted
by performance of the (best-performing) Spectral algorithm.

k-means Spectral AH

Embedding NMI ARI NMI ARI NMI ARI

ResNet18+LF+DSCL 0.667 0.411 0.836 0.743 0.818 0.726
ViT-16S+LF+DSCL 0.796 0.714 0.802 0.727 0.787 0.688
ConvNeXt-V2+LF+DSCL 0.776 0.683 0.786 0.674 0.755 0.626
Swin+LF+DSCL 0.633 0.404 0.785 0.700 0.772 0.690
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