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Abstract

Distantly-Supervised Named Entity Recogni-001
tion (DS-NER) uses knowledge bases or dictio-002
naries for annotations, reducing manual efforts003
but rely on large human labeled validation set.004
In this paper, we introduced a real-life DS-NER005
dataset, QTL, where the training data is anno-006
tated using domain dictionaries and the test data007
is annotated by domain experts. This dataset008
has a small validation set, reflecting real-life009
scenarios. Existing DS-NER approaches fail010
when applied to QTL, which motivate us to011
re-examine existing DS-NER approaches. We012
found that many of them rely on large vali-013
dation sets and some used test set for tuning014
inappropriately. To solve this issue, we pro-015
posed a new approach, token-level Curriculum-016
based Positive-Unlabeled Learning (CuPUL),017
which uses curriculum learning to order train-018
ing samples from easy to hard. This method019
stabilizes training, making it robust and effec-020
tive on small validation sets. CuPUL also ad-021
dresses false negative issues using the Positive-022
Unlabeled learning paradigm, demonstrating023
improved performance in real-life applications.024

1 Introduction025

Distantly-Supervised Named Entity Recognition026

(DS-NER) is a task to leverage existing knowledge027

bases (KBs) or dictionaries to provide annotations028

for named entity recognition tasks. This approach029

significantly reduces the need for labor-intensive030

manual annotations, but it faces challenges due to031

issues in automated annotations, such as false posi-032

tives and false negatives. To address the annotation033

errors, various methods are proposed. Some studies034

focus on false negative issues (Shang et al., 2018;035

Peng et al., 2019; Zhou et al., 2022). Others pro-036

pose to tackle general noisy annotations through037

noise removal processes (Meng et al., 2021; Liang038

et al., 2020; Hedderich and Klakow, 2018; Zhang039

et al., 2021a; Liu et al., 2021).040

To assess the effectiveness of existing DS-NER 041

approaches, we introduce a real-life DS-NER 042

dataset, QTL(Quantitative Trait Locus), which is 043

annotated for trait entities in the animal science 044

domain. Unlike previous datasets, QTL contains 045

a very small validation set of only 21 sentences, 046

avoiding the significant manual effort required to 047

obtain large validation sets in real-life scenarios. In 048

contrast to previous benchmark datasets where en- 049

tity mentions often comprise proper nouns, the trait 050

entities in the QTL dataset are descriptive terms, 051

such as “tail size” and “hoof color”. 052

While existing DS-NER methods perform well 053

on benchmark datasets such as CoNLL2003, of- 054

ten rivaling fully supervised approaches, they con- 055

sistently fail when applied to our QTL dataset. 056

This motivates us to re-examine existing DS-NER 057

approaches. We identify some issues: Some ap- 058

proaches (Liang et al., 2020; Zhang et al., 2021b; 059

Qu et al., 2023) deviate from the DS-NER frame- 060

work and directly use the test set for hyperpa- 061

rameter tuning, leading to unreliable performance. 062

Some approaches (Shang et al., 2018; Meng et al., 063

2021) train their models with fixed hyperparame- 064

ters, yet fail to achieve consistent results across dif- 065

ferent datasets. The remaining approaches (Wang 066

et al., 2023; Wu et al., 2023) employ a validation 067

set from fully supervised (FS) data for parameter 068

tuning. These approaches overlook the significant 069

manual labor required to obtain a validation set 070

for parameter tuning in real-life scenarios, affect- 071

ing the robustness of existing methodologies when 072

applied to real-life applications with a small vali- 073

dation set, thereby compromising the reliability of 074

these approaches. 075

To solve the issues mentioned above, we present 076

a simple yet effective approach inspired by Curricu- 077

lum learning and Positive-Unlabeled (PU) learn- 078

ing , named CuPUL. The motivation behind cur- 079

riculum learning is that deep learning models are 080

non-convex and trained using batches of samples, 081
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so the order of training data can significantly im-082

pact model performance. Curriculum learning re-083

arranges the batches of training samples such that084

the model learns from easy to hard samples and085

revisits easier samples more frequently. With this086

new arrangement, models tend to converge to a087

better local optimum. Furthermore, we design088

a token-level curriculum arrangement to address089

token-level noise in DS-NER tasks. We observe090

that "easy samples" are usually cleaner, and learn-091

ing from these first can initially avoid label noise,092

making the model more robust. To tackle false093

negative issues, we adopt the Positive-Unlabeled094

learning paradigm.095

In summary, our main contributions are:096

• We present a real-life DS-NER dataset, QTL,097

and test the performance of the existing state-098

of-the-art methods. We observe that many099

methods do not follow the practical DS-NER100

setting and have unsatisfactory performance.101

• We propose a simple method CuPUL to ad-102

dress the noise issue in DS-NER. We em-103

pirically demonstrate that CuPUL can sig-104

nificantly outperform the state-of-the-art DS-105

NER method on the QTL dataset and different106

benchmark datasets.107

2 QTL Benchmark108

To reduce the cost of human-annotated training109

data for NER tasks, DS-NER uses professional110

dictionaries or knowledgebases for annotations.111

Existing DS-NER benchmark datasets use NER112

benchmark datasets to simulate the distant super-113

vision setting by replacing the human annotations114

on training datasets with knowledge base anno-115

tations (Liang et al., 2020; Shang et al., 2018;116

Zhou et al., 2022). Among these benchmarks, only117

the BC5CDR (Shang et al., 2018; Li et al., 2016)118

dataset comes from professional domains where119

DS-NER tasks are in high demand.120

We present Quantitative Trait Locus (QTL), a121

real-life DS-NER application in the animal science122

domain. The entity type to recognize is “trait”,123

an important task in the construction of genotype-124

phenotype databases for advancing livestock ge-125

nomics research and breeding methodologies (ex-126

amples in Table 1).127

Different from previous DS-NER benchmark128

datasets, where entities consist of many proper129

nouns, trait entities consist of descriptive expres-130

sions. To describe the distinct characteristics of131

No. Trait Entity Example

1 Fatty acid composition of milk
2 Dwarf phenotype
3 Total number of piglets born per litter
4 Body mass index
5 The number of first to third births

Table 1: List of Trait Entities from Test Set of QTL.

Dataset Entity Type # Entity
Average Entity

Length
Proper Noun

Ratio

PER 1617 1.71 0.97
CoNLL03 LOC 1662 1.16 0.98

ORG 1656 1.51 0.92
MISC 693 1.32 0.60

QTL Trait 1219 1.98 0.24

Table 2: Statistics on Entity Types of CoNLL2003 and
QTL. The average entity length indicates the number
of words per entity, and the proper noun ratio reflects
the proportion of entities that contain at least one proper
noun.

trait entities, we compare the Trait type from the 132

QTL test set with entity types (PER, LOC, ORG, 133

MISC) from the CoNLL03 (Tjong Kim Sang and 134

De Meulder, 2003) test set. Some key statistics 135

are presented in Table 2, revealing that Trait en- 136

tities have a longer entity length on average and 137

a lower proper noun ratio compared to the bench- 138

mark dataset, highlighting its distinct features. 139

To establish the QTL dataset, we collected a cor- 140

pus with 1,716 abstracts carefully selected from 141

PubMed1 by domain experts for QTL studies re- 142

lated to six species: cattle, pig, goat, sheep, chicken, 143

and rainbow trout. We randomly selected 1,609 ab- 144

stracts in this corpus to establish the training data. 145

The training data consists of 18,706 sentences with 146

514,176 tokens. For the distant annotation process, 147

the domain experts gathered a specialized dictio- 148

nary of 3,884 trait names from four established 149

domain ontologies2. After obtaining the dictionary, 150

string matching was used to distantly annotate the 151

training corpus. Then from the 1609 papers, we 152

randomly selected 21 sentences (with 952 tokens) 153

and had a well-trained domain curator provide man- 154

ual annotations to form a validation set. 155

This curator later provided annotations for the 156

remaining 107 abstracts to form a test set, which 157

1https://pubmed.ncbi.nlm.nih.gov/
2Vertebrate Trait (VT) Ontology, Livestock Product Trait

(LPT) Ontology, Livestock Breed Ontology (LBO), and
Clinical Measurement Ontology (CMO). Examples can be
found at https://www.animalgenome.org/QTLdb/export/
trait_mappings
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covered all six species of interest. To assess annota-158

tion quality, we had a second domain curator check159

the annotations on 10 randomly selected abstracts.160

The two curators had a total agreement. Therefore,161

we used the annotations as ground truth. More an-162

notation details are described in Appendix B. The163

test set contains 1,044 sentences with 32,251 to-164

kens and 1,219 entities.165

Notably, the validation set is quite small in the166

QTL dataset. This practice followed the motivation167

of DS-NER tasks, where the human effort should168

be minimized at the training stage. This limited169

size of the validation set may impact the tuning of170

hyperparameters during the model training process,171

potentially affecting the model’s performance. This172

issue reflects a realistic challenge encountered in173

DS-NER applications, which requires the model to174

be robust and not sensitive to hyperparameters.175

Annotation Limitations: Due to the high cost, the176

majority of the annotations are provided by a single177

curator. One observation from the curators is that178

there is a considerable amount of discontinued trait179

entities. For example, in “milk protein, lactose,180

and fat percentage”, there are three entities: milk181

protein percentage, milk lactose percentage, and182

milk fat percentage. Due to the annotation software183

limitation, this example was annotated as “milk184

protein”, “lactose”, and “fat percentage”.185

3 Related Work Analysis186

3.1 DS-NER methods187

We collected DS-NER methods published in major188

conferences in 2023 and their compared baselines.189

We categorize the existing DS-NER methods in190

three groups. 1)DS-NER with Self-training. To191

improve model performance, many DS-NER meth-192

ods often incorporate a self-training step, utilizing193

mechanisms such as soft-label retraining and multi-194

model teacher-student frameworks. This group in-195

cludes BOND (Liang et al., 2020), RoSTER (Meng196

et al., 2021), SCDL (Zhang et al., 2021b), ATSEN197

(Qu et al., 2023) and DesERT (Wang et al., 2023).198

2)DS-NER without Self-training. This group of199

methods focuses on addressing the model’s effec-200

tiveness in handling noise or false negatives in DS-201

NER. While these methods can incorporate self-202

training mechanisms, it is not the primary focus203

of these methods. This group include AutoNER204

(Shang et al., 2018), Conf-MPU (Zhou et al., 2022),205

MProto (Wu et al., 2023). 3) Span-based DS-206

NER. The final group of methods differs from the207

previous two, as it is based on span-based predic- 208

tion rather than sequence labeling. These methods 209

treat each span within a sentence as the predic- 210

tion target. Previous work (Li et al., 2023) has 211

shown that span-based NER models often outper- 212

form sequence-based NER methods in terms of ef- 213

fectiveness, albeit at the cost of increased algorith- 214

mic complexity. This group includes Top-Neg (Xu 215

et al., 2023), CLIM (Li et al., 2023) and SANTA 216

(Si et al., 2023). More details can be found in 217

Appendix A. 218

3.2 Method Analysis 219

We first analyze the feasibility of existing DS-NER 220

methods in real-life applications. For a method to 221

be considered feasible, it must provide runnable 222

code and instructions for hyperparameter tuning if 223

necessary. Table 3 presents our feasibility analysis 224

results base on the manuscripts and code reposi- 225

tories (accessed in April 2024). We find that 1) 226

MProto and SANTA do not provide hyperparame- 227

ter tuning instructions; 2) CLIM and Top-Neg do 228

not provide runnable code; and 3) BOND, SCDL, 229

and ATSEN selected their inference model based 230

on performance on the test set according to their 231

released repositories. Thus in our empirical studies, 232

for a fair comparison, we only re-examine feasi- 233

ble methods and update some methods to select 234

the inference model based on performance on the 235

validation set only. 236

The motivation of DS-NER methods is that the 237

manual annotations are too costly to obtain. There- 238

fore, to reduce the amount of manual annotation, 239

the annotations in the training set come from knowl- 240

edge bases or dictionaries, and the manual labeled 241

validation set should not be large either. Existing 242

methods focus on the first setting while neglecting 243

the importance of the second setting. We analyzed 244

the feasible methods in Table 3 based on these DS- 245

NER settings and have the following observations. 246

First, AutoNER and RoSTER use fixed hyperpa- 247

rameters. These approaches do not require hyper- 248

parameter tuning, thereby avoiding the need for a 249

validation set. Second, Conf-MPU provides a strat- 250

egy for pre-selecting hyperparameters, so it does 251

not require a validation set either. However, the 252

remaining methods (BOND, SCDL, ATSEN, and 253

DesSERT) need a validation set for hyperparameter 254

tuning. The size of the validation set may affect 255

their performance. We present a detailed analysis 256

of this impact in Section 5. 257
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Method Code Provided Code Runable Hyperparameter Tuning required Tuning Instruction Inference model Feasible
DS-NER without Self-training
AutoNER ✓ ✓ Fixed ✗ - Model at Final Epoch ✓

Conf-MPU ✓ ✓ Not Fixed ✗ - Model at Final Epoch ✓

MProto ✓ ✓ Not Fixed ✓ ✗ Model at Final Epoch ✗

DS-NER with Self-training
BOND ✓ ✓ Not Fixed ✓ ✓ Best Model on Test ✓

RoSTER ✓ ✓ Fixed ✗ - Model at Final Epoch ✓

SCDL ✓ ✓ Not Fixed ✓ ✓ Best Model on Test ✓

ATSEN ✓ ✓ Not Fixed ✓ ✓ Best Model on Test ✓

DesERT ✓ ✓ Not Fixed ✓ ✓ First Student Model ✓

Span-based DS-NER models
SANTA ✓ ✓ Not Fixed ✓ ✗ Model at Final Epoch ✗

Top-Neg ✓ ✗ - - - - ✗

CLIM ✗ - - - - - ✗

Table 3: Feasibility Analysis of Exist Methods for DS-NER tasks.

Figure 1: Overview of CuPUL

4 Methodology258

In this section, we introduce a simple DS-NER259

method that combines the advantages of curricu-260

lum learning and PU learning. Figure 1 shows261

the overview of the proposed method CuPUL. The262

method starts by training several voters using the263

distantly annotated data to calculate token difficulty264

scores. Then CuPUL trains a NER classifier fol-265

lowing the curriculum scheduler using confidence-266

based positive-unlabeled learning risk estimation.267

Problem Formulation: We denote an input sen-268

tence with M tokens as x = [x1, x2, · · · , xM ]269

and denote corresponding annotations as y =270

[y1, y2, · · · , yM ], yi ∈ {0, 1, · · · , k}, where 0 de-271

notes the unlabeled type and 1, · · · , k denote k en-272

tity types. For the models, a pre-trained language273

model such as RoBERTa is used to encode token274

representations and followed by a softmax function275

to forward the prediction of entity labels for each276

token in the sentence.277

4.1 Difficulty Estimation278

Curriculum learning has two main steps: difficulty279

estimation and curriculum scheduler (Kocmi and280

Bojar, 2017). More details and related work of281

curriculum learning are discussed in Appendix C. 282

Motivated by the token-level noises in DS-NER 283

tasks, we design the difficulty estimator and the 284

curriculum scheduler at the token level as well. It 285

allows the model to learn from one sentence by 286

ignoring the noisy tokens. For example, in the sen- 287

tence “Peter(PER) lives(O) in(O) America(ORG)”, 288

“Peter”, “lives”, and “in” are clean samples, and 289

“America” is a noisy sample. The model can learn 290

from “Peter lives in X” by ignoring the noise in 291

the sentence. The token’s difficulty score should 292

reflect its inherent learnability. These scores are 293

estimated using the disagreements between basic 294

NER models or voters. 295

4.1.1 Voters 296

For training the voters, a neural network for NER 297

classification is used. The design of the voters de- 298

mands simplicity and variability. Thus, the voters 299

are trained using a regular multi-class classifica- 300

tion risk function. The training process follows 301

the Positive-Negative setting, where 0 represents 302

non-entity type. Label imbalance in NER tasks 303

is mitigated by sampling negative samples. Note 304

that the performance of the voter itself does not 305

affect the final outcomes of CuPUL, which we will 306

introduce in the section 4.2. 307

4.1.2 Difficulty Scores 308

After training V voters, each token x receives V 309

predicted class probabilities f(x,θ1), ..., f(x,θV ), 310

where θ1...θV are the voters’ parameters. The pre- 311

diction f(x,θi) is a vector that represents the class 312

distribution of each token x denoted as Pri(x). 313

The difficulty of the token is assessed based on the 314

disagreement among these distributions. Specifi- 315

cally, we use Kullback-Leibler (KL) divergence, a 316

measurement for dissimilarities of two distributions 317

Pri(x) and Prj(x), to calculate the disagreement 318
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level of two voters. Mathematically, it is:319

Hij =
1

2
{DKL(Pri(x)||Prj(x)))+320

DKL(Prj(x))||Pri(x))}, (1)321

where DKL(·) denotes the KL divergence. KL322

divergence is asymmetric. By taking the average323

of Hij and Hji, we derive a symmetric difficulty324

score H{ij}.325

Given that there are V voters, the final difficulty326

score for each token x is defined as the average of327

the non-identical pairs among all voters:328

H =

∑V
i=1

∑V
j=i+1H{ij}

V · (V − 1)/2
. (2)329

Eq.(2) defines the token difficulty scores as an arith-330

metic mean of disagreements between pair-wise331

voters. Consequently, a token’s difficulty score is332

low when all voters agree, and it increases with333

greater disagreement.334

4.2 Curriculum Design335

To avoid overfitting negative samples, we adopt336

Positive-Unlabeled (PU) learning based risk esti-337

mation, treating data labeled with 0 as unlabeled338

rather than non-entity. PU learning assumes the339

unlabeled data represents the entire dataset’s distri-340

bution (Zhou et al., 2022). To meet this assumption,341

we include all unlabeled data in the first curriculum,342

scheduling only the labeled positive data.343

Our curriculum is based on token difficulty344

scores H , which follow a long-tail distribution,345

making most tokens “easy” (Figure 2). Previous346

research (Platanios et al., 2019; Gnana Sheela and347

Deepa, 2013) indicates that a uniform difficulty348

range may render curriculum learning ineffective.349

Therefore, we propose a power-law selector for a350

more effective curriculum scheduler.351

To build the curricula, we first arrange all Tu352

unlabeled tokens followed by Tp positive-labeled353

tokens sorted by their difficulty scores in ascend-354

ing order. The first curriculum consists of all un-355

labeled tokens and the first τTp labeled positive356

tokens, where τ (0 < τ < 1) is a selective factor.357

The second curriculum consists of the first τ2T358

tokens from the remaining (1− τ)Tp tokens. This359

selection process continues until the penultimate360

curriculum. The remaining tokens are placed in361

the final curriculum. These curricula are denoted362

as C1, C2, ..., Cη. For example, suppose Tp = 20,363

Tu = 80, τ = 0.5, and η = 3. Then, C1 consists of364

tokens indexed from 1 to 90 (80 unlabeled tokens 365

and the 10 easiest positive tokens), C2 consists of 366

tokens indexed from 91 to 95, and C3 consists of 367

tokens indexed from 96 to 100. 368

4.3 Curriculum-based PU Learning 369

We train the NER classifier across η curricula using 370

the “Baby Step” training schedule(Spitkovsky et al., 371

2010; Cirik et al., 2017). Starting with C1, we add 372

each subsequent curriculum after a fixed number 373

of epochs, training through all curricula until com- 374

pletion. The training stages ({Si, 1 < i ≤ η}) 375

correspond to the number of curricula, with the 376

model trained over multiple epochs in each stage. 377

Each stage is treated as an independent training seg- 378

ment, with earlier curricula being reviewed more 379

frequently, enhancing learning under PU assump- 380

tions and resulting in a robust curriculum learning 381

framework. 382

Specifically, we adopt the Conf-MPU loss func- 383

tion, proposed by Zhou et al. (2022), as the back- 384

bone PU loss function in the curriculum-based 385

training. Details of Conf-MPU can be found in 386

Appendix D. Instead of having entity confidence 387

score λ(x) estimated by another binary PU model, 388

the only difference we make is to reuse the voters 389

trained in Section 4.1 to ensemble the confidence 390

score for each token x. We use the soft-label en- 391

semble as 392

Pr(x) =

∑V
j=1 f(x,θj)

V
, (3) 393

where Pr(x) is the ensemble probability distribu- 394

tion over all classes. The confidence score of a 395

token x being an entity token is then calculated as 396

λ(x) =
k∑

j=1

Prj(x). (4) 397

For the neural network of the NER classifier, we 398

choose the structure described at the beginning of 399

Section 4. 400

4.4 Self-Training 401

Several studies (Liang et al., 2020; Peng et al., 402

2019; Meng et al., 2021) have shown that self- 403

training can effectively upgrade the performance 404

of a trained DS-NER model. We apply the self- 405

training method in Meng et al. (2021), which uses 406

soft labels to conduct self-training and a masked 407

language model to conduct contextual data augmen- 408

tation simultaneously. Self-training is used directly 409
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after CuPUL, and we call the classifier with self-410

training “CuPUL+ST”.411

5 Experimental Studies412

5.1 Baseline Methods413

We use feasible methods mentioned in Section 3414

as baseline methods. First, we report distant su-415

pervision results as KB-Matching. We classify416

feasible DS-NER methods into two groups. 1)417

DS-NER without Self-training consists of Au-418

toNER (Shang et al., 2018) and Conf-MPU (Zhou419

et al., 2022). CuPUL is directly comparable with420

these methods. We also include an ablation version421

of CuPUL (CuPUL-curr), which removes Curricu-422

lum Learning, as a baseline. 2) DS-NER with423

Self-training includes BOND (Liang et al., 2020),424

RoSTER (Meng et al., 2021), SCDL (Zhang et al.,425

2021b) and ATSEN (Qu et al., 2023) and DesERT426

(Wang et al., 2023). These methods apply teach-427

student or training augmentation steps to further428

boost the DS-NER performance. CuPUL+ST is429

directly comparable with these methods.430

To ensure a fair comparison, we made some nec-431

essary code modifications to the baseline methods.432

For Conf-MPU, we updated the encoding model433

to RoBERTa. For BOND, SCDL, ATSEN, and434

DesSERT, we modified the hyperparameter tuning435

process to use the validation set instead of the test436

set. Early stopping is used to select the inference437

model. RoSTER uses fixed parameters, but the438

max_seq_length did not meet the requirements439

for some datasets, so we adjusted it accordingly.440

Specific parameters details are in Appendix F.441

5.2 QTL Experiments442

Evaluation Metrics: Due to the annotation lim-443

itation and the fact that none DS-NER methods444

can handle discontinued spans, we include relaxed445

Precision, Recall, and F1 scores to evaluate the446

performance on the QTL dataset, in addition to the447

strict span-level Precision, Recall, and F1 scores448

used in previous studies. For relaxed metrics, it449

deems a predicted span correct if there is at least450

one overlapping word with the ground truth anno-451

tation. According to the curator’s feedback, the452

relaxed metrics can meet the practical need as iden-453

tifying potential entities is more important than454

identifying precise boundaries.455

Table 4 presents the results for all methods on456

the QTL dataset. Note that CuPUL without curricu-457

lum learning (CuPUL-curr) is essentially equiva-458

Method QTL-strict QTL-relax
DS-NER without Self-training
KB-Matching 37.15 (82.95/23.93) 41.86 (93.46/26.97)

AutoNER 41.67 (69.07/29.83) 55.49 (83.17/41.64)
Conf-MPU 52.07 (76.30/45.37) 60.58 (91.15/51.28)

CuPUL-curr 54.75 (75.40/42.99) 62.94 (86.76/49.38)
CuPUL 56.84 (73.03/46.51) 66.18 (85.31/54.06)

DS-NER with Self-training
BOND 53.08 (60.89/47.04) 65.57 (77.97/56.57)

RoSTER 47.80 (73.12/35.51) 55.43 (91.35/39.79)
SCDL 43.62 (79.57/30.05) 50.18 (89.85/34.81)

ATSEN 46.23 (66.98/35.30) 51.64 (86.21/36.86)
DesERT 54.41 (69.20/44.83) 64.23 (82.41/51.50)

CuPUL+ST 58.87 (58.28/59.47) 73.57 (73.07/74.08)

Table 4: Performance on QTL dataset: F1 Score (Preci-
sion/Recall) (in %). The best results are in bold.

lent to Conf-MPU when there is one entity type. 459

KB matching reveals that QTL annotations suffer 460

from low recall but have relatively high precision. 461

We observe that DS-NER baselines without self- 462

training have limited recall improvement, result- 463

ing in weak performance. DS-NER baselines with 464

self-training improve recall compared to AutoNER, 465

but still generally under-perform compared to PU- 466

based methods. CuPUL+ST can further boost the 467

recall compared to CuPUL, significantly outper- 468

forming all baseline methods. Specifically, strict 469

F1 and relaxed F1 of CuPUL+ST outperform the 470

runner-up by 5.79% and 8.00%, respectively. 471

5.3 Benchmark Experiments 472

We also re-examine all methods on existing bench- 473

mark datasets. 474

5.3.1 Datasets and Metrics 475

Datasets: We conduct experiments on six ex- 476

isting benchmark datasets including CoNLL03 477

(Liang et al., 2020), Twitter (Liang et al., 2020), 478

OntoNotes5.0 (Liang et al., 2020), Wikigold (Liang 479

et al., 2020), Webpage (Liang et al., 2020), and 480

BC5CDR (Shang et al., 2018). The first five are 481

open-domain datasets, and BC5CDR is the bio- 482

medical domain. More details and the statistics of 483

these datasets are summarized in Appendix B. 484

Metrics: We use span-level Precision (P), Recall 485

(R), and F1 scores as the evaluation metrics for all 486

the datasets. These metrics require exact matches 487

between predicted and actual entities. A continuous 488

span with the same label is considered a single 489

entity during inference. 490

Settings: For the benchmark dataset, we use small 491

subsets of the validation set to tune the hyperpa- 492

rameters including learning rate, epochs, etc, to 493
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Method CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR
DS-NER Without Self-training
KB-Matching ∗ 71.40 35.83 59.51 47.76 52.45 64.32

AutoNER ∗ 67.00 26.10 67.18 47.54 51.39 79.99
Conf-MPU † 82.39 43.21 66.04 66.58 63.32 80.06

CuPUL-curr 83.18 50.12 67.76 66.43 65.15 79.29
CuPUL 85.09 54.34 68.06 70.53 73.10 80.19

DS-NER With Self-training
RoSTER 85.40∗ 43.91† 69.10† 58.34∗ 56.80† 79.78†

BOND
† 79.89 45.98 66.86 57.81 48.76 76.91
∗ 81.15 48.01 68.35 60.07 65.74 -

SCDL
† 82.47 44.76 68.50 47.62 41.29 77.72
∗ 83.69 51.10 68.61 64.13 68.47 -

ATSEN
† 79.39 49.38 68.22 60.72 43.03 79.95
∗ 85.59 52.46 68.95 - 70.55 -

DesERT
† 80.57 48.21 67.94 60.32 62.88 78.21
∗ 86.95 52.26 69.17 65.99 72.73 -

CuPUL+ST 86.64 54.78 68.20 70.19 74.48 80.87

Table 5: Performance on benchmark datasets with small validation sets: F1 Score (in %). ∗ marks the results
reported from the original papers, and † marks the results we run. The best results are in bold. Data in gray font are
NOT used for comparative analysis as they were tuned using either the test set or an large validation set. We include
these only to contrast our re-run results with previous works.

simulate the real-life DS-NER application scenar-494

ios. Detailed settings and statistics of the validation495

set can be found in Appendix F.496

5.3.2 Results on Benchmark Datasets497

Table 5 presents the overall span-level F1 scores for498

all feasible and proposed methods on benchmark499

datasets. Note that RoSTER was tested on a dif-500

ferent version of the OntoNotes5.0 dataset (Meng501

et al., 2021). Therefore, we re-run the code on502

OntoNotes5.0, too. We also add the results re-503

ported from previous papers for methods BOND,504

SCDL, ATSEN, and DesERT as a reference to the505

re-run results. We have the following observations.506

DS-NER Without Self-training. From Table507

5, it is obvious that KB-Matching generally ex-508

hibits low recall and, on four of the benchmark509

datasets, low precision as well. In contrast, noise-510

aware DS-NER models significantly outperform511

KB-Matching. Furthermore, CuPUL achieves the512

best F1 scores on all datasets compared to all DS-513

NER models without self-training. The results514

of CuPUL-curr are very similar to those of Conf-515

MPU, except for the Twitter dataset. This differ-516

ence is due to CuPUL using a different loss func-517

tion to train the model that obtains the confidence518

score for each token. For NER tasks with more519

than 10 entity types (Twitter and OntoNotes5.0),520

we opted for cross-entropy instead of MAE as the521

loss function, which has proven to be effective. A522

detailed discussion can be found in Appendix E.523

DS-NER With Self-training. The results for 524

CuPUL+ST shown in Table 5 further indicate that 525

adding a self-training phase can enhance the per- 526

formance of the CuPUL model in general. When 527

compared with baseline DS-NER models that in- 528

corporate self-training, CuPUL+ST demonstrates 529

superior performance on five out of six datasets. On 530

the OntoNotes5.0 dataset, almost all noise-aware 531

DS-NER models have similar performances, im- 532

plying that distant annotations may contain biases 533

difficult for the models to address. 534

When comparing the results of BOND, SCDL, 535

ATSEN, and DesSERT from their original papers 536

with our re-run results, we can observe a significant 537

decline, especially on Twitter, Wikigold, and Web- 538

page datasets. Because these datasets are relatively 539

small, using small validation sets may lead to more 540

instability in the training process and higher diffi- 541

culty in selecting an appropriate inference model. 542

The results indicate that these methods may not 543

be robust in real-life applications. However, cur- 544

riculum learning, which progresses from “easy” to 545

“hard” samples, could stabilize the training process, 546

making it more robust and less parameter-sensitive. 547

5.4 Further Analysis 548

5.4.1 Robustness of CuPUL 549

To validate the robustness of CuPUL facing a small 550

validation set, we re-selected small validation sets 551

with the same number of sentences to train CuPUL 552

again across CoNLL03, Twitter, Ontonotes5.0, 553
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Figure 2: CuPUL Analysis: (a)(b) are the Difficulty Scores Distribution of Wikigold and Twitter, (c)(d) are the
Token Level Positive Error Rate and Mean Difficulty Scores for Each Curriculum Stage on Wikigold and Twitter.

CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR
CuPUL on Valid1 85.09 54.34 68.06 70.53 73.10 80.19
CuPUL on Valid2 84.55 54.13 68.25 68.69 71.48 80.84

Table 6: Performance on benchmark datasets with different small validation sets: F1 Score (in %).

Wikigold, Webpage, and BC5CDR datasets. We554

named the new validation sets as valid2 and the555

original sets as valid1, and Table 6 presents the556

results. The results show a slight decrease in per-557

formance on the CoNLL03, Twitter, Webpage,558

and Wikigold datasets and a slight increase on559

Ontonotes5.0 and BC5CDR datasets. Despite these560

fluctuations, CuPUL still outperforms all the DS-561

NER Without Self-training baseline methods on all562

datasets and DS-NER With Self-training baseline563

methods on most datasets compared to results in564

Table 5, confirming the robustness of CuPUL with565

small validation sets.566

5.4.2 Effectiveness567

To further validate the effectiveness of CuPUL,568

we conduct additional analyses using benchmark569

datasets.570

One important assumption we adopt for the de-571

sign of curricula is that the difficulty scores follow572

a long-tail distribution. We illustrate the distribu-573

tion of difficulty scores estimated on the Wikigold574

and Twitter datasets in Figure 2 (a)(b). It clearly575

demonstrates the long-tail phenomenon, with most576

tokens having low difficulty scores.577

Another important assumption adopted in578

CuPUL is that difficulty scores can reflect the qual-579

ity of distant supervision, where “easier” tokens580

have “cleaner” labels. To validate this assumption581

and evaluate the quality of the difficulty score es-582

timation, we examine the correlation between the583

difficulty scores and the quality of distant labels.584

We use Wikigold and Twitter as the testbed, and585

the results are illustrated in Figure 2 (c)(d).586

For each training curriculum, we compute the587

token-level positive error rate (positive errors in-588

clude false positives and positive type errors), and 589

plot the rate using the left y-axis. We also compute 590

the average difficulty scores for tokens in each cur- 591

riculum shown with the right y-axis. It is clear to 592

see that both the average token difficulty scores and 593

positive error rate have a clear increase with respect 594

to the order of curricula. The figure also illustrates 595

a strong correlation between the difficulty scores 596

and the positive error rate of distant labels. Specifi- 597

cally, as the difficulty score increases, the quality 598

of the distant labels decreases. This result validates 599

our assumption that “easy” data have cleaner labels 600

and “hard” data have noisier labels. The clean data 601

can initialize the model with a better starting point 602

and improve the model’s robustness to noise in the 603

latter curricula. 604

More ablation studies are discussed in Appendix 605

H, and the Parameter Study is discussed in Ap- 606

pendix I. 607

6 Conclusion and Future Work 608

In this paper, we introduce a real-life DS-NER 609

dataset, named QTL, from the animal science do- 610

main application. We reveal the limitations of 611

current DS-NER methods in practical DS-NER 612

settings on the QTL dataset. To solve this is- 613

sue, we propose a simple yet effective token-level 614

curriculum-based PU learning (CuPUL) method, 615

which strategically orders the training data from 616

easy to hard. Our experiments show that CuPUL 617

not only mitigates the adverse effects of noisy la- 618

bels but also achieves state-of-the-art DS-NER on 619

many datasets. Through CuPUL, we demonstrate 620

the effectiveness of curriculum learning in improv- 621

ing the performance of DS-NER systems. 622
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Limitations623

The limitations of the new benchmark dataset, QTL,624

are discussed in Section 2.625

The "Baby Step" strategy in curriculum learning626

involves multiple repetitions of the first curriculum.627

Coupled with our power-law selector and curricu-628

lum scheduler, which tends to choose a larger initial629

curriculum, this may negatively impact efficiency630

if many curricula are established since the larger631

curriculum is repeatedly trained.632

Ethics Statement633

We comply with the ACL Code of Ethics.634
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Appendix857

A Baselines858

Here, we give a short description of all the baseline859

methods: KB-Matching distantly labels the test860

sets using distant supervision, serving as a refer-861

ence to illustrate the performance improvements862

given by other advanced DS-NER methods.863

AutoNER (Shang et al., 2018) trains the neural864

model with a “Tie or Break” tagging scheme for865

entity boundary detection and then predicts entity866

type for each candidate.867

Conf-MPU (Zhou et al., 2022) treats the NER868

task as a Positive-Unlabeled learning problem and869

utilizes the pre-learned confidence scores to en-870

hance the model’s performance.871

CLIM (Li et al., 2023) addresses the imbal-872

ance problem in the high-performance and low-873

performance classes by improving the candidate874

selection and label generation.875

SANTA (Si et al., 2023) dealing with inaccurate876

and incomplete annotation noise in DS-NER by877

utilizing separate strategies.878

Top-Neg (Xu et al., 2023) selectively uses neg-879

ative samples with high similarity to positives of880

the same entity type, improving performance by881

effectively distinguishing false negatives.882

BOND (Liang et al., 2020) trains a RoBERTa883

model on distantly labeled data with early stop-884

ping and then uses a teacher-student framework to885

iteratively self-train the model.886

RoSTER (Meng et al., 2021) employs a noise-887

robust loss function and a self-training process with888

contextual augmentation to train a NER model.889

SCDL (Zhang et al., 2021b) conducts self-890

collaborative denoising with teacher-student frame-891

work. It trains two teacher-student networks, and892

the final reports come from the best model (teacher893

or student).894

ATSEN (Qu et al., 2023) develops a teacher-895

student framework with adaptive teacher learning896

and fine-grained student ensembling.897

MProto (Wu et al., 2023) represents each entity898

type with multiple prototypes to characterize the899

intra-class variance among entity representations900

and propose a noise-robust prototype network.901

DesERT (Wang et al., 2023) propose a novel902

self-training framework which augments the NER903

predicative pathway to solve innate distributional-904

bias in DS-NER.905

B Datasets 906

To annotate the QTL dataset, domain experts use 907

an online tool named TeamTat3. The screenshot of 908

the tool is shown in Figure 3. 909

Here, we give a short description of the six 910

benchmark datasets as follows: 911

• CoNLL03 (Tjong Kim Sang and De Meulder, 912

2003) is built from 1393 English news arti- 913

cles and consists of four entity types: person, 914

location, organization, and miscellaneous. 915

• Twitter (Godin et al., 2015) is from the WNUT 916

2016 NER shared task and consists of 10 en- 917

tity types. 918

• OntoNotes5.0 (Weischedel et al., 2013) is 919

built from documents of multiple domains 920

like broadcast conversations, web data, etc. 921

It consists of 18 entity types. 922

• Wikigold (Balasuriya et al., 2009) is built from 923

a set of Wikipedia articles (40k tokens). They 924

are randomly selected from a 2008 English 925

dump and manually annotated with four entity 926

types same as CoNLL03. 927

• Webpage (Ratinov and Roth, 2009) comprises 928

personal, academic, and computer science 929

conference web pages. It consists of 20 web 930

pages that cover 783 entities with four entity 931

types same as CoNLL03 too. 932

• BC5CDR (Li et al., 2016) comes from the 933

biomedical domain. It consists of 1,500 arti- 934

cles, containing 15,935 Chemical and 12,852 935

Disease mentions. 936

The statistics of the baseline datasets are shown 937

in Table 7. 938

C Curriculum Learning 939

Curriculum learning was first proposed by Ben- 940

gio et al. (2009) under the assumption that learn- 941

ing with reordering from “easy” samples to “hard” 942

samples would boost performance. It has been 943

applied in various applications, including neural 944

machine translation (Zhou et al., 2020; Platanios 945

et al., 2019; Zhou et al., 2020; Wang et al., 2018), 946

relation extraction (Huang and Du, 2019), reading 947

comprehension (Tay et al., 2019), natural language 948

understanding (Xu et al., 2020) and named entity 949

recognition (Jafarpour et al., 2021; Lobov et al., 950

2022; Wenjing et al., 2021). 951

3https://www.teamtat.org/
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Several studies aim to adopt curriculum learning952

philosophy for textual data and propose various953

difficulty-scoring functions and curriculum sched-954

ulers. Some methods measure sample difficulty955

with features derived from lexical statistics, e.g.,956

sentence length and word rarity (Platanios et al.,957

2019; Jafarpour et al., 2021), where longer sen-958

tences and rarer words are considered “hard”. Oth-959

ers use features from pre-trained language models960

(Zhou et al., 2020; Wang et al., 2018; Liu et al.,961

2020). Most schedulers select samples with dif-962

ficulty scores lower than a threshold (Platanios963

et al., 2019). While Zhou et al. (2020) design a964

sample selecting function based on model uncer-965

tainty. Our approach, unique in applying token-966

level curriculum learning to DS-NER tasks, di-967

verges from common sentence-level methods by968

utilizing Transformer-based models like BERT for969

context-aware token-specific predictions and gradi-970

ent learning.971

D Conf-MPU Risk Estimation972

Conf-MPU loss function has been shown to be973

more robust to PU assumption violation in practice.974

Conf-MPU estimates the risk as975

R(f) =

k∑
i=1

πi

(
R+

Pi
(f) + R−

P̃i
(f)− R−

Pi
(f)

)
+R−

Ũ
(f),

(5)976

For stage S∗, the number of token selected for class977

i is TS∗
i . For simplification, we denote it as T ∗

i . The978

empirical estimator of Eq.(5) is979

R̂Conf−MPU(f) =
k∑

i=1

πi

T ∗
i

T∗
i∑

j=1

max

{
0, ℓ(f(x

T∗
i

j ,θ), i)980

+ 1
λ̂(x

T∗
i

j )>ϵ
ℓ(f(x

T∗
i

j ,θ), 0)
1

λ̂(x
T∗
i

j )
− ℓ(f(x

T∗
i

j ,θ), 0)

}
981

+
1

T ∗
0

T∗
0∑

j=1

[
1
λ̂(x

T∗
0

j )≤ϵ
ℓ(f(x

T∗
0

j ,θ), 0)

]
, (6)982

with a non-negative constraint inspired by Kiryo983

et al. (2017) ensuring the risk on the negative class.984

We follow Zhou et al. (2022) and set ϵ to 0.5 by985

default.986

E Discussion of Loss Function987

Two loss functions are popularly used for the DS-988

NER tasks. The first loss function is cross entropy989

(CE) loss:990

ℓCE = log fi,yi(x;θ), (7)991

where fi,yi(x;θ) is the prediction of token xi on992

class j.993

Another commonly used loss function is mean 994

absolute error (MAE): 995

ℓMAE = |yi − fi,yi(x;θ)|, (8) 996

where | · | is L-1 norm of the vector and yi denotes 997

the one hot vector of yi. 998

Comparing the two loss functions, ℓCE is un- 999

bounded, and it grants better model convergence 1000

when trained with clean data (i.e., y are ground truth 1001

labels) because more emphasis is put on difficult to- 1002

kens. However, when the labels are noisy, training 1003

with the cross-entropy loss can cause overfitting to 1004

the wrongly labeled tokens. ℓMAE is more noise- 1005

robust than ℓCE. It is bounded and treats every 1006

token more equally for gradient update, allowing 1007

the learning process to be dominated by the correct 1008

majority in distant labels. However, using ℓMAE for 1009

training deep neural models generally worsens the 1010

convergence efficiency and effectiveness due to the 1011

inability to adjust for challenging training samples. 1012

Considering the different characteristics of these 1013

two loss functions, in practice, we suggest using 1014

ℓCE loss for tasks with more entity types and using 1015

ℓMAE loss for tasks with fewer number of entity 1016

types. 1017

F Hyperparameters and Experiment 1018

Settings 1019

Detailed hyper-parameter settings for each dataset 1020

are shown in Table 8. We tune hyperparameters 1021

with Grid-Search over the small validation sets 1022

shown in Table 7. Specifically, we first tune voter 1023

hyperparameters with one voter. The learning rates 1024

are set as 1e-5 for all datasets. Voter drop negative 1025

ratios are chosen from {0.1, 0.3, 0.5}, voter training 1026

epochs from {1, 5, 10, 15}, γ from {10, 20}. Then 1027

we tune curriculum learning hyperparameters. The 1028

stage epochs are chosen from {1, 2, 3} and learning 1029

rates are chosen from {1e-5, 3e-5, 5e-5, 7e-5, 9e- 1030

5}. Other hyperparameters are set without tuning 1031

accordingly. For example, for datasets CoNLL03, 1032

OntoNotes5.0, Webpage, Twitter, Wikigold, QTL 1033

and BC5CDR, the maximum sequence length is set 1034

as 150, 230, 120, 160, 120, 180, 280 respectively, 1035

to ensure the algorithm works correctly. For all 1036

the datasets, we train them with a batch size of 32 1037

sentences and apply Adam optimizer (Kingma and 1038

Ba, 2014). The number of voters K and the num- 1039

ber of curricula C are set as 5 and 5, respectively. 1040

The curriculum selective factor τ is set to 0.5 and 1041

random seed to 42. We apply cross-entropy loss 1042
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Figure 3: Screenshot for online annotation tool TeamTat.

Dataset Train Valid Test Types

CoNLL03
Sentence 14041 20 3453

4
Token 203621 475 46435

Twitter
Sentence 2393 50 3844

10
Token 44076 719 58064

OntoNotes5.0
Sentence 115812 50 12217

18
Token 2200865 1090 230118

Wikigold
Sentence 1142 20 274

4
Token 25819 579 6538

Webpage
Sentence 385 20 135

4
Token 5293 120 1131

BC5CDR
Sentence 4560 20 4797

2
Token 118170 533 124750

QTL
Sentence 18706 21 1044

1
Token 514176 952 32251

Table 7: The statistics of involved DS-NER datasets,
the valid set comprises a small subset from the original
dataset, whereas the train set and test set utilize the
entire original dataset.

to OntoNotes5.0 and Twitter since they have more1043

entity types and apply MAE loss to other datasets.1044

We use the pre-trained RoBERTa as the back-1045

bone model for both the Voter and NER classifier4.1046

For all datasets, we use roberta-base5. We report1047

single-run results for the model performance and1048

the random seed is set to 42. We employ PyTorch61049

and conduct all experiments on a server with a1050

Tesla A100 GPU (32G).1051

G Re-Examine Baseline Methods on QTL1052

We have explored various DS-NRE methods for1053

QTL dataset. Our first attempt is AutoNER, which1054

requires not only a dictionary for entity annota-1055

tion but also a larger dictionary, called full-dict,1056

4We will release code upon paper acceptance.
5https://huggingface.co/roberta-base
6https://pytorch.org/

for marking unknown labels, which leads to in- 1057

creased manual effort. To address this, we gath- 1058

ered a comprehensive dictionary of 26,620 poten- 1059

tial trait entities. Unlike traditional machine learn- 1060

ing approaches, AutoNER uses both a validation 1061

set and a test set during training and eliminates the 1062

need for hyperparameter tuning. In our exploration 1063

of RoBERTa-ES and BOND, we encountered the 1064

practice of using the test set for hyperparameter 1065

tuning during training. To rectify this, we mod- 1066

ified the code to perform hyperparameter tuning 1067

on the validation set and conducted tests on the 1068

test set, focusing on hyperparameter tuning of early 1069

stop criteria and self-training period. For SCDL 1070

and ASTEN, we applied the hyperparameter tuning 1071

strategies outlined in the paper. Note that CuPUL 1072

without curriculum learning is essentially equiva- 1073

lent to Conf-MPU when there is one entity type. 1074

Therefore, Conf-MPU is not presented in the re- 1075

sults. 1076

H Ablation Study 1077

Curriculum Learning. To evaluate the effectiveness 1078

of curriculum learning in CuPUL, we compare it 1079

with two variations of itself. First, we use the five 1080

voters trained using positive and sampled negative 1081

examples and take the average of their soft label 1082

predictions as the result. The results are shown as 1083

voter ensemble in Table 10. Second, we include 1084

the result of CuPUL-curr from Table 9 since it is 1085

another variation. To evaluate the effectiveness of 1086

the Conf-MPU loss estimation for curriculum learn- 1087

ing in CuPUL, we use the regular loss estimation, 1088

which considers unlabeled tokens as non-entity to- 1089

kens, denoted as w/o Conf-MPU in Table 10. 1090
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hyper-parameter CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR QTL
train set sentence # 14041 2393 115812 1142 385 4560 18706
voter drop negative 0.3 0.1 0.3 0.1 0.1 0.3 0.3
voter learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

voter learning epochs 1 5 1 10 15 5 1
Conf-MPU γ 20 10 20 10 10 20 20

curriculum learning stage epochs 1 2 1 2 2 1 1
curriculum learning learning rate 1e-5 7e-5 3e-5 1e-5 5e-5 1e-5 5e-5

Table 8: The hyper-parameters used in CuPUL

Method CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR
Fully Supervised

RoBERTa# 90.11 (89.14/91.10) 52.19 (51.76/52.63) 86.20 (84.59/87.88) 86.43 (85.33/87.66) 72.39 (66.29/79.73) 90.99 (-/-)†

Span-based DS-NER models
SANTA3 86.59 (86.25/86.95) - 69.72 (69.24/70.21) - 71.79 (78.40/66.72) 79.23 (81.74/76.88)
Top-Neg3 80.55 (81.07/80.23) 52.86 (52.30/53.55) - - - 80.39 (82.09/78.90)

CLIM3 85.4 (-/-) 53.8 (-/-) 69.6 (-/-) 70 (-/-) 67.9 (-/-) -
DS-NER without Self-training
KB-Matching# 71.40 (81.13/63.75) 35.83 (40.34/32.22) 59.51 (63.86/55.71) 47.76 (47.90/47.63) 52.45 (62.59/45.14) 64.32 (86.39/51.24)†

AutoNER# 67.00 (75.21/60.40) 26.10 (43.26/18.69) 67.18 (64.63/69.95) 47.54 (43.54/52.35) 51.39 (48.82/54.23) 79.99 (82.63/77.52)†

RoBERTa-ES# 75.61 (83.76/68.90) 46.61 (53.11/41.52) 68.11 (66.71/69.56) 51.55 (49.17/54.50) 59.11 (60.14/58.11) 73.66 (80.43/67.94)†

Conf-MPU† 79.16 (78.58/79.75) - - - - 77.22 (69.79/86.42)†

CuPUL-curr 83.18 (83.69/82.68) 50.12 (47.48/53.07) 67.76 (65.66/70.00) 66.43 (58.89/76.18) 65.15 (62.89/67.57) 79.91 (75.07/85.43 )
CuPUL 85.09 (84.64/85.53) 54.34 (54.47/54.20) 68.06 (66.31/69.91) 70.53 (67.06/74.39) 73.10 (74.65/71.62) 80.19 (74.91/86.28)

DS-NER with Self-training
BOND# 81.15 (82.00/80.92) 48.01 (53.16/43.76) 68.35 (67.14/69.61) 60.07 (53.44/68.58) 65.74 (67.37/64.19) -

RoSTER¶ 85.40 (85.90/84.90) - - 67.80 (64.90/71.00) - -
SCDL‡ 83.69 (87.96/79.82) 51.10 (59.87/44.57) 68.61 (67.49/69.77) 64.13 (62.25/66.12) 68.47 (68.71/68.24) -

ATSEN‡ 85.59 (86.14/85.05) 52.46 (62.32/45.30) 68.95 (66.97/71.05) - 0.55 (71.08/70.55) -
desERT‡ 86.95 (86.41/87.49) 52.26 (57.65/47.80) 69.17 (66.63/71.92) 65.99 (62.87/69.42) 72.73 (72.48/72.97) -

CuPUL+ST 86.64 (86.02/87.27) 54.78 (57.32/52.46) 68.20 (66.57/69.11) 70.19 (66.96/73.74) 74.48 (76.06/72.97) 80.92 (75.45/87.26)

Table 9: Performance on benchmark datasets: F1 Score (Precision/Recall) (in %). # marks the row of results
reported by Liang et al. (2020). ¶ marks the row of results reported by Meng et al. (2021), where results for Twitter,
OntoNote5.0 and Webpage are not reported in Meng et al. (2021). ‡ marks the row of results reported by Zhang
et al. (2021b). 3 marks the row of results from the method proposed paper respectively. † marks the results from
Zhou et al. (2022). The best results are in bold, second best results are in underline.

Our analysis reveals the critical role of each com-1091

ponent, as removing any of them results in a signif-1092

icant drop in the F1 score. Compared CuPUL-curr1093

with w/o Conf-MPU, we find that CuPUL-curr con-1094

sistently achieves higher recall. This is attributed1095

to Conf-MPU primarily addressing false negatives1096

(Zhou et al., 2022) and partial false positives (see1097

the following discussions), leading to more tokens1098

being predicted as entities, thereby enhancing re-1099

call. Conversely, w/o Conf-MPU exhibits higher1100

precision since it tackles both false positives and1101

positive type errors. Addressing positive type er-1102

rors benefits both precision and recall, but the in-1103

crease in precision is more pronounced compared1104

to CuPUL-curr.1105

We observed an interesting synergistic effect on1106

the Wikigold dataset: CuPUL has much higher pre-1107

cision than w/o Conf-MPU and CuPUL-curr, as1108

shown in Table H. To investigate this phenomenon1109

further, we examined the loss function of Conf-1110

MPU. For clarity, we denote the four terms in1111

Eq.(6) as follows. 1112

A = ℓ(f(x
T∗
i

j ,θ), i) 1113

B = 1
λ̂(x

T∗
i

j )>ϵ
ℓ(f(x

T∗
i

j ,θ), 0)
1

λ̂(x
T∗
i

j )
1114

C = ℓ(f(x
T∗
i

j ,θ), 0) 1115

D = 1
λ̂(x

T∗
0

j )≤ϵ
ℓ(f(x

T∗
0

j ,θ), 0) (9) 1116

If a sample is annotated as an entity of a certain 1117

type, the Conf-MPU loss on this token is A+B−C. 1118

If the confidence score for this token is lower than ϵ, 1119

then B = 0 and the Conf-MPU loss on this token is 1120

A− C. While using regular non-PU-based loss, the 1121

loss of this sample is A. For a false positive sample, 1122

if Conf-MPU also has a low confidence score, and 1123

the loss on this sample A−C is smaller than A (the 1124

regular loss). Consequently, Conf-MPU can avoid 1125

overfitting to false positive errors for such cases. 1126

Conf-MPU cannot handle samples with positive 1127

type errors. For those samples, Conf-MPU may 1128
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Method Wikigold Twitter
Precision Recall F1 Precision Recall F1

CuPUL 67.06 74.39 70.53 54.47 54.20 54.34
w/o Curriculum Learning

voter ensemble 56.88 74.88 64.65 35.52 49.52 41.37
CuPUL-curr 58.89 76.18 66.43 47.48 53.07 50.12

w/o Conf-MPU 59.31 75.86 66.57 58.91 47.04 52.53

Table 10: Ablation study on Wikigold and Twitter datasets.
CuPUL is compared with variations without Curriculum
Learning (voter ensemble only and Conf-MPU only) and with-
out Conf-MPU loss in Curriculum Learning.

still have high confidence scores that they are en-1129

tities (close to 1), leading to B − C close to 0, and1130

thus the loss is A, same with regular loss. So, in1131

summary, Conf-MPU can be robust to false posi-1132

tives (non-entity samples labeled as entities) and1133

false negatives (entity samples mistakenly labeled1134

as non-entity) but not to positive type errors (e.g., a1135

sample of type PER is labeled as ORG). In (Zhou1136

et al., 2022), since they assume all positive annota-1137

tions are correct, only the impact of false negatives1138

was discussed.1139

Curriculum learning, on the other hand, handles1140

false positives and positive type errors by learning1141

from cleaner samples earlier and with more epochs.1142

We also noticed that the three error types may be of1143

different difficulty scores in our curriculum sched-1144

uler. Some false positive entities in Wikigold, such1145

as “The” and “Welcome”, have relatively low diffi-1146

culty scores because voters agreed that they are not1147

entities. This type of noise was introduced in the1148

2nd and 3rd curriculum, resulting in a bigger im-1149

pact than noise introduced in later curricula. When1150

Curriculum learning and Conf-MPU are combined1151

together, the false positive noises introduced in1152

early curricula, which had low λ, can be success-1153

fully addressed by the Conf-MPU loss function.1154

This significantly improves model precision and1155

creates a synergistic effect on the Wikigold dataset.1156

Twitter, on the other hand, is dominated by false1157

negatives (60.41%). Curriculum learning without1158

Conf-MPU suffered from the false negatives more,1159

resulting in low recall. The Conf-MPU loss in1160

CuPUL addressed this error issue and, therefore,1161

improved recall.1162

Distant Labels. In previous methods, a moder-1163

ately well-trained model is often used to detect1164

label noise, and the confidently predicted soft la-1165

bels from the moderately well-trained model are1166

often used to replace the noisy distant labels. Based1167

on our previous experiments, the ensembled voters1168

can be viewed as a moderately well-trained model,1169

and the earlier curricula are formed with data that1170

the moderately well-trained model can confidently 1171

predict. We study which labels should be used for 1172

curriculum learning in CuPUL, the voters’ ensem- 1173

bled soft labels or the noisy distant labels. Note that 1174

the ensembled labels used here are the soft labels 1175

of the voters’ ensemble. We use KL-divergence 1176

as the loss function in curriculum learning to learn 1177

from soft labels. 1178

Figure 4 plots the results regarding F1 scores 1179

on test data with respect to incremental curriculum 1180

stages. We can see that CuPUL learns in almost all 1181

stages of the curricula, and the F1 value is steadily 1182

improving until the second last curriculum. How- 1183

ever, using ensembled soft labels, the model has a 1184

good start but reaches the upper bound quickly. We 1185

have the following insights from this experiment. 1186

1) A model that only learns from the confidently 1187

predicted labels and ignores the potential noisy data 1188

may converge faster but can be impacted by the per- 1189

formance bottleneck of the initial model. 2) the last 1190

curricula may contain high label noise, so training 1191

on the last curricula may degrade the performance 1192

slightly. However, thanks to the curriculum learn- 1193

ing schedule, the model is overall robust to noise 1194

in the last curricula. 1195

Figure 4: F1 scores of CuPUL on test data of Wikigold
trained with Distant Labels (red) and Ensembled Labels from
voters (blue) after each curriculum training stage.

I Parameter Study 1196

Here, we perform parameter studies. Due to the 1197

simplicity of CuPUL, we mainly study two param- 1198

eters: the number of voters V and the number of 1199

curricula η. To ensure comparability of experimen- 1200

tal results, we keep all other parameters fixed and 1201

only change the corresponding parameter (V or η) 1202

to demonstrate their impact. The experiments are 1203

carried out on Wikigold. 1204
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Index 1 2 3 4 5 6 7 8 9
Token the regiment was attached to Howe ’s Brigade of · · ·

Ground Truth O O O O O ORG ORG ORG O
Distant Label O O O O O ORG ORG ORG ORG
Curriculum # 0 0 0 0 0 2 3 2 4

Index 10 11 12 13 14 15 16 17 18
Token the IV Corps of the Army of the Potomac

Ground Truth O ORG ORG O O ORG ORG ORG ORG
Distant Label O ORG ORG ORG O ORG ORG O O
Curriculum # 0 2 2 2 0 2 2 0 0

Table 11: Case study on Wikigold. The selected sentence is "After burying the dead on the field of Second Battle of
Bull Run, the regiment was attached to Howe ’s Brigade of Couch ’s Division of the IV Corps of the Army of the
Potomac where it replaced De Trobriand ’s 55th New York, Gardes Lafayette regiment on September 11, 1862."
This table shows two pieces of this sentence.

Figure 5: Span Level Precision, Recall, and F1 scores
of CuPUL with respect to Number of Voters V .

I.1 Number of Voters V1205

Figure 5 shows the effect of the number of voters1206

V to CuPUL performance. From the figure, we1207

can see that when there are only two voters, the1208

performance of CuPUL is poor. This is understand-1209

able because, with too few voters, the difficulty1210

scores estimated are unreliable, which leads to a1211

low-quality curriculum scheduler. As the number1212

of voters increases, the performance of CuPUL also1213

rapidly improves. When the number of voters is 4,1214

it reaches a local maximum. Then, as the number1215

of voters increases, the new voters can no longer1216

provide new information for difficulty estimation,1217

and the results of CuPUL are stabilized around 0.7.1218

Therefore, with the consideration of computation1219

efficiency, a moderate number greater than or equal1220

to 4 can be chosen for the number of voters.1221

I.2 Number of Curricula η1222

Figure 6 shows the effect of the number of curricula1223

to CuPUL performance. Like the number of voters,1224

when the number of curricula is small, the perfor-1225

mance of CuPUL is poor. Too few curricula can1226

Figure 6: Span Level Precision, Recall, and F1 scores
of CuPUL with respect to Number of Curricula η.

BOND RoSTER SCDL Conf-MPU CuPUL CuPUL-ST

Run Time
978s 2397s 4319s 732s 819s 1733s

16m18s 39m57s 71m59s 12m12s 13m39s 28m53s

Table 12: Efficiency analysis on CoNLL03, m means
minute, s means second

reduce the ability to distinguish between easy and 1227

difficult tokens, leading to ineffective curriculum 1228

learning. With the increase of η, the performance 1229

of CuPUL also improves and reaches the best per- 1230

formance at η = 5. After that, as the number of 1231

curricula increases, the performance of CuPUL is 1232

relatively stable. The performance of CuPUL be- 1233

gins to decline after η > 8. The decline may be 1234

caused by the data having been trained too many 1235

rounds, and the model starts to overfit to noisy la- 1236

bels. 1237

J Efficiency Analysis 1238

In order to evaluate the efficiency of CuPUL, we un- 1239

dertook performance timing of the principal meth- 1240

ods on CoNLL03, with the results displayed in 1241

Table 12. All tests were performed on an identi- 1242

cal computing infrastructure. The training epochs 1243
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for BOND and SCDL were preset to 5, while1244

the parameter configurations for RoSTER adhered1245

strictly to those detailed in their respective paper.1246

The data in the table reveals that Conf-MPU had1247

the least time requirement. Our approach, CuPUL,1248

demonstrated competitive performance in this re-1249

gard. Even when the self-training procedure was1250

incorporated into CuPUL-ST, it maintained a sub-1251

stantial efficiency advantage relative to both RoS-1252

TER and SCDL.1253

K Case Study1254

To gain an intuitive understanding of how the cur-1255

riculum helps CuPUL, we selected a sentence from1256

the Wikigold corpus to show how CuPUL learns.1257

As shown in Table 11, we give the tokens, ground1258

truth labels, the distant labels, and the Number of1259

Curricula for each token in the sentence. We assign1260

each token an index for ease of discussion. We1261

display a sentence in two lines and omit some re-1262

peated parts. As can be seen from Table 11, the1263

two “of” (token 9 and token 16) are learned in dif-1264

ferent curricula. The one with the false positive1265

label (token 9) is arranged in the fourth curricu-1266

lum, whereas the one with the correct label (token1267

16) is learned early (the second curriculum). This1268

shows that the pre-trained language model has the1269

capability of providing prediction results for each1270

token while retaining context information, and thus,1271

the difficulty scores can be determined at the token1272

level.1273

18


	Introduction
	QTL Benchmark
	Related Work Analysis
	DS-NER methods
	Method Analysis

	Methodology
	Difficulty Estimation
	Voters
	Difficulty Scores

	Curriculum Design
	Curriculum-based PU Learning
	Self-Training

	Experimental Studies
	Baseline Methods
	QTL Experiments
	Benchmark Experiments
	Datasets and Metrics
	Results on Benchmark Datasets

	Further Analysis
	Robustness of CuPUL
	Effectiveness


	Conclusion and Future Work
	Baselines
	Datasets
	Curriculum Learning
	Conf-MPU Risk Estimation
	Discussion of Loss Function
	Hyperparameters and Experiment Settings
	Re-Examine Baseline Methods on QTL
	Ablation Study
	Parameter Study
	Number of Voters V
	Number of Curricula 

	Efficiency Analysis
	Case Study

