
The Complexity of Bayesian Network Learning:
Revisiting the Superstructure

Robert Ganian and Viktoriia Korchemna
Algorithms and Complexity Group, TU Wien
{rganian,vkorchemna}@ac.tuwien.ac.at

Abstract

We investigate the parameterized complexity of Bayesian Network Structure Learn-
ing (BNSL), a classical problem that has received significant attention in empirical
but also purely theoretical studies. We follow up on previous works that have
analyzed the complexity of BNSL w.r.t. the so-called superstructure of the input.
While known results imply that BNSL is unlikely to be fixed-parameter tractable
even when parameterized by the size of a vertex cover in the superstructure, here we
show that a different kind of parameterization—notably by the size of a feedback
edge set—yields fixed-parameter tractability. We proceed by showing that this
result can be strengthened to a localized version of the feedback edge set, and
provide corresponding lower bounds that complement previous results to provide a
complexity classification of BNSL w.r.t. virtually all well-studied graph parameters.
We then analyze how the complexity of BNSL depends on the representation of the
input. In particular, while the bulk of past theoretical work on the topic assumed
the use of the so-called non-zero representation, here we prove that if an additive
representation can be used instead then BNSL becomes fixed-parameter tractable
even under significantly milder restrictions to the superstructure, notably when
parameterized by the treewidth alone. Last but not least, we show how our results
can be extended to the closely related problem of Polytree Learning.

1 Introduction

Bayesian networks are among the most prominent graphical models for probability distributions. The
key feature of Bayesian networks is that they represent conditional dependencies between random
variables via a directed acyclic graph; the vertices of this graph are the variables, and an arc ab means
that the distribution of variable b depends on the value of a. One beneficial property of Bayesian
networks is that they can be used to infer the distribution of random variables in the network based
on the values of the remaining variables.

The problem of constructing a Bayesian network with an optimal network structure is NP-hard, and
remains NP-hard even on highly restricted instances [4]. This initial negative result has prompted
an extensive investigation of the problem’s complexity, with the aim of identifying new tractable
fragments as well as the boundaries of its intractability [26, 32, 27, 22, 11, 6, 19]. The problem—
which we simply call BAYESIAN NETWORK STRUCTURE LEARNING (BNSL)—can be stated as
follows: given a set of V of variables (represented as vertices), a family F of score functions which
assign each variable v ∈ V a score based on its parents, and a target value `, determine if there exists
a directed acyclic graph over V that achieves a total score of at least `1.

1Formal definitions are provided in Section 2. We consider the decision version of BNSL for complexity-
theoretic reasons only; all of the provided algorithms are constructive and can output a network as a witness.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

To obtain a more refined understanding of the complexity of BNSL, past works have analyzed the
problem not only in terms of classical complexity but also from the perspective of parameterized
complexity [9, 5]. In parameterized complexity analysis, the tractability of problems is measured
with respect to the input size n and additionally with respect to a specified numerical parameter k. In
particular, a problem that is NP-hard in the classical sense may—depending on the parameterization
used—be fixed-parameter tractable (FPT), which is the parameterized analogue of polynomial-time
tractability and means that a solution can be found in time f(k) ·nO(1) for some computable function
f , or W[1]-hard, which rules out fixed-parameter tractability under standard complexity assumptions.
The use of parameterized complexity as a refinement of classical complexity is becoming increasingly
common and has been employed not only for BNSL [26, 32, 27], but also for numerous other
problems arising in the context of neural networks and artificial intelligence [13, 41, 10, 16].

Unfortunately, past complexity-theoretic works have shown that BNSL is a surprisingly difficult
problem. In particular, not only is the problem NP-hard, but it remains NP-hard even when asking
for the existence of extremely simple networks such as directed paths [29] and is W[1]-hard when
parameterized by the vertex cover number of the network [27]. In an effort to circumvent these lower
bounds, several works have proposed to instead consider restrictions to the so-called superstructure,
which is a graph that, informally speaking, captures all potential dependencies between variables [42,
35]. Ordyniak and Szeider [32] studied the complexity of BNSL when parameterized by the
structural properties of the superstructure, and showed that parameterizing by the treewidth [36]
of the superstructure is sufficient to achieve a weaker notion of tractability called XP-tractability.
However, they also proved that BNSL remains W[1]-hard when parameterized by the treewidth of
the superstructure [32, Theorem 3].

Contribution. Up to now, no “implicit” restrictions of the superstructure were known to lead
to a fixed-parameter algorithm for BNSL alone. More precisely, the only known fixed-parameter
algorithms for the problem require that we place explicit restrictions on either the sought-after network
or the parent sets on the input: BNSL is known to be fixed-parameter tractable when parameterized
by the number of arcs in the target network [22], the treewidth of an “extended superstructure graph”
which also bounds the maximum number of parents a variable can have [26], or the number of
parent set candidates plus the treewidth of the superstructure [32]. Moreover, a closer analysis of the
reduction given by Ordyniak and Szeider [32, Theorem 3] reveals that BNSL is also W[1]-hard when
parameterized by the treedepth, pathwidth, and even the vertex cover number of the superstructure
alone. The vertex cover number is equal to the vertex deletion distance to an edgeless graph, and
hence their result essentially rules out the use of the vast majority of graph parameters; among others,
any structural parameter based on vertex deletion distance.

As our first conceptual contribution, we show that a different kind of graph parameters—notably,
parameters that are based on edge deletion distance—give rise to fixed-parameter algorithms for
BNSL in its full generality, without requiring any further explicit restrictions on the target network
or parent sets. Our first result in this direction concerns the feedback edge number (fen), which is the
minimum number of edges that need to be deleted to achieve acyclicity. In Theorem 3 we show not
only that BNSL is fixed-parameter tractable when parameterized by the fen of the superstructure, but
also provide a polynomial-time preprocessing algorithm that reduces any instance of BNSL to an
equivalent one whose number of variables is linear in the fen (i.e., a kernelization [9, 5]).

Since fen is a highly “restrictive” parameter—its value can be large even on simple superstructures
such as collections of disjoint cycles—we proceed by asking whether it is possible to lift fixed-
parameter tractability to a more relaxed way of measuring distance to acyclicity. For our second
result, we introduce the local feedback edge number (lfen), which intuitively measures the maximum
edge deletion distance to acyclicity for cycles intersecting any particular vertex in the superstructure.
In Theorem 6, we show that BNSL is also fixed-parameter tractable when prameterized by lfen; we
also show that this comes at the cost of BNSL not admitting any polynomial-time preprocessing
procedure akin to Theorem 3 when parameterized by lfen. We conclude our investigation in the
direction of parameters based on edge deletion distance by showing that BNSL parameterized by
treecut width [28, 45, 14], a recently discovered edge-cut based counterpart to treewidth, remains
W[1]-hard (Theorem 9). An overview of these complexity-theoretic results is provided in Figure 1.

As our second conceptual contribution, we show that BNSL becomes significantly easier when one
can use an additive representation of the scores rather than the non-zero representation that was
considered in the vast majority of complexity-theoretic works on BNSL to date [26, 32, 27, 22, 11, 19].

2

Figure 1: The complexity landscape of BNSL
with respect to parameterizations of the super-
structure. Arrows point from more restrictive
parameters to less restrictive ones. Results
for the three graph parameters on the left side
follow from this paper, while all other W[1]-
hardness results follow from the reduction by
Ordyniak and Szeider [32, Theorem 3].

The additive representation is inspired by known heuristics for BNSL [40, 39] and utilizes a succinct
encoding of the score function which assumes that the scores for parent sets can be decomposed into
a sum of the scores of individual variables in the parent set; a discussion and formal definitions are
provided in Section 2. In Theorem 11, we show that if the additive representation can be used, BNSL
becomes fixed-parameter tractable when parameterized by the treewidth of the superstructure (and
hence under every parameterization depicted in Figure 1). Motivated by the empirical usage of the
additive representation, we also consider the case where we additionally impose a bound q on the
number of parents a vertex can accept; we show that the result of Theorem 11 also covers this case if
q is taken as an additional parameter, and otherwise rule out fixed-parameter tractability using an
intricate reduction (Theorem 12).

For our third and final conceptual contribution, we show how our results can be adapted for the
emergent problem of POLYTREE LEARNING (PL), a variant of BNSL where we require that the
network forms a polytree. The crucial advantage of such networks is that they allow for a more
efficient solution of the inference task [34, 23], and the complexity of PL has been studied in several
works [21, 19, 38]. We show that all our results for BNSL can be adapted to PL, albeit in some cases
it is necessary to perform non-trivial modifications. Furthermore, we observe that unlike BNSL,
PL becomes polynomial-time tractable when the additive representation is used (Observation 16);
this matches the “naive” expectation that learning simple networks would be easier than BNSL
in its full generality. As our concluding result, we show that this expectation is in fact not always
validated: while PL was recently shown to be W[1]-hard when parameterized by the number of
so-called dependent vertices [21], in Theorem 17 we prove that BNSL is fixed-parameter tractable
under that same parameterization.

2 Preliminaries

For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i] ∪ {0}. We denote by N the set of natural
numbers, by N0 the set N ∪ {0}. We refer to the handbook by Diestel [8] for standard terminology
on directed as well as undirected graphs. The skeleton (sometimes called the underlying undirected
graph) of a directed graph (a digraph) D = (V,A) is the undirected graph G′ = (V,E) such that
vw ∈ E if vw ∈ A or wv ∈ A. A digraph is a polytree if its skeleton is a forest.

When comparing two numerical parameters α, β of graphs, we say that α is more restrictive than
β if there exists a function f such that β(G) ≤ f(α(G)) holds for every graph G. We refer to the
standard sources for the fundamentals of parameterized complexity, including the definitions of
fixed-parameter tractability, parameterized reductions, W[1]-hardness and treewidth [5, 9, 31].

Problem Definitions. Let V be a set of vertices and F = { fv : 2V \{v} → N0 | v ∈ V }
be a family of local score functions. For a digraph D = (V,A), we define its score as follows:
score(D) =

∑
v∈V fv(PD(v)), where PD(v) is the set of vertices of D with an outgoing arc to v

(i.e., the parent set of v in D). We can now formalize our problem of interest [32, 22].

BAYESIAN NETWORK STRUCTURE LEARNING (BNSL)

Input: A set V of vertices, a family F of local score functions, and an integer `.
Question: Does there exist an acyclic digraph D = (V,A) such that score(D) ≥ `?

POLYTREE LEARNING (PL) is defined analogously, with the only difference that there D is addition-
ally required to be a polytree [21]. We call D a solution for the given instance.

3

Figure 2: Example of a superstructure graph (on
the top) and a suitable solution DAG (on the bot-
tom) when:
fa({b}) = fa({c}) = 1, fa({b, c}) = 2;
fb({a}) = fb({c}) = 1, fb({a, c}) = 3;
fc({a}) = 3, fc({b}) = 2;
fd({b, c}) = 1;
l = 6.
Note that in the depicted DAG the scores of b and
c are equal to 3, the score of d is equal to 1. Parent
set of a is empty; as we assume the non-zero rep-
resentation and fa(∅) is not specified in the input,
we conclude that fa(∅) = 0. Therefore the total
score is 0 + 3 + 3 + 1 = 7 ≥ 6 = l.

Since both V and F are assumed to be given on the input of our problems, an issue that arises here
is that an explicit representation of F would be exponentially larger than |V |. A common way to
potentially circumvent this is to use a non-zero representation of the family F , i.e., where we only
store values for fv(P) that are different than zero. This model has been used in the vast majority of
works studying the complexity of BNSL and PL [26, 32, 27, 22, 19, 21]. Let Γf (v) be the collection
of candidate parents of v which yield a non-zero score; formally, Γf (v) = {Z | fv(Z) 6= 0 }, and
the input size |I| of an instance I = (V,F , `) is simply defined as |V |+ `+

∑
v∈V,P∈Γf (v) |P |2.

A natural way to think about and exploit the structure of inter-variable dependencies of an instance
I is to consider its superstructure graph GI = (V,E), where ab ∈ E if a occurs in at least one
candidate set in Γf (b) (or vice-versa). An example is provided in Figure 2.

Naturally, families of local score functions may be exponentially larger than |V | even when stored
using the non-zero representation. In this paper, we also consider a second representation of F
which is guaranteed to be polynomial in |V |: in the additive representation, we require that for
every vertex v ∈ V and set Q = {q1, . . . , qm} ⊆ V \ {v}, fv(Q) = fv({q1}) + · · · + fv({qm}).
Hence, each cost function fv can be fully characterized by storing at most |V |-many entries of the
form fv(x) := fv({x}) for each x ∈ V \ {v}. To avoid overfitting, one may optionally impose an
additional constraint: an upper bound q on the size of any parent set in the solution.

While not every family of local score functions admits an additive representation, the additive model
is similar in spirit to the models used by some practical algorithms for BNSL. For instance, the
algorithms of Scanagatta, de Campos, Corani and Zaffalon [40, 39], which can process BNSL
instances with up to thousands of variables, approximate the real score functions by adding up the
known score functions for two parts of the parent set and applying a small, logarithmic correction.
Both of these algorithms also use the aforementioned bound q for the parent set size. In spite of this
connection to practice and the representation’s streamlined nature, we are not aware of any prior
works that considered the additive representation in complexity-theoretic studies of BNSL and PL.
The superstructure graph for the additive representation can be defined in an analogous way as for the
non-zero representation: an edge uv simply captures a “suspected dependencey’ between variables u
and v (i.e., one receives a positive score for depending on the other).

To distinguish between these models, we use BNSL 6=0, BNSL+, and BNSL+
≤to denote BAYESIAN

NETWORK STRUCTURE LEARNING with the non-zero representation, the additive representation,
and the additive representation and the parent set size bound q, respectively (and analogously for PL).

In our algorithmic results, we will often use G = (V,E) to denote the superstructure graph of the
input instance I. Without any loss of generality, we will also assume that G is connected.

Graph Parameters Based on Edge Cuts. Traditionally, the bulk of graph-theoretic research on
structural parameters has focused on parameters that guarantee the existence of small vertex separators
in the graph; these are inherently tied to the theory of graph minors [37, 36] and the vertex deletion

2We remark that the non-zero representation could be strengthened even further by omitting each parent set
Z of v which contains a proper subset Z′ such that fv(Z) ≤ fv(Z

′). This preprocessing step, however, does
not have an impact on any of the results presented in this paper.

4

distance. This approach gives rise not only to the classical notion of treewidth, but also to its
well-known restrictions and refinements such as pathwidth [37], treedepth [30] and the vertex cover
number [12, 25]. The vertex cover number is the most restrictive parameter in this hierarchy.

However, there are numerous problems of interest that remain intractable even when parameterized
by the vertex cover number. A recent approach developed for attacking such problems has been to
consider parameters that guarantee the existence of small edge cuts in the graph; these are typically
based on the edge deletion distance or, more broadly, tied to the theory of graph immersions [45, 28].
The parameter of choice for the latter is treecut width (tcw) [45, 28, 14, 15], a counterpart to
treewidth which has been successfully used to tackle some problems that remained intractable when
parameterized by the vertex cover number [17].

On the other hand, the by far most prominent parameter based on edge deletion distance is the
feedback edge number of a connected graph G = (V,E), which is the minimum cardinality of a
set F ⊆ E of edges (called the feedback edge set) such that G− F is acyclic. The feedback edge
number can be computed in quadratic time and has primarily been used to obtain fixed-parameter
algorithms and polynomial kernels for problems where other parameterizations failed [17, 2, 1, 44].

Up to now, these were the only two edge-cut based graph parameters that have been considered in
the broader context of algorithm design. This situation could be seen as rather unstisfactory in view
of the large gap between the complexity of the richer class of graphs of bounded treecut width, and
the significantly simpler class of graphs of bounded feedback edge number—for instance, the latter
class is not even closed under disjoint union. Here, we propose a new parameter that lies “between”
the feedback edge number and treecut width, and which can be seen as a localized relaxation of the
feedback edge number: instead of measuring the total size of the feedback edge set, it only measures
how many feedback edges can “locally interfere with” any particular part of the graph.

Formally, for a connected graph G = (V,E) and a spanning tree T of G, let the local feedback edge
set at v ∈ V be ETloc(v) = {uw ∈ E \ E(T) | the unique path between u and w in T contains v}.
The local feedback edge number of (G,T) (denoted lfen(G,T)) is then equal to maxv∈V |ETloc(v)|,
and the local feedback edge number of G is simply the smallest local feedback edge number among
all possible spanning trees of G, i.e., lfen(G) = minT is a spanning tree ofG lfen(G,T).

It is not difficult to show that the local feedback edge number is “sandwiched” between the feedback
edge number and treecut width. We also show that computing it is FPT.
Proposition 1. For every graph G, tcw(G) ≤ lfen(G) + 1 and lfen(G) ≤ fen(G).
Theorem 2. The problem of determining whether lfen(G) ≤ k for an input graph G parameterized
by an integer k is fixed-parameter tractable. Moreover, if the answer is positive, we may also output
a spanning tree T such that lfen(G,T) ≤ k as a witness.

3 Solving BNSL 6=0 with Parameters Based on Edge Cuts.

In this section we provide tractability and lower-bound results for BNSL 6=0 from the viewpoint of
superstructure parameters based on edge cuts. Together with the previous lower bound that rules
out fixed-parameter algorithms based on all vertex-separator parameters [32, Theorem 3], the results
presented here provide a comprehensive picture of the complexity of BNSL 6=0 with respect to
superstructure parameterizations.

Using the Feedback Edge Number for BNSL 6=0. We say that two instances I, I ′ of BNSL are
equivalent if (1) they are either both Yes-instances or both No-instances, and furthermore (2) a
solution to one instance can be transformed into a solution to the other instance in polynomial time.
Our aim here is to prove the following theorem:
Theorem 3. There is an algorithm which takes as input an instance I of BNSL 6=0 whose super-
structure has fen k, runs in time O(|I|2), and outputs an equivalent instance I ′ = (V ′,F ′, `′) of
BNSL 6=0 such that |V ′| ≤ 16k.

In parameterized complexity theory, such data reduction algorithms with performance guarantees
are called kernelization algorithms [9, 5]. These may be applied as a polynomial-time preprocessing
step before, e.g., more computationally expensive methods are used. The fixed-parameter tractability
of BNSL 6=0 when parameterized by the fen of the superstructure follows as an immediate corollary
of Theorem 3 (one may solve I by, e.g., exhaustively looping over all possible DAGs on V ′ via a

5

brute-force procedure). We also note that even though the number of variables of the output instance
is polynomial in the parameter k, the instance I ′ need not have size polynomial in k.

We begin our path towards a proof of Theorem 3 by computing a feedback edge set EF of G of size k
in timeO(|I|2) by, e.g., Prim’s algorithm. Let T be the spanning tree ofG, EF = E(G)\E(T). The
algorithm will proceed by the recursive application of certain reduction rules, which are polynomial-
time operations that alter (“simplify”) the input instance in a certain way. A reduction rule is safe if it
outputs an instance which is equivalent to the input instance. We start by describing a rule that will
be used to prune T until all leaves are incident to at least one edge in EF .

Reduction Rule 1. Let v ∈ V be a vertex and let Q be the set of neighbors of v with de-
gree 1 in G. We construct a new instance I ′ = (V ′,F ′, `) by setting: 1. V ′ := V \ Q; 2.
Γf ′(v) := {∅} ∪ { (P \ Q) | P ∈ Γf (v) }; 3. for all w ∈ V ′ \ {v}, f ′w = fw; 4. for every
P ′ ∈ Γf ′(v):

f ′v(P
′) := max

P :P\Q=P ′

(
fv(P) +

∑
vin∈P∩Q

fvin(∅) +
∑

vout∈Q\P

max(fvout(∅), fvout(v))
)
.

Lemma 4. Reduction Rule 1 is safe.

Observe that the superstructure graph G′ obtained after applying one step of Reduction Rule 1 is
simply G−Q; after its exhaustive application we obtain an instance I such that all the leaves of the
tree T are endpoints of EF . Our next step is to get rid of long paths in G whose internal vertices
have degree 2. We note that this step is more complicated than in typical kernelization results using
feedback edge set as the parameter, since a directed path Q in G can serve multiple “roles” in a
hypothetical solution D and our reduction gadget needs to account for all of these. Intuitively, Q may
or may not appear as a directed path in D (which impacts what other arcs can be used in D due to
acyclicity), and in addition the total score achieved by D on the internal vertices of Q needs to be
preserved while taking into account whether the endpoints of Q have a neighbor in the path or not.
Because of this (and unlike in many other kernelization results of this kind [17, 43, 15]), we will not
be replacing Q merely by a shorter path, but by a more involved gadget. An illustration is provided in
Figure 3.

Reduction Rule 2. Let a, b1, . . . , bm, c be a path in G such that for each i ∈ [m], bi has degree
precisely 2, and let P = {b1, . . . , bm}. We construct a new instance I ′ = (V ′,F ′, `) as follows:

1. V ′ := V ∪ {b} \ {b2...bm−1};

2. Γf ′(b) = {B ∪ {b1, bm}|B ⊆ {a, c}} where f ′b(B ∪ {b1, bm}) is equal to the maximum
score that can be achieved by P if B are used as parents;

3. The scores for a and c are obtained from F by simply adding b to any parent set containing
either b1 or bm;

4. Γf ′(b1) contains only {a, b, bm} with score equal to the maximum score that can be achieved
by P if a is used as a parent but there is no path from a to bm via P ;

5. Γf ′(bm) contains only {c, b, b1} with score equal to the maximum score that can be achieved
by P if c is used as a parent but there is no path from c to b1 via P ;

6. for all w ∈ V ′ \ {a, b1, b, bm, c}, f ′w = fw.

Lemma 5. Reduction Rule 2 is safe.

Proof of Theorem 3. We begin by exhaustively applying Reduction Rule 1 on an instance whose
superstructure graph has a feedback edge set of size k, which results in an instance with the same
feedback edge set but whose spanning tree T has at most 2k leaves. It follows that there are at most
2k vertices with a degree greater than 2 in T .

Let us now “mark” all the vertices that either are endpoints of the edges inEF or have a degree greater
then 2 in T ; the total number of marked vertices is upper-bounded by 4k. We now proceed to the
exhaustive application of Reduction Rule 2, which will only be triggered for sufficiently long paths in
T that connect two marked vertices but contain no marked vertices on its internal vertices; there are at
most 4k such paths due to the tree structure of T . Reduction Rule 2 will replace each such path with

6

Figure 3:
Top: The six possible solution
scenarios that may arise when
dealing with long paths.
Bottom: The corresponding
arcs in the gadget after the ap-
plication of Reduction Rule 2.

a set of 3 vertices, and therefore after its exhaustive application we obtain an equivalent instance with
at most 4k + 4k · 3 = 16k vertices, as desired. Correctness follows from the safeness of Reduction
Rules 1, 2, and the runtime bound follows by observing that the total number of applications of each
rule as well as the runtime of each rule are upper-bounded by a linear function of the input size.

As an immediate corollary of Theorem 3, we can apply a standard brute-force branching proce-
dure [33] to solve BNSL in time nO(1) + 2O(k).

Fixed-Parameter Tractability of BNSL 6=0 using the Local Feedback Edge Number. Our aim
here will be to lift the fixed-parameter tractability of BNSL 6=0 established by Theorem 3 by relaxing
the parameterization to lfen. In particular, we will prove:

Theorem 6. BNSL 6=0 is fixed-parameter tractable when parameterized by the local feedback edge
number of the superstructure.

Since fen is a more restrictive parameter than lfen, this results in a strictly larger class of instances
being identified as tractable. However, the means we will use to establish Theorem 6 will be funda-
mentally different: we will not use a polynomial-time data reduction algorithm as the one provided
in Theorem 3, but instead apply a dynamic programming approach. Since the kernels constructed
by Theorem 3 contain only polynomially-many variables w.r.t. fen, that result is incomparable to
Theorem 6. In fact one can use standard techniques to prove that, under well-established complexity
assumptions, a data reduction result such as the one provided in Theorem 3 cannot exist for lfen.

Theorem 7. Unless NP ⊆ co-NP/poly, there is no polynomial-time algorithm which takes as input
an instance I of BNSL 6=0 whose superstructure has lfen k and outputs an equivalent instance
I ′ = (V ′,F ′, `′) of BNSL 6=0 such that |V ′| ∈ kO(1). In particular, BNSL 6=0 does not admit a
polynomial kernel when parameterized by lfen.

Towards proving Theorem 6, assume that we are given an instance I = (V,F , `) of BNSL 6=0 with
connected superstructure graph G = (V,E). Let T be a fixed rooted spanning tree of G such that
lfen(G,T) = lfen(G) = k, denote the root by r. For v ∈ V (T), let Tv be the subtree of T rooted at
v, let Vv = V (Tv), and let V̄v = NG(Vv) ∪ Vv. We define the boundary δ(v) of v to be the set of
endpoints of all edges in G with precisely one endpoint in Vv (observe that the boundary can never
have a size of 1). Notice that |δ(v)| ≤ 2k + 2. We can now proceed to a definition of the records that
will be used in our dynamic program. Intuitively, these records will be computed in a leaf-to-root
fashion and will store at each vertex v information about the best score that can be achieved by a
partial solution that intersects the subtree rooted at v.

Let R be a binary relation on δ(v) and s an integer. For s ∈ Z, we say that (R : s) is a record for a
vertex v if and only if there exists a DAG D on V̄v such that (1) w ∈ Vv for each arc uw ∈ A(D), (2)
ab ∈ R if there exists an a-b path in D, and (3) s is the total score achieved by D on vertices in Vv.

7

The records (R, s) where s is maximal for fixed R are called valid. Denote the set of all valid records
for v byR(v), and note that |R(v)| ≤ 2O(k2).

Observe that if vi is a closed child of v, thenR(vi) consists of precisely two valid records: one for
R = ∅ and one for R = {vvi}. Moreover, the root r of T has only a single valid record (∅ : sI),
where sI is the maximum score that can be achieved by a solution in I. The following lemma lies at
the heart of our result and shows how we can compute our records in a leaf-to-root fashion along T .
Lemma 8. Let v ∈ V (G) have m children in T where m > 0, and assume we have computedR(vi)

for each child vi of v. ThenR(v) can be computed in time at most m · |Γf (v)| · 2O(k3).

To prove Theorem 6, we start by invoking Theorem 2 to obtain a spanning tree T and then compute the
recordsR(v) for each leaf of T via exhaustive branching. We then apply Lemma 8 to propagate our
record sets towards the root r of T ; once we obtainR(r), we can output a solution in constant time.
The runtime of the dynamic programming procedure used in the proof of Theorem 6 is upper-bounded
by |I|3 · 2O(k3).

For our final result for this section, recall that lfen lies between fen and treecut width in the parameter
hierarchy (see Proposition 1). Since BNSL 6=0 is FPT when parameterized by lfen, the next step
would be to ask whether this tractability result can be lifted to treecut width. Below, we answer this
question negatively via a reduction from the W[1]-hard MULTICOLORED CLIQUE problem [9, 5].
Theorem 9. BNSL 6=0is W[1]-hard when parameterized by the treecut width of the superstructure.

4 Additive Scores and Treewidth

While the previous section focused on the complexity of BNSL when the non-zero representation
was used (i.e., BNSL 6=0), here we turn our attention to the complexity of the problem with respect to
the additive representation. Recall from Subsection 2 that there are two variants of interest for this
representation: BNSL+ and BNSL+

≤. We begin by showing that, unsurprisingly, both of these are
NP-hard. We do so by reducing from the classical MINIMUM FEEDBACK ARC SET problem [20, 7].
Theorem 10. BNSL+ is NP-hard. Moreover, BNSL+

≤ is NP-hard for every q ≥ 3.

While the use of the additive representation did not affect the classical complexity of BNSL, it makes
a significant difference in terms of parameterized complexity. Indeed, in contrast to BNSL 6=0:
Theorem 11. BNSL+ is FPT when parameterized by the treewidth of the superstructure. Moreover,
BNSL+

≤ is FPT when parameterized by q plus the treewidth of the superstructure.

Proof Sketch. As noted in the preliminaries, due to space constraints we refer to the usual books for
a definition of treewidth and nice tree-decompositions [9, 5]. We begin by applying Bodlaender’s
algorithm [3, 24] to compute a nice tree-decomposition (T , χ) of GI of width k = tw(GI), whose
vertices are called nodes. To prove the theorem, we will design a leaf-to-root dynamic programming
algorithm which will compute and store a set of records at each node of T , whereas once we ascertain
the records for r we will have the information required to output a correct answer. Intuitively, the
records will store all information about each possible set of arcs between vertices in each bag, along
with relevant connectivity information provided by arcs between all vertices that are either in the
current bag t or in some descendant of t (we denote the set of these vertices χ↓t), and information
about the partial score. When solving BNSL+

≤, the records will also keep track of parent set sizes.

Formally, the records will have the following structure. For a node t, let S(t) =
{(loc, con, inn) | loc, con ⊆ Aχ(t), inn : χ(t)→ [q]0} be the set of snapshots of t. The record Rt
of t is then a mapping from S(t) to N0 ∪ {⊥}. Observe that |S(t)| ≤ 4k

2

(q + 1)k. To introduce
the semantics of our records, let Υt be the set of all directed acyclic graphs over the vertex set χ↓t
with maximal in-degree at most q, and let Dt = (χ↓t , A) be a directed acyclic graph in Υt. We
say that the snapshot of Dt in t is the tuple (α, β, p) where α = A ∩ Aχ(t), β = Con(χ(t), Dt)

and p (which is only used for BNSL+
≤) specifies numbers of parents of vertices from χ(t) in D,

i.e., p(v) = |{w ∈ χ↓t |wv ∈ A}|, v ∈ χ(t). Now, for each snapshot (loc, con, inn) ∈ S(t) we
set Rt(loc, con, inn) = ⊥ if there exists no DAG in Υt with (loc, con, inn) as its snapshot, and
otherwise we setRt(loc, con, inn) to the highest score that can be achieved by such a DAG.

8

The algorithm computes these records in a leaf-to-root fashion while traversing T , which can be
achieved in time at most 2O(k2) · qO(k) · n, where n is the input size. Once we reach the root node
r, we use the fact that χ(r) = ∅ by the definition of nice tree-decompositions to simply check if
Rr(∅, ∅, ∅) ≥ `; the algorithm then outputs “Yes” if and only if this is the case.

This completely resolves the parameterized complexity of BNSL+ w.r.t. all parameters depicted
on Figure 1. However, the same is not true for BNSL+

≤: while a careful analysis of the algorithm
provided in the proof of Theorem 11 reveals that BNSL+

≤ is XP-tractable when parameterized by the
treewidth of the superstructure alone, it is not yet clear whether it is FPT—in other words, do we
need to parameterize by both q and treewidth to achieve fixed-parameter tractability? We conclude
this section by answering this question affirmatively via an involved two-step reduction from a variant
of the W[1]-hard MULTIDIMENSIONAL SUBSET SUM problem [18, 15].

Theorem 12. BNSL+
≤ is W[1]-hard when parameterized by the treewidth of the superstructure.

5 Implications for Polytree Learning

Here, we discuss how the results of Sections 3 and 4 can be adapted to POLYTREE LEARNING (PL).

Theorem 3: Data Reduction. Recall that the proof of Theorem 3 used two data reduction rules.
While Reduction Rule 1 carries over to PL 6=0, Reduction Rule 2 has to be completely redesigned to
preserve the (non-)existence of undirected paths between a and c. By doing so, we obtain:
Theorem 13. There is an algorithm which takes as input an instance I of PL 6=0 whose superstructure
has feedback edge number k, runs in time O(|I|2), and outputs an equivalent instance I ′ =
(V ′,F ′, `′) of PL 6=0 such that |V ′| ≤ 24k.

Theorem 6: Fixed-parameter tractability. Analagously to BNSL 6=0 a data reduction procedure
as the one provided in Theorem 13 does not exist for PL 6=0 parametrized by lfen unless NP ⊆
co-NP/poly, since the lower-bound result provided in Theorem 7 can be straightforwardly adapted
to PL 6=0. But similarly as for BNSL we can provide an FPT algorithm using the same ideas as in
the proof of Theorem 6. The algorithm proceeds by dynamic programming on the spanning tree
T of G with lfen(G,T) = lfen(G) = k. The records will, however, need to be modified: for each
vertex v, instead of the path-connectivity relation on δ(v), we store connected components of the
inner boundary δ(v) ∩ Vv and incoming arcs to Tv . This yields:

Theorem 14. PL 6=0 is fixed-parameter tractable when parameterized by the local feedback edge
number of the superstructure.

As for treecut width, we remark that a recent reduction for PL 6=0 [21, Theorem 4.2] immediately
implies that the problem is W[1]-hard when parameterized by the treecut width.

Theorem 11: Additive Representation. We remark that, like BNSL+ and BNSL+
≤, a simple

reduction shows that PL+
≤ is NP-hard for a fixed value of q, in this case q = 1. Moreover, the

dynamic programming algorithm for BNSL+
≤ parameterized by treewidth and q can be adapted to

also solve PL+
≤. The algorithm runs in time at most 2O(k2) · qO(k) · |I|.

Theorem 15. PL+
≤ is FPT when parameterized by q plus the treewidth of the superstructure.

The situation is, however, completely different for PL+: unlike BNSL+, this problem is in fact
polynomial-time tractable. Indeed, it admits a simple reduction to the classical minimum edge-
weighted spanning tree problem.
Observation 16. PL+ is polynomial-time tractable.

This coincides with the intuitive expectation that learning simple, more restricted networks could be
easier than learning general networks. We conclude our exposition with an example showcasing that
this is not true in general when comparing PL to BNSL. Grüttemeier et al. [21] recently showed that
PL 6=0 is W[1]-hard when parameterized by the number of dependent vertices, which are vertices with
non-empty sets of candidate parents in the non-zero representation. For BNSL 6=0 we can show:

9

Theorem 17. BNSL 6=0 is fixed-parameter tractable when parameterized by the number of dependent
vertices.

6 Concluding Remarks

Our results provide a new set of tractability results that counterbalance the previously established
algorithmic lower bounds for BAYESIAN NETWORK STRUCTURE LEARNING and POLYTREE
LEARNING on “simple” superstructures. In particular, even though the problems remain W[1]-hard
when parameterized by the vertex cover number of the superstructure [32, 21], we obtained fixed-
parameter tractability and a data reduction procedure using the feedback edge number and its localized
version. Together with our lower-bound result for treecut width, this completes the complexity map
for BNSL w.r.t. virtually all commonly considered graph parameters of the superstructure. Moreover,
we showed that if the input is provided with an additive representation instead of the non-zero
representation considered in previous theoretical works, the problems admit a dynamic programming
algorithm which guarantees fixed-parameter tractability w.r.t. the treewidth of the superstructure. We
remark that all of our results assume that the score functions are provided explicitly; future work
could also consider the behavior of the problem when these functions are supplied by a suitably
defined oracle.

This theoretical work follows up on previous complexity studies of the considered problems, and
as such we do not claim any immediate practical applications of the results. That being said, it
would be interesting to see if the polynomial-time data reduction procedure introduced in Theorem 3
could be adapted and streamlined to allow for a speedup of previously introduced heuristics for the
problem [40, 39], at least for some sets of instances. Finally, we believe that the local feedback edge
number can be used to push the boundaries of tractability for other problems of interest as well.

Acknowledgments. The authors acknowledge support by the Austrian Science Fund (FWF, projects
P31336 and Y1329).

Funding Transparency Statement. Funding in direct support of this work: FWF Project P31336,
FWF Project Y1329.

Declaration of Competing Interests. None of the authors have financial relationships with entities
that could potentially be perceived to influence the content of the submitted work.

References
[1] Matthias Bentert, Roman Haag, Christian Hofer, Tomohiro Koana, and André Nichterlein.

Parameterized complexity of min-power asymmetric connectivity. Theory of Computing Systems,
64:1158–1182, 2020.

[2] Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On bounded-
degree vertex deletion parameterized by treewidth. Discret. Appl. Math., 160(1-2):53–60,
2012.

[3] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

[4] David Maxwell Chickering. Learning Bayesian networks is NP-complete. In Learning from
data (Fort Lauderdale, FL, 1995), volume 112 of Lecture Notes in Statist., pages 121–130.
Springer Verlag, 1996.

[5] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[6] Sanjoy Dasgupta. Learning polytrees. In Kathryn B. Laskey and Henri Prade, editors, UAI ’99:
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm,
Sweden, July 30 - August 1, 1999, pages 134–141. Morgan Kaufmann, 1999.

[7] Camil Demetrescu and Irene Finocchi. Combinatorial algorithms for feedback problems in
directed graphs. Inf. Process. Lett., 86(3):129–136, 2003.

10

[8] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

[9] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, 2013.

[10] Eduard Eiben, Robert Ganian, Iyad Kanj, and Stefan Szeider. The parameterized complexity of
cascading portfolio scheduling. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 7666–7676, 2019.

[11] Gal Elidan and Stephen Gould. Learning bounded treewidth bayesian networks. In Daphne
Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, Advances in Neural
Information Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on
Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 8-11,
2008, pages 417–424. Curran Associates, Inc., 2008.

[12] Jirí Fiala, Petr A. Golovach, and Jan Kratochvíl. Parameterized complexity of coloring problems:
Treewidth versus vertex cover. Theor. Comput. Sci., 412(23):2513–2523, 2011.

[13] Robert Ganian, Iyad A. Kanj, Sebastian Ordyniak, and Stefan Szeider. Parameterized algorithms
for the matrix completion problem. In Jennifer G. Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 1642–1651. PMLR, 2018.

[14] Robert Ganian, Eun Jung Kim, and Stefan Szeider. Algorithmic applications of tree-cut width.
In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Mathematical
Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, Milan,
Italy, August 24-28, 2015, Proceedings, Part II, volume 9235 of Lecture Notes in Computer
Science, pages 348–360. Springer, 2015.

[15] Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parameterizations of the
bounded-degree vertex deletion problem. Algorithmica, 83(1):297–336, 2021.

[16] Robert Ganian and Sebastian Ordyniak. The complexity landscape of decompositional parame-
ters for ILP. Artif. Intell., 257:61–71, 2018.

[17] Robert Ganian and Sebastian Ordyniak. The power of cut-based parameters for computing
edge-disjoint paths. Algorithmica, 83(2):726–752, 2021.

[18] Robert Ganian, Sebastian Ordyniak, and Ramanujan Sridharan. On structural parameterizations
of the edge disjoint paths problem. Algorithmica, 83:1605–1637, 2021.

[19] Serge Gaspers, Mikko Koivisto, Mathieu Liedloff, Sebastian Ordyniak, and Stefan Szeider. On
finding optimal polytrees. Theor. Comput. Sci., 592:49–58, 2015.

[20] Fanica Gavril. Some np-complete problems on graphs. In Proceedings of the 11th Conference
on Information Sciences and Systems, pages 91–95, 1977.

[21] Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. On the parameterized complex-
ity of polytree learning. In Proceedings of the 30th International Joint Conference on Artificial
Intelligence (IJCAI-21), 2021. To appear; preprint available at https://arxiv.org/abs/2105.09675.

[22] Niels Grüttemeier and Christian Komusiewicz. Learning bayesian networks under sparsity
constraints: A parameterized complexity analysis. In Christian Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
4245–4251. ijcai.org, 2020.

[23] Haipeng Guo and William Hsu. A survey of algorithms for real-time bayesian network inference.
In Working Notes of the Joint AAAI/UAI/KDD Workshop on Real-Time Decision Support and
Diagnosis Systems, 2002.

11

[24] T. Kloks. Treewidth: Computations and Approximations. Springer Verlag, Berlin, 1994.

[25] Yasuaki Kobayashi and Hisao Tamaki. Treedepth parameterized by vertex cover number. In
Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and
Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs,
pages 18:1–18:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[26] Janne H. Korhonen and Pekka Parviainen. Exact learning of bounded tree-width bayesian
networks. In Proceedings of the Sixteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2013, Scottsdale, AZ, USA, April 29 - May 1, 2013, volume 31 of JMLR
Workshop and Conference Proceedings, pages 370–378. JMLR.org, 2013.

[27] Janne H. Korhonen and Pekka Parviainen. Tractable bayesian network structure learning with
bounded vertex cover number. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi
Sugiyama, and Roman Garnett, editors, Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 622–630, 2015.

[28] Dániel Marx and Paul Wollan. Immersions in highly edge connected graphs. SIAM J. Discret.
Math., 28(1):503–520, 2014.

[29] Christopher Meek. Finding a path is harder than finding a tree. J. Artif. Intell. Res., 15:383–389,
2001.

[30] Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms,
volume 28 of Algorithms and Combinatorics. Springer Verlag, 2012.

[31] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathe-
matics and its Applications. Oxford University Press, Oxford, 2006.

[32] Sebastian Ordyniak and Stefan Szeider. Parameterized complexity results for exact bayesian
network structure learning. J. Artif. Intell. Res., 46:263–302, 2013.

[33] Sascha Ott, Seiya Imoto, and Satoru Miyano. Finding optimal models for small gene networks.
In Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Tiffany A. Jung, and Teri E. Klein,
editors, Biocomputing 2004, Proceedings of the Pacific Symposium, Hawaii, USA, 6-10 January
2004, pages 557–567. World Scientific, 2004.

[34] Judea Pearl. Probabilistic reasoning in intelligent systems - networks of plausible inference.
Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann, 1989.

[35] Eric Perrier, Seiya Imoto, and Satoru Miyano. Finding optimal bayesian network given a
super-structure. J. Mach. Learn. Res., 9(9):2251–2286, 2008.

[36] Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986.

[37] Neil Robertson and Paul D. Seymour. Graph minors. i. excluding a forest. J. Comb. Theory, Ser.
B, 35(1):39–61, 1983.

[38] Javad Safaei, Ján Manuch, and Ladislav Stacho. Learning polytrees with constant number of
roots from data. In Stephen Cranefield and Abhaya C. Nayak, editors, AI 2013: Advances in
Artificial Intelligence - 26th Australasian Joint Conference, Dunedin, New Zealand, December
1-6, 2013. Proceedings, volume 8272 of Lecture Notes in Computer Science, pages 447–452.
Springer, 2013.

[39] Mauro Scanagatta, Giorgio Corani, Cassio P. de Campos, and Marco Zaffalon. Learning
treewidth-bounded bayesian networks with thousands of variables. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 1462–1470, 2016.

12

[40] Mauro Scanagatta, Cassio P. de Campos, Giorgio Corani, and Marco Zaffalon. Learning
bayesian networks with thousands of variables. In Corinna Cortes, Neil D. Lawrence, Daniel D.
Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 1864–1872, 2015.

[41] Kirill Simonov, Fedor V. Fomin, Petr A. Golovach, and Fahad Panolan. Refined complexity of
PCA with outliers. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages
5818–5826. PMLR, 2019.

[42] Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min hill-climbing
bayesian network structure learning algorithm. Mach. Learn., 65(1):31–78, 2006.

[43] Johannes Uhlmann and Mathias Weller. Two-layer planarization parameterized by feedback
edge set. Theor. Comput. Sci., 494:99–111, 2013.

[44] René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. Parameterized algorithms and data
reduction for the short secluded s-t-path problem. Networks, 75(1):34–63, 2020.

[45] Paul Wollan. The structure of graphs not admitting a fixed immersion. J. Comb. Theory, Ser. B,
110:47–66, 2015.

13

	Introduction
	Preliminaries
	Solving BNSL=0 with Parameters Based on Edge Cuts.
	Additive Scores and Treewidth
	Implications for Polytree Learning
	Concluding Remarks

